
The University of Maine The University of Maine 

DigitalCommons@UMaine DigitalCommons@UMaine 

Honors College 

Spring 5-2024 

An Investigation Into Problem Solving in the Calculus III An Investigation Into Problem Solving in the Calculus III 

Classroom Classroom 

Joseph Godinez 
University of Maine - Main, joseph.godinez@maine.edu 

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors 

 Part of the Educational Methods Commons, Mathematics Commons, and the Science and 

Mathematics Education Commons 

Recommended Citation Recommended Citation 
Godinez, Joseph, "An Investigation Into Problem Solving in the Calculus III Classroom" (2024). Honors 
College. 900. 
https://digitalcommons.library.umaine.edu/honors/900 

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted 
for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, 
please contact um.library.technical.services@maine.edu. 

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/honors
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1227?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/900?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


 

 

AN INVESTIGATION INTO PROBLEM SOLVING IN THE CALCULUS II 

CLASSROOM 

by 

Joseph Godinez 

 

 

 

 

A Thesis Submitted in Partial Fulfillment 
of the Requirements for a Degree with Honors 

(Mathematics) 
 

 

 

 

The Honors College 

University of Maine 

May 2024 

 
 
 
Advisory Committee:  

Julie DellaMattera, Associate Professor of Early Childhood Development and  
Education (Advisor) 

Paula Drewniany, Mathematics Principal Lecturer 
Justin Dimmel, Associate Professor of Mathematics Education and  

Instructional Technology 
Timothy Boester, Assistant Professor of Mathematics, RiSE Center Faculty 
Karen Pelletreau, Director of Faculty Educational Development



 
 
 

i 
 

ABSTRACT 

 The importance of tertiary education has grown to new heights, especially in the 

United States. A critical component of successful modern professionals remains the 

ability to employ problem-solving strategies and techniques. This study seeks to 

investigate initial problem-solving strategies employed by post-secondary students 

enrolled in Calculus II when presented with problems common to integral calculus. In-

person pair-wise interviews were conducted asking six participants to sort integrals into 

categories based on the technique they would use to solve it. Participant responses were 

analyzed using a concept image composed of general and topic-specific symbolic forms, 

related conceptual images and concept definitions, and associated cognitive resources. 

Results indicate participants successfully sort by technique initially, suggesting technique 

choice is not a significant cause of error. Though a single cause of error cannot be 

established from this investigation, remarks from participants allude to other potential 

sources, including algebraic and arithmetic operations.  
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INTRODUCTION 

An important aspect of education is how the student interacts with new material. 

Modern pedagogical approaches shift focus from traditional memorization and recitation 

to active learning frameworks designed around student self-discovery and key 

experiences (Yair 2008). A current goal remains to produce “reflexive professionals, 

capable of problem-solving” (Santos et. al, 2019). Simultaneously, there has been a 

continuous effort to “strengthen the scientific workforce” in recent years, particularly in 

the United States (Lichtenberger & George-Jackson, 2013). Encouragement for 

undergraduate students to pursue degrees in Science, Technology, Engineering, and 

Mathematics (STEM) has dominated post-secondary education in the last 60 years 

(National Academy of Sciences, Engineering, and Medicine, 2018). Therefore, focusing 

on the robustness and quality of such undergraduate education must remain a high 

priority. This paper proposes an investigative approach using modern methods from 

education research adjoined with concepts from cognitive learning theory and aims to 

contribute to exposing sources of potential student misconceptions. The investigation is 

focused on student problem-solving procedures in a section of MAT127 (Calculus II) at 

the University of Maine. The concept of integration and various procedural techniques of 

integration are introduced. The vehicle for analyzing student problem-solving for this 

investigation will be a sorting task asking participants to choose the “correct” integration 

technique based on visual aspects and conceptual understanding. While the skill of 

manual integration may be considered obsolete, especially by students, the related 

problem-solving strategies can never be considered such.  
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BACKGROUND 

To begin to understand research on problem-solving, it is important to first 

understand the advent of problem-based learning (PBL). It is widely agreed that the 

integration of PBL began at McMasters University in the 1970s in medical school 

pedagogy (Hung et. al, 2008). A gradual spread of PBL integration followed in various 

disciplines and generally resulted in a “robust positive effect…on the skills of students” 

(Dochy et. al., 2003). Disciplines with PBL applications in higher education include 

engineering design (Hasna, 2008), biomechanics (Mandeville & Stoner, 2015), business 

management (Scherpereel & Bowers, 2006), and ecological restoration (Schaeffer & 

Gonzalez, 2013).  

After centering a learning model around problems, a natural next direction is to 

investigate how students are approaching these problems. In particular, “most 

mathematics educators agree that the development of students’ problem-solving abilities 

is a primary objective” (Lester, 1994). Beginning with work by Polya in 1945 and 

amplified by introducing problem-based learning, problem-solving research was 

particularly active throughout the 1970s and early 1980s (Schoenfeld, 2007). While 

activity has declined, problem-solving research remains active in fields of higher 

education such as graduate physics research (Leak et. al., 2017), integrated systems 

biology (MacLeod & Nersessian, 2016), civil engineering (Akinci-Ceylan et. al., 2022), 

and business (Kemery & Stickney, 2014).  

The concept of flexibility in problem-solving introduced by Star & Rittle-Johnson 

(2007) as “knowledge [of both] multiple strategies and the relative efficiencies of those 

strategies” is particularly relatable to the scope of this investigation. The primary purpose 
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of choosing an integration technique is to optimize problem-solving efficiency. To 

determine from qualitative results from this investigation if this is happening, theoretical 

and conceptual frameworks can be employed.  

Defined by Kivunja (2018), a theoretical framework “comprises the theories 

expressed by experts…for data analysis and interpretation of results”. Specifically, 

theoretical frameworks “entered mathematics education at its very beginning as an 

academic field” (Reid, 2014). Some researchers have adopted predetermined frameworks 

from other researchers, such as Carlson & Bloom’s (2005) Multidimensional Problem-

Solving Framework (Dawkins & Epperson 2014, Savic 2015), while others construct 

custom frameworks tailored to their study.  

This investigation is based on a theoretical framework constructed using three 

components: (1) the symbolic form by Sherin (2001), (2) the concept image and concept 

definition from Tall & Vinner (1981), and (3) cognitive resources from Hammer (2000) 

associated with each. The theoretical framework and its components are examined in 

closer detail in its self-titled chapter. 

Established research specifically in undergraduate mathematics education has 

focused on areas including conceptual understanding (De Zeeu et al, 2015, Tapare, 2013, 

Spencer-Tyre, 2019, West, 2023), procedural understanding (Maciejowski & Star, 2016, 

Nadaei et. al., 2022, Oberg, 2000), and metacognition (Radmehr & Drake, 2020, Smith, 

2013). This investigation aims to contribute primarily to research on procedural 

understanding with the possibility of results associated with conceptual understanding 

and metacognition.  
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THEORETICAL FRAMEWORK 

 This investigation is guided by the theoretical principles of the concept image and 

concept definition (Tall & Vinner, 1981), the symbolic form (Sherin, 2001), and 

cognitive resources (Jones, 2013). Each symbol, idea, and principle a person references 

when analyzing a problem is considered a cognitive resource. A person constructs a 

concept image by combining many individual cognitive resources into one collection. 

Each concept image is unique to each person, and they reference it when building 

understanding for a given principle.  

Each concept image consists of a symbolic form and a conceptual schema. The 

symbolic form gathers all visual information the problem offers and distinguishes each 

separate item to build a pattern that a person could use when analyzing a problem. The 

conceptual schema of each concept image draws on its symbolic form as well as various 

cognitive resources to produce a list of principles relevant to appropriately applying that 

concept.  

For this study, lead researchers constructed all concept images included in this 

study. Subsequently, each concept image is a reference standard created by the 

researchers themselves, built from their perception of each symbolic form and cognitive 

resources they would utilize. Participants will have their own unique concept images and 

may reference cognitive resources that the researchers did not include. Therefore, a 

concept image will not be used for determining the correctness of a student’s own 

concept image. Rather, the cognitive resources composing this study’s concept image 

will be compared to those used by the student while they analyze each problem (Jones, 

2013).  
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Figure 1. A visualization of the symbolic form for general integration. It is divided into three sections 
grouping together the symbols. Section 1 denotes the integral symbol, Section 2 denotes the function, and 
Section 3 denotes the differential operator.  

As an example, the concept image of general integration will be explored in 

further detail. Figure 1 highlights this concept image’s symbolic form. It consists of three 

symbols: (1) the integral symbol, (2) a function to be integrated, and (3) a differential 

operator. The conceptual schema highlights both definite and indefinite integrals, though 

all integrals used in this study are indefinite. It also includes the differential operator 

which signifies the variable being integrated. One can form this connection by observing 

the variable “x” within the parentheses of the function “f(x)” and “x” appearing next to 

the differential operator “d”. This conclusion relies on connecting visual cues from the 

symbolic form to principles from the conceptual schema. The researchers are interested 

in understanding what relationships participants will establish between specific visuals in 

problems and their own cognitive resources. Visualizations for a symbolic form of each 

technique of integration, determined by the researchers, are included below in Table 1. 

 

 

 

 

1 2 3
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Reverse Chain Rule/U-Substitution 

 

One Step/Reverse Power Rule 

 

Algebraic Simplification 

 

By Parts 

 

Partial Fractions 

 

Long Division 

 

Trigonometric Identities 

 

Trigonometric Substitution 

 

Table 1. Example visualizations of the symbolic form of each integration technique. Some techniques have 
more than one visualization. The visualizations chosen for this table represent symbolic forms of problems 
included in this investigation. 
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METHODS 

Construction of Integration Concept Images 

A theoretical framework was first constructed by the researchers before analyzing 

participant responses to particular problems (see Theoretical Framework). The 

researchers determined that problems in Integral Calculus, known as integrals, have a 

general symbolic form, regardless of the technique used to solve them.  

As explained in the Theoretical Framework section, each integral is composed of 

(1) a large symbol indicating integration, (2) an integrand, and (3) a differential operator 

indicating the variable integrated with respect to. While determining their concept 

images, the researchers first considered each symbolic form. They were concerned with 

what symbols are necessary for each problem category as well as the pattern these 

symbols are typically arranged in. A list of symbols similar to the one outlined above was 

established and then visualized into the diagrams in the Appendix.  

While the researchers were considering the relationships within each symbolic 

form, their cognitive resources were established and included as part of the conceptual 

schema. Each person, and therefore each researcher, utilizes different and often unique 

cognitive resources, so an individual analysis before a group determination was deemed 

important and necessary. The researchers recognize the determined concept images are 

their own interpretations. However, these concept images are used only as standardized 

reference points for comparison while analyzing participant responses. 

Construction of the Problem Set 

Researchers chose a list of twenty integrals to include in the total set of problems. 

They individually evaluated each problem themselves by indicating their choice of 
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correct technique as well as a list of incorrect techniques that students might choose. 

They then compared analyses and agreed upon correct and potential incorrect choices 

associated with each problem.  

While the researchers were choosing problems, the difficulty of sorting each 

problem was considered. Problems with visual similarities to a technique’s “usual” 

symbolic form were favored. The goal of this investigation was not to evaluate the 

strength of students, but to analyze student problem-solving strategies in usual situations. 

Including problems with an unusual appearance or those that required advanced 

conceptual understanding would have strayed from the focus of this project.  

Considerations of varying difficulty levels are addressed in Limitations and 

Future Work. A total of twenty problems were chosen for this investigation. See the 

Appendix to view the full list of problems and their associated correct and incorrect 

techniques, and see Table 2 in Results for the problems sorted in each interview. 

Composition of the Interview and Sorting Process 

For participant data collection, in-person, pair-wise interviews were conducted 

after the initial sorting process. The focus of the study requires qualitative data gathered 

from physically sorting problems into categories. Researchers determined interviews to 

be optimal for generating follow-up questions after sorting as opposed to passive options 

like surveys.  

Participants for these interviews were students enrolled in a section of MAT127 

(Calculus II) at the University of Maine. Pairs were determined based off of indicated 

availability. A total of six participants indicated interest in this study and all six 
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individuals were interviewed. No incentive was offered for participation other than 

potential benefit from performing the task itself. 

Problems were printed on pieces of paper and could be physically moved into 

categories. Therefore, an in-person setting was the best option rather than virtual. Based 

on the theoretical framework, a template of questions was constructed to ensure a level of 

standardization among each interview. The researchers included questions about the 

participants’ confidence in their initial sort, which problems they found easy or hard, and 

if they would like to recategorize any problems after all other questions.  

The setting of the interview was dependent on availability, but all interviews were 

conducted in the same physical orientation. That is, the interviewer sat across from both 

participants sitting side-by-side. The interviewer always faced the participants from the 

beginning to the end of the interview.  

The interviewer first arranged the techniques into categories in a horizontal line 

across from the participants. The interviewer then chose eight problems at random from 

the total set of problems contained in a plastic bag. The problems are arranged into a 

horizontal line at random far beneath the categories to indicate each problem was not 

being placed into an initial category by the interviewer. This provided a brief period of 

time where the participants were able to analyze problems before the sorting process 

began. The interviewer would then start an audio recording, verbally indicate the number 

of the recording for reference purposes, and read the following instructions: “In front of 

you are a list of problems asking you to integrate a given function. Please sort each 

problem into the category of the technique you would use to solve it. You do not need to 

solve the integrals. Be sure to talk with each other when sorting.”  
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The participants were given as much time as needed to perform the sorting task. If 

participants finished the sorting process quickly, additional problems for sorting were 

offered. After completing the sorting process, participants were asked to indicate their 

confidence level in their initial sort. Matrices were used to classify “confident” and 

“unconfident” integration techniques for each participant as well as “easy” and “hard” 

problems to sort relative to the correctness of their sort. Follow-up questions were 

dependent on participant response and asked based on a problem indicated as “easy” or 

“hard” by the participants. This problem was chosen by the interviewer.  

Participants were asked to point out specific visual aspects of the selected 

problem for analysis against the control symbolic form determined by the researchers. 

Participants were also encouraged to identify any conceptual aspects of a technique 

which they related with visual aspects from the problem itself for as much relation to the 

researchers’ concept image as possible. Of course, participant responses depended on 

their own concept image, and any relationships drawn between theirs and the researchers’ 

concept image were also determined by the researchers.  

Ultimately, participants were given the opportunity to sort any problem into 

another category after answering these questions. Relationships among responses from 

each interview were determined qualitatively using transcriptions of recorded audio with 

references to the researchers’ theoretical framework of concept images.   
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RESULTS 

Results indicate successful initial choice of integration technique. All but one 

problem was correctly sorted after one round of sorting across all interviews. Participants 

in Interview 1 correctly sorted the following problems: 1, 2, 4, 7, 11, 13, 14, 15, 17, 18, 

19, 20. Participants in Interview 2 correctly sorted the following problems: 2, 3, 4, 11, 14, 

18, 19, 20. The same participants incorrectly sorted problem 11 initially but later elected 

to correct themselves. Participants in Interview 3 correctly sorted the following problems: 

1, 2, 5, 7, 9, 13, 16, 19. A table visualizing the problems sorted in each interview can be 

found below, and the total set of problems with their symbolic form and correct technique 

choice is available in the Appendix.  

Total interview time ranged from approximately eleven minutes to seventeen 

minutes, and total initial sorting time ranged approximately between two minutes and six 

minutes. Participants in Interview 1 accepted an offer to sort four more problems, and 

hence sorted a total of twelve compared to the total of eight sorted in Interviews 2 and 3. 
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 Interview 1 Interview 2 Interview 3 
1    
2    
3    
4    
5    
6    
7    
8    
9    

10    
11    
12    
13    
14    
15    
16    
17    
18    
19    
20    

Table 2. A visualization of the problems sorted in each interview. Green cells indicate correctly sorted 
problems, while orange cells indicate incorrect sorting with later correction. Note Interview 1’s greater 
number of total problems sorted, as they chose to sort more after completing the sorting process very 
quickly. Additionally, note problems 2 and 19, which appeared across all three interviews. Each problem is 
discussed further in Analysis and Discussion. 
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 Interview 1 Interview 2 Interview 3 
Person A B A B A B 
Reverse Chain Rule/U-Substitution       
One Step/Reverse Power Rule       
By Parts       
Algebraic Simplification       
Long Division       
Partial Fractions       
Trigonometric Identities       
Trigonometric Substitution       

Table 3. A visualization of the indicated confidence levels in each integration technique for each 
interview’s participants. The second row denotes Person A and Person B under a column for each 
interview. Note the high confidence distribution for U-Substitution and low confidence distribution for both 
Trigonometric Identities and Substitution.  

While sorting, all participants referenced visual cues related to the symbolic forms 

as well as cognitive resources related to conceptual schema. Visual cues included degrees 

of polynomial functions, squared quantities, relationships between expressions and their 

derivatives, and differences between the numerator and denominator of a fraction. All 

participants willingly answered follow-up questions asking for answers related to aspects 

of the concept image. Participants were discouraged from attempting to solve the 

problems while sorting, though six notable responses in Interview 2 were based on how 

they might completely solve the problem. Nevertheless, these decisions were made with 

many references to the symbolic form of the problem as well as the participants’ own 

cognitive resources.  

Confidence in each integration technique varied with each participant, though 5 

out of 6 rated themselves “unconfident” in trigonometric identities and 4 out of 6 in 

trigonometric substitution. Additionally, 4 out of 6 participants indicated confidence in u-

substitution, and one participant indicated confidence only in long division.  
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Participants in Interview 1 justified many decisions with references to the 

symbolic form. Confidence was indicated in algebra-dense topics, including Algebraic 

Simplification, U-Substitution, and Reverse Power Rule. This confidence became 

apparent through many responses with visual-to-conceptual justification: “The numerator 

being one means there’s not a whole lot you can do with trying to manipulate any kind of 

algebra to cancel anything out”, “It’s a very standard form. If you ever see some constant 

plus or minus an x squared and it’s in something where it’s hard to mess with it like for 

example this is in a square root so then its trig sub pretty obviously”, “Unless you have 

another factor that is also in a square root, then you are going to have a lot of difficulty 

trying to cancel anything out of that expression”. 

Participants in Interview 2 drew upon aspects of the greater integration process, 

especially the process of anti-differentiating the function, or completely solving the 

integral. Trying to solve the integral was discouraged in both the initial directions and 

additionally during the sorting process, though of course it cannot be completely removed 

from the participants’ train of thought. They each seemed to use the greater integration 

process to generate visual-to-conceptual justifications: “You don’t need to break it up 

anymore so it can’t be partial fractions”, “It’s still weird to me that [11] becomes natural 

log with no relationship to the coefficient [of the x term]”. In particular, one participant 

indicated strength in U-Substitution: “There’s a component to a higher power and 

something difficult and something to a lower power, and that’s pretty much a classic 

recognition of u-sub”, “I think of u-sub almost instantly”. The other participant responded 

to this by stating, “U-sub is kind of the second or third thing I think about”, and further 
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reinforced their differences: “More process of elimination [used by Person B] than 

immediate first step [used by Person A]?” “Yeah”.  

Participants in Interview 3 used a visual-to-conceptual pipeline similar to the 

researchers: “When you take the derivative of one of these it equals the other”, 

“Expanding the denominator made it look more similar to [19] so I felt more comfortable 

putting it [in partial fractions]”, “There’s two squared [quantities]...that you could easily 

use trig sub for”. Additionally, several comments were made about the balance of 

strengths and weaknesses between the two participants: “Our strengths are literally 

opposites”, “We’d do really good on tests together”. 

Problems were chosen at random and therefore varied with each interview, though 

Problems 2 and 19 appeared in all interviews. Problem 19 garnered comments from 

participants about its symbolic form and the cognitive resources required to correctly sort 

and solve it. Comments included “If it wasn’t factored, I think it would be harder” and 

“Condensing [19] into something that isn’t factored might give people more pause in 

trying to figure out what to do with it”. All confidence ratings, “easy” and “hard” 

problems, and sorting correctness ratings are available below. 

 

 
Confident Unconfident 

Person A U-sub, long division, algebraic 
simplification, by parts 

Partial fractions, power rule, trig 
sub 

Person B U-sub, algebraic simplification, 
power rule 

By parts; iffy on trig sub, trig 
identity 

 
Table 4. Technique confidence ratings indicated by participants in Interview 1. 
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Confident  Unconfident 

Person A U-sub, partial fractions, long 
division, trig sub, trig identities 

Trig identities 

Person B Algebraic simplification, u-sub, 
partial fractions, long division, 
trig sub 

Trig identities 

Table 5. Technique confidence ratings indicated by participants in Interview 2. 

 
Confident  Unconfident 

Person A The power rule, by parts Trig sub, trig identity, long 
division 

Person B Maybe long division Trig sub, trig identity, partial 
fractions, u-sub 

 
Table 6. Technique confidence ratings indicated by participants in Interview 3. 
 
 
 

Easy  Hard 

Correct 1, 2, 4, 7, 11, 19, 20 13, 14, 15, 17, 18 

Incorrect – – 
 
Table 7. “Easy” and “hard” problems indicated by participants in Interview 1 by correctness of sort. 

 
Easy Hard 

Correct 2, 3, 14, 18, 19, 20 4 

Incorrect – 11 (at the end, it was moved to a 
more correct spot) 

Table 8. “Easy” and “hard” problems indicated by participants in Interview 2, by correctness of sort. 

 
Easy Hard 

Correct 7, 13, 16 1, 2, 5 

Incorrect – – 

Table 9. “Easy” and “hard” problems indicated by participants in Interview 3, by correctness of sort. 
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ANALYSIS AND DISCUSSION 

As indicated above, the results suggest participants can successfully choose 

integration techniques informed by both aspects of the researcher’s theoretical 

framework: symbolic forms and conceptual schemas. Responses were primarily aligned 

with the following trends.  

Providing aspects of a symbolic form as justification was the most common form 

of response. Examples include: “…algebraic simplification because you can just break 

this up into three [terms]…and divide”; “There’s a component to a higher power and 

something difficult and something to a lower power, and that’s pretty much a classic 

recognition of u-sub”; “There’s two squared [quantities]...that you could easily use trig 

sub for”; “You can pull x cubed out of the top and cross that out and you just have x on 

the bottom”. Notice the reference to symbols in the first portion of their responses 

followed by the conclusion they arrived at. This form of response mimics the visual-to-

conceptual mentality of the researchers when the integrals for this study were being 

chosen. Therefore, the standard theoretical framework’s symbolic form proved to provide 

a reliable medium for analyzing responses.  

Participants also show a satisfactory understanding of conceptual aspects of 

integration techniques by arriving at conclusions from symbols related to their own 

cognitive resources: “There’s three [rules] for trig sub: secant, sine and tangent, and the 

tangent is the g(x) squared plus a squared, this is pretty clear [here]”; “Even if it is natural 

log like we were saying, if I were to take what I think the answer is and take the 

derivative of that, I think we would end up with different integral. If I reverse engineer it, 

it’s wrong”. In particular, note the first previous response. The knowledge of 
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trigonometric substitution rules cannot be derived from this investigation’s problem set 

alone. This participant applied their previous experience and associated cognitive 

resources with the symbolic form of the problem. The trigonometric substitution rules are 

a particular form of the detail listed in the researchers’ Trigonometric Substitution 

conceptual schema regarding an understanding of the Pythagorean theorem. However, 

this participant utilized a different cognitive resource derived from the same concept. 

This shows a particular difference between the concept images of the participant and the 

researchers while also highlighting how each connects back to the same foundational 

concept.  

Some responses using conceptual justification relate to completely solving the 

problem, especially from Interview 2. Participants in Interview 2 requested paper, which 

was denied by the interviewer as it does not align with the task at hand. It is not 

unfounded nor concerning that participants would choose a trial-and-error approach using 

each technique until it works. This sorting procedure is different from material given to 

students in MAT127 because it relies entirely on visual information for decision-making. 

Material in MAT127 includes a visual-to-conceptual process used similar to the 

researchers’ process in addition mathematical steps using algebra, calculus, or 

trigonometry. This visual-to-conceptual first step within the greater process of 

mathematical integration is the focus of this investigation. Granting participants the 

ability to focus on any other aspects of integration would have strayed from the 

investigation’s intended purpose.  

Even with prior indications that they were “unconfident” in a particular technique, 

all participants were able to correctly justify their sort using symbolic forms. In some 
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cases, participants compared forms of problems: “The form of [trig substitution] 

questions [like 2 and 4 is] really consistent”; “Comparing that to some of the long 

division problems like 7 and 20, these are written in order and the numerator is larger 

than the denominator…you are able to go and simplify it out with long division”. 

Participants use understanding of the symbolic composition of problems commonly 

associated with a given technique. Importantly, when a participant was unable to sort the 

problem themselves, their partner would step in to provide their thoughts: “Are you sure 

that’s a trig identity?”, “I’m not so I’m thinking it through now”; “Isn’t there a square 

root on trig sub?”, “Yeah”; “Could you expand this and then do long division?”, 

“Wouldn’t it have to be higher on top? The larger power on top?”, “Yeah…”. There was 

a clear indication across all three interviews of a yin-yang combination of strengths and 

weaknesses. From the previous responses, it is conclusive that participants recognized 

this and relied on each other to increase the strength of their sorting decisions.  

Collaboration between participants with an uneven distribution of confidence did 

result in the more confident participant initiating discussion about a particular problem. 

Most discussions in Interview 3 were initiated by the more confident participant, though 

that did not stop the other participant from contributing to the discussion:  

“I feel like this one could also go under long division if you factor it out”  

“I don’t know, because I thought we had to have the numerator, like the x cubed 

is higher than x, so I don’t know for sure if the x can do x squared”  

“Comparing problem 5 to problem 7, in the numerator we have a greater degree 

than in the denominator, and you’re saying that’s not the same thing that we have 

in problem 5?”  
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“Mmhmm” 

This implies increased confidence and comfort when working in groups to solve 

problems rather than alone. Participants indicated explicitly as such: “We’d do really 

good on tests together”, “Our strengths are literally opposites”. A current learning model 

integrated into a section of the University of Maine Calculus II (MAT127) course 

recitation is a problem-based group work approach, encouraging combined efforts to 

problem solving with the support of graduate and undergraduate learning assistants. This 

investigation suggests the current model is, and can be, beneficial to students’ confidence 

while solving problems. For mathematics specifically, improving problem-solving 

confidence could mean reducing the loss of “joy and confidence in mathematics” and 

subsequent dropout rates for students in STEM disciplines (Bressoud et. al., 2012). 

Participants referenced potential direct and indirect causes of arriving at incorrect 

solutions to problems. As mentioned, integration techniques related to trigonometry were 

commonly categorized as “unconfident”. Participants occasionally mentioned insufficient 

knowledge of trigonometry as well: “We did [trig identities] two years ago and I…just 

derived them last minute instead of learning them”; “Are you sure that’s a trig identity?” 

“I’m not so I’m thinking it through now”; “I don’t know trig”. Curiously, participants in 

Interview 2 categorized themselves individually as “confident” in trig substitution while 

“unconfident” in trig identities. This could be due to insufficient understanding of 

trigonometric identities: “We did [trig identities] two years ago and I…just derived them 

last minute instead of learning them”.  

Additionally, participants exuded more confidence when justifying symbolic 

forms relating trigonometry to polynomial expressions rather than explicit trigonometric 
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functions: “I think you could do this with trig identities. [Because] I don’t know how else 

you would do it either” shows little confidence and slight desperation compared to 

“There’s three [rules] for trig sub: secant, sine and tangent, and the tangent is the g of x 

squared plus ‘a’ squared, this is pretty clear [here]”. Nevertheless, the participants in 

Interview 2 remained determined to sort all problems correctly, even under “unconfident” 

topics.  

Across all interviews, participants also referenced insufficient algebra skills: 

“Sometimes my algebra skills are a little rusty”. It is often the case that those who 

“[withdraw] from calculus often lack algebraic fluency” (Dawkins & Epperson, 2014). 

For example, optimization problems require both strong calculus and algebra skills. 

Roots of a function must be found, and without a strong understanding of how to factor 

or simplify a polynomial function to solve for a variable, the solution cannot be obtained. 

In integral calculus, these same manipulations must often be performed on integrals, 

especially when using Algebraic Simplification, Long Division, and Partial Fractions 

techniques. Participants were able to proficiently use algebra to justify decisions: “You 

can split up the fraction so you have 12 over 3x”, “Because if you expand this then it’s 

not helpful because you can’t cancel anything out”, “The numerator being one means 

there’s not a whole lot you can do with trying to manipulate any kind of algebra to cancel 

anything out”. This shows participants have a correct understanding of algebraic 

manipulations when approaching a problem without actually performing any algebra. 

Any algebraic errors are either physical miscalculations or incorrect applications of 

certain methods. Hence, this serves as further reinforcement that participants are 
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successful in sorting problems initially even through self-reported difficulties, reducing 

the significance of this sorting as a cause of incorrectness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

LIMITATIONS AND FUTURE WORK 

An exploratory study brings with it a level of crudeness meant to be refined 

through future work. While this investigation produced important qualitative data, more 

interviews would provide a greater range of participants each with unique concept images 

and understandings of integration techniques. While an increase in interviews means an 

increase in qualitative data interpretation and therefore more time, it introduces the 

possibility of measurable statistical correlation between responses from participants and 

problems chosen for interviews, similar to the responses related to problem 19. Providing 

an incentive for participants could generate more interest; there was no incentive offered 

for participation in this study.  

Conducting the interviews using a medium other than problems printed on pieces 

of paper could affect the sorting process. Problems were displayed to students briefly 

before the interview began, allowing them some time for analysis before officially 

beginning the sort. Electronic media has the potential to reduce this, though simply 

restricting the view of the problems from the participants until officially beginning the 

sort would be an improvement. 

 A list of problems with a wider range of difficulty could also test participant 

conceptual understanding more rigorously. A participant stated that, “Condensing [19] 

into something that isn’t factored might give people more pause in trying to figure out 

what to do with it”. Both partial fractions problems in the problem set followed the 

“standard” form of the denominator with a factored polynomial. Some literature includes 

an “index of difficulty” and related scoring procedure (Angco, 2021) which could be used 

to further understand where the “limit” of participant understanding lies. Should a factor 
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similar to a difficulty index be implemented into this investigation, the descriptor 

“difficulty” would refer to how “non-obvious” the correct technique associated with the 

problem is. In other words, the more difficult the problem, the less obvious its correct 

associated technique is to choose. This difficulty could refer to both visual cues provided 

by the problem’s symbolic form as well as the conceptual cognitive resources needed for 

correct determination.  

Additionally, a survey recording a brief history of each participant could supply 

reason for a participant’s confidence or sorting ability. Participant history is common 

supplemental information to record in surveys and interviews, and hindsight indicates it 

could benefit this investigation. Such history could include rating of potential math 

anxiety levels, demographic information, and indication of being a “first-generation” 

undergraduate student. Asking if the participant has been exposed to material taught in 

MAT127 prior to taking the class is especially relevant, as “the conceptions that students 

bring from their previous mathematical experiences strongly influence how they make 

sense of the calculus concepts they encounter” (Ferrini-Mundy & Lauten, 1994).  

This investigation can be applied to varying concepts across a range of courses, 

including series convergence and divergence tests also in MAT127. Future work could 

consist of implementing and refining this investigation’s concept in other settings. For 

example, this investigation could be adapted as a form of assessment using pre-test and 

post-test evaluation (Bonate, 2000).  

While the focus of this investigation is to determine if the stage of choosing 

integration technique is a cause of error using the sorting task, the sorting task itself could 

be assessed for potential improvement. As referenced above, students draw upon 
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previous mathematical experiences when making sense of current experiences (Ferrini-

Mundy & Lauten, 1994). The potential benefit of this sorting task could be measured 

using pre-test and post-test evaluation. Alternatively, the task itself could be used as a 

form of evaluation and could be integrated as a simple pre-test or post-test with another 

activity in between.  

With additional interviews, analysis could be performed using natural language 

processing (NLP). NLP refers to “how computers can be used to understand…natural 

language text to do useful things” (Chowdhary & Chowdhary, 2020). Correlation 

between words, phrases, and associated quantitative data could be measured with 

statistical significance, raising the results of this investigation from suggestions to proven 

conclusions. Deriving new quantitative data from qualitative data could form paths to 

new conclusions as well as other possibilities for future work.  
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PERSONAL MEANING 

 While assisting with MAT127 at the University of Maine, I heard several 

comments made by students on their feelings about both Calculus II and the subject of 

calculus as a whole. Sentiments of these comments included frustration, confusion, 

hopelessness, and disinterest. Each of these feelings would always lead to someone 

asking, “Why do I need to take this class? Why do we need to learn this? I’ll never need 

to do this manually, there are calculators and A.I. for this”. My response had always 

grown, starting with “This is just a weed-out class, you can get through it!” and later 

adding “It’s important to know how your computers are giving you answers”. The most 

recent answer includes a source of inspiration for this investigation: “It’s not that you’ll 

need to do these problems specifically, but you’ll need to be quite a good problem-

solver”. This is the primary reason why this project is not just a math education study, but 

a general problem-solving investigation. There are a lot of automatic tools to complete 

tasks, but these tools often only help with predictable situations. Professionals will 

encounter situations where they cannot rely on established machinery, but rather their 

own intuition, education, and problem-solving skills.  

 I must say I am surprised by the results. The participants completed the task with 

much more correctness than I personally anticipated. However, the interactions I have 

with students while evaluating their ability to choose a correct integration technique are 

when they are choosing individually. I believe this investigation’s choice to have 

participants sort in pairs greatly improved the correctness of every interview’s sort. I 

believe the students think this as well based on their responses. I find this a satisfying 

result since it gives the current function of the recitation extra relevance. Students are 
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encouraged to complete worksheets in groups, with some of these groups being pairs of 

two. Based off of the responses recorded, I believe many correct justifications are being 

exchanged between them, preventing the spread of misunderstanding and 

misinformation.  

 Finally, I am glad to hear from participants how the sorting task itself was 

enjoyable and helpful. One student agreed to use the sorting task as a studying resource 

before their final exam in MAT127. It gives me hope that choosing to investigate the 

benefits of the sorting procedure will yield positive results. I think the physical 

visualization of a task usually performed mentally is a primary benefit, and am interested 

to see what other benefits can be uncovered. To be frank, it feels fantastic knowing 

something I created and implemented has helped others to learn. I would love to 

maximize this impact, even in subjects other than mathematics. The improvement of 

education is what I signed up for when I decided to work as a Maine Learning Assistant, 

and I am happy to have conducted research allowing me to answer my own questions 

while benefiting the education of others.  
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CONCLUSION 

This investigation aimed to observe undergraduate student problem solving 

processes in integral calculus by attempting to conclude if initial integration technique 

choice is a significant source of error during solving. Results from three in-person, 

pairwise interviews with six participants total indicate the initial choice of integration 

technique is not a source of error in the procedure of mathematical integration for 

undergraduate students enrolled in a section of MAT127 (Calculus II) at the University of 

Maine. However, it is important not to generalize this conclusion and apply it to all 

MAT127 students due to the small sample size of participants. All problems except one 

were sorted correctly across all interviews. 

Participants provided justifications for their sorts relating to visual and conceptual 

cognitive resources, including This implies at least foundational understanding of 

concepts introduced in MAT127. Participants embraced collaboration with some 

expressing a preference for collaboration. Qualitative analysis of audio transcription data 

supports these conclusions, and furthermore alludes to algebra and trigonometry 

insufficiencies as potential sources of error.  

In summary, takeaways from this investigation are as follows: (1) even with a 

small sample size, results show initial sorting is not a significant cause of error among 

participants in collaborative environments like this investigation, (2) participant 

responses show positive reactions to completing the task in groups due to opposite 

strengths and weaknesses, and (3) alternative potential sources of error, including 

trigonometric understanding, are areas to investigate. As a small sample exploratory 
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study, this investigation was a successful foundation for potential future work to be 

derived from. 
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APPENDIX A: INTERVIEW QUESTIONS 

This is the exact text referenced to maintain a standard flow in each interview. 

 
Interview Process 
 
**Before Sorting 
Process********************************************************* 
 
→ In front of you are a list of problems asking you to integrate a given function. Please 
sort each problem into the category of the technique you would use to solve it. You do 
not need to solve the integrals. Be sure to talk with each other when sorting. 
 
**After Sorting Process************************************************** 
 
→ How confident do you feel regarding how you have sorted these problems? 
 
→ Are there any techniques of integration you feel particularly confident in? 
 
→ Are there any techniques of integration you feel particularly unconfident in? 
 
→ How did you each work together to complete the task? 
 
→ Which problems were easy to sort? 
 
**Pick easy problem******************************************************* 
 
→ Why did you choose this category? 
 
 → Are there aspects of this problem that caused you to choose this category? 
 
→ Which problems were hard to sort? 
  
**Pick hard problem******************************************************* 
 
→ Why did you choose this category? 
 
 → Are there aspects of this problem that caused you to choose this category? 
 
**If there are unaddressed 
leftovers************************************************* 
 
→ Why did you leave this problem unsorted? 
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→ Are there any categories you were thinking of sorting this problem into? 
 
**After Initial 
Questioning******************************************************** 
 
→ Are there any problems you would move to a different category? 
 
**If Anything Was 
Moved******************************************************** 
 
→ Why did you move this problem to this category? 
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APPENDIX B: RENDERED INTEGRAL COLLECTION 

This is the collection of integrals rendered using LaTeX, along with their determined 
correct choice of technique of integration as well as potential incorrect choices. These 
integrals are inserted as images. 
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APPENDIX C: CONCEPT IMAGES & ORGANIZATION MATRICES 

General Integration 
Symbolic Form Conceptual Schema 
integration operator definite vs. indefinite 

function 
variable being integrated with respect  
to has differential being applied to it 

differential  

 

Appendix C1. A general concept image for all integration problems. All problems will 
contain an integration operator, a function, and a differential operator expressing the 
variable being integrated. All problems are classified as either “definite” or “indefinite”. 

Reverse Power Rule 
Symbolic Form Conceptual Schema 

polynomial functions 
conceptually inverse to the derivative power 
rule 

 
increase power first, then divide by the new 
power 

 

Appendix C2. Concept image for reversing the power rule. This applies to integration of 
polynomial functions and is procedurally and conceptually inverse to the derivative 
power rule. 
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Reverse Chain Rule 

Symbolic Form Conceptual Schema 
three functions; two must relate through 
differentiation, two must be composed 

occasionally a function can be separated 
across expression 

 derivative of inside functions could be 
constant 
occasionally may need scalar multiplication 
to match inside function with its derivative 

 

Appendix C3. Concept image for reversing the chain rule. Three identifiable functions 
are being integrated, with one function being the derivative of another. Conceptually 
inverse to the chain rule for derivatives. Some deep structures include the derivative of a 
function being constant or the need to factor a function by a constant to establish it as the 
derivative of another. 

U-Substitution 

Symbolic Form Conceptual Schema 
three distinct functions; two must relate 
through differentiation, two must be 
composed 

occasionally a function can be separated 
across expression 

 

derivative of inside functions could be 
constant 
occasionally may need scalar multiplication 
to match inside function with its derivative 
occasional need for substitution for extra 
factor of integrated variable in terms of 
substituted variable 

 

Appendix C4. Concept image for using substitution. The symbolic form is shared with 
reversing the chain rule. There are exceptions to this overlap though, where the problem 
could have an extra factor of the variable, meaning the problem must use substitution and 
cannot reverse the chain rule. The conceptual schema highlights situations where the 
substituted expression occurs more than once throughout the problem, as well as all other 
situations shared with reversing the chain rule. 
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Integration by Parts 

Symbolic Form Conceptual Schema 
two functions, separable (1) use product rule derivation combined with 

treating integral as a quantity to break an 
infinite loop in rare cases 

generally, one should differentiate into a 
constant to avoid entering an infinite loop 
(2) 

occasionally only one function is explicitly 
written, meaning consideration of the 
constant function "1" associated with the 
differential 

1 2 

  

Appendix C5. Concept image for integration by parts. Two functions must be chosen 
before using the rule, where one function eventually differentiates to zero to avoid 
infinite loops. However, there is a deep structure noted in the conceptual schema where 
the original integral appears after applying multiple rounds of integration by parts. This 
situation calls for treating the integral as nothing more than a quantity, which can be 
added or subtracted to the original left side of the equation, the original problem being 
solved.  

Long Division 

Symbolic Form Conceptual Schema 
A rational function (1)  after performing division, understanding any 

remainder must become a rational function 
itself; remainder must be numerator of a 
fraction with the original divisor as 
denominator 

degree of numerator must be greater than 
degree of denominator (2)  

1 2 

  

Appendix C6. Concept image for simplification by long division. This is part of a 
collection of methods taught to simplify functions before integrating. The symbolic form 
is a rational function where the degree of the numerator must be greater than or equal to 
the degree of the denominator. The conceptual schema simply includes situations where a 
remainder exists, and how it must be treated as its own rational function with the original 
divisor as the denominator.  
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Partial Fractions 

Symbolic Form Conceptual Schema 
ultimately, a rational function 
(1) 

denominator must be factorable, as well as fully factored, 
before beginning decomposition 

degree of numerator must be 
less than degree of 
denominator 

a function entirely raised to a power must be represented 
with the same degree of multiplicity in decomposition (2) 

 

a function whose degree is greater than one must have an 
associated numerator in decomposition with degree one 
less than that function's (2) 

solving for constants before beginning integration 

understanding solving systems of equations 
1 2 

  

Appendix C7. Concept image for partial fraction decomposition. The symbolic form 
includes a rational function where the degree of the numerator is strictly less than the 
degree of the denominator. The conceptual schema includes conditional information, 
including the rules before applying partial fractions. The denominator must be factorable 
and furthermore completely factored before beginning decomposition. While building the 
equation, if a factor contains a function whose degree is greater than one, the resulting 
polynomial in the numerator must contain a leading term with degree one less than the 
denominator. If a function is completely factored with degree greater than one, more than 
one fraction must be constructed to represent it, where the numerator of each fraction 
contains a constant and the denominator of each consecutive fraction contains one more 
factor of the function than the previous one. 
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Trigonometric Identities 

Symbolic Form Conceptual Schema 
there must be trigonometric function(s) 
present 

an understanding of derivative relationships 
and identities between trigonometric 
functions 

multiple factors (two or more) of a given 
function that can be broken down (1) 

as an extension, strategizing by focusing 
problems into sin/cos and sec/tan (2) (3) 

 

ultimately, looking to simplify the problem 
using identities and derivative definitions 
until u-substitution or reverse chain rule can 
be used 

1 2 3 

   

Appendix C8. Concept image for using trigonometric identities. The symbolic form 
requires exclusively trigonometric functions present. Usually, there are multiple factors 
of each present function that can be broken down. Understanding the relationships 
between functions through taking derivatives is crucial, and furthermore understanding 
when to restructure the problem to contain only sine and cosine functions or tangent and 
secant functions. Ultimately, integration using substitution is the goal after all 
simplification. 
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Trigonometric Substitution 

Symbolic Form Conceptual Schema 
sum or difference of squares must be present 
(1) 

must understand Pythagorean theorem in 
relation to sums of squares and 
trigonometric functions relating to sides of 
a triangle 

common forms include square roots, either 
in numerators or denominators of fractions, 
attached to factors of the integrated variable 
(2) 

understanding of Pythagorean theorem to 
correctly identify sides of the triangle 
related to the problem 

 

understanding fractional exponents and 
rewritten forms of them  

understanding trigonometric identities 
relating functions 

1 2 

  

Appendix C9. Concept image of substitution using trigonometric quantities and 
Pythagorean relationships. The symbolic form requires no trigonometric functions to be 
initially present, but rather a sum or difference of squares, mimicking various forms of 
the Pythagorean formula. Extra factors of the variable are also possible and can be 
substituted out of the problem as well. Conceptually, there must be an understanding of 
Pythagorean relationships between the sides of a triangle and trigonometric functions. 
Algebraically, one may need to complete the square within the root. Ultimately, multiple 
substitutions should cause most factors within the problem to cancel and produce a 
simple function to antidifferentiate.  

 
Confident  Unconfident 

Person A 
  

Person B 
  

Appendix C10. An organizational matrix to classify each person’s “confidence” in each 
technique of integration. Though this question follows the initial sorting procedure, 
participants were asked to judge their confidence in general.  
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Easy Hard 

Correct 
  

Incorrect 
  

Appendix C11. An organizational matrix to classify sorted problems as correct and 
incorrect related to participant indication of “easy” and “hard” problems. In each 
interview, problems used as subjects to follow-up questions were chosen at random based 
on this list of “easy” and “hard” problems. 

 
Confident Unconfident 

Person A U-sub, long division, algebraic 
simplification, by parts 

Partial fractions, power rule, trig 
sub 

Person B U-sub, algebraic simplification, 
power rule 

By parts; iffy on trig sub, trig 
identity 

Appendix C12. This matrix shows the confidence ratings expressed by the participants in 
general integration techniques from Interview 1. Each provided individual answers, so 
some techniques are duplicated in the confidence rating columns. 

 
Easy  Hard 

Correct 1, 2, 4, 7, 11, 19, 20 13, 14, 15, 17, 18 

Incorrect – – 

Appendix C13. This matrix shows problems categorized as “easy” and “hard” sorted 
against their sorting correctness from Interview 1.  

 
Confident  Unconfident 

Person A U-sub, partial fractions, long 
division, trig sub, trig identities 

Trig identities 

Person B Algebraic simplification, u-sub, 
partial fractions, long division, 
trig sub 

Trig identities 

Appendix C14. This matrix shows the confidence ratings expressed by the participants in 
general integration techniques from Interview 2.  
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Easy Hard 

Correct 2, 3, 14, 18, 19, 20 4 

Incorrect – 11 (at the end, it was moved to a 
more correct spot) 

Appendix C15. This matrix shows problems categorized as “easy” and “hard” sorted 
against their sorting correctness from Interview 2.  

 
Confident  Unconfident 

Person A The power rule, by parts Trig sub, trig identity, long 
division 

Person B Maybe long division Trig sub, trig identity, partial 
fractions, u-sub 

Appendix C16. This matrix shows the confidence ratings expressed by the participants in 
general integration techniques from Interview 3.  

 
Easy Hard 

Correct 7, 13, 16 1, 2, 5 

Incorrect – – 

Appendix C17. This matrix shows problems categorized as “easy” and “hard” sorted 
against their sorting correctness from Interview 3. 
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