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Abstract: 

 Pristionchus entomophagus is a necromenic nematode commonly associated with 

dung beetles (Geotrupes spp.) in Europe. Recently, it has been found in Maine emerging 

from cadavers of M. rubra, an ant native to Europe that is currently established and 

pestiferous in Maine (Groden and Stack 2011).  Laboratory assays inoculating M. rubra 

with these nematodes caused significant mortality. This study aimed to characterize the 

bacterial associates of P. entomophagus in order to further understand its pathogenic 

relationship with M. rubra. Bacterial samples were collected from the cuticle and gut of 

the nematodes, and the hemolymph of infected hosts. Single spore isolates were 

established, cultured, and identified using bacterial 16s rRNA gene sequencing.  

Following BLAST search comparisons of 24 isolate sequences that I obtained, I 

identified 14 species of bacteria associated with P. entomophagus and its infected hosts. 

All of these species have been reported as associated with nematodes, insects, the 

rhizosphere of plants, fungi, or soil. Three species in particular, Serratia marcescens, S. 

nematodiphila, and S. proteamaculans have all been directly linked to insect mortality in 

previous studies (Zhang et al. 2009, Nishiwaki et al. 2007, Al Own et al. 2011). 

Furthermore, S. proteamaculans was found in association with P. entomophagus in the 

United Kingdom. In comparing the bacterial isolates found in association with the 

hemolymph of infected hosts to isolates gathered from P. entomophagus, two species, 

Pseudomonas fluorescens and Delftia sp. were found in both the hemolymph and in 

association with the external surface of the nematode. The potential mechanism of 

pathogenicity employed by P. entomophagus is discussed based on the similarities and 

differences between the species isolated from the nematode and infected hosts.
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Introduction: 

Myrmica rubra 

 Myrmica rubra (Linnaeus) (Hymenoptera: Formicidae), is an ant that is native to 

the much of the Palearctic ecozone in Europe and Asia, from Ireland in the west to 

Western Siberia in the east (Czechowski et al. 2000). M. rubra has been introduced into 

regions where it is non-native through unintentional human transport. Currently, M. rubra 

is established in North America, where it is largely invasive (NBII and ISSG, Arevalo et 

al. 2007). Established populations have been reported in Maine, Massachusetts, New 

York, Pennsylvania, New Jersey, Washington D. C., Rhode Island, New Hampshire in 

the US, and in Ontario, Québec, New Brunswick, Prince Edward Island, Newfoundland, 

and Nova Scotia in Canada (Wetterer and Ravchenko 2010). Within its native range it 

exists from approximately the 25°N latitude to the Arctic Circle (66°N) (Elmes et al. 

1999). Based on this latitude range in its native habitat, it is believed that M. rubra may 

be able to subsist in various habitats from southern Florida to north of the Hudson Bay, 

Canada in North America (Arevalo et al. 2007). 

 The first reported case of M. rubra in the United States was in Massachusetts in 

1908 (Wheeler 1908). In Maine, there are two confirmed cases before 1950, while other 

reports of stinging ants surfaced in the late 1960’s and early 1970’s (Groden et al. 2004, 

Groden et al. 2005). The stinging ants were confirmed as M. rubra years later in 1986. 

Since 1998, reports of M. rubra to the University of Maine Cooperative Extension have 

increased dramatically (Groden et al. 2005). M. rubra has been largely concentrated in 

humid regions along Maine’s coast, including in Acadia National Park on Mt. Desert 

Island, however colonies established inland suggest the ant is able to survive in other 

environments throughout the state (Arevalo et al. 2007). In 2002, M. rubra had been 
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confirmed in more than twenty locations along the Maine coast in seven counties 

including Cumberland, Hancock, Kennebec, Knox, Waldo, Washington, and York 

(Groden et al. 2004). 

 The nests of M. rubra are not always apparent and may be difficult to spot at first. 

These ants do not form mounds in the soil, rather they usually burrow in places that 

maintain high humidity for the colony. These conditions are often found in soil near the 

roots of trees or shrubs, under various types of debris such as rocks, logs, or human 

debris, and within decaying logs (Groden et al. 2005). 

 Efforts to control M. rubra populations in the United States have been largely 

unsuccessful. Commercial pesticides tested by the University of Maine were unable to 

eliminate ant populations (Groden et al. 2004). At this time, attempting to prevent the 

spread of the ants by human means and altering the environment to make it less 

hospitable for the ants are the best methods of control (Arevalo et al. 2007). Finding 

suitable biological control agents for M. rubra in addition to chemical control and land-

use practices are the best long term strategy for the management of M. rubra.  

 Research similar to that conducted by Evans et al. (2010) is likely to reveal 

potential biological control agents. In this project, three previously undocumented fungal 

pathogens, Paraisaria myrmicarum sp. nov., Hirsutella stilbelliformis var. 

myrmicarum var. nov., and Hirsutella subramanianii var.myrmicarum var. nov. were 

isolated from M. rubra cadavers gathered in the United Kingdom. Recently, a soil 

dwelling entomopathogenic nematode, Pristionchus entomophagus, was found to cause 

mortality when inoculating M. rubra (Groden et al. 2010). P. entomophagus has been 

documented as having a necromenic life history, where nematodes wait on the cuticle of 
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the host insect until death when they enter into the cadaver to feed and reproduce (Rae et 

al. 2008). Their recently discovered parasitism of M. rubra (Groden et al. 2010) suggests 

the potential for variable host associations, and provides the opportunity to study the 

mechanisms determining the type of association formed between the nematode and its 

insect host. This parasitic P. entomophagus/M. rubra interaction may hold potential for 

biological control of this pest. 

Entomopathogenic Nematodes 

 Nematodes are among the most ubiquitous organisms on the planet. They inhabit 

virtually every ecosystem, and in doing so, form relationships with many hosts, including 

plants, vertebrates, and invertebrates. Overall, nematode-insect relationships can take one 

of four basic forms, phoretic, necromenic, facultative necromenic, or parasitic (Kiontke 

and Sudhaus 2006). Phoretic nematodes use their insect hosts only for transport between 

suitable habitats. Dauer stage (the free-living, non-reproductive stage) individuals attach 

to insect hosts in poor conditions and dislodge themselves in areas with adequate 

resources. Nematodes associated with carrion, such as Caenorhabditis plicata display this 

life history (Völk 1950). Conversely, necromenic nematodes rely on their insect host for 

food and reproduction. Dauer stage individuals attach to their insect hosts, often on the 

cuticle, but they never disembark, waiting for their insect host to die, at which point they 

feed and reproduce on the carcass (Rae et al. 2008). 

 There also exists an intermediate life history between these two types, referred to 

as facultative necromeny, where the species is able to propagate on the host (typical of 

necromenic species and absent in phoretic species) but can also disembark from the host 
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(typical of phoretic nematodes and absent in necromenic species). The model organism 

C. elegans has this type of life history (Kiontke and Sudhaus 2006). 

 Fourthly, parasitic nematodes, also referred to as entomopathogenic nematodes, 

cause direct mortality in their insect hosts. It should be noted that not all parasitic 

nematodes are entomopathogenic, as parasitic nematodes are regularly associated with 

vertebrate hosts (Kiontke and Sudhaus 2006), but all entomopathogenic nematodes 

employ a parasitic life history. The most commonly studied entomopathogenic 

nematodes are of the families Heterorhabditidae and Steinernematidae, largely due to 

their efficacy as biological control agents (Gaugler 2006). Other families with 

entomopathogenic species include Diplogasteridae, Mermithidae, Allantonematidae, and 

Sphaerulariidae (Tanada and Kaya, 1993). 

 The major factor responsible for the pathogenicity exhibited in Heterorhabditis 

and Steinernema entomopathogenic nematodes is their endosymbiosis with 

entomopathogenic bacteria. Other entomopathogenic nematodes of the families 

Mermithidae and Allantonematidae are much larger, and invariably cause insect mortality 

by simply proliferating inside and exiting the host (Gaugler 2006). In Heterorhabditis 

and Steinernema systems, Xenorhabdus and Photorhabdus bacteria are established 

internally in the nematodes, and are transported into an insect host during the nematode 

infection process. The bacteria are released into the hemolymph of the host, causing 

mortality in 24-48 hours in many cases (Gaugler 2006). The nematodes then feed on the 

bacteria, often completing multiple generations in a single host. Infecting stages of the 

nematode must obtain and maintain the bacteria to perpetuate the symbiotic relationship. 

Bacteria are only taken up by Steinernema carpocapsae during the third juvenile (IJ) 
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stage, the organism’s only free living stage (Bird and Akhurst 1983). When host 

resources are adequate, the nematodes complete their life cycle. However, when 

conditions are unfavorable, i.e. when resources are depleted, the third-stage infective 

juveniles ingest the bacteria and disperse into the soil in search of another suitable insect 

host. 

 Recent research by Snyder et al. (2007) highlights the role of the bacterial 

receptacle in the development of the symbiotic relationship between the bacterium X. 

nematophila and its nematode host S. carpocapsae. The bacterial receptacle was shown 

to be a, “distended region of the anterior portion of the intestine” using DIC microscopy 

(Snyder et al. 2007). The part of the intestine closest to the mouth of the nematode 

contains this out-pocketed sac, the bacterial receptacle, which branches off at the 

esophagointestinal junction and extends down the length of the body alongside the 

intestinal tract. It should be noted that the bacterial receptacle is open at the proximal end 

at all times and at the distal end during the infection of the insect host, allowing for the 

colonization and release of the symbiotic bacteria. These two openings effectively 

establish the bacterial receptacle as a shunt in parallel to the intestinal tract where bacteria 

are exclusively colonized.  

 It was shown that X. nematophila colonizes the distal portion of the bacterial 

receptacle, associating with a “subcellular intravesicular structure that freely moves in the 

lumen of the vesicle” (Martens and Goodrich-Blair 2005, Snyder et al. 2007). The 

intravesicular structure provides amino acids and cofactors that facilitate bacterial growth 

within the bacterial receptacle (Martens et al. 2005). Initially, a small number of bacterial 

cells, perhaps as few as one, enter into the bacterial receptacle and propagate to fill the 
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bacterial receptacle up to, but not beyond the esophagointestinal junction at the proximal 

end (Synder et al. 2007). Snyder et al. (2007) showed that the amount of bacterial 

colonization of the bacterial receptacle was highly variable within the tested nematode 

community, with some specimens containing a high number of viable cells and others 

containing a considerably lower amount of bacterial cells. 

 Movement of bacteria out of the bacterial receptacle, through the intestine, out of 

the anus, and into the hemolymph is triggered by nematode exposure to the hemolymph 

of the host itself (Snyder et al. 2007, Poinar and Thomas 1967). This process occurs in as 

little as 2 hours after nematode exposure to insect hemolymph. Bacterial cells move 

forward within the bacterial receptacle towards the esophagointestinal junction and into 

the intestinal tract where they are eventually passed through the anus, as well as 

posteriorly out of the distal end of the bacterial receptacle toward the anus (Snyder et al. 

2007). The bacteria then aid in overcoming host immune defenses, eventually causing 

host death. Post-mortem, bacterial proliferation occurs and nematodes are able to 

complete their life cycle using the nutrients provided by the insect cadaver. 

Nematodes in the family Diplogasteridae are considered to have a less highly evolved 

symbiotic association with specific bacterial species. However, these associations have 

received very limited study. 

 In 2003 and 2004, nematodes were observed exiting from M. rubra cadavers 

collected from colonies in Maine, and in 2003, a similar nematode of the family 

Diplogasteridae was observed from colonies in England (Groden et al. 2010). In 2007 

and 2008, colonies of M. rubra gathered at multiple sites in Maine were parasitized with 

nematodes, the pathogenicity of the nematodes was confirmed with reinfection assays, 
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and molecular and morphological characterizations determined that the nematodes were 

Pristionchus entomophagus (Groden et al. 2010). 

Pristionchus entomophagus 

 Pristionchus nematodes belong to the family Diplogasteridae, a monophyletic 

clade in the order Rhabditida that includes over 300 species (Sudhaus and Fürst von 

Lieven 2003, Dietrich and Sommer 2009).  

 The life cycle of Pristionchus pacificus, which has been described in detail 

(Dieterich and Sommer 2009, Hong and Sommer 2006b) is typical of the life cycle of a 

necromenic nematode (Weller et al. 2010). When in ideal conditions, P. pacificus can go 

through an uninterrupted life cycle from the egg stage to mature adults (Dietrich and 

Sommer 2009). Felix et al. (1999) found that Diplogastridae only have three post-

embryonic stages as opposed to the normal four found in most nematodes (Fürst von 

Lieven 2005). The first stage (J1) juveniles develop and molt within the egg (this is 

considered to be an embryonic stage) in contrast to other members of the order 

Rhabditida outside of the Diplogasteridae family, and hatch as J2 stage juveniles 

(Dietrich and Sommer 2009). After hatching, the juveniles undergo four successive molts 

and become hermaphroditic adults, completing the life cycle. In the laboratory this can be 

completed within 3-4 days when carried out at 20°C. In less favorable environmental 

conditions, Pristionchus spp. are capable of producing a juvenile form, known as the 

dauer or resting stage (Poinar 1969). This switch has been found to be genetically linked 

to the daf-16 gene in P. pacificus (Ogawa et al. 2011). This genetic link has similarly 

been found in C. elegans, suggesting that there is a gene-by-environment interaction 

responsible for the formation of the dauer stage larvae. This dauer stage, a reproductively 
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inactive phase, allows Pristionchus spp. to endure periods of poor conditions away from 

a suitable host (insect carcass). However, this is the stage that infects the host. 

 Pristionchus spp. are soil dwelling organisms who are associated with a wide 

variety of beetle species. Herrmann et al. (2006a) showed a relationship between these 

nematodes and the Colorado potato beetle as well as a number of scarab beetles. After 

sampling some 15,000 beetles and identifying 1,200 Pristionchus isolates, it was 

discovered that each Pristionchus species shows a high degree of species specificity in 

laboratory testing and in the wild. Two of the major European species, P. maupasi and P. 

entomophagus were closely associated with cockchafers (Melolontha sp.) and dung 

beetles (Geotrupes sp.) respectively (Hermman et al. 2006a). During sampling in the 

United States, P. entomophagus was also found in association with scarab beetles 

(Phyllophaga sp.) in Ohio (Herrmann et al. 2006b). In classifying the Pristionchus spp. 

phylogenetically, Mayer et al. (2007) postulated that because a number of Pristionchus 

spp, including P. entomophagus were clustered together, forming a European branch 

within the phylogram, it is possible that P.entomophagus samples in North America 

originated in Europe and were spread either by beetles or by human transport. 

 A study by Hong and Sommer (2006a) attempted to shed light on the actual 

mechanism by which these nematodes find and colonize their host. In comparisons 

between the two model organisms Pristionchus pacificus and Caenorhabditis elegans, it 

was found that chemoattraction differs between the two species. After further testing 

comparing P. pacificus, C. elegans, and other Pristionchus spp, differences between 

Pristionchus spp. suggested that the olfaction of Pristionchus spp. is highly diverse and is 

likely tied to the development of the nematode-host interaction. In an attempt to gather a 
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species-specific attraction profile, Hong and Sommer subjected two highly related pairs 

of nematodes (two species closely related phylogenetically), including P. entomophagus, 

to eleven known semiochemicals involved in plant-insect communication. It was found 

that even between these two pairs of phylogenetically similar Pristionchus species, P. 

entomophagus and P. uniformis, and P. pacificus and P. maupasi, there were 

dramatically different chemoattraction profiles (Hong and Sommer 2006b). It is likely 

that semiochemicals found attractive by nematodes of the genus Pristionchus are closely 

linked with the life cycle of the host organism they are associated with. Results showed 

that P. entomophagus had the strongest attraction to isopentylamine, which smells similar 

to decaying material. Isopentylamine can also be used to trap dung beetles (Geotrupes 

spp.), the common host of P. entomophagus in Europe. This high attraction to a chemical 

closely linked to a common host in consistent across the test data, with P. maupani, a leaf 

beetle, linked closest with plant derived compounds such as linalool (Hong and Sommer 

2006). Furthermore, the chemical structure of isopentamyl contains a branched carbon 

group similar to the sex pheromone of June beetles (Phyllophaga lanceolata), the genus 

of beetle P. entomophagus was found in association with in Ohio (Herrmann et al. 

2006b). 

 The point of entry into the host for Pristionchus spp. is a natural opening such as 

the mouth or anus (Poinar 1972). Once an infected host is dead, Pristionchus spp. dauer 

larvae detect favorable conditions and re-engage the reproductive life cycle, becoming J4 

juveniles. Once inside the intestines, the nematodes mature to the adult form and are able 

to proliferate, rupturing the gut wall and entering into the hemolymph (Poinar 1969). At 

this point they continue to reproduce and feed selectively on the bacteria and fungi 



10 
 

proliferating in and on the carcass. The exact time scale over which this process occurs 

has not been determined. It is important that Pristionchus spp. are able to distinguish 

between pathogenic and non-pathogenic bacteria in and on the cadaver in order to 

prevent losses in brood size, development time, and even death as a result of ingesting the 

wrong type of bacteria (Rae et al. 2008). 

 Members of the family Diplogasteridae, including Pristionchus spp., have 

different buccal and gut cavity morphologies than Steinernema and Heterorhabditis 

nematodes. Their stoma morphology consists of a muscular, median esophageal bulb 

with valve plates and a glandular basal bulb (Poinar 1969). They have shorter, broader 

mouthparts with no grinder, a characteristic that is present among other Rhabditid 

nematodes such as the model organism C. elegans (Rae et al. 2008). These characteristics 

in addition to flaps that surround the stoma allow Pristionchus spp. to ingest bacteria 

whole without crushing them and prevent them from being pushed out of the buccal 

cavity after ingestion (Lieven and Sudhaus 2000). Furthermore, some Pristionchus 

species have developed a phenotypic plasticity among stoma morphologies, affording 

two distinct stomal morphotypes, stenostomatous and eurystomatous (Furst von Lieven 

and Sudhaus 2000).  The differences between the two morphologies include buccal cavity 

width and depth, as well as the presence and orientation of teeth within the cavity. This 

plasticity affords Pristionchus spp. the ability to specialize their different feeding habits 

based on the buccal cavity morphology (Hong and Sommer 2006b). 

 Pristionchus spp. have developed a number of characteristics that are commonly 

referred to as pre-adaptations for parasitism (Weller et al. 2010), including their 

necromenic association with beetles where infective juveniles enter an insect host, wait 
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for host death, and then feed on the bacteria and fungi that grow within the carcass (Rae 

et al. 2008). Their ability to tolerate the harsh conditions inside a larva (high toxicity due 

to hemolymph composition, low oxygen concentration), in addition to the ability to form 

dauer larvae (resting and infective stage) during periods of environmental disturbance 

lends support to Pristionchus spp. being on the evolutionary path to parasitism (Weller et 

al. 2010). 

 The dauer stage may also provide a mechanism of ingress for the bacteria that 

cause mortality in insect hosts. Bacteria have been isolated from between the two 

cuticular layers that ensheath the dauer stage larvae, that is between the internal cuticle of 

the J3 dauer stage and the external J2 cuticle that they retain from the preceeding juvenile 

stage (Gaugler, 2002). Bonifassi et al. (1999) found bacteria in between the two cuticles 

in S. scapterisci. Unlike Steinernema species, Pristionchus dauer stage juveniles do not 

retain the J2 cuticle as a protective sheath for the free living stage. However, these 

nematodes do carry associated bacteria on their cuticle (Rae et al. 2008) that are likely 

introduced to the host during the infection process. 

 Poinar (1969), however, suggests that the stage of nematode invading the host 

may be important relative to the resulting lethality of Pristionchus infections. He found 

that dauer stage Pristionchus larvae caused significantly fewer lethal infections when 

applied to Galleria mellonella in comparison with samples containing a mix of dauer 

stage larvae and normal juvenile stages. The cause of insect mortality was not linked 

solely to the presence of nematodes, but rather the establishment of the nematodes. Once 

established within the insect host, Poinar (1969) reported that P. uniformis caused 

mortality in all subjects. Many of the inoculated wax worm larvae (G. mellonella) were 
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able to successfully void the nematodes, presumably passing dauer stage larvae through 

their digestive tracts before they could establish.  

 There is evidence that the bacteria associated with P. entomophagus can be 

pathogenic to insects (Al Own et al. 2011). The transport of bacteria from the external 

surface of nematodes into an infected host has been shown for the endospore-forming 

bacteria, Paenibacillus nematophilus, on the cuticle of an entomopathogenic nematode 

host, H. megidis (Enright and Griffin 2005). While the actual role of the dauer stage 

larvae in infectivity is somewhat unclear, it is known that they are capable of carrying 

bacteria, and that bacteria associated with entomopathogenic nematodes is critical for 

virulence. 

 Groden et al. (2010) have recent evidence that P. entomophagus induced 

mortality in    M. rubra populations appears to be related to the origin of the P. 

entomophagus population. Nematodes gathered from M. rubra cadavers collected from 

various sites on Mt. Desert Island, ME were mass-reared in the laboratory and used to 

inoculate M. rubra in laboratory reinfection assays. The differential induced mortality in 

these tests suggests that there are inherent differences in the pathogenicity of P. 

entomophagus, likely due to their site of origin. Furthermore, studies in Europe have 

shown this nematode to harbor a complex of bacterial species in or on its body (Rae et al. 

2008) although it does not appear to have a specialized receptacle to harbor specific 

endosymbiotic species. This suggests that the variability seen in P. entomophagus 

induced mortality may be a function of the particular bacterial associates that the 

nematode is carrying, likely due to the presence of specific species of bacteria being 

present in the habitat of the P. entomophagus population.  Identifying the species of 
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bacteria associated with virulent populations of P. entomophagus nematodes is the focus 

of this study.  I hypothesize that bacterial species found in the hemolymph of infected 

hosts will also be among the species found on either the external or internal surfaces of 

the infecting P. entomophagus nematodes. To test this hypothesis, I isolated and 

identified the bacteria on the external cuticle and internally in the digestive tract of P. 

entomophagus and compared it to bacteria species that I isolated from the hemolymph of 

insects hosts infected with P. entomophagus. 

Materials and Methods: 

Myrmica rubra colonies: 

 Prior to experimentation, Myrmica rubra colonies were collected from different 

sites in Acadia National Park in September 2010 and maintained in overwintering 

conditions in a cold chamber set at 4°C. Multiple colonies from each site were transferred 

to nest boxes approximately two weeks prior to use for these experiments and labeled by 

site and nest number (e.g. COA 4). Each colony was provided with a small portion of a 

cardboard egg carton for covering brood and sugar, water, and tuna were provided for 

sustenance. Colonies were inspected for dead individuals on a regular schedule (2-3 times 

per week). Cadavers were removed using sterile tweezers and surface sterilized by 

submerging in a 0.1% zephiran chloride solution for thirty seconds (Roberts 1973) before 

being transferred to two rinses in sterile distilled water and placed on clean absorbent 

paper. After drying, cadavers from each nest were held in individual wells of 48 well 

microtitre plates, with cadavers from each colony maintained in their own separate plate. 

Plates were stored at ambient temperature (ca. 21°C) inside plastic bags containing damp 

paper towels to maintain high humidity (Evans et al. 2010). 
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 Cadavers from all sites in Acadia National Park were monitored for emergent 

nematodes. Colonies from two sites experiencing high levels of nematode induced 

mortality (College of the Atlantic (COA) and Miller Greenhouse (MGH)) were selected 

for use in this study, and nematodes were harvested from their corresponding cadaver 

plates. 

Isolation of Bacterial Associates: 

 External Surface of Nematodes: Bacteria harbored externally on the nematodes 

were collected through thorough rinses of the live nematodes. Emergent nematodes in 

two wells from COA and two wells from MGH were used to isolate associates from the 

external surface of the nematodes. Approximately 50 μL of sterile distilled water was 

added to wells with high numbers of emergent nematodes. Leaving the M. rubra cadaver 

in the well, nematodes from each well were pipetted into their own 1.5 mL 

microcentrifuge tube filled with 1 mL of 1% Tween. After gently vortexing, each 

solution was centrifuged for approximately 10 seconds at 13,000 RPM to concentrate the 

nematodes in the bottom of the tube. Four fold serial dilutions of this stock solution were 

made by adding 100 μL of the rinse solution to 900μL of distilled water, and repeating 

three additional times. Three 300 μL aliquots of each 1×10
-4

 dilution were then plated 

onto Trypticase Soy Agar (TSA). Plates were incubated at 29°C for 48 hours, after which 

morphologically unique individual colony forming units were identified using a 

dissecting microscope and transferred onto fresh TSA plates. After two days of growth, 

monoculture plates were stored at 4°C. 

 Internally Harbored in Nematode: Bacteria harbored internally in the digestive 

tract of the nematodes were sampled by surface-sterilizing live nematodes to remove 
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external bacteria, then transferring the nematodes to TSA plates. Nematodes feeding and 

tunneling on the agar gave rise to colonies of bacteria excreted from the nematode gut. 

This procedure was initiated by adding 50 μL of sterile distilled water to each chosen 

well in the 48 well plates housing the M. rubra cadavers. After gently mixing, three 5 μL 

aliquots were taken from each well and plated onto a contrasting black surface for 

counting. The number of nematodes in each aliquot was counted and averaged across 

each of the three aliquots for each site. The remaining 40 μL of each nematode solution 

was equilibrated to ½ the concentration of the least concentrated solution by adding 

sterile distilled water to each solution in the appropriate amount.  

 After standardization of nematode concentration, 50 μL of nematode solution was 

gently loaded onto a concavely folded piece of vacuum filter paper. The filter paper was 

loaded into an appropriately sized Buchner Funnel and attached to the laboratory vacuum 

system. Nematodes were continuously surfaced sterilized for 2-3 minutes by pipetting 1% 

bleach solution onto them, making sure not to spill the nematodes off of the filter paper. 

After surface sterilization, the nematodes were rinsed with sterile distilled water in the 

same manner for 2-3 minutes. The filter paper was then loaded into a small Petri dish and 

flooded with sterile distilled water to dislodge the nematodes from the filter paper. After 

nematode presence was confirmed using a dissecting microscope, 300 μL aliquots of the 

nematode filled solution was plated onto TSA agar. 

 To assure inoculation of a sufficient number of nematodes, individual nematodes 

were pipetted out of the remaining solution using a 200 μL pipette tip and added to the 

TSA plate with the nematode solution. It was determined that holding nematodes at room 
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temperature until pipetting was best, as nematodes tended to stick to the surface of the 

Petri dish if refrigerated for long periods. 

 Hemolymph Samples: A total of 60 Galleria mellonella (waxworm) larvae were 

inoculated with nematodes from selected COA and MGH wells. Nematodes were 

harvested from six individual ants each from both COA and MGH in wells with large 

amounts of emerged nematodes. Nematodes from each well were transferred to a set of 

five waxworm larvae resulting in twelve sets of inoculated larvae (six per site). Each of 

the six sets of larvae for each site were placed in a 100 mL cup with 1 cm sand and 50 μL 

sterile distilled water. Nematodes were pipetted directly on to the dorsal cuticle of the 

larvae. Cups were covered to retain moisture and maintained at ambient temperatures (ca. 

21°C) in the laboratory. Larvae were monitored daily and dead were collected and 

surface sterilized by submerging in a 0.1% zephiran chloride solution for thirty seconds 

before transferring to two rinses of sterile distilled water. Sterilized cadavers were placed 

in individually marked Petri dishes for each set of five larvae. All cadavers were stored 

for 24-72 hours at 4°C until hemolymph was gathered en masse.  

Hemolymph samples were collected from each cadaver by cutting one leg off close to the 

body with sterile, micro-dissecting scissors, and using a microcapillary tube to draw 

hemolymph from the wound. All gathered hemolymph from each set of larvae was 

pooled and placed into a 1.5 mL microcentrifuge tube filled with 1mL of sterile distilled 

water. Four-fold serial dilutions were made and quadrant streaks of each 1×10
-4

 dilution 

were plated onto two Trypticase Soy Agar (TSA) plates for each of the twelve samples. 

Plates were incubated at 29°C for 48 hours, after which unique individual colony forming 
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units were identified using a dissecting microscope and transferred onto fresh TSA plats. 

After two days of growth, all samples were stored on the clean plates at 4°C.  

DNA Extraction, PCR, and Sequencing:  

 Due to time and monetary restrictions, a subset of the bacterial isolates was 

chosen to be identified to species using molecular tools. All isolates were grown 

overnight in LB Broth. Due to the unknown status of the cultured organisms, a salt 

concentration of 5 g/L was used as it fell at the low end of the published range of salt 

concentrations from 5 g/L to 10 g/L (Formedium). Samples were grown in 3 mL of LB 

broth in 14 mL test tubes (VWR, Radnor, PA, USA) at 29°C and 90 RPM overnight, 

typically for 14-18 hours.  After the initial centrifugation of 1 mL of overnight culture, 

additional 1 mL aliquots were added and re-centrifuged for samples with low bacterial 

density, as evidenced by a small initial pellet after centrifugation. Bacterial DNA was 

extracted using the Promega Wizard® Genomic DNA Purification Kit Cat no. A1120 

(Promega, Madison, Wisconson, USA). Upon completion of DNA Extraction, all 

samples were stored in 1.5 mL microcentrifuge tubes at -20°C. 

 Gel electrophoresis was run on each sample to determine the presence of DNA 

using 0.8% Agarose gels made using 30 mL of TAE Buffer, 3 μL GelStar® GelStain 

(Lonza, Rockland, ME, USA) and 0.24 g Agarose (VSB Company, Cleveland, OH, 

USA). Samples were loaded using 5 μL of DNA and 1 μL of 6x loading dye (Gilbert). 

The Lambda HindIII ladder (Promega) was used as the standard and samples were run at 

90V for approximately one hour. Gels were visualized on a UV transilluminator and 

recorded with a remote shooting camera. For post DNA extraction gels, the mere 

presence of a band was taken to be a successful extraction. 



18 
 

 Polymerase chain reaction (PCR) amplification of bacterial 16s rRNA was 

conducted using the primers 27f (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492r                                

(5’-ACGGGCGGTGTGTAC-3’) (Lane 1991). Thermocycler conditions were as follows: 

3 min at 95°C followed by 35 cycles of 15 s at 95°C, 30 s at 55°C, 1.5 min at 72°C, and a 

final step of 6.5 min at 72°C (Rae et al. 2008). Reactions were carried out at a volume of 

20 μL. The PCR master mix recipe was derived from the original reaction conditions 

listed by Rae et al. (2008). After modifications, the final reaction mix included 9.6 μL 

H2O, 4 μL 5x PCR Buffer, 1.2 μL 25 mM MgCl2, 2 μL 2 mM dNTP’s, 1 μL 10 μM 27f, 1 

μL 10 μM 1492r, 0.2 μL GoTaq DNA Polymerase (Promega), and 1 μL of bacterial 

DNA. 

 Gel electrophoresis was run for all samples to determine the presence of PCR 

amplicons using 1.2% Agarose gels (30 μL of TAE Buffer, 3 μL GelStar® GelStain 

(Lonza, Rockland, ME, USA) and 0.36 g Agarose). Invitrogen Low DNA Mass Ladder 

Cat. # 10068-013 (Invitrogen, Carlsbad, CA, USA) was used as a standard to detect the 

expected fragment length of 1465 bp. Five microliters of low mass ladder and 1 μL of 6x 

loading dye was used for the ladder (L. Beers, personal communication, March 2011). 

Three microliters of PCR product and 2 μL of 2x loading dye was mixed and loaded for 

each sample. Gels were visualized on a UV transilluminator and recorded with a remote 

shooting camera. A fragment at the correct base pair size was taken to be a successful 

PCR run. 

 Each PCR sample was purified using a QiaQuick PCR Purification Kit (Qiagen, 

Venlo, Netherlands) and prepared for sequencing as instructed by the University of 

Maine Sequencing Facility. Ten microliters of the remaining 17 μL of PCR product was 
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purified following the Qiagen QiaQuick protocol. Samples were stored in sterile 1.5 mL 

microcentrifuge tubes at -20°C. 

 The quantity and quality of DNA in the purified samples was determined on a 

Nanodrop 1000 with version 3.3 software (ThermoScientific, Waltham, MA, USA). 

DNA concentrations were adjusted as necessary for sequencing by the University of 

Maine Sequencing Center. Samples were prepared for sequencing by placing 100 ng of 

DNA into a sterile tube and diluting the concentration to 10 ng/μL. Nanodrop results for 

DNA concentration were used to calculate the amount of PCR sample needed to obtain 

100 ng of purified DNA, and sterile DiH2O was added appropriately to total 10 μL, 

yielding a concentration of 10 ng/μL. Approximately 1 μL of 27f and 1492r primers per 

sample was delivered to the sequencing center at a concentration of 5 μM. 

Identification of the species of bacterial isolates: 

 Sequenced and edited bacterial 16s rRNA sequences were obtained from the 

University of Maine Sequencing Facility. Using the Basic Local Alignment Search Tool 

(BLAST) online database provided by the United States National Center for Biological 

Information, edited sequences were referenced against the current database of bacterial 

samples (NCBI, accessed 2011). The quality of the match, quantified by query coverage 

and maximum identity (percent match) were used to distinguish good matches from poor 

matches. Matches with good query coverage and percent match were further investigated 

by exploring accession numbers and determining the origin of the sample. Matches with 

sources such as soil, insects, and nematodes were targeted due to their relevance to our 

study. 
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Results: 

We isolated a large number of bacterial samples from the internal and external surfaces of 

the nematodes, as well as the hemolymph of the infected G. mellonella larvae (Figure 1).  

Figure 8: Original 10
-4

 dilution from external rinse of nematodes from the COA C8 sample 

plated on TSA. 

 

Figure 9: Unique morphotypes of bacteria isolated from the external surface of nematodes 

from the MGH E3 sample after 72 hours of colony growth. (40X magnification) Left: Isolate 

1, Right: Isolate 3  
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Figure 10: Unique morphotypes of bacteria isolated from the external surface of nematodes. 

(400X magnification) Left: MGH E3 Isolate 1, Right: COA C7 Isolate 6   

    

  

Figure 11: Plated surface sterilized nematodes from the MGH E3 sample. Cultured 

excrement yielded internal nematode isolates. 

    

 A total of 45 isolates were identified as unique and isolated (Table 1, Table 2). 

Overall, there were 28 isolates gathered from the external surface of the nematodes, eight 

isolates from the digestive tract of the nematodes, and 9 samples gathered from the 

hemolymph of infected hosts (Table 2). 

 There were a number of common morphotypes present in the isolates collected 

from the external surface of the nematodes (Figures 2 and 3). Of the 28 isolates gathered 

from the external surface of the nematodes, morphological and microscopic evidence 

determined that nearly all were present in another sample, either in samples from the 
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same site, the opposite site, or both. A number of cream colored morphotypes were 

present in both the MGH and COA samples. Those that were not common to both sites 

were often found in both samples from the same site in Acadia National Park. This left 

approximately twelve unique-appearing isolates from the external surface of the 

nematodes. The examination of isolates gathered from the digestive tract of the 

nematodes (Figure 4) indicated that many of the isolates were similar. Morphologically, 

the colonies fell into two categories; cream colored and smooth, and cream colored with a 

distinct grainy appearance at the edge of the colony. Microscopic evidence was unable to 

discern differences within the groups. The isolates from the hemolymph had many 

similarities as well. Of the gathered isolates, nearly all had another sample with a similar 

morphotype. Of the nine samples gathered, it appears that there were four or five unique 

morphotypes. 

 Overall, there was a diverse bacterial complex (group/set of bacteria) found in 

association with the internal and external surfaces of the nematodes and the hemolymph 

of infected hosts. Based on analysis using primarily colony morphotypes with some 

microscopic evidence, it appears that as many as twelve unique isolates were found in 

relation to the external surface of the nematode, while two major morphotypes are 

apparent from the isolates associated with the internal surface of the nematode, and four 

or five morphotypes were isolated from the hemolymph of infected hosts.  

 Due to the large amount of overlap in samples, i.e. the appearance of the same 

morphotypes on a number of occasions, it also appears that the set of bacteria present 

within each type of sample (internal, external, hemolymph) is universal. Notable 
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exceptions include the presence of a unique yellow morphotype and a cream colored wiry 

morphotype in the COA samples that was not present in the MGH samples. 

 Because of the small number of morphotypes isolated from the hemolymph of 

infected hosts and the large amount of overlap present within each type of sample 

(external, internal, hemolymph), it is unclear whether or not the types of bacteria 

associated with the nematodes themselves (internal and external) are more diverse than 

the bacteria in the hemolymph. 

Table 7: Bacterial morphotypes isolated from the internal and external surface of 

the nematodes and the hemolymph of infected hosts. 

Source 
Cadaver 
Sample Isolate # Colony appearance 

External Rinse MGH F2 1 
large, round, cream colored. Wavy/bumpy 
surface texture. 

External Rinse MGH F2 2 

small, irregularly shaped, resembles a fried 
egg. Very clear on the outside, slightly 
yellowish cloudy tint in center, striated 
edges 

External Rinse MGH F2 3 
small, cloudy in middle with more solid 
off-white color around outside. Round 
with slightly wavy edges. 

External Rinse MGH F2 4 

small, round with smooth edges. General 
cloudy white color. Shows some signs of 
having a lighter color in middle like isolate 
3, but hemispheric shape suggests 
otherwise. 

External Rinse MGH F2 5 

completely irregular. Cloudy. Generally 
ovular in shape with irregular edges and 
raised portions all over. Almost looks like a 
clovered-tongue. 

External Rinse MGH F2 6 

irregular shape, heart like with wavy 
edges. Egg-like appearance with coloration 
different in middle. Possible resemblance 
to isolate 2 but this colony is much thicker 
and has more color. 

External Rinse MGH F2 7 

small, round with slightly wavy edges. 
General cloudy white color. Shows some 
signs of having a fried egg appearance. 
Smooth surface 
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External Rinse MGH E3 1 white, crystalline. Varies in size. Raises off 
surface of plate. Looks icy in a way 

External Rinse MGH E3 2 

irregular in shape, slightly round with an 
invagination. Appears to have egg like 
appearance. Resembles isolates from mgh 
with egg appearance (2,7) 

External Rinse MGH E3 3 
small, round with smooth edges. General 
cloudy white color. Very much resembles 
isolate MGH F2 #4 

External Rinse MGH E3 4 
small, round with slightly wavy edges. 
Lighter white color. May be a younger 
version of isolate 3 from this set. 

External Rinse MGH E3 5 
medium/large. Fried egg appearance. 
Cream color. 

External Rinse COA C8 1 
large, round, cream colored. Wavy/bumpy 
surface texture. A virtual identical match 
to MGH F2 #1 

External Rinse COA C8 2 
small, round, clearer that isolates 1 or 2 
from MGH E3. 

External Rinse COA C8 3 
yellow, round, slightly irregular edges, 
wavy surface 

External Rinse COA C8 4 
Left side of photo, cream color, round with 
wavy edges, no apparent discoloration, 
slightly wavy color. 

External Rinse COA C8 5 

Right side of photo. Small, round with 
smoother edges. Wavy surface 
appearance. Slightly transparent in 
middle, with solid color around outside, 
resembles MGH F2 #3 

External Rinse COA C8 6 
big, white, round, smooth edges, no 
discoloration, resembles MGH E3 #3 and 
MGH F2 #4 

External Rinse COA C8 7 
stringy, white, no crystalline appearance. 
Smooth looking with stringy appearance 

External Rinse COA C8 8 fungi? Fuzzy/hairy. Round conical colonies. 

External Rinse COA C7 1 

small, irregularly shaped, resembles a fried 
egg. Very clear on the outside, slightly 
yellowish cloudy tint in center, striated 
edges. Resembles MGH F2 #2 

External Rinse COA C7 2 
Left side of photo, small round, clear-ish 
appearance, smooth edges and surface. 
Resembles COA C8 #2 

External Rinse COA C7 3 
Right side of photo, small round with 
slightly wavy edges. No overall 
discoloration. Resembles MGH E3 #4. 

 
 

 
 

 
 

 
 



25 
 

External Rinse COA C7 4 mix between the bigger, white 
smooth/round colonies and the smaller, 
clearer smooth colonies (see COA C8 #6 
and COA C7 #2) 

External Rinse COA C7 5 
white, crystalline. Varies in size. Raises off 
surface of plate. Looks icy in a way. Closely 
resembles MGH E3 #1 

External Rinse COA C7 6 
large, round, cream colored. Wavy/bumpy 
surface texture. A virtual identical match 
to MGH F2 #1 

External Rinse COA C7 7 
yellow, round, slightly irregular edges, 
wavy surface. Similar to COA C8 #3 

External Rinse COA C7 8 

small, clear with some cloudy white 
coloration. Smooth surface with a raised 
donut in the middle of the colony. 
Dissimilar to all other colonies. 

Internal Culture MGH E3 1 
small, round, white color with slightly 
wavy edges. Similar color to big, white and 
round colonies such as COA C8 #6 

Internal Culture MGH E3 2 
small, round, cloudy white color with no 
discoloration. 

Internal Culture COA B6 1 (Small) 

small, round, no apparent color. After 
further analysis and streaking it appears 
that this may have been a raised water 
droplet or extra agar. 

Internal Culture COA D5 Int 1 
irregular shape most likely caused by wet 
plate. Edges do seem to wavy though. 
White color, no discoloration 

Internal Culture COA D5 Int 2 
somewhat round. Edges are very odd. 
They are irregular and appear to have 
bumps in them. Creamy color. 

Internal Culture MGH D3 Int 3 
creamy white large colony with a small 
white dot in the middle. 

Internal Culture COA B6 2 (Big) 

egg-shaped with raised circle in slender 
part of the colony. After looking at picture 
under closer scrutiny, it appears that this 
larger ovular colony may consist of two or 
three circular colonies. One appears to be 
a larger white colony which is at the right. 
another looks like the raised donut colony 
COA C7 #8. 

Internal Culture MGH E3 Rep 1 
small white colonies. Appear to be 
somewhat "bumpy" looking." round with 
irregular edges. 

Hemolymph 
Plating 

COA 1 
 

No Notes, colony present 
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Hemolymph 
Plating 

COA 2 Smooth 

Hemolymph 
Plating 

 
COA 2  

 
Fuzzy 

Hemolymph 
Plating 

COA 4 
 

No Notes, colony present 

Hemolymph 
Plating 

COA 5 
 

Dark 

Hemolymph 
Plating 

COA 5 
 

Light 

Hemolymph 
Plating 

COA 6 
 

No Notes, colony present 

Hemolymph 
Plating 

MGH 6 
 

Raised, White, Big 

Hemolymph 
Plating 

MGH 6 
 

Flat, Yellow, Odd Edge 

 

Table 8: Summary of unique bacterial morphotypes isolated from the internal and 

external surfaces of nematodes and the hemolymph of infected hosts. 
 

Source 
Cadaver 
Sample 

Isolated 
Morphotypes 

External COA C8 8 

External COA C7 8 

External MGH F2 7 

External MGH E3 5 

Internal MGH E3 2 

Internal COA B6 2 

Internal COA D5 2 

Internal MGH D3 1 

Internal MGH E3 1 

Hemolymph All COA 7 

Hemolymph All MGH 2 

 

 Of the 45 morphotypes cultured, 32 were selected for further evaluation; 15 total 

external samples; eight isolates from nematodes collected from one COA well and seven 

isolates from nematodes collected from one MGH well, all nine hemolymph isolates, and 

all eight isolates from internal nematode samples were used (Table 3). Due to the 

similarities between the MGH samples and the COA samples relative to their overall 

morphology and source (internal, external, hemolymph), samples derived from one of the 
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MGH wells (F2) and one of the COA wells (C8) were selected going forward as 

representative samples of the external bacterial associates (Table 3). 

Table 9: Summary of isolates selected for further testing 

Source Plate/Well 
Total 

Isolates 

External Rinse MGH F2 7 

External Rinse COA C8 8 

Internal MGH E3 2 

Internal COA B6 1 

Internal COA D5 2 

Internal MGH D3 1 

Internal MGH E3 2 

Hemolymph All COA 7 

Hemolymph All MGH 2 
 

 
Figure 12:Electrophoresis gel of DNA extraction products 
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Figure 13: Electrophoresis gel of PCR products 

 

 

 Of the 32 isolates processed for DNA extraction, most successfully yielded DNA 

for PCR amplification (Figure 5, Table 4). Extractions from two of the external rinse 

isolates were unsuccessful, and hence 30 total isolates were used for the PCR protocol. 

Of these samples, 26 successfully yielded PCR amplicons (Figure 6). I was unable to 

amplify three of the eight internal samples and one of the nine hemolymph samples. All 

of the 26 amplified samples yielded sufficient high quality DNA for sequencing, however 

two of the samples, one from the external surface of the nematodes and one from the 

internal surface of the nematodes, did not result in clean sequences that could be further 

analyzed (Table 4). 

 



29 
 

Table 10: Samples selected for further testing that did not yield final results 

Source Plate/Well 
Test Not 
Passed 

External COA C8 1 DNA Extraction 

External MGH F2 1 DNA Extraction 

Internal MGH E3 PCR 

Internal MGH E3 1 PCR 

Internal MGH E3 2 PCR 

Hemolymph MGH 6 Rep 2/2 Flat, Yellow, Odd Edge PCR 

External MGH F2 7 Sequencing 

Internal COA B6 Big Out Sequencing 

 
 Each sample run through the BLAST procedure produced several catalogued samples 

that were good matches with the sequence generated by the University of Maine DNA 

Sequencing Facility.  

Figure 14: BLAST results for sample P053 (COA C8 3) 

 

 A number of different species were identified from the external surface of the 

nematodes. In all, there were species from eight different genera present, with as many as 

thirteen individual species. The BLAST results revealed species previously found in 

association with insects, the soil, the rhizosphere of plants and fungi (Table 6). The four 

samples that were isolated and sequenced from the internal digestive tract of the 
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nematodes all were identified as Paenibacillus spp. The matches in the BLAST database 

all classified this species as being associated with soil samples (Table 6).  The isolates 

from the hemolymph of infected hosts were found to be Serratia marcescens, Serratia 

nematodiphila,  Pseudomonas fluorescens, and Delftia spp. BLAST results linked these 

species to many different sources (Table 6).  S. nematodiphila was found in association 

with the nematode Heterorhabditidoides chongmingensis, and P. fluorescens was found 

in association with the fungi Hygrophorus russula. S. marcescens was found to be 

associated with the crop of the predatory insect Myrmeleon bore, and was directly 

implicated in insect mortality. Delftia spp. were found to be related to soil.  

Table 11: BLAST results for bacteria isolated from the external cuticle and internal 
digestive tract of P. entomophagus, and from the hemolymph of insects infected by 
this nematode. 

 

Query % is defined as how much of the sequence overlaps with the sequence in the BLAST 

database. 

Match % is defined as the percent of bases that match between sequences. 
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Table 12: Summary of the habitat of bacteria isolates identified by BLAST as the close 
match of species isolated from P. entomophagus and their infected G. mellonella 
hosts. 

 

Discussion: 

 All cultured bacteria isolated from nematodes (external and internal) and from the 

hemolymph of infected hosts have previously been found in association with nematodes, 

insects, fungi, the rhizosphere of plants, or the soil. Of the species isolated and identified 

from the hemolymph of infected hosts, all have previously been found in association with 

insects and or nematodes. Serratia nematodiphila has been found symbiotically 

associated with the entomopathogenic nematode Heterorhabditidoides chongmingensis  

(Zhang et al. 2009) and is directly implicated in insect mortality (Zhang et al. 2008). In 

their study, S. nematodiphila was identified as the primary causal agent of host (Galleria 

mellonella) mortality with an LD50 of only 50 injected cells. All of the strains associated 

with H. chongmingensis that were tested, caused some level of insect mortality upon 

injection, however insects that were injected with S. nematodiphila turned red in color, 

the same as seen in  S. nematodiphila cultures. Furthermore, it was found that axenic 

(non-symbiont carrying) H. chongmingensis juveniles could not successfully reproduce 

and survive. This finding suggests that the nematodes may depend on their symbionts not 

only for infectivity, but also for sustenance (Zhang et al. 2008).  Serratia marcescens was 



32 
 

isolated from the crop of the ant lion, Myrmeleon bore, and was shown to cause insect 

mortality in Spodoptera litura, a common test insect (Nishiwaki et al. 2007). Although 

not isolated from the hemolymph directly in my study, other Serratia spp. have also been 

found associated with dung beetles, the common host of P. entomophagus, in Germany 

(Rae et al. 2008).  

 Pseudomonas fluorescens was found both in the hemolymph of infected hosts and 

on the external surface of the nematodes. P. fluorescens has also been found to cause 

direct insect mortality, making it a potential cause of mortality in this system. Devi and 

Kothamasi (2009) found that P. fluorescens has the ability to produce the secondary 

metabolite hydrogen cyanide. They proved that H-CN producing bacteria may be able to 

cause insect death via cyanide poisoning because cyanide inhibits the function of the 

enzyme cytochrome c oxidase (CCO), an integral part of the respiratory chain of the test 

organism Odontotermes obesus and other insects. Several other researchers have 

investigated the activity of insecticidal metabolites produced by P. fluorescens against a 

number of insects, including mosquitoes (Padmanahban et al. 2005). It has also been 

engineered to produce the insecticidal Bacillus thuringiensis Cry proteins, with 

recombinant P. fluorescens showing moderate success against a test insect (Stock et al. 

2009). 

 Delftia sp., which was isolated in both the hemolymph of infected hosts and on 

the external surface of the nematodes, has recently been found in the hemolymph of the 

Glassy-Winged Sharpshooter (Homalodisca vitripennis) (Hail et al. 2011). In the past, 

Delftia spp. have shown the ability to, “degrade di-n-butylphthalate (DBP), an industrial 

pollutant and phthalate derivative, as a sole source of carbon and energy” (Hail et al. 
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2011, Neelakanteshwar et al. 2006). Delftia spp. have not been found to cause insect 

mortality, suggesting the presence of this bacteria could be used as sustenance by the 

nematodes. Hail et al. (2011) found Delftia spp. in the hemolymph. Delftia sp. may 

proliferate in the insect host, and upon death, be fed upon by the nematodes, and stick to 

the cuticle of the nematode as it exits the host. Delftia spp. are also common soil-

dwelling organisms, with one strain showing potential as a plant-growth facilitator 

(Morel et al. 2011). The Delftia sp. isolated from the external surface of the nematode 

and the hemolymph of infected hosts may be a chance associate of P. entomophagus, 

picked up at random in the environment and deposited in the hemolymph of hosts upon 

infection. 

 The internal surface of the nematodes generated only one genus of bacteria, 

Paenibacillus, which was identified in four sequenced samples. It should be noted that 

the results of the BLAST search produced conclusive evidence that the samples were 

Paenibacillus spp., but all were listed as non-speciated isolates with no classified name to 

date. All samples were listed as being of soil origin in the BLAST results. Paenibacillus 

nematophilus has been linked to the entomopathogenic nematode Heterorhabditis 

megidis, which carries Photorhabdus spp. as its entomopathogenic bacterial symbiont 

(Enright and Griffin 2005). This study suggests that P. nematophilus has either neutral or 

detrimental effects on H. megidis. Factors such as survival rate of infective juveniles (IJ), 

the yield of emergent IJ’s from an infected cadaver, and the size of IJ’s were unaffected 

by the presence of P. nematophilus. Conversely, the infectivity (the number of IJ’s 

entering a host) was cut nearly in half, and the motility of emergent IJ’s was severely 

hampered in comparison to control (reared in the absence of P. nematophilus) nematodes. 
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Another species of Paenibacillus, P. larvae, is the major causal agent of American 

foulbrood disease in honeybees. The bacteria, if present in the diet of honeybee larvae of 

the first or second instar, causes an infection, with as little as 10 infectious spores causing 

mortality (Brodsgaard et al. 1998). With that being said, many Paenibacillus spp. are 

opportunistic in nature and are benign to insects (Qin et al. 2006).  

 Three species of bacteria isolated from the external cuticle of the nematodes are 

of note, P. fluorescens, Delftia spp., and S. proteamaculans. As previously mentioned, 

two isolates, P. fluorescens and Delftia spp., were found in both the hemolymph of 

infected hosts and in the external nematodes samples. Serratia proteamaculans was 

isolated from the hemolymph of nematode infected G. mellonella larvae exposed to 

English soils (Al Own et al. 2011). Galleria mellonella larvae were used as bait for 

potential entomopathogenic nematodes in soils from two locations in the United 

Kingdom. Using methods very similar to our own, Al Own et al. (2011) gathered infected 

G. mellonella and placed them on white-traps to collect emergent nematodes. 

Hemolymph samples from infected and uninfected larvae were collected in addition to 

internal nematodes samples which were gathered by surface sterilizing and crushing the 

nematodes. They found that the hemolymph of the majority of the infected insects 

contained a S. proteamaculans like bacteria. These bacteria were found to be associated 

internally with two species of Rhabditid nematodes and one species of Pristionchus 

nematode, but not with uninfected hemolymph (Al Own et al. 2011). This study also 

proved the ability of the nematodes to successfully feed and reproduce on the S. 

proteamaculans like strains, suggesting a possible symbiosis in nature.  
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 It is interesting to note that our study found S. proteamaculans externally 

associated with nematodes while Al Own et al. (2011) found it associated with the 

hemolymph and the internal surface of the nematodes. One possibility for the difference 

is that the Al Own et al. (2011) study did not explicitly isolate external bacterial 

associates of the nematodes. Serratia proteamaculans may also be an external associate 

of Pristionchus and Rhabditid nematodes as our findings suggests. Another possibility is 

that due to the limited number of internal samples explored in our study, S. 

proteamaculans may have been missed, but is in fact an internal symbiont in our studied 

system as well. 

 In analyzing all of the bacterial species found in association with P. 

entomophagus and the hemolymph of infected hosts, a close internal association with 

entomopathogenic bacteria typical of widely studied entomopathogenic nematode 

systems (Heterorhabditis/Steinernema nematodes with Xenorhabdus/Photorhabdus 

bacteria) was not found. Conversely, a loose association between bacteria in the 

hemolymph of infect hosts was found with those on the external surface of P. 

entomophagus. The presence of Serratia spp. in both the hemolymph and on the external 

surface of P. entomophagus is the most likely explanation of M. rubra mortality by the 

infecting P. entomophagus nematodes. 

 Pristionchus entomophagus pathogenic associations may be relatively new. While 

Pristionchus spp. have been found in species specific necromenic associations with 

beetles in Europe for quite some time (Rae et al. 2008), and Poinar (1969) found the 

diplogasterid nematode Pristionchus uniformis to be pathogenic against G. mellonella in 

laboratory testing, the fact that P. entomophagus has recently been shown to be 
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pathogenic against M. rubra creates a situation which could represent a host shift to these 

invasive insects (although P. entomophagus may have a broader, undiscovered native 

host range that includes M. rubra among other species) 

 This new found parasitic and pathogenic relationship between P. entomophagus 

and M. rubra affords scientists the opportunity to study the possible mechanisms that 

allow for the evolutionary switch from a necromenic lifestyle to a predatory lifestyle by 

P. entomophagus. It also allows for the study of the actual mechanism of pathogenicity 

employed by P. entomophagus, which lacks a distinct morphological adaptation to 

facilitate the formation of a symbiotic relationship with entomopathogenic bacteria. 

Because P. entomophagus is different from other entomopathogenic nematodes of the 

genera Heterorhabditis and Steinernema, the mechanism of pathogenicity may be similar 

to what has been documented in the past within those systems, i.e. a close association 

with an entomopathogenic endosymbiont, or it may be very different. 

 Nematodes of the genera Heterorhabditis and Steinernema have long been used in 

pest control due to their entomopathogenic capabilities, mainly attributed to their 

endosymbiotic bacteria of the genera Xenorhabdus and Photorhabdus. Due to this large 

bank of evidence suggesting that internal bacterial symbionts are implicated in insect 

mortality, the fact that only four internal nematode samples were identified to species is a 

limitation of this study. The sampling of more internal bacterial isolates would likely give 

a more complete picture of the internal microbial community. 

 With that being said, the presence of Serratia spp., P. fluorescens, and Delftia 

spp. in both the samples isolated from the hemolymph of infected hosts and the external 

surface of the nematodes does suggest the potential role of external bacteria in insect 
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mortality. If, for example, a soil bacterium pathogenic to insect hosts was present at 

random in the environment, some nematodes would be exposed to the bacteria and pick 

up the bacteria externally while others would not. If this were the case, insect mortality 

between sites, and even within sites, could be variable based on the presence (or lack 

thereof) of the intermittently distributed external symbiont. There is some evidence of 

this type of process occurring in the nematode community. Poinar (1969) reported that 

the diplogasterid nematode Mesodiplogaster lheritieri directly caused insect mortality by 

rupturing the digestive tract of the insect, entering the hemocoel, and bringing in bacteria 

which caused septicemia. Furthermore, documented cases in the plant parasitic nematode 

“Rathayibacter-Anguina disease complex” affecting plants state that in wheat, Anguina 

tritici carries bacterium on its external body surface, acting as a vector for a bacterial 

infection of the plant in the wound it creates by feeding (Gupta and Swarup 1972). If 

these associations were at random, as suggested, this would explain the difference in 

mortality between sites documented by Groden et al. (2010) in preliminary testing of P. 

entomophagus on laboratory reared colonies of M. rubra from various sites in Acadia 

National Park. Unfortunately, evidence of this kind of interaction existing within the 

entomopathogenic nematode community is virtually non-existent. 

 Given the findings of this study and those of Al Own et al. (2010) regarding the 

association of Serratia spp. with P. entomophagus, more testing of both the internal and 

external surfaces of emergent nematodes within the Acadia National Park M. rubra 

community is warranted. Studies using axenic nematode and species specific bacteria for 

the inoculating of nematodes may help determine the actual method of pathogenicity 

employed by P. entomophagus. 
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Conclusion and Future Directions of the Study: 

 Following BLAST search comparisons of 24 isolate sequences which we 

obtained, we identified 14 species of bacteria associated with P. entomophagus and its 

infected hosts. All of these isolated bacterial species have previously been reported as 

associated with nematodes, insects, the rhizosphere of plants, fungi, or soil. 

 The presence of Serratia spp., bacterial species previously implicated in insect 

mortality, in the hemolymph of infected insect hosts is promising, and suggests a possible 

role of these bacteria in nematode-induced mortality of M. rubra. One species, P. 

fluorescens was found in both the hemolymph samples and on the external cuticle of the 

nematodes, and while it has been found to cause insect mortality in the past, it has not 

been found associated with nematodes infecting insects. Despite the identification in this 

study of several bacterial species previously implicated in insect mortality and related to 

entomopathogenic nematodes, further work is needed to determine the role of the 

bacterial species in the pathogenicity of these nematodes against M. rubra. Future studies 

are needed to determine the origin of the bacteria introduced into the insect host by the 

nematode, and the mechanism by which they are introduced in order to show a clear link 

between bacterial isolates in the hemolymph of infected insect hosts and isolates 

associated with the internal and external surfaces of the nematode. 

 In my study, I did not attempt to isolate bacteria from the hemolymph of 

uninfected insect hosts, as was done by Al Own et al. (2011). This would be necessary to 

confirm that the species detected in the hemolymph of the nematode infected hosts 

resulted from the nematode infection. However, past research has suggested that  as little 

as 1% of the microorganisms in nature can be cultivated using conventional techniques 

such as culture media and naked-eye detection (Amann et al. 1995). In this study, I only 
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used culture-dependent techniques for the initial isolation of bacteria from nematodes and 

infected insect hosts. Furthermore, only one media, Trypticase Soy Agar, was used at a 

general growth temperature of 29°C. This is a very common agar and is generally used as 

an all-purpose medium in situations where many kinds of microorganisms are expected 

(Disckson 2000). Many bacteria need very specific growth conditions, including 

temperature, humidity, and nutrient availability (Kaiser 2006). It is generally accepted 

within the scientific community that culture dependent and culture independent 

techniques are necessary to fully characterize the bacterial diversity in soil (Hamaki et al. 

2005, Liesack et al. 1997). While there is a potential for the expansion of culture 

techniques in order to capture novel species (Joseph et al. 2003), due to the general 

culture techniques used in this study, it is possible that some of the species involved in 

the tritrophic interactions between P. entomophagus and M. rubra were not cultured. 

 A potential complement to a study such as this would be the incorporation of 

culture independent techniques such as scorpion primers, pyrosequencing, and denaturing 

gradient gel electrophoresis (DGGE) with the goal of obtaining more samples and a more 

complete picture of the bacterial species involved in the relationship between P. 

entomophagus and M. rubra.  

 Ciancio et al. (2000) used a novel molecular tool, scorpion primers, to detect an 

unculturable nematode parasitic bacterium, Pasteuria sp. from the soil, suggesting the 

potential existence of unculturable nematode-related species. In this study, the scorpion 

primer was used to target a suspected species. The sequence of the scorpion primer must 

be written as the reverse complement of the target, so this tool is ineffective in surveying 
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samples for unknown unculturable bacterial species, but very specific for targeted 

species. 

 Pyrosequencing is a technique that is commonly used when the detection of 

species from a mixed sample such as in seawater or soil, is desired. Pyrosequencing 

works by fragmenting all captured DNA and sequencing each fragment enzymatically. 

Each nucleotide is added in sequence to the solution containing the fragments rather than 

all at once. The amount of each base pair being added to the sequence is quantified by the 

amount of light emitted. The group of fragments gathered is then assembled into 

complete genomes by a computer affording the identification of many species in a sample 

from the gathered “DNA soup” without culturing. In this study, the incorporation of 

pyrosequencing would allow for sampling directly from gathered hemolymph, and the 

internal and external rinses of nematodes rather than from cultured colonies.  

 Denaturing gradient gel electrophoresis (DGGE) also allows for the isolation of 

fragments of DNA from an uncultured sample. DNA from an unknown sample run in 

DGGE will fragment in a species specific manner. Furthermore, some DGGE techniques 

are capable of detecting differences between two sequences as little as 1 base pair. After 

fragments are excised from the gel, they can be sequenced and identified down to species. 

 Another approach that could prove useful for exploring the relationship between 

P. entomophagus and its bacterial associates in infection and pathogenicity is the 

development of axenic populations of the nematodes (nematodes with no bacterial 

associates). With the recent discovery of S. proteamaculans as an insect pathogenic 

bacteria associated with P. entomophagus in the United Kingdom, rearing of axenic 

nematodes on S. proteamaculans and subsequent exposure to M. rubra would provide 
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valuable comparative information to the work of Al Own et al. (2011). Axenic nematodes 

could also be inoculated with other bacterial species isolated from the nematodes 

emergent from M. rubra as well as the hemolymph of infected hosts. It is possible that 

some species may play a role that is non-pathogenic to the insect host. It has been 

documented that P. nematophilus has direct effects on the pathogenic potential of 

nematodes while having no role in insect mortality (Enright and Griffin 2005). It is 

possible that pathogenicity is only achieved if a specific combination of bacteria is 

associated with the nematode and transferred to the insect host. By testing each species of 

bacteria found in association with P. entomophagus in axenic nematodes, it could be 

discerned which species, if any, are involved in insect mortality and perhaps if pair-wise 

or group associations of bacteria are necessary for mortality. 
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Appendix A: Methods for mass production and storage of nematodes 

 In previous studies, collected nematodes were studied but not propagated for 

future study (Groden et al. 2010). In order to produce a sufficient number of nematodes 

to study and store for future use, Galleria mellonella (waxworm) larvae were inoculated 

with nematodes from all sites to propagate their numbers. A first trial was conducted 

using nematodes stored at 4°C from older testing. Nematodes from eight sites throughout 

Acadia National Park were used.  Two waxworm larvae were placed in five separate Petri 

dishes for each site, totaling ten inoculated larvae. Larvae were monitored for time of 

death, decay pattern, and the emergence of nematodes. A second trial was run using fresh 

nematodes from M. rubra cadavers collected from colonies reared in the laboratory. 

Waxworm larvae to be inoculated were set up in two different environments, sand and 

soil. One hundred milliliter cups were set up with either 1 cm of sand or 2.5 cm of soil. 

Five waxworm larvae were added to each cup and inoculated with the emergent 

nematodes from one M. rubra cadaver. Cups were monitored daily, and cadavers were 

removed using forceps and placed in white traps (Nguyen, 2005). The appearance and 

density of nematodes was noted. Nematodes were collected and placed into 1.5 mL 

microcentrifuge tubes and stored at 4°C. Another subset of the harvested nematodes were 

plated onto Baby Food Agar (BFA) and stored at room temperature. 
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Appendix B: Initial attempts at isolation of bacteria from gut cavity of nematodes 

 Original Procedure: After plating aliquots of the external rinse solution, 1.5 mL 

microcentrifuge tubes containing nematodes were centrifuged and the supernatant was 

drawn off. One milliliter of 1% bleach solution was added to each tube and left to sit for 

2-3 minutes, gently vortexing periodically. Afterwards, tubes were centrifuged at 13,000 

RPM for one minute and the supernatant was drawn off, being careful to leave all 

nematodes at the bottom of the tube. Each tube of nematodes was rinsed with 1 mL of 

sterile distilled water three times, allowing the nematodes to sit in the water for 1-2 

minutes while gently vortexing and centrifuging each rinse. Nematodes were then 

crushed using a pestle unit that fit tightly into the bottom of the 1.5 ml microcentrifuge 

tubes (National Scientific Supply Co., Claremont, CA, USA). Crushed nematode 

solutions were plated onto TSA in 300 μL aliquots and incubated at 29°C degrees for 48 

hours. Unique isolate colonies were transferred to fresh TSA plates and grown at 29°C 

for 48 hours, after which samples were stored at 4°C. 

 Modified Procedure: After completing the original procedure, it was found that 

the nematodes were lost in the process. It was determined that the amount of pipetting 

involved in surface sterilizing and rinsing the nematodes within a 1.5 mL microcentrifuge 

tube was the main cause of lost nematodes. As a result, a different procedure, including a 

standardization of nematode concentration that was not previously done, was undertaken 

in an attempt to minimize the loss of nematodes. 
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