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ABSTRACT

For the past two decades the United States has been embroiled in a prescription drug

epidemic that has since grown in magnitude and complexity. The ripples of this epi-

demic have been especially apparent in the state of Maine, which has fought hard to

mitigate the damage caused by addiction to pharmaceutical and illicit opioids. Us-

ing data from state and federal sources, we construct a mathematical model capturing

the dynamics of the opioid epidemic in the state of Maine, specifically as it pertains

to pharmaceutical opioids and heroin. Parameter fitting is performed followed by an

uncertainty analysis to quantify potential error in parameter estimates. The model is

analyzed to determine effective ways of controlling opioid abuse prevalence (both in the

form of heroin and pharmaceutical opioid use) at different points in time, and stochas-

tic simulations are run to test the effect of various control strategies on the number of

opioid abusers in the system. These results are then presented with the hope of helping

to inform public policy as to the most effective means of intervention.
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CHAPTER I

INTRODUCTION

As one of the most enduring and concerning public health crises to face the United States

in the twenty-first century, the opioid epidemic has cemented itself as one of the greatest

drug problems to face the country in its history. Since its beginning in the late 1990s,

the opioid epidemic has taken the country by storm, affecting millions of Americans

per year, and as recently as 2018 was killing more than a hundred Americans per day

[13]. To understand how this happened, a synopsis of the epidemic and its origins is

presented.

The National Institutes of Health provide the following as a definition of opioids: “Opi-

oids are a class of drugs that act in the nervous system to produce feelings of plea-

sure and pain relief. Some opioids are legally prescribed by healthcare providers to

manage severe and chronic pain. Commonly prescribed opioids include oxycodone,

fentanyl, buprenorphine, methadone, oxymorphone, hydrocodone, codeine, and mor-

phine. Some other opioids, such as heroin, are illegal drugs of abuse” [20]. Our dis-

cussion here will concern prescription opioids, while the use of illegal opioids will be

discussed more completely in the paragraphs to follow.

Opioid analgesics as a treatment of pain in patients following surgery or trauma has

been around long before federal legislation sought to extend the use of the same anal-

gesics to treating noncancer pain [53]. The final decade of the twentieth century would

see the most dramatic change in legislation regarding pain management. Some of the

more compelling developments include The Joint Commission, a federal organization
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in the U.S. that accredits health care institutions, compiling a list of pain standards in

1997 to guide policy surrounding pain management [27]. That same year, the Feder-

ation of State Medical Boards convened to set out suggested state guidelines for the

use of controlled substances, most notably opioids, for the treatment of pain [44]. Two

such consequences of this are easing regulatory strictness over opioid prescriptions and

encouraging doctors to prescribe them more freely.

Adhering to the suggestions of the board, Maine would soon follow suit, passing Chap-

ter 11 of the rules of the Board of Licensure in Medicine and the Board of Osteopathic

Licensure. Adopted in 1999, the new rules set out pain treatment guidelines intended to

reduce the reluctance of doctors in prescribing opioids for pain. These new guidelines

also recognized pain treatment/relief as part of "quality medical practice" [83]. Al-

though the law made it easier for doctors to prescribe opioids, the law specifically men-

tions that "inappropriate prescribing of controlled substances, including opioid anal-

gesics, may lead to drug diversion and abuse by individuals who seek them for other

than legitimate medical use."

Regardless of these warnings, opioid abuse would balloon in the years to follow. Kenan

et al. [54] found that, from 2000-2009, the number of opioid prescriptions per 100

people in the United States increased by 35.2%. Opioid distribution by pharmacies,

measured in milligrams per 100 persons, also more than doubled by 2010. Even the size

of the individual prescriptions of common opioids such as oxycodone and hydrocodone

increased by nearly 70% [54]. Prescriptions reached their peak at the end of the decade,

when the national per capita prescription rate was 782 morphine milligram equivalents

(MME) [50]. By comparison, the national per capita prescription rate in 1999 was 180

MME [70]. Maine would experience a similar trend, prescribing over 750 MME per

capita both in 2006 and 2010, with over 14 per 100 people receiving a high dosage of

over 90 MME per day for both years [77]. In 2010, Maine was among only 12 states in

which this was the case.
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The opioid prescription explosion was not without its consequences. From 1999-2010,

mirroring the growth in opioid prescriptions, overdose deaths due to opioids grew

steadily from a rate of less than 2 deaths per 100,000 people in 1999, to over double

that in 2010 [23]. Although heroin and other synthetic opioids existed in 1999, their

role in opioid overdose rates were vastly overshadowed by those attributed to prescrip-

tion opioids. Once more, trends in Maine mirrored those on the national level, with

drug overdose deaths involving opioids climbing from 1999 onward, until plateauing

in 2005-06 [19]. It was around this time, no later than 2004, that the Maine legislature

passed Section 7248 of Title 22: Health and Welfare, establishing the state’s prescription

monitoring program as a means of keeping records of dispensed controlled substances

[1].

The FSMB would later update its model guidelines surrounding the regulation and use

of controlled substances. In response to these updates, Maine repealed the Chapter

11 rules in favor of a joint rule, effective 2010, that was intended as an update to

Maine laws surrounding the use of controlled substances for the treatment of pain.

The new rule set, dubbed "Chapter 21: Use of Controlled Substances for Treatment of

Pain," not only included an updated set of guidelines for the proper usage of controlled

substances in the treatment of pain, but also included a set of suggestions for elements

in a controlled substance contract, and a statement by the state boards involved on the

treatment of pain [83].

In response to the growth in opioid prescriptions and the subsequent growth in phar-

maceutical opioid overdoses, things began to change in 2010. Between 2010-11, a

combination of national guidelines regulating the prescription of high-dose opioids and

several studies linking high-dose opioids and risk of overdose provided ample incentive

to limit high-dose opioid prescriptions across the country [32, 43, 51]. Beginning in

2011, Maine opioid prescriptions declined steadily [78]. From 2013-14, Maine opioid

prescriptions decreased by 4.1%, which was 1.2% above the national average at the time
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[78]. During this time, although prescriptions decreased, overdose deaths continued to

increase as heroin use became more widespread. From 2010-14, heroin overdoses fol-

lowed a similar trend as pharmaceutical opioid overdoses over a decade earlier. Within

only a few years, the national heroin overdose death rate rose dramatically from under

1 death per 100,000 people to 4 deaths per 100,000 people in 2014 [23]. In Maine,

although deaths due to pharmaceutical opioid overdoses began a steady decline (con-

trary to national trends during the same time period), heroin overdose deaths were on

the rise [82]. In 2010, there were only 7 deaths in Maine involving heroin/morphine.

By 2014, that number had increased more than eight-fold to 57 [42].

The most recent wave of the opioid epidemic began in 2013-14, when overdose deaths

to the synthetic opioids tramadol and fentanyl surpassed overdose deaths to either

heroin or pharmaceutical opioids [64]. From 2013-18, the national opioid overdose

death rate involving synthetic opioids would climb dramatically from less than 2 deaths

per 100,000 people to almost 10 deaths per 100,000 people. This trend was especially

apparent in Maine. In 2013 there were only three overdose deaths involving nonphar-

maceutical fentanyl/fentanyl analogues [42]. This number ballooned in subsequent

years, to 43 in 2014, 87 in 2015, and eventually peaking in 2017 at 247 overdose

deaths involving nonpharmaceutical fentanyl/fentanyl analogues [42].

A number of legislative changes were enacted to address the changing dynamic of the

opioid epidemic in Maine. In 2015, Chapter 488 was passed, effective early 2016,

which strengthened the prescription monitoring program [3]. Some key takeaways of

this new law include limiting the MMEs per day a patient could receive and limiting

the length of time that individuals could receive prescriptions for their treatment (with

some exceptions of course, such as opioids for treating substance use disorders) [4, 63].

Also in 2015, Then-Governor Paul LePage held a summit in August to address the opioid

epidemic in Maine. Following the summit, the Maine Opiate Collaborative was formed.

The next year, in 2016, the collaborative released a report containing recommendations
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for addressing the burgeoning problem [41]. The recommendations, summarized at the

beginning of the report, are compartmentalized according to considerations of preven-

tion and harm reduction, treatment, and law enforcement [41]. From 2015-16, more

laws were passed at the state level addressing various parts of the opioid epidemic,

including but not limited to Legislative Document (L.D.) No. 1537, L.D. No. 140, and

L.D. No. 507 [21].

In 2017, Maine state Boards, including the Board of Licensure in Medicine, the State

Board of Nursing, and the Board of Osteopathic Licensure, passed Chapter 21, effective

2018. Changes in the new law included some form of risk assessment before prescribing

controlled substances for the treatment of pain, and advised the lowest dose possible

be used for opiate-naive patients, to name a few (see [78]). Cogs were turning at the

national level as well, when President Donald Trump declared the opioid epidemic a

public health emergency in October that same year [6]. Since Governor Janet Mills

has taken office in January of 2019, more has been done to further combat the severity

of the opioid epidemic. Only a month after taking office, Governor Mills issued an

executive order making anti-overdose drugs more widely available and training more

recovery coaches, among other changes [11, 14].

Now, although state overdose deaths appear to be falling in recent years, Maine is still

entangled in its war with opioid addiction. It is imperative that more work be done

so that this decline continues into the following years, and the damages wrought by

this epidemic are mitigated to the maximum extent achievable. Policymakers must be

informed as to the best approaches in handling the continuing public health crisis. To

assist in this effort, mathematical models can play an essential role in informing public

policy as to the best intervention strategies. Deriving and analyzing a mathematical

model of the opioid epidemic in Maine is the focus of this work.

Compartmental models, in which a population is subdivided into different compart-
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ments or groups, have been used for a host of biological, ecological, and epidemiological

queries [34, 68]. This formalism is not limited solely to problems of disease transmis-

sion, but any phenomenon in which the underlying dynamics involve the movement

of a contagion between members in a community. Here, contagion need not be a lit-

eral microparasite, but an idea [31], a riot [33], or a noninfectious disease, such as

drug abuse [25, 28, 62, 73, 84]. It is with this final category that we concern ourselves

with primarily. Transmission and proliferation of drug abuse in a population occurs in

a manner similar to that of diseases carried by microorganisms.

Several models of the opioid epidemic stand out in the literature, although their intents

vary. In the case of [28], the focus is much more mathematical when compared to the

work of Pitt et al. [73], with general observations gleaned from numerical sensitivity

analysis. Battista et al. [28] found that, absent an addiction-free state, control efforts

are best directed towards "reducing the average prescription length... and increasing

the rate addicts enter treatment." The authors in [28] also seek to build on the results

of White and Comiskey [84] by considering addiction to prescription drugs and the

illicit use of leftover pharmaceuticals. On the other hand, Pitt et al. [73] place more

emphasis on patient health in the context of a comparison of a variety of responses

to the epidemic. Pitt et al. [73] found that the most beneficial approaches to opioid

epidemic control were "policies that expand addiction treatment or directly mitigate

harmful effects of addiction."

Aside from general opioid epidemic models incorporating both pharmaceutical and non-

pharmaceutical opioids, there are also heroin epidemic models in the literature. This

includes the efforts of Mackintosh and Stewart [62], which rely on a compartmental

model of heroin addiction to suggest potential control policies, and Abdurahman et al.

[25], who study a heroin epidemic model with time-delay. Other significant models

in the literature include that of White and Comiskey [84], one of the first published

mathematical models of opiate addiction.
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The objective of the following work was to develop a deeper understanding of the opioid

epidemic as it pertains to Maine, mathematically speaking, and extrapolate from this

analysis pragmatic ways of mitigating its harmful effects. To the author’s knowledge,

this is the first mathematical model of the opioid epidemic to concern a particular state,

and hopefully in this way acts as a stepping stone from which to guide other models

in the future. In contrast to other opioid epidemic models in the literature, the scope

of our analysis was the adult population of the state of Maine, so that data is not as

difficult to obtain, and the results are more practical for our purposes. From a math-

ematical standpoint, we employed a novel compartmentalization in which individuals

abusing opioids are divided into a pharmaceutical compartment and a nonpharmaceu-

tical (heroin) compartment.

The structure of this thesis is presented as follows: some preliminary information is

given in Chapter II, including background theory for ordinary differential equations and

infectious disease modeling. The mathematical model of the opioid epidemic in Maine

is formulated in Chapter III. In Chapter IV we analyze model behavior and forecasts.

Finally, Chapter V discusses the results of the analysis carried out in Chapter IV and

concludes with some directions for future work.
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CHAPTER II

BACKGROUND

Some necessary preliminary concepts are presented in the following section. Many of

the concepts related to dynamical systems are taken from [71].

ODE Theory

To understand the mathematical terms and results presented in this paper, a funda-

mental understanding of ordinary differential equation (ODE) theory is required. An

ordinary differential equation shall be denoted as

ẋ = f (x), (1)

where ẋ denotes the derivative of x = (x1, . . . , xn) with respect to time t (the indepen-

dent variable), and f (x)= ( f1(x), . . . , fn(x)) is a function depending only on the depen-

dent variable x . It is because of this property that f (x) is referred to as an autonomous

ODE. The derivative of x with respect to time is simply the rate that x changes with

respect to time. Combined with an initial condition on x at t = 0, which we denote by

x0, we get the following initial value problem (IVP):

ẋ = f (x)

x(0) = x0.
(2)

8



On some domain D, a function g(x) is C1, written as g ∈ C1(D), if g ′(x) exists and is

continuous for all x ∈ D. If the system f (x) in (2) is C1 on its domain, then a solution

of the system, which we denote by u(t), is a C1 function on some time interval T

containing t = 0 satisfying u̇= f (u) for all t ∈ T , and is such that u(0) = x0. However,

how do we know such a solution exists? Furthermore, is such a solution unique? These

questions are answered by the following theorem, taken from [71]:

Theorem 2.1 (The Fundamental Uniqueness-Existence Theorem). Let E be an open

subset of Rn containing x0 and assume that f ∈ C1(E). Then there exists an a> 0 such

that the IVP in (2) has a unique solution u(t) on the interval [−a,a].

We forego a proof of this theorem, as the scope is beyond that of this paper. Regarding

the language used in the theorem, an open set can roughly be described as a generaliza-

tion of an open interval. For example, (0,1) is an open interval on the real line, which

is the set of all x ∈R such that 0< x < 1. The final phrase in the above theorem can

be restated as "... has a unique solution u(t) for −a≤ t ≤ a". What exactly do we know

about the constant a? The above theorem stipulates that a> 0, but it gives no manner

as to how large, or small, a may be. Thus, this theorem establishes local existence of a

solution, but there is no guarantee such a solution exists for all t > 0. A stronger claim

of existence is referred to as global existence, but this is in general rather difficult to

prove, and is a luxury enjoyed by linear systems (of which our model is not).

A simple example should help to illustrate the concepts presented above. Consider a

population (P) of organisms. Suppose that each organism in this population reproduces

at a rate of b per unit time, and dies at a rate of µ per unit time. During some very small

interval of time, we expect bP∆t new offspring and µP∆t dead organisms. Together,

this means that the change in P, denoted ∆P, over some short interval of time is ∆P =

bP∆t−µP∆t = (b−µ)P∆t. Dividing either side by ∆t and taking the limit ∆t→ 0,

we arrive at the simple ODE Ṗ = (b−µ)P to model this population. Suppose further

9



that at time t0= 0, the population is of size P(0) = N , then the population satisfies the

IVP

Ṗ = (b−µ)P

P(0) = N .
(3)

This ODE is linear and also separable, so that a solution can be found as follows:

Ṗ =
dP
d t
= (b−µ)P =⇒

dP
P
= (b−µ) d t =⇒

∫

1
P

dP =

∫

(b−µ) d t.

Evaluating the integrals together with the initial condition yields the solution

P(t) = Ne(b−µ)t .

Note that in this expression, if b <µ then P(t)→ 0 as t→∞, and when b >µ then

P(t)→∞ as t→∞. This agrees with the physical notions of a population going ex-

tinct and a population growing exponentially, respectively. This linear example behaves

rather nicely but, in the case of nonlinear ODEs, closed-form solutions cannot always be

found analytically and so we must rely on other tools to perform a meaningful analysis.

At one point we will refer to our model as well-posed within some domain. It is im-

portant that our model is well-posed, as an ill-posed mathematical model can produce

nonphysical behavior and is therefore not a good model for a physical problem. Typ-

ically, a system is well-posed if (i) a solution exists, (ii) that solution is unique, and

(iii) the behavior of the system changes continuously with respect to initial conditions.

(i)-(ii) are established by the theorem above, but what of the final point, and what does

this mean? We begin by citing the following theorem from [71]:

Theorem 2.2 (Dependence on Initial Conditions). Let E be an open subset of Rn con-

taining x0 and assume that f ∈ C1(E). Then there exists an a> 0 and a δ> 0 such that

10



for all c ∈ Nδ(x0) the IVP

ẋ = f (x)

x(0) = c

where c is a parameter, has a unique solution u(t,c) with u∈ C1(G) where G= [−a,a]×

Nδ(x0)⊂Rn+1.

Here, Nδ(x0) refers to a neighborhood around x . Specifically, Nδ(x0) is a region of

points in Rn within some Euclidean distance of x0. Roughly, this theorem states that if

we perturb the initial conditions of our IVP slightly, then a solution of this new system

exists and is unique. Even further, this new solution depends continuously (actually C1)

on changes in initial condition near x0. Thus, this makes our system well-posed. We

will revisit this theorem in a later subsection to establish some local sensitivity results.

We are also interested in the equilibria of the ODE systems we work with. An equilib-

rium x∗ of the ODE in (1) is such that f (x∗) = 0, since then u(t) = x∗ is a solution of

the ODE. Mathematically, equilibria are where a system does not change with respect

to time. This is significant biologically speaking in the context of disease modeling,

because an equilibrium indicates that either the disease has died off (referred to as the

disease-free equilibrium, or DFE), or the disease is unchanging within the population

(the endemic equilibrium). The stability of these equilibria dictates the overall behavior

of solutions, and hence the long-term qualitative behavior of the ODE system. Stability

in this case means that the solutions of our system do not change much under small

perturbations. An equilibrium point is either stable or unstable; the former indicating

that a solution of (1) near an equilibrium point x∗ will remain near x∗ as t→∞, and

the latter characterizes the opposite situation, in which a solution of (1) near x∗ will

tend to move away from x∗ in forward time.
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In the case of nonlinear systems, stability of equilibria can be determined by the eigen-

values of the Jacobian of f (x) evaluated at x∗, which we write as D f (x∗). The Jacobian

of (1) is

D f (x) =

















∂ f1
∂ x1

∂ f1
∂ x2

. . . ∂ f1
xn

∂ f2
∂ x1

∂ f2
∂ x2

. . . ∂ f2
∂ xn

...
...

. . .
...

∂ fn
∂ x1

∂ fn
∂ x2

. . . ∂ fn
∂ xn

















.

This is established by the Hartman-Grobman theorem, which states that the behavior of

a solution of (1) near a hyperbolic equilibrium is well-approximated by the linearization

of x ′= f (x) at that equilibrium, given by z′= f ′(x∗)z=D f (x∗)z. We ignore cases when

the real part of any eigenvalues are 0, so we only consider equilibria that are referred to

as hyperbolic. The stability and respective criteria for each situation considered is given

below (taken from [71]):

1. x∗ is a sink if the real part of all eigenvalues of D f (x∗) are less than 0. In this

case, solutions of (2) starting close to x∗ converge to x∗ as t→∞. x∗ is thus

asymptotically stable.

2. x∗ is a source if the real part of all eigenvalues of D f (x∗) are greater than 0. The

opposite of the previous case occurs, in which solutions of (2) starting near x∗

are repulsed by x∗ in forward time, and so x∗ is unstable.

3. x∗ is a saddle if the the real part of at least one eigenvalue of D f (x∗) is positive,

and if the real part of at least one eigenvalue of D f (x∗ y) is negative. In this case,

x∗ is a semi-stable equilibrium point, characterized as having both unstable and

asymptotically stable solutions.

To illustrate these concepts, we provide an example. Consider the logistic equation with
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growth rate r and carrying capacity K > 0, given by

x ′= f (x) = r x
�

1−
x
K

�

where x is a population of organisms. The rate of change of the population f (x) van-

ishes for x = 0 and x = K , representing the events of extinction and reaching the carry-

ing capacity of the habitat, respectively. To characterize the equilibria of f , we calculate

the derivative as follows:

f ′(x) = r
�

1−
2x
K

�

.

The stability of the equilibria can be determined by evaluation of this derivative at the

equilibria found above. For x =0, the derivative is f ′(0)= r. If r<0, or the growth rate

is negative, then this equilibrium point is asymptotically stable, and the population in

the system will eventually go extinct. If r>0, or the growth rate is instead positive, then

this equilibrium point is unstable, and populations will not go extinct. For the second

equilibrium point found, f ′(K) = −r. The sign change indicates that the equilibrium

point at x = K will have the stability opposite that of the equilibrium point at x = 0.

That is, when x = 0 is asymptotically stable, x = K will be unstable, as populations will

tend to extinction rather than to the carrying capacity of the environment. Similarly,

when x =0 is unstable, then x =K is asymptotically stable and all populations will tend

toward the carrying capacity K .

Parametric Uncertainty and Sensitivity Analysis

Many dynamics behind the opioid epidemic are unclear, and in some instances the nec-

essary data is not available from which to derive parameter estimates. In such instances,

it becomes necessary to fit the model to the data that is available and, through a process

of optimization, arrive at a best guess that minimizes the error between model and data.
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This process, referred to as parameter fitting, can be used to approximate unknown pa-

rameters. A common method by which this is accomplished is called the least-squares

method. Suppose we have a set of q parameters θ= (θ1,θ2, . . . ,θq), and m data points

given by y1, y2, . . . , ym that correspond to the state of the system at times t1, t2, . . . , tm.

Consider the IVP given by

ẋ = f (x ,θ),

x(0) = c,
(4)

and let u(t j,θ), for j ∈ {1,2,. . . ,m}, denote the solution of (4) with parameters θ eval-

uated at t j. The residual of a model at some data point y j is the difference between

the prediction of the model and the actual data, or y j−u(t j,θ) for some j. The least-

squares method determines the optimal parameter values θ that minimize the sum of

the squared residuals:
m
∑

j=1

�

y j−u(t j,θ)
�2

.

The least-squares method can be implemented in MATLAB using the native function

lsqcurvefit.

Once parameters are determined, how can we quantify the potential error in our esti-

mates? Parameter uncertainty is useful for quantifying uncertainty in parameter values

introduced by either a scarcity of data or from the method utilized to arrive at the esti-

mates in the first place. Our method for quantifying parameter uncertainty, taken from

[38], is presented in the corresponding subsection in Chapter IV.

There is also the question of how sensitive the variables x are to the model parameters,

θ. The sensitivity, in this context, can be measured by changes in x in response to small

perturbations to θi for some i ∈ {1,2,. . . ,q}. Consider the parametric IVP

ẋ = f (x ,θ)

x(0) = x0

(5)
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where θ = (θ1,θ2, . . . ,θq) ∈Rq is a parameter vector, and x0 ∈Rn is the (fixed) initial

condition. Sensitivities of the state variables of (5) with respect to parameters are given

in the following theorem, which is an adjusted version of a result presented in Section

3.3 of [56]. The proof of this well-known result uses a transformation and then applies

Theorem 2.2.

Theorem 2.3. Let E be an open subset of Rn+q containing (x0,θ0) and assume that f ∈

C1(E). Then there exists an a> 0 and a δ> 0 such that there is a unique solution u(t,θ)

of the IVP in (5) with u∈ C1(G) where G= [−a,a]×Nδ(θ0). Moreover,

Φ(t) =
∂ u
∂ θ
(t,θ0)

is the unique solution of the sensitivity system

Φ̇(t) =
∂ f
∂ x
(u(t,θ0),θ0)Φ(t)+

∂ f
∂ θ
(u(t,θ0),θ0)

Φ(0) = 0
(6)

on the interval [−a,a].

Proof: We first show that such a solution, denoted u, exists on some interval and is

unique. Let y = (x ,θ ) and consider the extended system given by ẏ = h(y), where

h(y) =





f (y)

0



=





f (x ,θ )

0



 .

This system becomes an IVP with initial value given by y(0)= c=(x0,θ ). Since f is C1

on E, it holds that h is C1 on E as well. By Theorem 2.1.2, there exists an a> 0 and a
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δ> 0 such that for all c ∈ Nδ(c0), where c0= (x0,θ0), the IVP

ẏ = h(y)

y(0) = c
(7)

has a unique solution u(t,c) with u∈ C1(G), where G = [−a,a]×Nδ(c0). To prove the

second part of the theorem, we use the result of the corollary in Section 2.3 of [71],

which states that

Φ(t) =
∂ u
∂ c
(t,c0),

is the solution of the IVP

Φ̇= Dh[u(t,c0)]Φ

Φ(0) = I
(8)

for t ∈ [−a,a]. We first expand Φ in block matrix form to obtain

Φ(t) =
∂ u
∂ c
(t,c) =





∂ x
∂ c

∂ θ
∂ c



=





∂ x
∂ x0

∂ x
∂ θ

0 I



 ,

where I is the identity matrix. Evaluating the product Dh[u(t,c)]Φ in block matrix form

yields

Dh[u(t,c)]Φ=





∂ f
∂ x

∂ f
∂ θ

0 0



Φ=





∂ f
∂ x

∂ f
∂ θ

0 0









∂ x
∂ x0

∂ x
∂ θ

0 I



=





0 ∂ f
∂ x
∂ x
∂ θ +

∂ f
∂ θ

0 0



 .

Note that
∂ f
∂ x

∂ x
∂ x0

= 0

as we are assuming the initial condition x0 to be constant (we are only concerned with
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changes to our parameter values θ). Our final system becomes

d
d t





∂ x
∂ x0

∂ x
∂ θ

0 I



=





0 ∂ f
∂ x
∂ x
∂ θ +

∂ f
∂ θ

0 0



 . (9)

Hence, we have that

Φ̂(t) =
∂ x
∂ θ
(t,θ0)

satisfies the IVP given by

˙̂Φ(t) =
∂ f
∂ x
(x(t,θ0),θ0)Φ̂(t)+

∂ f
∂ θ
(x(t,θ0),θ0)

Φ̂(0) = 0
(10)

for t ∈ [−a,a] and θ ∈ Nδ(θ0). The IVP is obtained in (9), and the conditions on t

and θ are directly inherited from the properties of Φ. The initial condition is found by

evaluating

Φ̂(0) =
∂ x
∂ θ
(0,θ0) =

∂

∂ θ
(x0) = 0.

To illustrate the sensitivity system in the above theorem, we refer back to our system in

(3). Our system in this case is the ODE given by f (P)= Ṗ =(b−µ)P. We are interested

in how small perturbations to the parameter vector θ = (b,µ) affect the state variable

P. The corresponding IVP in (6) in this case becomes

Φ̇(t) =
∂ f
∂ P
(x(t,θ0),θ0)Φ(t)+

∂ f
∂ θ
(x(t,θ0),θ0)

= (b0−µ0)Φ(t)+
�

P(t,θ0) −P(t,θ0)
�

Φ(0) =
�

0 0
�

(11)
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The sensitivity systems with respect to b and µ are then

˙∂ P
∂ b
= (b0−µ0)

∂ P
∂ b
+ P

and
˙∂ P
∂ µ
= (b0−µ0)

∂ P
∂ µ
− P,

respectively. Let b0 = µ0 = 1, implying P = Ne(b0−µ0)t = N . Let Pb = ∂ P/∂ b and simi-

larly define Pµ. Then the first sensitivity equation gives Pb = N t+C . To solve for C we

assume that Pb(t=0)=0, which implies that C =0. Thus, the sensitivity of the variable

P to the birth rate b is given by the function Pb = N t. Similarly, assuming the initial

condition Pµ(0) = 0, we can show that Pµ =−N t. We can compare these solutions to

those we would have obtained by taking the partial derivatives directly. In the former

case of the sensitivity of P to the variable b, we have

∂ P
∂ b
=
∂

∂ b

�

Ne(b−µ)t
�

= N te(b−µ)t .

Using the parameter values b0 = µ0 = 1, we arrive at the solution derived above, and

similarly for the case of ∂ P/∂ µ.

In some instances, however, we are not only interested in the sensitivity of model output

to small perturbations, but parameter values that are free to change within a range of

possible values that need not be small. This global sensitivity analysis is much better in

determining deeper interactions between parameters in the model that are not made

apparent in an otherwise local analysis.

For global sensitivity analysis, we employ the elementary effects method. The elemen-

tary effects method was initially presented by Morris [65] as a screening procedure to

identify influential parameters in a computationally expensive model, with results com-

parable to other sensitivity analysis methods [75, 85]. The elementary effects method
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is attractive due to its simplicity and intuitive nature. We present the method here and

apply it in Chapter IV. Consider a mathematical model f with n input factors. Let Y

denote some model output, so that we have

Y = f (x1, x2, . . . , xn).

Each x i is assumed to take on an integer value in 1≤ x i ≤ p−1 for some p, as done in

[36], regardless of the “true” value of the model factor x i. Each x i possesses a range

of possible values, the lower bound of which we denote by x L
i and the upper bound

of which we denote by xU
i . Here, x L

i and xU
i need not be integers, but are instead

the lower and upper bounds respectively of the range of possible values we will con-

sider in the analysis of x i. The product of all such ranges we refer to as the region of

experimentation, denoted by Ω. That is,

Ω= [x L
1 , xU

1 ]×[x
L
2 , xU

2 ]×···×[x
L
n , xU

n ]⊂R
n.

The elementary effect of x j, for 1≤ j≤ n, can be found by first changing x j by a value∆,

where ∆ is a predetermined value in {1,2,. . . , p−1}. This adjusted value of x j is then

scaled to fall within its respective factor range as follows:

x L
j +(x j+∆)(x

U
j − x L

j )(p−1).

The sign of∆ depends on whether the adjusted value of x j remains in the range [x L
j , xU

j ]

after scaling. If both x j+∆ and x j−∆ fall within this range after scaling, then the choice

can be made arbitrarily. We denote this scaled value of x j+∆ as y j,∆, and note that

y j,∆ ∈ [x L
j , xU

j ]. We scale the remaining x i such that they fall within their respective

factor ranges as well, and denote these scaled factors by yi. The elementary effect of
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x j, for 1≤ j≤ n and denoted ee(x j), is

ee(x j) =
f (y1, y2, . . . , y j,∆, . . . , yn)− f (y1, y2, . . . , y j, . . . , yn)

∆
.

This process is repeated r times, referred to as the number of trajectories, where r

depends on the size and complexity of the region of experimentation. That is, the

analysis of a larger number of factors should be accommodated by a larger number of

trajectories.

Multiple measurements of the elementary effects of x i must be made, at which point

they are then averaged and the standard deviation calculated for analysis. The average

of the elementary effects of a single factor is denoted by µ, while the standard devia-

tion of the elementary effects of a factor is denoted by σ. The purpose of the mean is

to quantify the overall effect that x i has on the output Y , while σ gives the "spread"

of the elementary effects, quantifying dependency on inputs/other factors and is gen-

erally used to elucidate any nonlinear behavior between parameters [65]. A small σ

corresponds to linear parametric behavior in relation to other model factors, whereas

a large σ is indicative of nonlinearity or coupled interactions with other parameters.

Specifically, “A large measure of spread indicates an input whose influence is highly de-

pendent on the values of the inputs - that is, one involved in interactions or whose effect

is nonlinear” [65]. Additionally, we also record the average of the absolute values of the

elementary effects of the various factors, denoted by µ∗. This consideration, attributed

to [35], ignores the potential "canceling" of positive and negative elementary effects. A

large value of µ∗ indicates an influential parameter, while a small value of µ∗ suggests

an insignificant or even negligible parameter.
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Disease Modeling

The idea of compartmental models to model disease first originated with the work of

W.O. Kermack and A.G. McKendrick [55]. Their theory and model, aptly dubbed the

Kermack-McKendrick model, would lay the groundwork for the eventual development

of the susceptible-infected-recovered (SIR) model, shown below.

Ṡ=−βS
I
N

İ = βS
I
N
−γI

Ṙ= γI .

(12)

As the name implies, this mathematical model quantifies interactions between suscep-

tible (S), infected (I), and recovered (R) individuals. It should be noted that these clas-

sifications are disjoint, and such a compartmentalization, or organization of the popula-

tion into disjoint categories, is a standard feature of modern disease models. In regards

to the system shown above, β is the contact rate adequate for transmission, γ is the

recovery rate, and N is the total population, or N = S+ I +R. The force of infection,

in this context, is just the number of contacts an individual makes, multiplied by the

probability of transmission per contact. For example, in a system where individuals on

average make 2 contacts per day and disease transmission is successful in 40% of con-

tacts with an infected individual, the transmission rate is β =2×0.4=0.8. The recovery

term is more readily understood. Continuing with our hypothetical example, suppose

that infected individuals remain infectious on average for a week. The recovery rate is

then 1/7≈ 0.143 day−1. The reason for this is that one can show that recovery times

follow an exponential distribution with mean 1/γ. However, we forego this discussion

and instead refer the reader to Section 9.2 of [34].

There are several assumptions about this model that deserve further elaboration:
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I An individual is assumed equally likely to contact any other individual in the

population. This is referred to as homogeneous mixing.

II Disease transmission is assumed proportional to the number of infected individu-

als in the system. This is referred to as standard incidence, or frequency-dependent

transmission.

III The population of the system is constant.

From I and II above, the rate of successful transmission after contact with an infected

individual is β(I/N). The number of newly infected susceptible individuals is then

given by βS(I/N). III can be realized by the following observation:

dN
d t
=

dS
d t
+

dI
d t
+

dR
d t
= 0.

Since dN/d t = 0, the population remains constant. This assumption is common when,

for reasons of the time scale or the size of N , considerations of a dynamic population

(e.g. immigration or death) are negligible.

Also important to mention in the context of disease models is the quantification of equi-

libria and their respective stabilities. This was discussed previously in general, but in

epidemiological models equilibria stability can determine the direction of the epidemic.

In such situations it is useful to derive the reproduction number, denoted R0, of the sys-

tem. The reproduction number is the average number of infected individuals generated

by a single infected person in a completely non-immune population. If equilibria of the

disease model exists, then it is typically the case that the DFE is asymptotically stable

when R0< 1, and the EE is asymptotically stable when R0> 1.

Extending the mathematics outlined above to the opioid epidemic may seem unintu-

itive, as social contagions behave much differently than agents of disease. However,

as the fundamental dynamics remain the same (i.e. there is a mode of susceptibility,
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transmission, and recovery), such a framework can indeed work in the context of the

transmission of behaviors rather than microorganisms. We rely on much of the same

assumptions as above for simplicity, with several changes, which we introduce in the

next section alongside our model.
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CHAPTER III

A DYNAMIC MODEL OF THE OPIOID EPIDEMIC IN MAINE

Model Formulation

We first introduce our model and then discuss challenges and previous model iterations.

The model schematic is shown in Figure 1.

Figure 1: Schematic of our opioid epidemic model.

The scope of our model is Maine adults (age 18+). The population is compartmental-

ized into four categories. These compartments are susceptible (S), addicted to phar-

maceutical opioids (AP), addicted to heroin (AH), and in rehabilitation/treatment (R).

We let N = S+AP+AH+R denote the entire adult population. Regarding our use of the

word "addiction," this refers to individuals with a substance use disorder. Thus, our def-

initions of AP and AH could be restated as individuals with (pharmaceutical) opioid use

disorder (POUD) and individuals with heroin use disorder (HUD), respectively. Note

that the definition of AP does not rely on the source of the pharmaceutical opioids, e.g.

whether the opioids are diverted (i.e. “the unlawful channeling of regulated pharma-

ceuticals from legal sources to the illicit marketplace” [52]) or obtained via prescription.

24



The model operates on a number of key assumptions similar to those discussed above,

which are as follows:

1. The population mixes homogeneously.

2. The only considered mechanism of developing heroin addiction assumes that the

individual first abused prescription opioids.

3. Effects of individuals leaving the population for reasons besides death are ignored.

4. Individuals re-entering the compartments AH and AP as a result of failed treatment

are assumed to do so at a rate proportional to the overall addicted population.

5. Entry into the system is assumed equivalent to the birth rate in the state of Maine.

6. Individuals were not assumed to move from AH to AP .

7. Nonlinear interactions resulting in transmission are assumed to only matter in the

movement of individuals from AP to AH .

Assumption 1 above follows from typical mathematical assumptions for modeling dis-

ease spread (see the third subsection in Chapter II). Regarding Assumption 2, research

indicates that the majority of individuals abusing heroin first began misusing pharma-

ceutical opioids [40]. Church et al. [39] state that "95 percent of interview respondents

used prescription opioids before initiating heroin." Furthermore, Lankenau et al. [59]

found that, in a sample of 50 heroin users from 2008-09, 86% “initiated opioid misuse

prior to heroin.” Beyond this, other nonlinear routes of movement into AH dictated by

interactions between the susceptible and recovered compartments and individuals in AH

were considered, but parameter fitting revealed the inclusion of these nonlinear routes

of transmission was negligible. This is explained more fully in the following subsec-

tions. The only nonlinear route into AH that parameter fitting revealed to be significant
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was interactions between individuals of AP and AH . Thus, the only individuals entering

AH must have once been in AP , or have already abused pharmaceutical opioids.

Assumption 3 was made given Maine’s relatively steady adult population in recent years

and the relatively small time window of analysis we consider. Assumption 4 was made

to compensate for a lack of data studying the abuse patterns of individuals failing re-

habilitation. In place of a more complicated mechanism of re-entry, a simple propor-

tionality assumption was made. That is, as the number of heroin abusers in the system

increases, this will be reflected in a greater number of individuals transitioning from R

to AH after treatment has failed. Re-entry into AP from R follows a similar mechanism.

A dynamic population is largely ignored, save for a natural death rate and deaths at-

tributed to overdoses. That being the case, the birth rate was assumed equivalent to

the rate of entry into the system, as in Assumption 5. Regarding Assumption 6, indi-

viduals can move from pharmaceutical opioid abuse to heroin abuse, but the reverse

direction is not considered. This was mainly to simplify overall dynamics and because

the necessary data to include such a mechanism is lacking. Finally, Assumption 7 simply

means that the only nonlinear term of transmission is the βAP(AH/N) term controlling

movement from AP to AH . This is in contrast with such models as [28] and [84]. The

reasons for making this assumption are discussed in the Parameter Fitting subsection.

Incorporating these assumptions into a deterministic model yields the following system

of ODEs:

Ṡ= bN −εPρS+τ(1−δ)R−µS

ȦP = εPρS−γAP−ηPAP−βAP
AH

N
+τδR

�

AP

AP+AH

�

−(µ+µP)AP

ȦH = γAP−ηHAH+βAP
AH

N
+τδR

�

AH

AP+AH

�

−(µ+µH)AH

Ṙ=ηPAP+ηHAH−τR−µR.

(13)

A table of the parameters and their respective meanings are given in Table 1. Individuals
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Parameter Description Source Value Range
b Birth rate [10] 0.0117 0.00585-0.0234
β Transmission rate b/w

AP and AH

Fit 13.286 12.656-13.916

γ Transition rate from
AP to AH

Fit 0.1219 0.118-0.1257

εP Rate of POUD devel-
opment from prescrip-
tion

[28] 0.00744 0.00372-0.01488

ρ Proportion of Maine
adults w/prescriptions

[72] 0.2 0.1-0.3

µ Age-adjusted death
rate

[57, 66,
67, 86,
87]

0.00728 0.00364-0.01456

τ Treatment completion
rate

Fit 1.125 1.124-1.126

ηP Rate of entering treat-
ment for POUD

[2, 5, 7,
9, 15]

0.2518 0.09823-0.4054

ηH Rate of entering treat-
ment for HUD

[2, 5, 7,
9, 15]

0.5379 0.4351-0.6407

µP Overdose rate for
POUD

[82] 0.009383 0.00591-0.01286

µH Overdose rate for HUD [82] 0.01451 0.008675-0.02035
δ Relapse probability [28] 0.9 0.8-1.0

Table 1: Parameter names, descriptions, sources, and values for the baseline model. Parameter
ranges are also provided. Where possible, parameter ranges are the respective 95% confidence
intervals.

enter the system at a rate of b, which is simply the average birth rate of the state of

Maine for the years 2014-2018 [18], and die at an annual rate of µ. The age-adjusted

death rate, µ, is the average national age-adjusted death rate for the five years we have

data for (2014-2018) [57, 66, 67, 86, 87].

Adults with an opioid prescription become addicted to pharmaceutical opioids at an

annual rate of εP , at which point they move into the AP compartment. The proportion of

Maine adults with an opioid prescription is given by the parameter ρ. This proportion

was difficult to ascertain, as information on prescription information is not publicly

available, and must be obtained from the Maine Prescription Monitoring Program. A
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report in the state of Maine done in 2014 found that 21.9% of the population were

prescribed opioids [72]. Since this includes individuals younger than 18 years of age

(and thus outside the scope of our model), the proportion was assumed constant at

20% of the adult population.

Individuals can move from AP to AH by either a linear or nonlinear process. The linear

rate, given by γ, is simply the rate at which individuals progress to heroin use following

misuse of prescription drugs [49]. The nonlinear process is given by the force of infec-

tion term β(AH/N), which explicitly accounts for a transition in drug abuse as a result

of contact with heroin abusers. The parameter β was one of three that were determined

via parameter fitting (see Chapter III).

Pharmaceutical opioid abusers seek treatment at a rate of ηP and die due to overdose

at a rate of µP . Similarly, heroin abusers seek treatment at a rate of ηH and die due to

overdose at a rate of µH . Individuals complete treatment at a rate of τ, in which case

individuals relapse with probability δ. Regarding relapse, we assumed that the state

average did not deviate significantly from the value used in [28]. Following relapse, the

individual will enter AP and AH at a rate proportional to the number of pharmaceutical

opioid abusers and heroin abusers, respectively, in the system. If treatment is successful,

recovered individuals re-enter the susceptible compartment.

Model construction was difficult for a variety of reasons, most notably data limitations.

The model went through several iterations, which we elaborate on here. The first mod-

eling attempt centered around differentiating between abusers of pharmaceutical opi-

oids (i.e. prescription opioids, obtained either via prescription or community diversion)

and nonpharmaceutical (or ‘illicit’) opioids, such as heroin and illicit fentanyl. Immedi-

ately, the issue arose of how to handle individuals abusing multiple opioids at the same

time, complicating the typical disjoint compartmentalization assumed in disease mod-

els. The solution to this problem was to provide for a separate compartment to which
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individuals abusing both pharmaceutical and nonpharmaceutical opioids would belong.

Another unique feature of the original model was that, prior to addiction, susceptible

individuals belonged to compartments defined by risk. That is, individuals were either

classified as low-risk or high-risk to developing addiction. The reason for making such

a distinction was because individuals developing addiction to pharmaceutical opioids

occurred via a different process and at different rates than individuals developing ad-

diction to nonpharmaceutical opioids. A distinction based on predictor classification

seemed to most accommodate these differences. Of course, there was also a recov-

ery compartment for individuals in treatment for drug abuse. A schematic of this first

iteration is given in Figure 2.

Figure 2: Schematic of the original opioid epidemic model, where the susceptible population
is split into low- and high-risk categories and the addicted population is split into categories
depending on the nature of the drug abuse disorder.

Eventually, it was decided that this model was not practical, as there were many tran-

sitions requiring more data than what is currently available in order to quantify, and

so a simpler model construction was favored. Some notable changes between this first

model and subsequent versions include (1) omitting the risk classification of susceptible

individuals, (2) omitting the "combination" compartment (that is, consideration of the

population abusing multiple opioids at once), and (3) limiting the scope of the non-

pharmaceutical opioids compartment to only heroin. Regarding (1), the literature did

not seem to offer a cohesive answer regarding strong predictors of opioid abuse, and
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even if it did, it was regarding a particular class of opioids that was too narrow a clas-

sification to be of any use to our model. Regarding (2), the additional consideration of

a combination compartment added extra difficulties on top of the issue of data scarcity.

Transitions between the combination compartment and other adjacent compartments

were difficult to quantify numerically, and there was little if any research into the dy-

namics of such transitions. Accordingly, the combination compartment was eventually

removed in the final model. Finally, as a direct consequence of data limitations, we

had to limit the nonpharmaceutical opioid category to only include heroin. Although

originally we aimed to analyze the part that fentanyl had to play in Maine’s opioid epi-

demic, there was not enough available data to accomplish this goal. Furthermore, the

specification to heroin seemed the best option as current data on nonpharmaceutical

opioids give particular consideration to heroin, while fentanyl is a rather recent trend.

Problem Data

As anticipated, data availability posed a significant hurdle throughout this work. The

complicated process in obtaining such data is discussed here. Data was used both for

model fitting and determining parameters related to treatment and overdose.

To determine the number of individuals in AP and AH , data from the National Survey

on Drug Use and Health (NSDUH) annual state prevalence estimates were used for the

years 2014-18 [45, 46, 47, 48]. These data are shown in Table 2. Regarding AP esti-

mates, NSDUH provides prevalence estimates for (i) the nonmedical use of prescription

pain-relievers (PPR) in the past year (IPY), and (ii) pain reliever use disorder (PRUD) in

the past year. The latter was used as a proxy to estimate the number of Mainers in AP .

Further complicating compartment population estimates is that the latter metric was

unavailable for years before 2016. To account for this setback, it was assumed that a

certain proportion of the population nonmedically using prescription pain relievers will
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manifest in a substance use disorder. Taking the mean of the proportions for the years

in which pain reliever use disorder was measured, this corresponds to a percentage

equal to roughly 20.36%. With this figure we can estimate the number of individuals

with a prescription opioid use disorder in the years that the NSDUH data is unavail-

able (see bold entries in Table 2). Strangely, NSDUH did not report state prevalence

estimates for the nonmedical use of prescription pain-relievers for the year 2014-2015.

This percentage was simply taken to be the average of the previous and following year

estimates (see italicized entry in Table 2). Finally, heroin use in the past year was used

to estimate the number of Mainers in AH .

Year Adult pop. Nonmedical use
of PPRs IPY %

PRUD IPY % Heroin use IPY %

2013-2014 1077372 3.08 0.63 0.52
2014-2015 1050169 3.56 0.73 0.62
2015-2016 1078498 4.03 0.75 0.52
2016-2017 1082085 4.04 0.80 0.55
2017-2018 1084107 3.75 0.85 0.7

Table 2: Yearly NSDUH data summary and Maine adult population.

To determine parameters related to treatment (i.e. ηP and ηH), data from the an-

nual Substance Use Trends in Maine State Epidemiological Profile was used [2, 5, 7,

9, 15]. The only treatment data that was useful to our research was that pertaining

to heroin/morphine, as no treatment data was provided explicitly for pharmaceutical

Year Heroin/Morphine Pharmaceutical opioids (estimate)
2014 3525 3064
2015 3423 2131
2016 3413 1816
2017 2975 1416
2018 3234 1306

Table 3: Yearly (primary, secondary, and tertiary) admission to treatment data for
heroin/morphine and pharmaceutical opioids in Maine.
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opioids. The total number provided in Table 3 is the sum of primary, secondary, and

tertiary admissions for the respective drug category in that given year. When admit-

ted to treatment, an individual identifies a primary, secondary, and sometimes tertiary

drug as the reason for seeking treatment. Since pharmaceutical opioids were not ex-

plicitly characterized in epidemiological profiles, numbers were estimated from what

data was available. Based on the results of [29], 76% of those admitted for buprenor-

phine/naloxone reported that they had obtained the opioid illicitly. However, state

epidemiological profiles report buprenorphine in combination with methadone, making

distinction between pharmaceutical and nonpharmaceutical sources more complicated.

For simplicity, it was assumed that half of each non-heroin category were obtained via

prescription. These estimates are also given in Table 3. These treatment data, in com-

bination with the NSDUH data discussed above, are used to calibrate model parameters

(see next subsection).

Both treatment parameters in the model were found by taking the average treatment

rate for each year listed. An average value was favored over a linear fit to minimize

forecasting bias. Parameters related to opioid overdoses, µP and µH , were obtained in

a similar manner but based on annual drug death reports for the state of Maine, among

other sources [42, 79, 80, 81, 82]. In this case, distinction was made between overdoses

attributed to either heroin or pharmaceutical opioids. These data are presented in Table

4.

Year Heroin deaths Pharmaceutical opioid deaths Source
2014 58 87 [42, 79]
2015 107 81 [79]
2016 119 72 [80]
2017 88 71 [81]
2018 74 52 [82]

Table 4: Drug death report data for heroin and pharmaceutical opioids.
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Parameter Fitting

The only parameters in which reliable estimates were unable to be obtained were the

duration individuals remain in treatment (τ), the rate at which individuals will transi-

tion to heroin use within a year of abusing pharmaceutical opioids (γ), and the transmis-

sion rate (β). To accommodate this, the system in (13) was fitted to the available data

for the years 2014-2018 using the lsqcurvefit algorithm in MATLAB. This function uses

the method of least-squares to determine opitmal parameter estimates. The parameters

produced by the best-fit will minimize the sum of squared residuals between the model

in (13) and the data used for model calibration discussed in the previous subsection.

The best fit was produced for the values τ= 1.125, γ= 0.1219, and β = 13.286, with

error shown in Figures 7, 8, and 9. The initial guesses chosen for fitting were τ= 2,

γ= 0.11, and β = 1.

The value of τ indicates that the average length of treatment for individuals abusing

opioids is approximately 1/1.125= 0.89 years, or around 10-11 months. This is under-

standable, as opioid addiction treatment tends to be longer in order to produce more

favorable results. For example, methadone treatment of opioid addiction can last up-

ward of 12 months [17]. The transition rate γ= 0.1219 implies that around 1 in 8

Mainers will develop heroin use disorder within a year of abusing pharmaceutical opi-

oids. This value is close to similar results in the literature. For example, [22] states

that 4-6% of people who "misuse" prescription opioids transition to heroin. In [49], be-

tween the groups studied, they found that on average about 11% of individuals abusing

pharmaceutical opioids initiate heroin use within a year.

It is also worth mentioning here the results of parameter fitting other nonlinear mecha-

nisms of transmission considered in our model. Various forms of nonlinear transmission

can be found in similar models in the literature. An example of some possible nonlinear
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terms, denoted by β1, β2, and β3, incorporated in our model are given below:

Ṡ= bN −β1S
AH

N
−εPρS+τ(1−δ)R−µS

ȦP = εPρS−γAP−ηPAP−β2AP
AH

N
+τδR

�

AP

AP+AH

�

−(µ+µP)AP

ȦH = γAP−ηHAH+β1S
AH

N
+β2AP

AH

N
+β3R

AH

N
+τδR

�

AH

AP+AH

�

−(µ+µH)AH

Ṙ=ηPAP+ηHAH−β3R
AH

N
−τR−µR.

A nonlinear term can be considered wherever contact between individuals of different

compartments is believed to result in disease transmission. The works in [28] and [84]

consider a nonlinear relapse term (similar to β3 above), while the former also study a

nonlinear recruitment term from the susceptible population directly into the addicted

compartment (similar to β1 above). Since these nonlinear contact terms are difficult

to quantify, estimates were produced via parameter fitting. Parameter fitting revealed

that the only significant nonlinear contact rate occurred in the movement of individ-

uals from AP to AH , or β2 in the above model. Best-fit estimates for β1 and β3 each

returned zero for a variety of initial guesses, indicating that the contribution of either

mechanism was negligible in the final model. We propose two potential reasons as to

why this is the case: (a) interactions among individuals as a means of transmission is

not very significant overall, owing itself to Maine’s largely rural population; or (b) suc-

cessful transmission is most likely to occur between individuals in AP and AH , while the

likelihood of transmission between individuals in AH and the other two compartments

is too small to appear significant.

Reason (b) suggests that those already abusing pharmaceutical opioids are more likely

than the remaining population to develop a heroin use disorder via contact with heroin

abusers. It has already been shown that a majority of heroin abusers first began abusing

pharmaceutical opioids prior to their usage of heroin [39, 40, 59], so this compartment

could be more vulnerable to initiating heroin use than the susceptible population. If
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this were the case, however, then individuals in recovery would also possess such a

predisposition, but we have already seen that they do not based on the parameter fitting.

Thus, we conclude that the neglibility of nonlinear forms of transmission in our model

has more to do with Maine’s low population density than with any predisposition to

developing a heroin use disorder an individual may possess.
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CHAPTER IV

ANALYSIS OF THE OPIOID EPIDEMIC MODEL

Mathematical characteristics of the model are elucidated, a local and global sensitivity

analysis is performed on various quantities of interest, and projections are made for the

next five and ten years with various control methods implemented, as well as with their

respective 95% confidence intervals.

Well-posedness and Behavior of the Model

The mathematical model in (13) is well-posed in the following domain:

Ω=
�

(S,AP ,AH ,R)∈R4
�

� S> 0, AP > 0, AH > 0, R> 0
	

.

To see this, note that the partial derivatives of (13) exist and are continuous onΩ, which

is sufficient in showing that if x0 ∈Ω, then the initial value problem ẋ = f (x), x(0)= x0

has a unique solution by Theorem 2.1.1.

The trajectories of the system in (13) are given in Figure 3. Let N = S+AP +AH +R

denote the total population considered in our model. We do not assume the population

to be constant, as our projections are for 5-10 years into the future. Summing the system

of differential equations yields the relation

dN
d t
= bN −µN −µPAP−µHAH . (14)
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Figure 3: Trajectories of the compartments AP (dashed), AH (dot-dashed), and R (solid) over a
ten year time interval. Trajectories were obtained by numerically solving the system in (13).

Letting r = b−µ, we arrive at the equation

dN
d t
= rN −µPAP−µHAH .

In terms of population modeling, this is an exponential growth model with growth rate

r and "harvesting" attributed to overdose deaths of individuals with POUD and HUD.

An exponential growth model was deemed appropriate as such assumptions produce

sufficient approximations for large populations over small time scales [34].

It remains to discuss any equilibria of the system. Unfortunately, the system does not

possess any! Although this does not appear obvious, it becomes intuitive when one

realizes that individuals develop addiction to pharmaceutical opioids at a linear rate

via the addiction term εP . Thus, a disease-free equilibrium cannot exist as “infected”

individuals are constantly being produced, even when those categories are absent (i.e.
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when AP = AH = 0). An endemic equilibrium does not exist either, as no numerical

solution to f (x)=0 exists. With these model properties in mind, a conventional analysis

involving reproduction number quantification was not possible. Instead, more general

analysis techniques were applied.

Unless otherwise mentioned, all simulations of the model in (13) were performed using

a continuous-time Markov chain, where inter-event times were assumed to obey an

exponential distribution.

Parameter Uncertainty

To quantify the uncertainty in our parameter fits, we use the parameter uncertainty

techniques discussed in [38]. The fundamental idea of the following parameter uncer-

tainty method is assuming an error structure of the best-fit parameter values (in this

case, a Poisson error structure [26, 76]), generating new best-fit parameters from this

error structure, and then re-fitting the model using the new parameter values to obtain a

completely new model forecast. We let q denote the number of data points and assume

we are fitting i parameters. For clarity, the algorithm is given below in step-by-step

fashion.

1. Letting t j denote the data points, for j = 1,2,. . . ,q, we first fit the model to the

data to obtain the best-fit parameter estimates, denoted by θ̂ = (θ1,θ2, . . . ,θi).

The best-fit function shall be denoted as f̂ (t j, θ̂).

2. Next, the cumulative sum function of the data is constructed as follows:

F(t j, θ̂) =
j
∑

k=1

f̂ (tk, θ̂)

for j= 2,3,. . . ,q.
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3. New data is generated and S new fits are produced in the same manner, denoted

f1(t j, θ̂), f2(t j, θ̂), ..., fS(t j, θ̂). The number of new fits generated is arbitrarily

chosen, and is typically a large number to sufficiently illustrate the extent of model

forecast uncertainty.

4. The new data are generated by assuming that the difference in data points of the

cumulative sum function obeys a Poisson error distribution, so that we have

fm(t j, θ̂) = Po(F(t j, θ̂)− F(t j−1, θ̂))

for j= 2,3,. . . ,q, and m= 1,2,. . . ,S. We additionally require that

f1(t1, θ̂) = f2(t1, θ̂) = · · ·= fS(t1, θ̂).

For our particular case, we fit the numerical solutions of ȦP , ȦH , and Ṙ in (13) to the

NSDUH data. We omitted additionally fitting the trajectory defined by Ṡ as the suscep-

Figure 4: Distribution of τ following 1000 bootstrap iterations. The red vertical line is the
best-fit value of τ obtained from parameter fitting.
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(a) (b)

Figure 5: Distribution of (a) γ and (b) β following 1000 bootstrap iterations. The red vertical
line in either histogram is the mean of the plotted data.

tible compartment was orders of magnitude larger than the remaining compartments,

and not much accuracy overall was sacrificed in order to obtain a greater degree of cer-

tainty in fitting the model to the compartments we are most concerned with analyzing.

For our model there are i= 5 data points and three parameters we wish to quantify the

uncertainty of (τ, γ, and β). We perform the algorithm for S = 1000 generated model

forecasts. The distribution of τ is provided in Figure 4, while the distributions of γ and

β are given in Figures 5a and 5b, respectively.

Indeed, the distributions of β and γ are much different than that of τ. For many of the

algorithm runs, best-fit estimates converged to zero or a near-zero value for either β or

γ. To help illustrate this back-and-forth convergence, a plot of the (γ,β) plane is given

in Figure 6 after the 1000 bootstrapped simulations, with the red dot denoting the best-

fit values used in the model. An inverse relationship between the parameters is clear,

as both parameters dictate methods of movement from AP to AH . Since convergence

most of the time did not favor nonzero values for both γ and β , it can be inferred that

only one mechanism of movement contributes more so to the transition of individuals

from abusing pharmaceutical opioids to the initiation of heroin use. Because the linear

term γ is intentionally generic in its definition, we rather scrutinize the significance of
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Figure 6: Plot of the best-fit values of β and γ for the 1000 generated model forecasts.

β , as this parameter has a more concrete interpretation. In particular, β is the force of

transmission between individuals in AH and AP . From the graph in Figure 6, as well as

in 5b, we see that the best-fit value of β converged to zero more frequently than γ. We

conclude from this that γ contributes most significantly to the movement of individu-

als from AP to AH . As an aside, this finding supports the claim made in the previous

subsection about Maine’s rural population accounting for the reduced significance of

nonlinear forms of transmission in the model.

Using the bootstrapped parameter values, we can see the corresponding uncertainty

in our model predictions in forward time (see Figures 7, 8, and 9). In Figure 7 is a

graph of the NSDUH data used to calibrate the AH compartment as well as AH curves

for each bootstrapped parameter estimate from the previous algorithm. In a similar

fashion, Figures 8 and 9 present the same information but for AP and R, respectively.

In some instances the projected curves deviate from the original data points more than

we would like them to, but this can be explained by the scarcity of data and the fact

that we are fitting the model to three curves simultaneously. This uncertainty can be
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mitigated as more data becomes available, but even with the small number of years in

which data is available, the spread is qualitatively narrow even after ten years.

Figure 7: Bootstrapped curves of AH from parameter uncertainty quantification. Gray curves
are the bootstrapped curves, the red curve is the original best fit line, and the red dashed lines
are curves at either extreme of each parameter’s 95% confidence interval. The cyan circles are
the NSDUH data values used for fitting the model.

Local Sensitivity Analysis

Of interest is how state variables change with respect to changes in parameters. Small

perturbations to parameters and quantifying changes in model results can help us to

determine influential parameters and inform control strategies accordingly. The system

in (13) can be written as ẋ = f (x ,θ ), where x = (S,AP ,AH ,R) is the state variable vec-

tor and θ is the parameter vector which has 10 components From Table 1 (we omit

natural birth and death rates, b and µ, respectively, from the analysis by viewing them

as constants). To find the sensitivity of each state variable in x to each parameter, we

derive the sensitivity system in Theorem 2.3 for (13). We omit the full 4×10 set of

equations here, but as an example the sensitivity of the state variables to changes in ρ
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Figure 8: Bootstrapped curves of AP from parameter uncertainty quantification. Gray curves
are the bootstrapped curves, the red curve is the original best fit line, and the red dashed lines
are curves at either extreme of each parameter’s 95% confidence interval. The cyan circles are
the NSDUH data values used for fitting the model.

Figure 9: Bootstrapped curves of R from parameter uncertainty quantification. Gray curves are
the bootstrapped curves, the red curve is the original best fit line, and the red dashed lines are
curves at either extreme of each parameter’s 95% confidence interval. The cyan circles are the
NSDUH data values used for fitting the model.
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is given below. From the system in (6), we let

Φ=
�

∂ S
∂ ρ

∂ AP
∂ ρ

∂ AH
∂ ρ

∂ R
∂ ρ

�′

and obtain

∂

∂ t
Φ=

∂ f
∂ x
(x(t,θ0),θ0)Φ+

∂ f
∂ θ
(x(t,θ0),θ0)

=
∂ f
∂ x
(x(t,ρ0),ρ0)Φ+
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0
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and all variables and parameters above are evaluated at their reference values (ρ0 de-

notes the reference value of the parameter ρ).

After the sensitivity functions are calculated, they are normalized. These normalized

functions at any time t give the relative sensitivity of a state variable of the model to

a particular parameter. Let Φ denote the sensitivity system matrix derived in (6). Let

Φ
j
i denote the (i, j) entry of Φ (e.g. ΦρAP

represents the sensitivity of AP with respect to

ρ). The relative sensitivity of the ith state variable with respect to the jth parameter is
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given by
∂ x i
∂ θ j
(t,θ0)

x i(t,θ0)
θ j

=
∂ x i

∂ θ j
(t,θ0) ·

θ j

x i(t,θ0)
=Φ j

i (t) ·
θ j

x i(t,θ0)
.

The reference trajectories of the system are given in Figure 3, while the sensitivity of

the state variables AP , AH , and R to each parameter as time varies is given in Figure 10.

From the sensitivity plots in Figure 10, we see that AP is very sensitive to changes in the

treatment rate of heroin abusers (ηH). This is likely explained by our relapse re-entry

assumption discussed previously. In particular, as the number of individuals in AP grows

larger, relapsed individuals will more likely re-enter AP than AH . Thus, as treatment for

ηH increases, AH will shrink in size, and more individuals upon relapsing will enter AP .

AP is also sensitive to local changes in the parameter δ. The relative sensitivity of AP

to δ increases for a short time, until a plateau is obtained at around the 4 year mark.

This is in contrast with the bowed appearance of the relative sensitivity of AP to other

influential parameters, such as εP and ρ. This indicates that changes to δ manifest

quickly in effects that do not vary significantly over time, while changes to εP and ρ

take longer to reach their full potential in the system. A strong inverse relationship is

observed in the sensitivity of AP to the treatment rate of pharmaceutical opioid abusers,

ηP . The flatter appearance of the curve also indicates that changes to ηP are quicker

to manifest in changes to AP than changes to either εP or ρ. An interesting situation

is observed in the case of the treatment rate of heroin abusers, ηH . This phenomenon

can once again be explained by the dynamics assumed in the system. That is, as more

individuals in AH seek treatment, AH will decrease and size more individuals relapsing

are assumed to re-enter AP , as this rate is proportional to the fraction AP/(AH+AP).

In contrast to the situation with AP , the parametersηP andρ are not nearly as influential

to AH , as neither parameter dictates a direct route of transmission into or out of AH . Of

interest is the sensitivity of AH to the parameter δ. This is certainly the most influential

parameter, indicating that relapse most strongly determines the size of AH . Even if
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Figure 10: Local sensitivity of the variables AP (dashed), AH (dot-dashed), and R (solid) to
select model parameters with respect to time. The parameter depicted in each graph is given at
the top of each individual plot.

following relapse, individuals enter AP , they are still capable of progressing to AH . We

may conclude that, in this way, AH is more directly impacted by relapse than AP . The

sensitivity graph of γ reveals that small perturbations effect little change on AH over
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time, as is the case with β . As mentioned previously, ηH is an influential parameter,

as expected, as this parameter is responsible for the removal of individuals from AH .

The reason ηH is not as influential as potentially anticipated is because the rather high

value of δ assures that, so long as AH/(AP +AH) is not too small, a significant portion

of individuals recovering from AH will relapse.

Finally, the sensitivity of R to various parameters is discussed. The sensitivity of R to ρ

and εP are similar to that of AH , as neither parameter directly contributes to individuals

entering or exiting R, and thus the relative sensitivity is approximately linear. R is more

sensitive to δ, as a larger value of δ will produce a larger number of infected individuals

overall, and thus the number of individuals entering treatment increases. The treatment

completion rate τ produces the most negative effect on R, as an increase in the value of

τ shortens the overall time that individuals spend in R. Increases in the treatment rates

ηP and ηH increase the number of individuals seeking treatment, hence the behavior

in their respective sensitivity plots.

Global Sensitivity Analysis

Local sensitivity analysis measures the effects of small perturbations in model parame-

ters, but what if we are interested in testing combinations of parameter values over a

larger region of possible values? To assist in quantifying the effects of large changes to

parameter values, global sensitivity analysis is performed. Note that a global analysis

of sensitivity depends strongly on sufficient sampling of the parameter space, which is a

drawback not shared by the previous sensitivity analysis method. When possible, such

as for the parameters that were fitted to model data using the least-squares method,

the parameter range listed in Table 1 is the 95% confidence interval. This also includes

parameters that were calculated from existing data, such as the treatment rates, ηP and

ηH , and the overdose rates, µP and µH . For the remaining parameters, their respective
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ranges were estimated.

For this analysis, we use the elementary effects method, as outlined in Chapter II, for

r = 30 trajectories, p= 4, and ∆= 1. As stated, the respective range [x L
i , xU

i ] for each

parameter we are analyzing is given in Table 1. An efficient means of computing the

elementary effects of every parameter all at once is presented here [36, 65]:

1. For each trajectory, choose a base vector (x1, x2, . . . , xn)∈{1,2,. . . , p−1}n for some

p.

2. Choose 1≤ i≤ n so that we also have the vector (x1, . . . , x i+∆, . . . , xn).

3. Compute the elementary effect of x i, or

ee(x i) =
f (y1, y2, . . . , yi,∆, . . . , yn)− f (y1, y2, . . . , yi, . . . , yn)

∆
,

and choose j 6= i for 1≤ j≤ n.

4. Repeat the process for x j until all factors have been accounted for.

Recall that

yi = x L
i + x i(x

U
i − x L

i )(p−1)

and yi,∆ is simply the scaled value of x i+∆. The model outputs that we measure the

sensitivity of are average populations of AH , AP , and AH +AP over five and ten year

intervals. The results of the analysis after five years are shown in Figure 11, and the

corresponding results for the ten year simulation is given in Figure 12.

The average and standard deviation of the elementary effects of a parameter, denoted

µ and σ, respectively, are calculated. Recall that µ quantifies sensitivity of the model

output to changes in the parameter, and the value of σ is used to determine if changes

to model output with respect to changes in a parameter is linear, or otherwise (due
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to nonlinearity and/or coupled interactions of the factor of interest). Additionally, the

average of the absolute values of the elementary effects of each parameter, denoted by

µ∗, is calculated as well, as done in [35]. As per the suggestion of [75], the (σ,µ) and

(σ,µ∗) planes are plotted for each model output studied (see Figures 11 and 12).

(a) (b)

(c) (d)

(e) (f)

Figure 11: Morris method results for each metric tested after five years. (a)-(b) are the (σ,µ)
and (σ,µ∗) planes of the results for the average number of individuals in AP , while those for AH
and AP +AH are given in (c)-(d) and (e)-(f), respectively
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Note that for all parameters analyzed, σ, µ, and µ∗ are rather small. This is because

the changes produced in model outputs (i.e. the average values of AP , AH , and AP+AH)

were each divided by the total population in the system, which is on the order of 106.

Therefore, these quantities should be understood as relative rather than insignificant.

For the average number of individuals in AP after five years, the most influential param-

eters appear to be the addiction rate of pharmaceutical opioids (εP), the proportion of

Mainers with an opioid prescription (ρ), and the treatment rate of individuals with a

pharmaceutical opioid use disorder (ηP), in that order. Interestingly, ηP and especially

ρ exhibit strong nonlinearity, as evident by their large values of σ. This is most likely

a result of both parameters belonging to the same expression. This same phenomenon

occurs when analyzing the average number of individuals in AH after five years, albeit

to a lesser extent. In the case of this model output, the treatment rate of heroin abusers

(ηH) is the most influential. This partly agrees with the local sensitivity analysis car-

ried out in the previous subsection after five years, as the local analysis identified ηH

as very influential, but the treatment relapse probability (δ) and ηH had much more

comparable influence at t = 5 years, unlike the global sensitivity analysis results.

For the sum of both addicted compartments, εP and ρ appeared the most influential.

The average number of individuals in AP during a simulation tends to be larger than the

average number of individuals in AH (see Figure 3), as addiction to prescription opi-

oids is more easily facilitated and thus more common than addiction to illicit opioids.

Given this and the underlying assumptions about our system (specifically concerning

the movement of individuals from AP to AH), parameters influential to the average value

of AP will also be influential to the total sum of drug abusers in the system. The relapse

probability δ is also identified as significant. This is because a larger relapse probability

will cause a greater number of individuals seeking treatment to re-enter either addicted

compartment. The treatment rate ηP also stands out as significant, but likely for the

same reasons as εP and ρ, given the smaller values of µ and µ∗ obtained by these
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parameters in Figures 11 (e)-(f) as compared to in Figures 11 (a)-(b). For all afore-

mentioned model outputs, the rate of progression from pharmaceutical opioid abuse to

heroin abuse (γ), the contact rate between individuals in either addicted compartment

(β), the treatment completion rate (τ), and the death rates consistently ranked poorly

in terms of global sensitivity. This somewhat agrees with the local analysis, but the

disparity is much more evident.

The results of the global sensitivity analysis for the aforementioned metrics at 10 years

are given in Figure 12. For the average value of AP after 10 years, εP , ρ, and ηP appear

again as influential parameters. However, εP now exhibits more nonlinear behavior

than ρ. ηH and δ appear as lesser significant parameters. For the average value of AH ,

the parameters ρ, εP , δ, and ηH appear as most significant, while ηP much less so,

in contrast with the sensitivity analysis performed at five years. Also in contrast with

the previous analysis is that the parameter effects are not as disparate as they were

prior. Rather, the most influential parameters are closer in terms of their respective µ∗

values, illustrative of similar long-term effects. Finally, for the average combined sum

of either compartment, similar results are obtained as in the five year analysis, with δ

slightly more influential than ηP . This shows that in the longer term, reducing relapse

probability has a greater overall effect on controlling the number of opioid abusers in

the system than treatment, agreeing with the local sensitivity analysis.

Control Methods

One of the objectives of this study is to investigate the effectiveness of different means

of controlling the opioid epidemic in Maine. To do this, control measures already im-

plemented or theorized can be tested against the mathematical model to ascertain their

respective level of effectiveness. To test a control method with the mathematical model,

one need only adjust the relevant parameters in accordance with whatever changes are
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Morris method results for each metric tested after ten years. (a)-(b) are the (σ,µ)
and (σ,µ∗) planes of the results for the average number of individuals in AP , while those for AH
and AP +AH are given in (c)-(d) and (e)-(f), respectively

brought about with the respective control strategy, as done in [73]. For control strate-

gies that limited prescriptions of opioids, heroin accessibility/usage was not assumed

to increase, in accordance with recent findings [40, 61], with the exception of drug

reformulation. An explanation of each control strategy is provided below:

52



1. Prescription monitoring program (PMP): Maine’s Prescription Monitoring Pro-

gram was first implemented in 2004 in response to the growing problem posed by

prescription drugs [58]. The PMP was intended to decrease opioid prescriptions

overall to help "prevent adverse drug-related events" [8]. Since this program has

been around for over a decade, including this control strategy is to account for the

growth of the program in the future. Examples of such growth can be found in the

passing of L.D. No. 1646 in 2016 [4], which addressed issues of information shar-

ing and set additional requirements for dispensers and prescribers, among other

things, and the recent approval of L.D. No. 2117 [16], which requires "dispensers

to report all prescription drugs dispensed intended for human consumption rather

than controlled substances only." As more prescribers and dispensers use the PMP

more frequently, more patient information becomes available, and as Maine ad-

justs to legislation expanding the PMP in recent years, we can account for this with

a decrease in the number of Mainers with an opioid prescription. We assume that

this proportion (ρ) is decreased by 2.5%.

2. Medication-assisted therapy (MAT): Maine Governor Janet Mills signed an ex-

ecutive order in 2019 to address the opioid epidemic in the state of Maine. Within

the executive order was exploring the integration of MAT into the criminal justice

system and reviewing MAT-related insurance limitations [14, 24]. Since expan-

sions to MAT largely concern inmates, and thus less than 0.3% of the population

[12], the overall effect was assumed modest, which we represent by a 2.5% de-

crease in treatment relapse probability (δ).

3. Increase treatment accessibility: Opioid treatment is difficult to obtain for the

uninsured and those relying on Medicaid in Maine [60]. Increasing treatment

accessibility in the form of expanding Medicaid or therapist reimbursement will

help to make treatment more available to Mainers. It was assumed that such a
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change would increase annual treatment rates (ηP and ηH) by 5%.

4. Expand Naloxone availability: Naloxone is an opioid antagonist that reverses

the effects of an opioid overdose. Indeed, Gov. Mills in her executive order in

2019 sought to make Naloxone "more widely and readily available, accessible

and affordable" [14]. The main intention of this is to reduce the number of over-

doses and deaths attributed to opioids. As Naloxone becomes more available, we

assume a 5% reduction in mortality for both pharmaceutical opioids and heroin

(µP and µH , respectively).

5. Drug reformulation: In response to the addictive nature of opioids, some painkillers

have been reformulated to deter their misuse. To model this, we decrease εP by

10%. The work in [74] and [30] suggest that drug reformulation was a direct

factor in the increase of injection rates among heroin users. To account for this

in our model, the rates responsible for the transition of pharmaceutical opioid

abusers to heroin (γ and β) were each increased by 5%. Chilcoat et al. [37] also

found that reformulated opioids reduced doctor-shopping rates, and thus the pro-

portion of Mainers with opioid prescriptions (ρ) was reduced by 2.5% to account

for the decreased demand.

The control methods and the respective model changes used to test them are given in

Table 5. Indeed, there exist control methods that have been implemented that are not

listed above. Some examples include making recovery coaches available in emergency

rooms, lifting limits to methadone treatment, and making suboxone more widely avail-

able in hospitals. However, the inclusion of these strategies in our analysis would be

redundant, as the effect of each one can be inferred from the analysis of a method al-

ready listed in Table 5. For example, increasing accessibility to methadone treatment

can be modeled by decreasing the relapse probability (δ), which we already explore in

expanding access to MAT.
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Control method Baseline model changes
Prescription monitoring program
(PMP)

Decrease ρ by 2.5%

Medication-assisted therapy (see
[69])

Decrease δ by 2.5%

Increase treatment accessibility Increase ηP and ηH by 5%
Expand Naloxone availability Decrease µP and µH by 5%

Drug reformulation
Decrease εP by 10%, ρ by 2.5%, and in-
crease γ and β by 5%

Table 5: A list of the control methods tested and the respective changes to model parameters
used to simulate them.

Of course, control strategies are not implemented in a vacuum, so control strategies

are also tested in combination to find the most effective approach overall. The metrics

used to determine the effectiveness of each control method were the average num-

ber of individuals abusing pharmaceutical opioids (denoted AP), the average number

of individuals abusing heroin (AH), the number of deaths due to pharmaceutical opi-

oid overdose (DP), and the number of deaths due to heroin overdose (DH). Averages

were taken over the entire simulation time. We ran 300 simulations for the baseline

model and then for each control strategy to determine the extent that each intervention

method in Table 5 affected these metrics on average. The results of these simulations

after 5 years are given in Table 6, while the 10 year results are presented in Table 7.

From the results in Table 6, we see that expanding the PMP and MAT were the only

strategies that yielded decreases in all the factors considered. MAT performed much

Control strategy AP AH DP DH
PMP -0.676% -0.0836% -1.52% -0.243%
MAT -1.08% -1.84% -1.26% -1.95%
Increase treatment accessibility +0.39% -2.85% +0.475% -2.80%
Expand Naloxone availability +0.0480% +0.230% -5.04% -5.10%
Drug reformulation -5.56% +1.20% -5.71% +0.984%

Table 6: Results of stochastic simulations testing various control strategies after 5 years. The
percentages listed are percent changes from the baseline model value for that metric.
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better in all areas except in reducing the number of overdoses due to heroin abuse,

indicating that increasing the effectiveness of treatments (reducing δ) is more widely

effective than reducing the number of prescriptions (reducing ρ). The remaining con-

trol strategies had mixed results. Increasing treatment accessibility reduced both the

number of individuals abusing heroin, and the number of overdoses due to heroin, but

slightly increased the number of individuals abusing pharmaceutical opioids and the

number of overdoses due to pharmaceutical opioids. This is perhaps because ηH >ηP ,

and so those addicted to heroin are more likely to seek treatment. This makes AH de-

crease over time, but the greater proportion of pharmaceutical opioid abusers in the

system translates to more individuals relapsing into AP . This trend is even more ap-

parent after ten years (see Table 7). Expanding Naloxone availability was the most

successful in reducing overdose deaths in either addicted compartment, but at the cost

of a slight increase in the number of abusers in both AP and AH . This is most likely

explained by individuals that would have died in the baseline simulation living to re-

lapse, given the high value of δ. At ten years this is still the case, although the increase

is more prevalent in AH , as the increase in AP even at 10 years is less than a tenth of

a percent. Finally, drug reformulation proved even more successful in reducing over-

doses attributed to pharmaceutical opioids, as well as significantly reducing the number

of individuals abusing pharmaceutical opioids. However, heroin use rates increased as

did heroin overdose deaths. Once again, this is because AP shrinks, and so a greater

proportion of relapsing addicts enter AH . Interestingly, these increases are smaller after

Control strategy AP AH DP DH
PMP -0.91% -0.66% -1.13% -0.46%
MAT -1.57% -3.76% -1.55% -3.65%
Increase treatment accessibility +1.29% -4.03% +1.39% -3.99%
Expand Naloxone availability +0.09% +0.30% -5.04% -4.72%
Drug reformulation -8.26% +0.2% -7.9% +0.28%

Table 7: Results of stochastic simulations testing various control strategies after 10 years. The
percentages listed are percent changes from the baseline model value for that metric.
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Control strategies tested AP AH DP DH
PMP and MAT -1.88% -2.09% -1.02% -1.69%
Expanded Naloxone avail-
ability and drug reformula-
tion

-5.45% -1.16% -9.24% -4.06%

Expanded Naloxone avail-
ability and MAT

-1.02% -1.81% -5.67% -6.69%

PMP and drug reformulation -6.11% +0.842% -5.32% +0.629%
Expanded Naloxone avail-
ability, increased treatment
accessibility, and drug refor-
mulation

-5.13% -1.57% -9.54% -6.74%

Table 8: Results of stochastic simulations testing combined control strategies after 5 years. The
percentages listed are percent changes from the baseline model value for that metric.

ten years.

Control strategy batch AP AH DP DH
PMP and MAT -2.56% -4.35% -2.42% -3.90%
Expanded Naloxone avail-
ability and drug reformula-
tion

-8.18% +0.45% -12.38% -4.18%

Expanded Naloxone avail-
ability and MAT

-1.48% -3.65% -5.99% -8.26%

PMP and drug reformulation -9.17% -0.46% -9.00% -0.02%
Expanded Naloxone avail-
ability, increased treatment
accessibility, and drug refor-
mulation

-7.10% -3.46% -11.68% -7.85%

Table 9: Results of stochastic simulations testing combined control strategies after 10 years. The
percentages listed are percent changes from the baseline model value for that metric.

Control strategies were then tested together to elucidate interactions otherwise un-

observed during simulations of individual tests. Control strategy combinations were

determined based on mutual beneficence (i.e. an intervention strategy compensating

for the shortcomings of another and vice versa) and greatest combined effect. Each

batch consisted of only two control strategies, with the exception being the final batch,

which combined three of the strategies. The tested batches are as follows: (a) PMP and
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MAT, (b) expanded Naloxone availability and drug reformulation, (c) expanded Nalox-

one availability and MAT, (d) PMP and drug reformulation, and (e) expanded Naloxone

availability, increased treatment accessibility, and drug reformulation. Five year results

are given in Table 8, while ten year results are given in Table 9.

In the previous analysis, both the PMP and the MAT decreased the numbers and over-

dose deaths of either addicted compartment. When combined, more favorable re-

sults were obtained except in reducing the number of pharmaceutical opioid overdose

deaths, in which either control strategy was more effective in reducing individually,

and reducing the number of heroin overdose deaths, in which MAT was more effec-

tive at reducing individually. At ten years, the combined control strategies surpassed

the benefit of either intervention when implemented individually over the same time

period. For the second batch, greater Naloxone availability was tested in combination

with drug reformulation. This combination was one of the most effective batches of the

five tested after five years, even though both control strategies when tested individu-

ally actually increased the number of heroin abusers in the simulation when compared

to baseline model results. However, after ten years the heroin abuser population did

eventually increase by 0.45% from the baseline model values. The effect on heroin

overdose deaths improved only slightly after five years, while the remaining metrics

showed strong improvement.

The third batch combined expanded Naloxone availability and MAT, motivated by the

question of whether the benefits of MAT could compensate for wider Naloxone avail-

ability slightly increasing the number of opioid abusers in the individual simulations

prior. This was indeed the case, with the strengths of either strategy complementing

the other one nicely. After ten years, model results improved in every category. For the

fourth batch, PMP was tested with drug reformulation. Although the best decrease in

the number of individuals abusing pharmaceutical opioids was obtained with this com-

bination of control methods, the number of heroin abusers and heroin overdose deaths
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increased after five years. This was not the case after ten years, however, indicative

of a longer time required for the benefits to manifest in the system. The final batch

combined three methods: expanded Naloxone availability, increased treatment acces-

sibility, and drug reformulation. After five years, results were the best of all the batches

tested. Pharmaceutical opioid overdose deaths decreased by nearly 10%, while both

pharmaceutical opioid abusers and heroin overdose deaths decreased by over 5%. At

ten years these numbers were even larger.
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CHAPTER V

RESULTS AND DISCUSSION

Results are first presented for the parametric analysis, including parametric uncertainty

and fitting. Following this, results are presented together for the local and global sensi-

tivity analyses performed, as well as for the stochastic simulation results of the previous

subsection.

Parametric uncertainty and fitting revealed that the contribution of the nonlinear trans-

mission term β was less important than the linear transition rate γ in the transition of

individuals from abusing pharmaceutical opioids to abusing heroin. Furthermore, pa-

rameter fitting in particular suggested that interaction terms accounting for movement

into AH was not significant. We speculate this is a result of Maine’s predominantly rural

population. That being said, interventions aimed at reducing the number of individuals

abusing heroin were found to be more successful when they intervened when indi-

viduals first started abusing pharmaceutical opioids. This is because illicit community

sources of recruitment into AH did not contribute as strongly as did natural progression

into initiation from misusing/abusing pharmaceutical opioids.

Local sensitivity analysis of the state variable AP indicates that the treatment rate of

heroin abusers (ηH) was the most influential. Admittedly, this probably has more to

do with our assumptions of relapse and re-entry into either AP or AH , so we instead

focus on the rate of addiction from opioid use (ηP), the proportion of Mainers with

an opioid prescription (ρ), and the relapse probability (δ), as these parameters were

also found to be very influential. It should come as no surprise that these parame-

60



ters were found to be the most influential in regards to local perturbations. What is

surprising, however, is that these parameters were found to be more influential than

the treatment rate of pharmaceutical opioid abusers (ηP), albeit only slightly so. This

suggests that interventions are more effective in reducing the number of individuals in

AP when aimed at prevention rather than treatment. This was reflected in stochastic

simulation results as well, as interventions targeting the aforementioned parameters

(PMP, MAT, and drug reformulation) were the most successful in reducing the number

of people abusing pharmaceutical opioids, both in the short term (five years) and the

long term (ten years). Globally speaking, the sensitivity analysis found εP and ρ as

the most significant in controlling AP . The parameter ηP was found to be only slightly

less influential, agreeing with the sensitivity analysis. In contrast with the local sensi-

tivity analysis, δ was not found to be as significant when tested within its parameter

range. This is most likely because even within its tested range, δ is still rather high,

so control methods targeting other underlying dynamics find more success overall. We

may conclude that in order to most significantly reduce the number of pharmaceutical

opioid abusers, control strategies should reduce the number of prescriptions for opioids

in Maine, and reduce the rate at which individuals develop an addiction to abusing

pharmaceutical opioids.

For heroin abusers, local sensitivity analysis determined that the rate at which individu-

als relapse was the most influential parameter, and by a sizeable margin. This suggests

that the role of sustained relapse is a significant contributor, especially when combined

with the fact that individuals who relapse back into AP can still progress to heroin use.

Thus, relapse plays a significant part in the overall size of the heroin abuser popula-

tion. The time scale should be noted here. At five years, the sensitivity of AH to δ is

comparable to that of ηH (see corresponding plots in Figure 10). At ten years, on the

other hand, the sensitivity to ηH seems to flatten while the sensitivity to δ continues on

in an almost linear trend. The global sensitivity analysis agrees with this phenomenon:
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in the short-term, ηH is more influential in controlling AH , while δ is more influential

in the long-term. The stochastic simulations in the previous subsection suggest that

increasing treatment accessibility is more effective at reducing the size of AH both in

the short- and long-term than MAT, which reduces the relapse probability. However,

increasing treatment accessibility increases ηH and ηP . We conclude that, in order to

reduce the number of heroin abusers, short-term strategies should emphasize treatment

while longer term strategies should target reducing relapse among patients.

Finally, we addressed the question of most effectively reducing all opioid abusers in

the system - both pharmaceutical opioids and heroin. Global sensitivity analysis results

found that εP and ρ were the most influential parameters overall, both at five and ten

years into the future. This is echoed by the stochastic simulations, which found that

drug reformulation (which reduced ρ and εP) led to the greatest reduction in abusers

in either category at either time tested. In this regard, the most successful combination

of strategies was with expanded Naloxone availability and drug reformulation, but only

at five years. Ten year results favored the combination of expanded Naloxone availabil-

ity, increased treatment accessibility, and drug reformulation as the most effective in

reducing overall opioid abuser numbers. It is no coincidence that the control strategies

the most effective at reducing overall opioid abuser numbers are also the most effective

in reducing the number of pharmaceutical opioid abusers alone. This is because our

model formulation assumes that heroin abusers began abusing pharmaceutical opioids.

Parameter fitting ruled out any contributions of recruitment from the susceptible class,

and research in this area also suggests that a large majority of heroin abusers began

their drug abuse with pharmaceutical opioids [39, 40, 59]. Our work above indicates

that the brunt of Maine’s heroin problem is almost entirely explained by pharmaceutical

opioid abuse, and a solution to the latter by our estimates would reduce the problem

of heroin abuse significantly.

We now move to the discussion of this study, including limitations and future work.
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The most obvious drawback to our work is limited data, which affected everything

from parameter estimations to model calibration. First and foremost, finer data (i.e.

monthly data versus the yearly data that was used) would improve the accuracy of

our model forecasts and parameter fitting. Even if the yearly data scale is to be kept,

the release of new data in the years to come will help to refine the accuracy of our

analysis. Data scarcity affected the estimation of certain parameters, most notably the

proportion of Mainers with an opioid prescription, ρ, and the treatment rate of abusers

of pharmaceutical opioids, ηP . These parameters can be updated when access to the

proper data is provided, but this was not possible at the time of writing due to limitations

of time and money. Some data sources that could be used in future work include the

Maine Prescription Monitoring Program (PMP), the Web Infrastructure for Treatment

Services (WITS), and the Treatment Data System (TDS). The global sensitivity analysis

performed was intended in part to compensate for the potential error in estimating the

aforementioned parameters.

Regarding the NSDUH data presented in the corresponding subsection in Chapter III,

annual state prevalence estimates do not specify overlap, which is a potential problem

since opioid abuse comorbidity is not uncommon [82]. Data values were thus taken

at face value, but a more careful analysis could be performed that incorporates various

proportions of overlap in the future. Beyond this, future work could include a broader

nonpharmaceutical opioid compartment as data become available regarding abuse pat-

terns of illicit opioids besides heroin, most notably fentanyl. Nonetheless, we hope that

the above document serves as a template for future opioid epidemic models useful for

informing public policy.
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