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ABSTRACT 

 Breast cancer is one of the most frequent cancers among women worldwide and 

holds the second place in cancer-related death. Mammography is the most commonly used 

screening technique, however, the dense nature of some breasts makes the analysis of 

mammograms challenging for radiologists. The 2D Wavelet Transform Modulus Maxima 

(WTMM) is one mathematical approach that is used to for the analysis of mammograms. In 

2014, a team from the CompuMAINE Lab characterized differences between benign 

microcalcification clusters (MC) from malignant MC by calculating their fractal 

dimension, D, with the aid of the 2D WTMM method. In a different implementation of the 

2D WTMM method, this same team did research in 2017 where they quantified tissue 

disruption in breast tissue microenvironment using the Hurst exponent, H. The goal of this 

study was to further explore the potential relationship between the fractality of MC clusters 

and tissue disruption in the microenvironment surrounding these clusters. Statistical 

relationships are explored between the fractal dimension, D, of MC clusters and the Hurst 

exponent, H measuring tissue disruption. A “2D fractal dimension vs. Hurst exponent plot” 

was graphed to show this relationship used to distinguish between benign and malignant 

cases. In the graph, a quadrilateral region extending horizontally from Hurst value of 

(0.2,0.8) centered at 0.5 and stretching vertically from fractal dimension value of (1.2,1.8) 

centered 1.5 was identified. Analysis of this region has showed that the 60% of the 

malignant cases and 21% benign cases are found inside the quadrilateral for CC view and 

68% of the malignant cases and 12% of benign cases are found inside the region for MLO 

view. As a conclusion, based on the outcomes of this study one can hypothesize that with 

further analyses, loss of tissue homeostasis describing the state of the microenvironment of a 



 
 

breast tissue and the fractal nature of MC clusters have a quantifiable relationship to distinguish 

benign cases from malignant cases in mammogram analysis. 
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CHAPTER 1: INTRODUCTION 

Breast cancer is one of the most common diseases around the world that affects 

many families' lives. If caught early, breast cancer can be treated before further 

complications occur. Most of the current existing breast imaging techniques include 

magnetic resonance imaging (MRI), ultrasound, and mammography (low energy x-rays). 

Ultrasound and mammography imaging are the two most common techniques used to 

screen breast cancer. MRI is a more sensitive method of breast screening and unlike the 

other two methods, it is virtually uninfluenced by breast density, but it is expensive.1–4  

Computer-aided diagnostics (CAD) are systems that were invented to assist doctors with 

the interpretation of medical images (like breast images) and have been in application for 

several years. Since these CAD techniques have been approved by the FDA, the rate at 

which malignant tumors or suspicious cancer zone identification such as microcalcification 

detection has shown a potential increase by approximately 20%.5 This statistics is based on 

the recall rates for mammogram analysis with and without CAD by experienced 

radiologists. Most developed countries like the US use these technologies to assist 

radiologists in interpreting mammography images, which eases their job and also gives a 

better insight into suspicious (cancerous) regions.5 However, this widely used technology 

has unfortunately been associated with false diagnostics. Improving the efficiency of 

analyzing images using these CAD techniques is crucial in minimizing the morbidity and 

mortality rate of cancer around the world.  

Some of the factors that could lower the sensitivity of mammography include 

technical and interpretative errors, rapid tumor growth and its patterns, and extensive 

mammographic breast density.6 The breast tissue microenvironment plays an important 
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role in the growth of malignant or benign tumors. Developing a quantitative support for a 

mathematical interpretation of the breast microenvironment could help in understanding 

the different patterns and progression of tumor 2growth. The concept of fractal geometry 

is one mathematical approach that could be applied to solve this difficulty in breast image 

interpretation. Fractal geometry is a tool that is used to study objects with irregular 

geometry (non-integer values of dimension D), rather than the regular 1-D, 2-D, or 3-D 

geometries mostly referred as Euclidean objects (integer values of dimension D).7 The 

fractal dimension, D, refers to the exponent in the power-law relationship between the 

number of balls required to cover a set, N, and the radius of the balls, r, i.e. N ~ (1/r)D as 

shown in Figure 1. Previous mathematical studies have shown that benign tumors have a 

Euclidean geometry form of growth whereas malignant tumors follow the fractal geometry 

form of growth.7,8 The fractal growth nature of the malignant tumors can be used to create 

a fractal-based background model of breast tissue in order to find calcification clusters.9–11  

 

Figure 1: Different radii balls covering the perimeter of Koch’s island.  
Adopted from Ref. [12] 

Breasts are organs with a very dense tissue composition with mostly fatty tissue 

and some fibrous and glandular tissues. Although the source is not clearly known, the 

lactation ducts in the breast can start having calcium deposits that cluster in two main, 
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different ways. These calcification clusters are divided into macrocalcification clusters 

(mainly associated with benign tissues) and microcalcification (MC) clusters (mainly 

associated with malignant tissues). Calcification clusters are major and very important 

when looking at a mammography image, (mammograms) as they are suspected to be 

regions of malignant tumors. Previous research has been conducted on the geometry of 

microcalcifications by the CompuMAINE Lab, at the University of Maine, by studying the 

fractal dimension of MC clusters. The outcome of the study is that benign breast lesions 

were identified to have a fractal dimension, D of 1 or 2 (Euclidean dimension) but 

malignant breast lesions have D closer to 1.5 (i.e. a non-integer, fractal dimension).7 A 

different research conducted by this same team studied the architecture of breast 

microenvironment by using the Hurst exponent, H, as a quantifying index.13 In that study 

they showed evidence that tissue disruption and loss of homeostasis in breast tissue 

microenvironment and breast bilateral asymmetry can be quantitatively assessed from 

mammography using a wavelet analysis of the whole breast. The outcome from that study 

has shown a potential for the development of a metric that can study the biophysics of loss 

of tissue homeostasis and breast tissue disruption that enhances the possibility for early 

identification of potential danger zones. 

The development of a more reliable and valuable quantitative assessment 

methodology based on fractal geometry could assist in mammography interpretation, 

leading to an improved cancer detection accuracy. In this project the mathematical 

calculations for H and D from mammograms previously analyzed with the aid of the 2D 

Wavelet-Transform Modulus Maxima (WTMM) method were made available by the 

CompuMAINE Lab. The goal of this project is to explore potential correlations between 
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the fractality of the breast tumors (MC clusters) and the state of tissue homeostasis of the 

microenvironment surrounding these tumors. To do so, we investigated statistical 

relationships between the fractal dimension of MC clusters (D) and microenvironment 

tissue disruption as measured by the Hurst exponent, H. Based on the outcomes from the 

2014 and the 2017 studies, it is expected that this statistical analysis is going to show a 

significant relationship between the Hurst exponent and the fractal dimension.   
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CHAPTER 2: BREAST ANATOMY AND CALCIFICATION 

2.1 Normal Anatomy and Physiology 

         The breast is located on the upper ventral region of the torso in primates. Breasts 

start to develop in the first five weeks of the human fetus, as the mammary ridge starts to 

develop on either side from the axilla to the groin. The axilla contains the vessels and 

nerves of the upper extremity. Breasts are composed of different tissue layers mainly of 

glandular (secretory) tissues and adipose (fatty) tissues surrounded by a loose framework 

of fibrous connective tissues called Cooper’s ligaments. The human breast reaches its full 

functional capability when it develops enough glandulars for lactation (milk secretion) 

which also acts as a means of communication between the baby and the mother.14 The 

mammary glands of the breast always find a way to secrete or continuously supply calcium 

in order to concentrate the milk with the needed amount of calcium. However, a large 

amount of calcium is toxic to cells, therefore the mammary epithelial cells have to find a 

way to transport large amounts of calcium to extracellular fluid, through their cytoplasm 

into the milk.15 The large amount of calcium that leaves the mother results in mobilization 

of skeletal calcium and a reduction in bone mass.15,16 Throughout this whole process, 

calcium is transported through the milk ducts of the breast. 

 

2.2 Calcification of the Breast 

Calcium is one of the most important minerals in our body and it needs to be tightly 

regulated.  Calcium is found in the blood, muscles, and other tissues. It is essential for the 

growth of strong teeth and bones, for heart function, blood clotting, nerves, and many other 

functions in the human body. Calcium is also found in the dense tissue of the breast. This 
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mineral circulates in blood serum which is part of the blood plasma that does not contain 

blood cells. Serum calcium is mostly controlled by calcium itself through different calcium 

receptors and the two hormones: parathyroid hormone (PTH) and 1,25(OH)2 vitamin D.17 

As PTH increases with age, its overproduction is suspected to be a risk for breast cancer.18 

In a research conducted to study if calcium in blood serum is a risk factor for breast cancer 

in women at pre/post menopause, it was found that a single measurement of serum calcium 

is a useful marker for the difference in calcium homeostasis.19 In this same study, it was 

found that calcium levels are positively associated with breast cancer in overweight peri-

/post menopausal women unlike women in their premenopause.19 As a result of the 

hormonal change that occur, the misregulation of calcium level in breast tissue typically 

seen after menopause is suspected to result in calcification.  

Calcifications are results of small calcium deposits that develop in the breast tissue, 

which commonly happens after menopause due to hormonal changes with an increase in 

age.19 The calcification clusters are not necessarily related to the calcium from our diets 

either.  Calcifications have been proposed to be the result of the deposition of calcium 

oxalate and/or calcium phosphate in the breast; however, the mechanism of the deposition 

is not clearly understood yet.20 Calcium oxalate is produced by apocrine cells in the breast 

and is mainly related to benign cystic change. Excess exposure to calcium oxalate could 

affect the epithelial cells by triggering cellular and genetic changes, which promotes the 

transformation of breast cells from normal to tumor cells.20,21 Although the exact 

mechanism of calcification is not known, there are two scientific hypotheses: 1) calcium 

secretion by glandular cells and 2) inability to clear regions during cell death. Sometimes 

the granular cells of the breast can also release calcium into ducts, as the primary job of 
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cells in that area is the secretion of milk. These calcifications then appear in the ducal 

system, the breast acini, stroma, and vessels, mainly as calcium oxalate and calcium 

phosphate. The second scientific hypothesis states the potential for the formation of 

calcification from the deposition of dead cells in the breast tissue microenvironment. The 

growth of unchecked cells crowding an area causes cell death but, if the body does not 

flush dead cells out, they accumulate with a potential to form calcium deposits.22 

Calcifications formed this way harden the breast tissue by converting into carbonates or 

some other insoluble calcium components. In most instances, these calcifications are 

benign (noncancerous), but certain types of calcification clusters could be indicators of 

underlying breast cancer development. These two hypotheses do not necessarily work 

synergistically instead it is either one or the other hypothesis that promotes the growth of 

tumor cells. However, regardless of the mechanism of calcification clusters formation in 

breast tissue, we need to have a technique to identify and ideally differentiate the types of 

calcifications based on the type of calcium deposits (mainly tiny calcium deposits). 

There are various patterns of calcification that occur in the breast which helps in 

differentiating benign and malignant conditions. Calcifications could be larger or smaller 

in size, therefore, a knowledge of calcification patterns during breast image analysis is 

critical to distinguish benign from malignant. One way to differentiate calcifications is to 

assess their morphology, size, appearance, and distribution in the breast.  There are two 

types of calcifications in breast tissue: microcalcification (MCs) and macrocalcification. 

Macrocalcifications are defined as large typically >2 mm calcium deposits in the breast 

tissue that are typically associated with benign, such as fat necrosis.20 They have a defined 

shape (i.e Euclidean objects) that is mostly distributed or scattered randomly in a large 
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volume (>2 cm3) throughout the breast microenvironment which often involves most of 

the area in the breast.  Macrocalcifications are large and mostly well-defined calcifications 

that often appear as a line or as a dot in the mammogram. The different patterns of 

macrocalcifications are seen and/or associated with the different parts of the breast. For 

example, thin, round, and rim-like shape (Figure 2A) are often seen in the walls of cysts 

(fat necrosis), coarse and popcorn-like shapes (Figure 2B) are often seen in degenerative 

fibroadenomas, singe or parallel linear railroad patterns (Figure 2C) are often referred to 

as vascular calcification, large and rod-like deposits (Figure 2D) often follow the ducts 

toward the nipple, small rounded soft-tissue shadow looking (Figure 2E) often are milk 

calcium, and round lucent-centered deposits (Figure 2F) often represent dermal 

calcification.23  

 

Figure 2: Macrocalcifications detected in a mammogram. A. rim or egg-shell type 
calcification. B. degenerating fibroadenomas with coarse (A) and popcorn (B) calcification 
C. linear, railroad track vascular calcification. D. thick, large, rod-like calcific foci. E. soft-
tissue shadow of calcium with layering. F. a lucent-centered focus of dermal calcification. 
G large, lucent-centered oil cyst. H. Intermediate concern amorphous calcification clusters.  
Adopted from Ref. [20] 
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On the other hand MCs are defined as smaller typically < 0.5 mm calcium deposits 

in the breast tissue associated with malignancy such as ductal carcinoma in situ or invasive 

carcinoma.23 The same study that was conducted to evaluate calcifications indicated that 

patterns with fine, linear, segmental, branching or casting (Figure 3A) and pleomorphic 

calcifications (Figure 3B) (calcifications of varying shapes and size) are often associated 

with microcalcifications.23 This project is based on the analysis of MC clusters in 

mammograms to differentiate them us benign and malignant clusters. 

 

Figure 3: Microcalcifications typically associated with malignancy shown in 
mammograms. A. fine, linear, branching calcifications. B. pleomorphic calcifications 
(ductal carcinoma).  
Adopted from Ref. [20]  
 

The appearance and or the distribution of these two different calcification clusters 

in mammography is one way to explain the state of the breast. If the calcifications are 

grouped or clustered loosely (i.e <10/cm2) they are associated with a benign condition but, 

if the calcifications are clustered in compact cluster (i.e >20/cm2) they are associated with 

a malignant condition.24 A research that studied the average size of MC clusters in an area 

in order to differentiate clustering of MC in mammograms for benign and malignant cases 
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found that the mean number of microcalcifications per 0.25 cm2 was 16.4 in malignant and 

16.7 in benign.24 The result from this study showed no statistical significance to 

differentiate MC clusters in benign and malignant cases by looking at their average size 

per a defined area in mammograms. Although the above and other studies in breast cancer 

calcification differentiation have revealed the distribution, clustering, and pattern of 

calcification clusters, microcalcification identification in breast image analysis could be 

easy to miss. Additional factors that make the interpretation challenging is that some 

deodorant or lotions applied on the skin appear in patterns that mimic calcification clusters 

when images through mammography.  

Radiographic microcalcification was first described in 1913 by Albert Salmon, a 

surgeon in Berlin, who imaged over 3,000 surgical specimens describing the association of 

microcalcifications with breast cancer and specimens that demonstrated tumors spreading 

to the lymph nodes.2 To conclude this introductory exposition about microcalcifications, 

MCs are smaller in size (compared to macrocalcifications) and oftentimes they appear as 

clusters or randomly dispersed in the breast tissue. The detection and classification of 

calcification clusters (in particular MCs) in a breast image is very important for early 

detection of breast cancer. The early detection of cancer is very important to provide 

patients with the necessary therapies or other treatments, or advice in maintaining dietary 

health. In general, the development of a computational model that adds assistantship for 

the radiological interpretation of breast images will help in minimizing the number of 

women who suffer from treatments e.g, chemotherapy and save those who would have died 

of the disease. 
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CHAPTER 3: EPIDEMIOLOGY 

            Breast cancer is a very common worldwide disease affecting the lives of many 

women with an increasing rate worldwide. It is the most frequent cancer among women 

and holds the second places in cancer related death. A report by the World health 

organization showed that about 2.1 million women get infected each year.25 About 1.67 

million new cases were diagnosed in 2012 and in 2018 the estimated number of women 

died from breast cancer is about 627,000.25,26 According to the World Bank classification 

strategy, there are three major categories in health care investment, based on the gross 

national income of the country. These three major categories are: Low Income Countries 

(LICs), Low Middle Income Countries (LMICs), and High Income Countries (HICs). LICs 

and LMICs are mostly classified as developing countries, and countries with HICs are 

classified as developed countries. When looking at a country's annual income level, the 

terminologies "developing" and "developed" are not necessarily used to define the 

development status of a country; rather, they refer to the ability of the country to provide 

adequate health care. In addition, this classification provides insight to how much the 

country invests in providing the most relevant health care. Health care in developing 

countries to provide breast screening for an early stage cancer detection might not be easily 

accessible, unlike in developed countries. Because of the inability to provide reliable breast 

screening, along with many other difficulties in getting the proper treatments, breast cancer 

has a higher mortality rate in developing countries when compared with developed 

countries. This is despite the fact that people in developed countries are affected at a higher 

rate than developing countries. Breast cancer leads to approximately 500,000 cancer deaths 

among women annually.26 The highest incidents occur in the most developed regions of 
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the world, with 74.1 new cases per 100,000 women, in comparison to the 1.3 new cases 

per 100,000 observed in less-developed regions.26  

Data collection in developing countries is very challenging, as it is extremely 

scarce; however, studies have shown that the survival rate for cancer in developing 

countries (LICs and MLICs) is lower than developed countries (HICs). Observing a 5-year 

survival rate in female populations, a study found that in HICs countries like China, 

Singapore, South Korea, and Turkey the median relative survival rate of breast cancer were 

76-82%, whereas in LCIs countries like Gambia, the survival rate was 22%, and Uganda 

was 46%.26,27 These survival rate values indicate the level of development in the health 

care of the country to provide the necessary early diagnosis, treatment, and follow-up 

clinicals for all patients. In developed countries there is better health care service and there 

are many accessible advanced technologies that are used to treat patients with a relatively 

affordable price. However, in developing countries the level of development of the health 

care is relatively low with a very limited access to advanced medical technology for early 

diagnosis, treatment, and clinical follow-ups. In addition, people who live in developing 

countries have lower income with little to no affordable life insurance to help cover the 

price of health care costs.   

3.1 Breast Cancer in Developing Countries 

            Breast cancer has a higher effect on families in developing countries than in 

developed countries in every aspect. Women in developing countries have more 

responsibilities in their family setting and within the society than women in developed 

countries. Any consequences that come with breast cancer like financial burden and the 

need for time to take care of themselves are real challenges that these women face as they 



 

13 
 

work restlessly to fulfil their responsibility. In addition, most of these women do not have 

as much access to advanced health care services for early diagnosis of breast cancer. Breast 

cancer is a rising world problem mostly in developing countries with studies as of 2002 

showing it holds the fourth place in its effect on both sexes (men and women). Due to this 

huge health care problem in developing countries, the disease is more aggressive in killing 

many women which increases the mortality rate of that country per year. The shortage in 

availability of health insurance companies to help cover the cost needed to get the diagnosis 

and treatment of breast cancer is one other factor for the rise in death rate from breast 

cancer. Most of the time health care providers like big hospitals are found in urban areas 

rather than the rural areas and so women who live in the countryside do not have as much 

opportunity to visit specialized doctors. Along with this, the literacy rate of women in the 

countryside is lower than women in the urban areas which makes a difference in the 

understanding of the effect of breast cancer and the initiation to seek help. Women in 

underprivileged areas of Africa and Asian countries are unaware of the importance of 

breast cancer screening and the necessary treatments needed after the diagnosis. All of 

these predominant risk factors increase the number of women being affected by the disease 

increasing the mortality rate which also affects the economy of the country. 

 A study conducted in North-Africa has shown that breast cancer is the most 

common cancer among women representing 25% to 35% of cancer types that affect 

female.28 The major risk factors in these areas include: family history, age at menopause, 

age at menarche, breastfeeding, number of children, age at first child, oral contraceptives, 

hormone replacement therapy, alcohol, and body mass index.29 Patients with a family 

background of breast and/or ovarian cancer have a risk of getting breast cancer either from 
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first, second, or third-degree relatives. In this same study, it was reported that 

approximately among the 30% of patients that were diagnosed for breast cancer, it was 

found that 7-9% of them had breast cancer in their family history.29  Menopause is defined 

as the cessation of menses and the termination of ovarian follicular maturation due to loss 

of the ability of the ovary to produce estrogen in significant quantities. The hormonal 

changes during this period in some women could be a cause for health consequences like 

breast cancer. Some of the reasons include: the increase in calcium retention in the kidney, 

calcium reabsorption from the skeleton, and calcium reabsorption from the intestine before 

and after menopause. The mean duration of breastfeeding time is significantly associated 

with a reduced risk of breast cancer. Women whose lifetime breastfeeding duration is more 

than 73 month has a lower risk of breast cancer.29 Studies have also shown that a longer 

duration of breastfeeding time along with menopause status reduces the risk factor of breast 

cancer. Overall, this analysis done on women in North African countries indicate 

breastfeeding reduces the incidence of breast cancer by 4.3% for every 12 months and 

incidence increase by 3% for every year menopause is delayed. Other risk factors that are 

associated with breast cancer incidence include 16% reduced risk for every two births, 40% 

increment for first birth after age 35 versus age before 20, 7% reduction for each year 

menarche is delayed, and 32% increment for an intake of 35-44 g alcohol/day.29–31 Even 

though these statistical values represent North African women, these risk factors are 

common problems of most developing countries, especially in African countries.   

 Women in developing countries do not visit a doctor on a regular basis unlike most 

females in developed countries. The main reasons for this are the limited access to hospitals 

to go for screening and the available doctors to diagnose patients. Most of the time patients 
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also do not visit doctors until cancer reaches the latest stage; even if the patient gets the 

opportunity for early cancer stage breast screening, the patients do not seek treatment. This 

delay in diagnosis facilitates the progress of the disease and the delay of getting the 

necessary treatment minimizes the chance of survival. Due to this reason in many 

developing countries, breast cancer is a slowly rising disease with high case-fatality rates 

leading to the death of many adult women. This high case fatality rate is approximated by 

the ratio of the mortality to the income across the developing world which further reflects 

the inequities in early detection and access to treatment.32 According to the most recent 

Globocan/IARC data the number of deaths as a percentage of incidence cases in 2008 was 

48% in LICs and 40% in LMICs.33   

Digital mammography and other advanced technologies for breast cancer diagnosis 

are complicated and expensive resources. Screening and treatments are not readily 

available for all women, therefore, the easiest way to address the problem is by creating 

awareness. Educating women to live a healthy life, minimizing alcohol, exercising, 

maintaining a healthy ideal body weight, and avoidance of postmenopausal hormone 

replacement therapy can have a significant impact in reducing the probability of getting 

breast cancer. According to World Health Organization, implementing these knowledge 

into action could prevent up to one-third of new cancers and survival for another one-third 

of cancers detected at an early stage.34 However, in addition to all these precautions to 

prevent breast cancer and while many of the developing countries still battle for advanced 

medical technology there is a high need for affordable and accessible healthcare for early 

physical examination. The combination of education and effective healthcare service by 
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trained medical personnel with the assistance of easily applicable technology has the 

potential to enhance the fight against breast cancer. 

3.2 Breast Cancer in Developed Countries 

Breast cancer in HICs, developed countries, is much more controlled than in LICs 

and LMICs, developing countries. Majority of the women in developed countries have easy 

access to using adequate healthcare for an early breast cancer diagnosis and getting the 

necessary treatment to prevent the cancer from growing to an advanced stage. In HICs one 

of the greatest options that are readily available for women both in urban and rural areas is 

the presence of health insurance companies that can assist individuals and families 

financially. In addition, women in these countries are also educated better than women in 

developing countries which plays a huge role in fighting against the disease.   

Digital mammography screening in developed countries is the most common way 

for early detection of breast cancer and it is highly associated with the reduced mortality 

rate of cancer in developed nations. According to the International Agency for Research 

on Cancer (IARC), there is sufficient evidence to show the reduction in the effective rate 

of breast cancer among screened women of age between 50-74.35,36  Women in this age 

range have indicated that the mammographic screening has reduced their risk of dying from 

breast cancer by 23%. In general, those women who attended the screening program that 

IARC has organized for this case-controlled study had about 40% reduction in the risk of 

breast cancer.36 However, one of the problems with that could be associated with 

mammographic screening for early breast cancer detection is the high probability for false 

diagnosis resulting from potential misinterpretation of breast mammograms.   
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CHAPTER 4: EXISTING SOLUTIONS 

 Cancer has been in medical history since as early as 1600 BC in the Edwin Smith 

papyrus, where the oldest description of the illness existed.37 In the 2nd century AD, Aleius 

Galenus (mostly referred as Galen), an ancient Greek physician and surgeon, made a 

detailed categorization of abnormal growths (tumors), which he had seen occurring more 

often in the breasts of women whose menstruation was either abnormal or inexistent.37 

However, he had also suggested that cancer would better be treated at its early stage, 

otherwise surgery would be a better solution for late stage cancer. Leonides of Alexandria 

near the 2nd century AD distinguished between the scirrhous ( a hard cancerous growth 

usually arising from connective tissue) and cancer in the breast, suggested the amputation 

of the breast for any late stage cancer.37 Both of these two ancient physicians and other 

ancient physicians, as well as modern doctors, explained that surgical treatments for cancer 

past the early stage is an effective way of treating the disease.  

4.1 Modern Breast Cancer Diagnosis 

         The most common technique that is being used to diagnose breast cancer in modern 

times is breast screening. In 1975, about 45 years ago, a controlled trial of about 31,000 

women age 40-64 were selected for a population study to determine the effectiveness of 

breast cancer screening with mammography and clinical examination.38 Results from this 

study showed that screening had led to a 30%  reduction in cancer mortality rate.38 Since 

1977, breast screenings for women above age 40 has been recommended for early detection 

of cancer. However, guidelines for a proper screening were not yet well established until 

1997. Then in 2002, the United States Preventive Service Task Force recommended 
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screening mammograms every two years then in 2016 they recommended getting breast 

cancer screening every year for women of age between 50-74.39 

4.1.1 Current Imaging Techniques 

The use of screening techniques to diagnose abnormalities in breast cancer has 

evolved rapidly in the 20th century with mammography having been fully developed in the 

1960s.40 The history of mammography is divided into three phases; the foundation of 

mammography was laid in 1913 by the observation that a German surgeon made, from 

1940 - 1970 followed the development of mammography by different radiologists and 

industry, and the last phase started close to the end of the 20th century where breast cancer 

screening started.38 At the last quarter of the 20th century, most of the modern techniques 

like ultrasound, magnetic resonance imaging (MRI), and digital mammography started to 

be used for breast cancer screening.41 The third phase of the development is when most 

women started to be screened for breast cancer. The quality of mammography has 

improved since 1950s where Greshon Cohen and his associates have identified benign and 

malignant abnormalities, and further reported on the potential of mammography as 

diagnosing tool.42 A report posted in 1973 on the results of the Health Insurance Plan of 

Greater New York randomized, controlled, breast cancer screening study showed that 

women who got breast screening 5 years before the report  was made has showed a one 

third reduction in breast cancer mortality rate.42 In the late 70s, sonography, a medical 

diagnostic method using high-frequency sound waves like ultrasound to create an image 

of  the breast, was developed, which complemented mammography.41,43 Nevertheless, this 

technique was not efficient enough to replace mammography fully as it lacks the ability to 

detect the presence of microcalcifications, which are a major indicator for the formation of 



 

19 
 

breast cancer. By the end of the 80s, MRI became a more important diagnostic tool, but it 

was not efficient enough to detect the presence of microcalcifications and it was too 

expensive to be used by every health care center.43 Even though mammography has been 

recognized as a medical diagnostic technique for breast cancer screening, there is still a 

need to improve the CAD system to improve mammogram analysis for a better patient 

care.  

Mammography. There are two different kinds of mammography: digital 

mammography and film mammography. Digital mammography refers to the application of 

digital system, techniques, on mammography, which are created when a conventional 

mammography is digitized to be used in computers.44 Film mammography refers to a 

system where breast images taken using conventional mammography are read and stored 

on film. The use of conventional breast screenings by radiologists has created problems of 

increased probability of false diagnoses or negative readings, which decrease the chance 

for early detection of abnormalities in breast tissue.41 As a greater density of breast tissue 

reduces the sensitivity of mammography, digital mammography is made to improve film 

mammography, as it separates and optimizes image acquisition and display.41 According 

to a research study that was conducted to test which of the two mammography techniques 

would better analyze breast cancer in young women, premenopausal and perimenopausal 

women, and women with dense breasts, it was understood that digital mammography is 

more efficient than film mammography.41 There is no significant difference between these 

two techniques, however, digital mammography offers easy access to images, can easily 

work with CAD, and uses a lower average dose of radiation without a compromise in 

diagnostic accuracy. In digital mammography, X-ray transmission could be manipulated 
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to adjust image contrast, which enhances the visualization of problematic areas (areas 

where mass or clusters of calcifications are present) like adjacent dense tissue where the 

cancer tumor could probably hide without altering its accuracy in diagnosis.41  

 Mammographic images are taken from different angles, but the major views that 

radiologists look into are the cranial-caudal (CC view) and mediolateral oblique (MLO). 

In the CC view, the entire breast is depicted as the breast is flattened out in between two 

plates at exactly 180o and/or 0o, whereas in the MLO view, the breast image is taken from 

a 90o projection as shown in Figure 4.45 Both of these views together must show the medial 

part as well as the external lateral portion of the breast. The CC projection may show the 

pectoral muscle on the posterior edge of the breast, indicating that the breast is positioned 

as forward as it could go.46 The MLO projection is a very important view as more of the 

breast tissue are captured in the image and the lateral side of the breast is predicted to be 

the most common place for pathological changes.46 In MLO view, the amount of pectoral 

muscle that is showing in mammograms is an indicator for the amount of breast tissue that 

is included in the image. 

 

Figure 4: The CC (180o and/or 0o projection) and MLO (90o projection ) views of 
mammographic breast image. Adopted from Ref.[45] 
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Magnetic Resonance Imaging (MRI). Breast magnetic resonance imaging (MRI) has a very 

high sensitivity degree in detecting breast cancer, regardless of the breast tissue. MRI is 

very useful, especially for those women who are at a higher risk of getting breast cancer, 

which includes women with genetic predisposition and women with a family history of 

ovarian and/or breast cancer.47 Breast MRI has the potential to detect abnormalities in 

breast tissue better than physical examination, mammography and ultrasound. But MRI is 

not effective in identifying microcalcifications inside the breast tissue. MRI is effective in 

identifying some occult tumors in a very dense breast tissue, for which mammography 

usually has difficulty in identifying the size and shape of abnormal spots.48   

The use of MRI has shown a greater impact on the diagnosis of breast cancer, 

however, distinguishing fat from a critical tissue lesion is a challenge in breast MRI. In a 

study that was held to assess the effectiveness of MRI, it was found that breast MRI has 

identified suspicious lesions in 76% of stage II patients and 86% of stage IV patients.48 As 

tissue lesions could be a potential area for malignant cancer growth, it is very important 

that they are identified and distinguished in any breast image. One of the challenges in 

breast MRI is that there are a group of women in a small percentage whose normal 

glandular tissue exhibits intermediate to strong early phase enhancement after contrast 

administration, which could result in  false positive diagnosis.47 Nevertheless, breast MRI 

cannot be used as the only means to diagnose breast cancer for early stage detection. 

Rather, it is more effective when it is used in alternation with mammography.  
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4.2 Challenges with Existing Solutions 

Breast cancer is easily detected using different imaging techniques in which the 

presence of irregularly or abnormally shaped structures are detected to characterize and 

discriminate between cancerous and non-cancerous tissue. Despite its usefulness, medical 

imaging is a challenging task and it requires input from different trained people and digital 

aid from technologies. Digital mammography has been in application for a long period of 

time, helping to minimize the breast cancer mortality rate. Since CAD techniques have 

been introduced to the medical field, particularly to digital mammograms, they have 

assisted radiologists by providing a useful computerized vision. However, CAD usage has 

been associated with increased false diagnostics and unnecessary biopsies, which lead to 

stress to the patient and a financial burden to the healthcare system.49–56  
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CHAPTER 5: APPLICATION OF FRACTAL GEOMETRY IN BREAST CANCER 

DIAGNOSIS 

         Fractal geometry studies non-Euclidean objects or objects with an irregular shape 

whose dimensions are statistical quantities indicating how irregular the object is rather than 

a commonly defined integer dimension. Fractals by nature repeat themselves as the bigger 

object is zoomed into finer pieces, exhibiting details at every size scale. These objects exist 

in nature, biology, medicine, and everywhere. Euclidean geometry is used to describe 

objects that have a smooth shape: lines, circles, cubes, etc. However, fractals do not possess 

the characteristics of the so-called Euclidean geometry. One of the major differences that 

B. Mandelbort (father of fractal geometry) has identified when he first introduced fractal 

geometry is self-similarity. One of the simplest objects to illustrate this concept of self-

similarity in fractals is Sierpinski’s triangle (Figure 5). All the smaller triangle pieces are 

similar to the full-size set. In nature, however, such self-similarity is not exact like 

Sierpinski’s triangle, but rather, the self-similarity is statistical. 

 

Figure 5: Sierpinski’s triangle 
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The fractal dimension is a tool used to describe fractal objects quantitatively in 

order to characterize how much space they occupy. The non-integer fractal dimension of 

fractals sits in between the Euclidean, integer dimensions. One way to estimate the fractal 

dimension for 2D objects is by using the box counting method. This method accounts for 

the power-law relation between the number of boxes of various sizes that are required to 

cover the fractal set and the radius of each box to calculate the fractal dimension:     

D = log N(r) / log (1/r)                   Eq. 1 

where N(r) is the number of boxes of radius r needed to cover the space, and D is the fractal 

dimension obtained from the slope of the log-log plot of N and 1/r. However, the box-

counting method is not easily applicable in image analysis. For example, an image of the 

breast taken by digital mammography may have a multifractal nature but since the box 

counting method is limited in its applications it cannot be used to study the fractality of 

breast tumor. Therefore, a more powerful method is a requirement to improve early cancer 

detection. In this project the fractal dimension of breast tumors (MC clusters) calculated 

from the analysis of mammograms with the aid of the 2D WTMM (further discussed in 

section 5.1) is explored.  

Another area where the analysis of images with multifractal nature plays part is in 

its use to study the architecture of breast microenvironment surrounding tumors. As 

described in Chapter 2, MC clusters have different forms of morphology and irregularity 

in their architecture inside the breast tissue which radiologists have mostly been using 

qualitative ways of describing malignancy and tissue lesion.  Previous researchers have 

studied the use of fractal characteristics in ultrasound images to analyze microcalcifications 
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and differentiate tissue lesions to distinguish benign from malignant.44 The most frequently 

used technique in analyzing digital mammography images using fractals is to use a fractal-

based segmentation technique to analyze the self-similar nature in microcalcification 

clusters.47 This way of analyzing mammograms provides a better insight to tissue 

architecture and disruption with the ability to quantitatively assess tumor cell growth.  In 

general, the use of techniques like this for the analysis of complex images like 

mammograms has shown a promising methodology in understanding the state of tissue 

homeostasis of the microenvironment surrounding the MC clusters. 

One way to analyze mammograms to investigate the microenvironment 

surrounding tumors is to study image density fluctuations, i.e. surface roughness, as 

quantified by an exponent such as the Hurst exponent. Several techniques can be used to 

estimate such roughness exponents, including the autocorrelation function, the root-mean-

square analysis, the Fourier power spectral analysis, and the 2D WTMM method (for 

example, see Ref [57]). Even though the H values that are used later in this thesis were 

obtained from the 2D WTMM method, for simplicity, a brief overview of the Fourier 

power spectral analysis follows. 

A Fourier power spectral analysis consists in studying the power-law relationship 

between the Fourier spectral power vs. spatial frequency. In statistics, the power-law states 

that a relative change in one quantity results in a proportional relative change in another. 

Fractal functions are functions that show the representation of multiple frequencies at play 

where there is not necessarily one dominating frequency (represented as one peak in the 

power distribution), but rather, a power-law distribution of spectral power spectrum vs. the 

spatial frequencies. These functions behave like a power-law.  
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    S(k) ~ (1/k)β       Eq. 2 

where S(k) is the power spectrum, k represents the spatial frequency, and β is the power 

spectral exponent, which is related to the Hurst exponent, H, quantifying roughness.  

β = 2H - 2                Eq. 3  

As mentioned above, this concept of quantifying roughness using the Hurst exponent has 

been applied in different studies, the Hurst exponent values used for this project are not 

obtained by the power spectral analysis instead they are results from the 2D WTMM 

analysis method.7  

5.1 The 2D Wavelet Transform Modulus Maxima Method 

The Wavelet Transform Modulus Maxima (WTMM) method is a multifractal 

formalism used to analyze complex 1D signals, 2D images, 3D images, and vector fields.58 

Wavelets are rapidly oscillating signals that are useful in analyzing the singularity of 

fractals and the WTMM can be used to estimate the strength of these singularities in a 

signal. Singularity in mathematics refers to the non-defined shape or irregular regions of 

an image that lacks differentiability or analyzability as compared to defined shapes. 

Therefore, the WTMM method is a way of performing multifractal analysis in a 

multifractal formalism using wavelets instead of boxes. The WTMM were first explored 

by Mallat and Hwang in 1992 for signal processing purposes to compute the singularities 

of 1D functions.59  Then A. Arneodo developed the WTMM method as a multifractal 

method, first in 1D,58,60 and then in 2D, 3D, and for vector fields.61,62  
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The wavelet transform (WT) is a mathematical microscope that is capable of 

analyzing complex non-stationary time series.61,62 The continuous WT characterizes spatial 

image information over a continuous range of size scales. The increase in magnification in 

this singularity scanner can reveal and quantify details of a signal irregularity using the 

Holder exponent, h.63 A previous study conducted in 2014 by CompuMAINE lab has 

shown that the 2D WTMM method is promising to be used in studying the architecture of 

breast tissue lesion. In the study, multifractal analysis of mammograms was performed, 

where the Holder exponent, h, characterizing the strength of singularity was used to 

differentiate the MC from the background tissue. MCs were segregated from the 

background tissue by considering two pieces of information: the strength of the modulus 

of the WT at the smallest scale and the variation of the slope, h, across the scales. 

The breast in Figure 6 shows the 2D WTMM analysis of a dense tissue whose 

roughness fluctuation is characterized by a relatively high smoothness level. The image in 

Figure 6A and 6B show the mammogram of a dense breast and suspicious region 

containing MC clusters circled by a radiologist respectively. The images from Figure 6C 

to 6G shows the 2D WTMM analysis of the circled region segmenting the MC (red) from 

the background tissue (blue). After the segmentation was done, the fractal dimension, D, 

of the lesion was calculated. As the histograms in Figure 7 demonstrate, the outcome of 

this study reveals that benign lesions have fractal dimensions with a strong preference for 

Euclidean dimensions, either to the far right (=2) or to the far left (=1), whereas malignant 

lesions have fractal dimension with a strong preference for the middle of the curve with a 

value between 1<D<2.         



 

28 
 

 

 

Figure 6: Sample 2D WTMM analysis of a malignant breast lesion. A. mammogram of a 
dense breast tissue. B. suspected area of microcalcifications circled by a radiologist. C-G 
the 2D WTMM analysis of the circled region to differentiate between MC clusters (red) 
and the background tissue (blue) surrounding them. Adopted from Ref.[7]  
 
 

 
Figure 7: Histogram plot of the fractal dimension, D for both benign and malignant in both  
                 mammographic views. Adopted from Ref. [7] 
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The histograms in Figure 7 indicate the preference in (non-integer) fractal 

dimension for malignant vs. Euclidean dimension for benign in both CC and MLO views 

separately. The 2D CC-MLO fractal dimension plot in Figure 8 is an additional evidence 

that shows the difference between malignant and benign cases. In this plot the x-axis 

corresponds to the fractal dimension values for both benign (green) and malignant (red) 

MC clusters from the CC view and the y-axis corresponds to the fractal dimension values 

for both benign and malignant MC clusters from the MLO view. The identified polygonal 

region in Figure 8 shows that benign cases prefer the region outside the polygon which is 

identified to be the Euclidean zone and the malignant cases prefer the region inside the 

polygon which is identified to be the fractal zone.7  

 

Figure 8: The CC-MLO fractal dimension plot is a graph of all the benign and malignant 
cases fractal dimensions from the MLO view as a function of fractal dimension from the 
CC view. The red dots represent malignant cases and green dots represent benign cases. 
Inside of the polygon is defined as the fractal zone and outside of the polygon is defined as 
the Euclidean zone. Adopted from Ref. [7] 



 

30 
 

This same research team conducted another research in 2017 using the 2D WTMM 

method aiming to show that tissue disruption and loss of homeostasis in breast tissue 

microenvironment, and breast bilateral asymmetry can be quantitatively and objectively 

characterized by assessing mammograms. The density fluctuation in the microenvironment 

of the breast due to tissue disruption was quantified by using the Hurst exponent, H. The 

Hurst exponent, H is a quantifier of the global roughness of an image density fluctuation 

which was first introduced to the 2D WTMM analysis of mammogram by Kestener et al.64 

This is a potential tool to discriminate dense and fatty breast tissue as dense tissues are 

mostly described as risk areas of breast cancer. The density fluctuations in healthy breast 

tissue are either monofractal anti-correlated with H<½ for fatty tissue or monofractal long-

range correlated with H>½ for dense tissue. 

The outcome of Kestener’s study has shown that fatty areas have H - 0.30 whereas 

dense areas have H values ~0.65. But although promising, Kestener’s study was based only 

on a handful of mammograms. In a seminal paper published in 2017, the CompuMAINE 

Lab improved the approach, scaled it up to hundreds of mammograms, and made an 

important discovery, which has led to the recent award of a patent.65 After the calculation 

of H values was done a sliding window technique using the 2D WTMM method was used 

to determine the parameters that are most effective in distinguishing between normal and 

tumorous cases. The results demonstrated that disrupted regions associated with loss of 

tissue homeostasis are quantified by H~½.11 The values for H were associated with colors, 

as shown in Figure 9 yellow for 0.45<H<0.55 (disrupted tissue region), blue for H<= 0.45 

(fatty tissue) and red for H>=0.55 (dense tissue).13  In general, in this study the team was 

able to develop the “yellow square analysis” based on H signature for different regions in 
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the breast microenvironment which has moved the process of studying the correlation 

between tissue disruption with loss of tissue homeostasis one step forward. 

 

Figure 9: Sliding-window analysis of a cancer case showing more disrupted (yellow) 
tissue in the cancerous breast than the opposite breast. Each pixel represents a 360 x 360-
pixel mammogram sub-region colored according to its H value. Taken from Ref. [11] 

 

5.2 Analysis and Discussion 

This project consists in revisiting existing data from the CompuMAINE Lab, where 

a wavelet-based technique was developed and launched on a dataset of mammograms with 

MC clusters. The mammograms for data analysis were taken from an online data bank 

called the Digital Database for Screening Mammography (DDSM). They are the same sets 

of mammograms that were used in the CompuMAINE Lab’s 2014 study.7 The obtained 

mammograms included both the MLO and the CC view of 33 benign cases and 25 

malignant cases. The images were analyzed using the 2D WTMM method where the fractal 

dimension for the MC were already calculated and published in 2014. Also calculated at 

the time, but not included in the 2014 paper were the Hurst exponents for the background 

microenvironment tissue surrounding the MC’s (based on the blue curves shown in Figure 

Cancerous breastOpposite breast

FATTY TISSUE
H<0.45

DISRUPTED 
TISSUE
0.45<H<0.55

DENSE  TISSUE
H>0.55
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6 C, D, and F)7. For this project the values for the fractal dimension were collected in order 

to study its correlation with Hurst exponent, H.  

The values for both fractal dimension, D, for the MC clusters and Hurst exponent, 

H, for the background tissue were obtained from the 2014 study’s results spreadsheet for 

further analysis. A separate excel spreadsheet was prepared with columns containing just 

values of D and H, for both MLO and CC views. We then graphed the fractal dimension, 

D, as a function of the Hurst exponent, H. R66 was used to plot two separate “2D Hurst 

exponent vs fractal dimension” graphs for CC and MLO views, as shown in Figures 10a 

and 10b, respectively. The behavior of the data points for both benign and malignant cases 

was then studied to identify a region that best represents the relationship between the Hurst 

exponent and the fractal dimension in distinguishing between the two cases (benign and 

malignant) in both CC and MLO view. From this plot the quadrilateral region is identified 

as a region of interest to show the difference between benign and malignant cases. The 

quadrilateral region extends in the x-direction from Hurst value of 0.2 to 0.8 centered at 

0.5 and it stretches vertically from fractal dimension value of 1.0 to 2.0 centered at 1.5. The 

range for D value from 1.0 to 2.0 was selected considering that MC clusters have a fractal 

dimension in between Euclidean dimension as shown in the histograms in Figure 7. The 

Hurst exponent range from 0.2 to 0.8 was chosen considering that disrupted tissue regions 

have Hurst between 0.45<H<0.55 and to further encompass both fatty and disrupted tissue 

regions according to Figure 9. Based on a manual count 15 malignant cases out of 25 cases 

(60% of all the cases) in CC view (Figure 10a), and 17 malignant cases out of 25 cases 

(68% of all the cases) in MLO view (Figure 10b) are found to be inside the quadrilateral 

region. However, only 7 benign cases out of 33 cases (21% of all the cases) in CC view 
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and only 4 benign cases out of 33 cases (12% of all the cases) in MLO view are found to 

be inside the quadrilateral region.  This difference in region preference shows that there is 

a correlation between the Hurst value of the background tissue and the fractal dimension 

value of MC clusters to differentiate benign cases from malignant cases.  

 

Figure 10: Fractal dimension vs Hurst exponent shown for both CC (a) and MLO (b) 
indicates the correlation between H and D in differentiating benign MC (green) from 
malignant MC (red). The identified quadrilateral region is centered at [0.5,1.5] and it extends 
horizontally between 0.2<H<0.8 and vertically between 1.0<D<2.0. The benign MC have a 
preference to reside outside the quadrilateral region, whereas the malignant MC have a 
preference to reside in the inside of the quadrilateral region.  

In the 2014 paper the “2D CC-MLO fractal dimension plot”, as shown here in 

Figure 8, was graphed to demonstrate the relationship between malignant and benign cases 

when D from the MLO view is plotted as a function of D from the CC view. Following the 

graphical analysis from Figure 10,  we also graphed a 2D scatter plot just for the Hurst 

exponent, H, obtained for both benign and malignant cases, where H from MLO view is 

plotted as a function of CC view, as shown in Figure 11a. A box plot is then used to show 

the distribution of benign and malignant cases in both CC view (Figure 11b) and MLO 

view (Figure 11c). In the 2D scatter plot shown in Figure 10a, if we consider the central 
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point (0.5,0.5), according to the box plots in Figure 11b and 11c, ~75% of the malignant 

cases (red dots) are located near the (0.5,0.5) region with the median of H ~ 0.5. On the 

other hand, again from the box plots analysis in Figure 11b and 11c, ~75% of the benign 

cases (green dots) are located near the coordinate (0.36,0.36) with median of H ~ 0.36. 

Then p-value was evaluated using the nonparametric Wilcoxon rank sum test for a 

statistical comparison between the Hurst values of benign and malignant cases. The p-value 

obtained for H(CC) is 0.00257 (<0.05) and p-value obtained for H(MLO) is 0.00544 

(<0.05) which shows that there is a statistically significant difference between Hurst values 

of benign and malignant cases. The observation of the Hurst exponent, H, scatter plot and 

the box plot analysis in Figure 11, and the p-values for H, indicates that background breast 

tissue microenvironment surrounding microcalcification has some disruption. This can also 

be confirmed by the outcome from the 2017 study as the median value H ~ 0.5 is in the 

range 0.45<H<0.55 which is identified to be disrupted tissue region.13 
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Figure 11: The 2D scatter plot (a.) represents the Hurst value, H, from MLO view plotted 
as a function of H from CC view for benign MC (green dots) and malignant MC (red dots). 
The two box plots for CC view (b.) and MLO view (c.) show that malignant cases (red 
box) have a strong preference of median near H = 0.5 unlike benign cases (green box). 

We calculated a new variable denoted generally as, Z. This new variable represents 

the distance calculated for each Hurst exponent, H, of benign and malignant cases from 

two radial centers in the H(MLO) vs. H(CC) plot shown in Figure 9a: (0,0) and (0.5,0.5) 

using the distance equation.  

𝑍 = #((𝑥& − 𝑥()( + (𝑦& − 𝑦()()              Eq. 4 
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These two radial centers are chosen to analyze the behavior of both malignant and benign 

cases between 0-0.5 as this range of Hurst is an indicator of anti-persistent (anti-

correlation) behavior. The variables are calculated for CC and MLO views separately. The 

Z calculated from the center point (0.5,0.5) is denoted as Z0.5, and the Z calculated from the 

center point (0,0) is denoted as Z0.0. They represent how far away each data points for 

benign and malignant cases are from each center points. The box plots shown in Figures 

12A and 12B are used to statistically analyze differences between malignant and benign 

cases for each variables Z0.0 and Z0.5 respectively. Then the p-value was evaluated using 

the nonparametric Wilcoxon rank sum test in R to statistically compare the obtained values 

of Z0.0 and Z0.5 for benign and malignant cases. 

 

Figure 12: A box plot representing the statistical difference between Z0.5 (A) and Z0.0 (B) 
for both benign cases (green box) and malignant cases (red box).  

The box plot in Figure 12 compares the distance Z0.0 and Z0.5 calculated for both 

benign (green box) and malignant cases (red box). The median of Z0.5, for benign cases is 

0.1664 whereas the median for malignant cases is 0.2126. The median for Z0.0, for benign 

cases is 0.5243 whereas the median for malignant cases is 0.7004. The median of benign 

cases is greater than the median of malignant cases for Z0.5, however, the median for benign 
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cases is less than the median of malignant cases for Z0.0. These median values show that 

there exists a difference between the benign cases and malignant cases in terms of choosing 

a region to reside. The p-value for Z0.5 is 0.1634 (>0.05) which shows that there is no 

statistically significant difference between the distance of each data point from the center 

for both benign and malignant cases. Whereas the p-value for Z0.0 is 0.001066 (<0.05) 

which shows that there is a statistically significant difference between the distance of 

benign and malignant cases from the center (0,0).  These statistical results are indicators 

such that when the 3D graph for D vs H is plotted, there is an expectation for more 

malignant cases (red dots) to be near 0, the origin and more benign cases (green dots) to be 

far away from the origin. In addition, the statistical analysis of the box plot in R showed 

that 75% of the malignant cases have Z0.0 < 0.7844 and Z0.5 < 0.2599, and 75% of the 

benign cases have Z0.0 < 0.5872 and Z0.5 < 0.3471. Based on these results, when the 3D 

graph for Hurst exponent vs fractal dimension is plotted, one can expect to see relatively 

more benign cases far away from the origin for Z0.5 and more malignant cases near the 

origin for Z0.0. The closer the H values are to 0, the stronger is the tendency for the time 

series to revert to its long term means value. This means that there is tissue disruption in 

the microenvironment of breast surrounding malignant MC clusters. This analysis also 

indicates the quantifiable relationship between the Hurst exponent quantifying tissue 

disruption and fractal dimension of MC clusters in differentiating between benign and 

malignant cases. However, there is a need for further analysis of this relationship with more 

data to make a conclusion confirming the presence of tissue disruption in all malignant MC 

clusters that could be applied for a reliable diagnostic process. 
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Next, we wanted to combine the information on the x and y from the 2D CC-MLO 

Hurst exponent plot with the 2D CC-MLO fractal dimension plot from 2014 (Figure 8). 

Together this created 4-dimensional data information. However, since a 4-dimensional plot 

is not possible to graph, we instead decided to consider the information in a 3D plot 

combining D(CC), D(MLO), and Z as shown in Figure 13. To do so, we used the fractal 

dimension D for CC to go in the x-axis, D from the MLO view to go in the y-axis, and the 

variables Z0.0 and the Z0.5, respectively, to go in the z-axis. The two variables Z0.0 and Z0.5, 

calculated above represent the combined Hurst exponent, H, from CC and MLO views for 

benign and malignant cases. Two separate graphs one with Z0.0  in the z-axis and another 

with Z0.5 in the z-axis but, with same D from CC and D from MLO was used to graph the 

“3D CC-MLO fractal dimension vs Hurst exponent” plots, as shown in Figure 13. Although 

there is not a clear pattern that the data points follow, the 3D plots in Figure 13 

demonstrates the 4-dimensional information relating the Hurst exponent, H, and fractal 

dimension, D, of benign and malignant cases from both CC and MLO views. No statistical 

analyses were performed on these 3D data, but we qualitatively observed that there seem 

to be a relationship between the Hurst exponent, H, quantifying the disruption in the 

surrounding breast tissue and the fractal dimension, D, showing the fractality of the MC 

clusters. 
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Figure 13: 3D plot of D from CC (x-axis) and MLO (y-axis) against the variable Z0.0, (a),  
and Z0.5 (b).   
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CHAPTER 6: CONCLUSION 

 Microcalcifications inside the breast tissue sometimes grow into a cancerous tumor. 

The identification, characterization and quantification of MC clusters when analyzing 

mammograms is very useful for early cancer detection. In a previous study done by 

CompuMAINE Lab in 2014, mammograms were analyzed with the aid of the 2D WTMM 

method and it was found that malignant MC clusters have a fractal nature. The 

microenvironment surrounding these MC clusters also plays a role in identification of 

suspicious areas leading to possible cancerous tumor growth. A separate study done by this 

same team in 2017 used the 2D WTMM method to analyze mammograms which showed 

that the loss of tissue homeostasis in the breast microenvironment leading to tissue 

disruption can be quantified by the global roughness exponent, H.13 The results from this 

study has found that the Hurst value for a disrupted tissue region is between 0.45<H<0.55.  

In this project the correlation between the Hurst exponent value for the background 

tissue surrounding MC clusters and the fractal dimension of MC clusters was studied. In 

the “2D fractal dimension vs. Hurst exponent plot” nearly 75% of the malignant cases are 

found inside the quadrilateral region centered at the point (0.5,1.5). Since H ~ 0.5 is 

associated with a disrupted tissue region and D ~ 1.5 is associated with malignant MC 

clusters, we can conclude that there is a relationship between the state of the 

microenvironment in cancerous breast tissue and microcalcifications clustering in that 

region. The 3D graph in Figure 13 is an additional supporting evidence for this relationship. 

As a conclusion, based on the outcomes of this study one can hypothesize that with further 

analyses, loss of tissue homeostasis describing the state of the microenvironment of a breast 
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tissue and the fractal nature of MC clusters have a quantifiable relationship to distinguish 

benign cases from malignant cases in mammogram analysis. This outcome also leads to a 

future work that can be employed to distinguish whether it is the tissue disruption as a 

result of loss of tissue homeostasis that is facilitating the growth of microcalcification 

clusters or vice-versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 
 

REFERENCES 

1. Kriege, M. et al. Efficacy of MRI and mammography for breast-cancer screening in 
women with a familial or genetic predisposition. N. Engl. J. Med. (2004). 
doi:10.1056/NEJMoa031759  

 
2. Huo, Z. et al. Computerized analysis of digitized mammograms of BRCA1 and 

BRCA2 gene mutation carriers. Radiology (2002). doi:10.1148/radiol.2252010845 
 
3. Morris, E. A. Review of breast MRI: Indications and limitations. Seminars in 

Roentgenology (2001). doi:10.1053/sroe.2001.25123 
 
4. Orel, S. G. & Schnall, M. D. MR imaging of the breast for the detection, diagnosis, 

and staging of breast cancer. Radiology (2001). 
doi:10.1148/radiology.220.1.r01jl3113 

 
5. Gur, D. et al. Changes in breast cancer detection and mammography recall rates 

after the introduction of a Computer-aided detection system. J. Natl. Cancer Inst. 
(2004). doi:10.1093/jnci/djh067 

 
6. Mandelson, M. T. Breast Density as a Predictor of Mammographic Detection: 

Comparison of Interval- and Screen-Detected Cancers. J. Natl. Cancer Inst. (2000). 
doi:10.1093/jnci/92.13.1081 

 
7. Batchelder, K. A. et al. Wavelet-based 3D reconstruction of microcalcification 

clusters from two mammographic views: New evidence that fractal tumors are 
malignant and euclidean tumors are benign. PLoS One (2014). 
doi:10.1371/journal.pone.0107580 

 
8. Bizzarri, M. et al. Fractal analysis in a systems biology approach to cancer. Seminars 

in Cancer Biology (2011). doi:10.1016/j.semcancer.2011.04.002 
 
9. Kahn, E. & Paola, R. Di. A Fractal Approach to the Segmentation of 

Microcalcifications in Digital Mammograms. Med. Phys. (1995). 
doi:10.1118/1.597473 

 
10. Li, H., Liu, K. J. R. & Lo, S. C. B. Fractal modeling and segmentation for the 

enhancement of microcalcifications in digital mammograms. IEEE Trans. Med. 
Imaging (1997). doi:10.1109/42.650875 

 



 

43 
 

11. Sankar, D. & Thomas, T. A new fast fractal modeling approach for the detection of 
microcalcifications in mammograms. J. Digit. Imaging (2010). doi:10.1007/s10278-
009-9224-6 

 
12. Hergarten, S. Self-Organized Criticality in Earth Systems. Self-Organized 

Criticality in Earth Systems (2002). doi:10.1007/978-3-662-04390-5 
 
13. Marin, Z. et al. Mammographic evidence of microenvironment changes in tumorous 

breasts: Med. Phys. (2017). doi:10.1002/mp.12120 
 
14. Geddes, D. T. Inside the Lactating Breast: The Latest Anatomy Research. J. 

Midwifery Women’s Heal. (2007). doi:10.1016/j.jmwh.2007.05.004 
 
15. Johnson, M. C. Anatomy and physiology of the breast. in Management of Breast 

Diseases (2010). doi:10.1007/978-3-540-69743-5_1 
 
16. Kovacs, C. S. Calcium and bone metabolism disorders during pregnancy and 

lactation. Endocrinology and Metabolism Clinics of North America (2011). 
doi:10.1016/j.ecl.2011.08.002 

 
17. Carmeliet, G., Van Cromphaut, S., Daci, E., Maes, C. & Bouillon, R. Disorders of 

calcium homeostasis. Best Practice and Research: Clinical Endocrinology and 
Metabolism (2003). doi:10.1016/j.beem.2003.08.001 

 
18. Hoey, R. P. et al. The parathyroid hormone-related protein receptor is expressed in 

breast cancer bone metastases and promotes autocrine proliferation in breast 
carcinoma cells. Br. J. Cancer (2003). doi:10.1038/sj.bjc.6600757 

 
19. Almquist, M., Manjer, J., Bondeson, L. & Bondeson, A. G. Serum calcium and 

breast cancer risk: Results from a prospective cohort study of 7,847 women. Cancer 
Causes Control (2007). doi:10.1007/s10552-007-9001-0 

 
20. Wilkinson, L., Thomas, V. & Sharma, N. Microcalcification on mammography: 

Approaches to interpretation and biopsy. British Journal of Radiology (2017). 
doi:10.1259/bjr.20160594 

 
21. Castellaro, A. M. et al. Oxalate induces breast cancer. BMC Cancer (2015). 

doi:10.1186/s12885-015-1747-2 
 
22. Breastcancer.org. Understanding Breast Calcifications. BREASTCANCER.ORG 



 

44 
 

23. Nalawade, Y. V. Evaluation of breast calcifications. Indian J. Radiol. Imaging 
(2009). doi:10.4103/0971-3026.57208 

 
24. Park, J. M. et al. Clustering of breast microcalcifications: Revisited. Clin. Radiol. 

(2000). doi:10.1053/crad.1999.0220 
 
25. WHO. WHO | Breast cancer. (2018). 
 
26. Ferlay, J. et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality 

Worldwide: IARC CancerBase. No. 11 [Internet]. Lyon, France: IARC (2013). 
 
27. Sankaranarayanan, R. et al. Cancer survival in Africa, Asia, and Central America: a 

population-based study. Lancet Oncol. (2010). doi:10.1016/S1470-2045(09)70335-
3 

 
28. Corbex, M., Bouzbid, S. & Boffetta, P. Features of breast cancer in developing 

countries, examples from North-Africa. European Journal of Cancer (2014). 
doi:10.1016/j.ejca.2014.03.016 

 
29. Eerola, H., Blomqvist, C., Pukkala, E., Pyrhönen, S. & Nevanlinna, H. Familial 

breast cancer in southern Finlandhow prevalent are breast cancer families and can 
we trust the family history reported by patients? Eur. J. Cancer (2000). 
doi:10.1016/S0959-8049(00)00093-9 

 
30. Ewertz, M. et al. Age at first birth, parity and risk of breast cancer: A meta-analysis 

of 8 studies from the nordic countries. Int. J. Cancer (1990). 
doi:10.1002/ijc.2910460408 

 
31. Hamajima, N. et al. Alcohol, tobacco and breast cancer - Collaborative reanalysis 

of individual data from 53 epidemiological studies, including 58 515 women with 
breast cancer and 95 067 women without the disease. Br. J. Cancer (2002). 
doi:10.1038/sj.bjc.6600596 

 
32. Shulman, L. N., Willett, W., Sievers, A. & Knaul, F. M. Breast cancer in developing 

countries: Opportunities for improved survival. J. Oncol. (2010). 
doi:10.1155/2010/595167 

 
33. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin D, . Estimates of 

worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of 
cancer. Int. J. Cancer (2010). 



 

45 
 

34. Ngoma, T. A. World Health Organization cancer priorities in developing countries. 
Annals of Oncology (2006). doi:10.1093/annonc/mdl982 

 
35. Denny, L. et al. Interventions to close the divide for women with breast and cervical 

cancer between low-income and middle-income countries and high-income 
countries. The Lancet (2017). doi:10.1016/S0140-6736(16)31795-0 

 
36. Lauby-Secretan, B. et al. Breast-cancer screening-viewpoint of the IARC working 

group. N. Engl. J. Med. (2015). doi:10.1056/NEJMsr1504363 
 
37. Papavramidou, N., Papavramidis, T. & Demetriou, T. Ancient greek and greco-

Roman methods in modern surgical treatment of cancer. Annals of Surgical 
Oncology (2010). doi:10.1245/s10434-009-0886-6 

 
38. Shapiro, S., Strax, P. & Venet, L. Periodic Breast Cancer Screening in Reducing 

Mortality From Breast Cancer. JAMA J. Am. Med. Assoc. (1971). 
doi:10.1001/jama.1971.03180240027005 

 
39. Siu, A. L. Screening for breast cancer: U.S. Preventive services task force 

recommendation statement. Annals of Internal Medicine (2016). doi:10.7326/M15-
2886 

 
40. Van Steen, A. & Van Tiggelen, R. Short history of mammography: A Belgian 

perspective. Journal Belge de Radiologie (2007). 
 
41. Pisano, E. D. et al. Diagnostic performance of digital versus film mammography for 

breast-cancer screening. N. Engl. J. Med. (2005). doi:10.1056/NEJMoa052911 
 
42. Gold, R. H. The evolution of mammography. Radiologic Clinics of North America 

(1992). 
 
43. GOULD, H. R., RUZICKA, F. F., SANCHEZ-UBEDA, R. & PEREZ, J. 

Xeroradiography of the breast. Am. J. Roentgenol. Radium Ther. Nucl. Med. (1960). 
 
44. Verma, B. & Zakos, J. A computer-aided diagnosis system for digital mammograms 

based on fuzzy-neural and feature extraction techniques. IEEE Trans. Inf. Technol. 
Biomed. (2001). doi:10.1109/4233.908389 

 
45. Sweeney, R. J. I., Lewis, S. J., Hogg, P. & McEntee, M. F. A review of 

mammographic positioning image quality criteria for the craniocaudal projection. 



 

46 
 

British Journal of Radiology (2018). doi:10.1259/bjr.20170611 
 
46. Popli, M. B., Teotia, R., Narang, M. & Krishna, H. Breast positioning during 

mammography: Mistakes to be avoided. Breast Cancer Basic Clin. Res. (2014). 
doi:10.4137/BCBCr.s17617 

 
47. Suri, J. S. & Rangayyan, R. M. Recent advances in breast imaging, mammography, 

and computer-aided diagnosis of breast cancer. Recent Advances in Breast Imaging, 
Mammography, and Computer-Aided Diagnosis of Breast Cancer (2006). 
doi:10.1117/3.651880 

 
48. Buchanan, C. L., Morris, E. A., Dorn, P. L., Borgen, P. I. & Van Zee, K. J. Utility 

of breast magnetic resonance imaging in patients with occult primary breast cancer. 
Ann. Surg. Oncol. (2005). doi:10.1245/ASO.2005.03.520 

 
49. Gilbert, F. J. et al. Single reading with computer-aided detection for screening 

mammography. N. Engl. J. Med. (2008). doi:10.1056/NEJMoa0803545 
 
50. Fenton, J. J. et al. Influence of computer-aided detection on performance of 

screening mammography. N. Engl. J. Med. (2007). doi:10.1056/NEJMoa066099 
 
51. Fenton, J. J. et al. Effectiveness of computer-aided detection in community 

mammography practice. J. Natl. Cancer Inst. (2011). doi:10.1093/jnci/djr206 
 
52. Noble, M., Bruening, W., Uhl, S. & Schoelles, K. Computer-aided detection 

mammography for breast cancer screening: Systematic review and meta-analysis. 
Arch. Gynecol. Obstet. (2009). doi:10.1007/s00404-008-0841-y 

 
53. Fenton, J. J. et al. Short-term outcomes of screening mammography using computer-

aided detection a population-based study of medicare enrollees. Ann. Intern. Med. 
(2013). doi:10.7326/0003-4819-158-8-201304160-00002 

 
54. Eadie, L. H., Taylor, P. & Gibson, A. P. A systematic review of computer-assisted 

diagnosis in diagnostic cancer imaging. Eur. J. Radiol. (2012). 
doi:10.1016/j.ejrad.2011.01.098 

 
55. Kim, S. J., Moon, W. K., Seong, M. H., Cho, N. & Chang, J. M. Computer-aided 

detection in digital mammography: False-positive marks and their reproducibility in 
negative mammograms. Acta radiol. (2009). doi:10.3109/02841850903216700 

56. C.D., L. et al. Diagnostic accuracy of digital screening mammography with and 



 

47 
 

without computer-aided detection. JAMA Intern. Med. (2015). 
doi:10.1001/jamainternmed.2015.5231 LK  -  

 
57. Khalil, A., Joncas, G., Nekka, F., Kestener, P. & Arneodo, A.  Morphological 

Analysis of H i Features. II. Wavelet-based Multifractal Formalism . Astrophys. J. 
Suppl. Ser. (2006). doi:10.1086/505144 

 
58. MUZY, J. F., BACRY, E. & ARNEODO, A. THE MULTIFRACTAL 

FORMALISM REVISITED WITH WAVELETS. Int. J. Bifurc. Chaos (1994). 
doi:10.1142/s0218127494000204 

 
59. Lin, D. C. & Sharif, A. Wavelet transform modulus maxima based fractal correlation 

analysis. Eur. Phys. J. B (2007). doi:10.1140/epjb/e2008-00004-6 
 
60. Arneodo, A., Bacry, E. & Muzy, J. F. The thermodynamics of fractals revisited with 

wavelets. Phys. A Stat. Mech. its Appl. (1995). doi:10.1016/0378-4371(94)00163-N 
 
61. Arneodo, A., Audit, B., Kestener, P. & Roux, S. Wavelet-based multifractal 

analysis. Scholarpedia (2008). doi:10.4249/scholarpedia.4103 
 
62. Arnéodo, A., Decoster, N., Kestener, P. & Roux, S. G. A wavelet-based method for 

multifractal image analysis: From theoretical concepts to experimental applications. 
Adv. Imaging Electron Phys. (2003). doi:10.1016/S1076-5670(03)80014-9 

 
63. Gerasimova, E. et al. Wavelet-based multifractal analysis of dynamic infrared 

thermograms to assist in early breast cancer diagnosis. Front. Physiol. (2014). 
doi:10.3389/fphys.2014.00176 

 
64. Kestener, P., Lina, J. M., Saint-Jean, P. & Arneodo, A. WAVELET-BASED 

MULTIFRACTAL FORMALISM TO ASSIST IN DIAGNOSIS IN DIGITIZED 
MAMMOGRAMS. Image Anal. Stereol. (2011). doi:10.5566/ias.v20.p169-174 

 
65. Khalil, Andre, K. A. B. Improved Methods of Cancer Detection. 
 
66. R Core Team. R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing (2013). Available at: http://www.r-
project.org/.  

 
 
 



 

48 
 

AUTHOR’S BIOGRAPHY 

 Betelhem was born in Addis Ababa, Ethiopia in 1998. She was raised in the capital 

city of Ethiopia, Addis Ababa. She finished her primary, secondary, and Highschool in 

Nativity Girls’ School, a Catholic missionaries school located in Piassa, a town in the 

capital city. She graduated from her Highschool on July 23, 2016 and came to the 

University of Maine with a scholarship to study Biology on January 10, 2017. Due to her 

passion in integrating mathematics with her Biological study, she has switched her major 

to Biomedical Engineering. Since her second year she has been involved in different 

research labs like the Virtual Environmental and Multimodal Interaction Laboratory 

(VEMI Lab), CompuMAINE Lab, and Dr. Han’s Genetics Lab. She also participated in 

Team Maine as a student ambassador in the Admissions Office, and other student 

organizations like the African Student Association where she served as a president, 

International Student Association, Bioengineering club, Society of Women Engineers 

where she served as the social chair. She has also been inducted to All Maine Women, a 

traditional honors society at UMaine, in recognition of her hard work, Maine spirit, good 

academic standing, and community service to UMaine community. She has received the 

International Presidential Scholarship and Richard E. Durst Scholarship due to her 

academic excellence. Her undergraduate independent study has also been awarded the 

Carolyn E. Reed Pre-Medical Studies Honors Thesis Fellowship and Charlie Slavin 

Research Fund.  

After finishing her Bachelor of Science in Biomedical engineering she plans to 

work as a research assistant in a biological research laboratory and further pursue her 

education to Master of Science and PhD. She aims to do her M.Sc and PhD on the 



 

49 
 

application of imaging in point of care disease diagnostics for several chronic, genetic, and 

hereditary diseases.  

 


	Exploration of the Relationship Between the Fractal Dimension of Microcalcification Clusters and the Hurst Exponent of Background Tissue Disruption in Mammograms
	Microsoft Word - Abay, Betelhem.docx

