
Figure 1.1 : Example showing a user pointing at a building 



1.2 Background of Thesis 

In computer science the term interaction is frequently used to describe the 

communication between a user and a computer and is referred to as human-computer 

interaction (HCI) (Helander 1988). HCI is concerned with the joint performance of tasks 

by humans and machines; the structure of communication between humans and 

machines; human capabilities to use machines (including the learnability of interfaces); 

algorithms and programming of the interface itself; engineering concerns that arise in 

designing and building interfaces; the process of specification, design, and 

implementation of interfaces; and design trade-offs. HCI thus comprises science, 

engineering, and design aspects (Hewett et al. 1996). Improvements in HCI have led to 

an enhanced usability and a broad acceptance of computers in everyday life. Today's user 

interaction involves primarily typing with a keyboard and selecting or drawing with a 

pointing device, such as mouse or trackball. The future development of HCI is expected 

to be characterized by new, innovative, and human-centered input devices, which are 

made possible through the use of portable computers and improved interaction techniques 

(Shneiderman 1990). 

With the advent of wireless technology, the creation and deployment of computing 

technology is becoming an invisible part of everyday life and commerce (Weiser 1991). 

The emerging mobile technologies have provided people with the ability to work in novel 

and previously unanticipated ways. Such developments are at both the level of emerging 

technological infrastructures for connectivity (e.g., Bluetooth, Sun's Jini, and HP's Jet 

Send, location pinpointing technologies, 3G and GPRS) and mobile information 



appliances (e.g., mobile phones, personal digital assistants (PDAs), and laptop 

computers). They have the potential of provoking even more radical changes in work 

practices and encourage an even greater level of mobile work and distributed 

collaboration (Perry et al. 2001). 

These advances have provided the basis to expand GIs technology to handheld 

devices. Mobile GISs can provide access to data anywhere and anytime the user desires. 

Related operations, such as querying spatial data, performing spatio-temporal analysis or 

modeling, become possible on the go (Cappelletti 1997). Innovative GIs  front ends and 

interaction techniques have to be developed to make use of the geographic information 

on mobile handheld devices. Egenhofer and Kuhn (1998) foresee several GIs appliances, 

such as magic wands and intelligent geospatial pointers, to identify remote geographic 

objects by pointing at them. These appliances will provide users with opportunities to 

display and query spatial data anywhere anytime. The mobile handheld device equipped 

with a global positioning system unit (GPS) can be used to obtain the location of the user 

carrying a handheld device. Such a device, linked with orientation sensors, captures the 

direction in which the user is pointing. The position and direction are then matched with a 

digital terrain model, which is part of the devices knowledge base, to determine the object 

the user is pointing at. 

Such systems must be able to deal with very large spatial data sets. Advanced 

computational models are needed to integrate different geographic data sources and to 

respond in real time. Other useful information about the object can be found out about the 

object with the integration of mobile GIs and the Internet. 



1.2.1 Vision 

Conventional query languages, such as the SQL, use text-based statements (Egenhofer 

1992). They work well within data domains where data can easily be stored in tables, but 

lack expressiveness and flexibility within more complex domains, such as images, maps, 

or other spatially related, multi-dimensional data (Egenhofer and Frank 1991). Recent 

research activities in visual information retrieval systems investigated novel techniques to 

query spatial data more efficiently (Blaser 2000). With an "I h o w  it when I see it" 

mindset, users feel that there is clear need for a better visual information retrieval system 

(Gupta et al. 1991). Unlike the SQL-based approach, these systems focus more directly 

on the end result, since an example of a user's query can be used as a formulation of a 

query statement (Caduff 2003). 

As a framework and foundation, we use a pointing based system (Egenhofer and 

Kuhn 1998) that allows users to formulate a query by pointing at remote geographic 

objects using a handheld device equipped with a GPS unit and orientation sensors. Ln 

order to determine the object being pointed at based on the pointing direction the line-of- 

sight between the object and the user has to be calculated in the model (for the given 

terrain) stored in the device's knowledge base. The target point is calculated based on the 

user location (x, y, z from GPS) and the pointing direction of the handheld device ((8,a) 

from the orientation sensors). These computations, however, assume that the line-of-sight 

of the user holding the device and the direction of the handheld device is the same. This 

assumption does not necessarily hold true. This work, therefore, develops and evaluates a 

pointing error compensation method while pointing with arms outstretched and 

orthogonal to the user's body. 



1.2.2 Pointing 

People naturally use gestures to communicate. It has been demonstrated that young 

children can readily learn to communicate with gestures before they learn to talk (Collins 

1988) . Pointing is the most natural gesture. It is used where there is no other mutually 

understood way of communication, such as giving directions to a tourist to a correct 

address. People point using their hands or fingers; however, it is also possible to point 

virtually by glancing in a particular direction or at a particular object. Pointing is a 

modality that focuses on one object or direction at a time. Some people can point by 

touching the target, while others have to point with their fingers if the target is far away. 

There can be various problems if a person is pointing at an object in order to help a 

stranger. The stranger may or may not perceive what the other person is pointing at 

because of differences in their relative positions and line-of-sight. 

Many studies comparing joysticks and other pointing devices exist; however, the 

domain is typically desktop computing (Gill et al. 1991). Non-desktop evaluations, to 

date, are limited to remote pointing, such as in presentation or home entertainment 

systems (Westerink 1994). A mouse is a common pointing device, but using it is very 

different from natural pointing. Pointing is a suitable interaction modality to select visible 

objects, to initiate process, or to set a focus. 

Although pointing is a natural and deeply rooted part of our communication, current 

interface technology does not take advantage of it. This situation is not a conscious 

design decision, but results from the evolution of interface technology. 



1.2.3 Pointing as an Alternative Modality for GIs 

The user interface design process comprises two sets of design decisions, one set 

determining what users can do through the interface and the other determining how they 

can do it (Gellersen 1995). Decisions in the first set are concerned with the types of 

information that can be exchanged and the operations a user can invoke. The second set 

of design decisions is concerned with user interface appearance. The appearance is 

determined by the interaction modalities (spoken, written, gestured) chosen for 

information exchange and invocation of operations. 

Recently, new interaction technologies have become available and affordable, thus 

enabling new interaction modalities (Thomas et nl. 1999). This new era of HCI is 

expected to pave the way for people to use modalities such as pointing. A tourist, for 

example, might find it easier to point to a building and obtain relevant information about 

it by using a handheld device rather than trying to ask a stranger who does not understand 

his or her language. The interaction must be supported by adequate software and 

hardware technology, leading the user through the possibly complex process of selecting 

objects by pointing towards them. With recent advances in highly portable mobile 

computing devices, pointing can become the modality of choice to identify remote 

geographic objects and to get relevant spatial information about them. 

1.3 A Pointer-Based System for Querying Geographic Information 

Portable applications are appealing to GIs users. In the future, mobile GIs will extend 

GIs into the field through wireless communication technology (Harrington 2002). As real 

time access becomes a reality, mobile GISs will use existing geographic data for more 
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sophisticated queries and analysis operations. Pointer-based query systems on handheld 

wireless devices promise to be an appropriate approach to querying an object in an 

unfamiliar environment. The following sections describe the problem statement, goal, 

key research questions and hypothesis, and scope of this thesis. 

1.3.1 Problem Statement 

In order to enable such an innovative human computer interaction, a number of 

fundamental technical challenges must be overcome. Let P1 be the location of a person 

holding an intelligent pointer in her hand and T1 the position of the target or object being 

pointed at by the person in a given terrain (Figure1 .l) .  In order to detennine the object 

being pointed at based on the pointing direction the line-of-sight between the object and 

the user has to be calculated. Given an observer point PI and a spherical coordinate 

system centered at PI, a visual ray R is identified by the pair @,a), called a pointing 

direction, where 8 is the horizontal angle, that is, the angle between the projection of ray 

R on the X-Y plane (r), and the X axis and a is the vertical angle, that is, the angle 

between a ray R and the projection of ray R on the X-Y plane. With these measurements 

it is possible to calculate within a terrain model at what object the user is pointing. 

These computations, however, assume that (1) the pointing direction matches 

with the line-of-sight and (2) the observations about location and direction are precise 

enough so that a computational model will determine the same object as what the user 

points at. Both assumptions are not true. The thesis, therefore, develops an efficient error 

computational model to reduce the discrepancy between the line-of-sight of the eye and 

the pointer direction. 



Figure 1.2: User pointing at a building 



1.3.2 Coal 

The goal of this thesis is to evaluate a pointing error compensation method for pointing 

with a smart pointer in a mobile environment. The work explores errors in pointing to 

targets using a handheld device and ways of correcting such errors while pointing with 

arms outstretched. With the pointing error compensation the measured direction can be 

transformed such that it then leads to an accurate identification of the object the user 

pointed to. These calculations rely on line-of-sight algorithms in a digital terrain model 

for query-by-pointing. 

1.3.3 Research Question and Hypothesis 

Pointing, to get information about real world objects, promises to enhance interaction in 

mobile GIs. Many research questions, however, arise about the usefulness of pointing as 

an alternate modality in mobile GIs and the accuracy of the model to determine the 

object being pointed at. The following questions are challenging questions that the 

approach developed in this thesis can answer. 

Question 1 : What are the difserent sources oferror whilepointing? 

There are lots of different ways a user can point to an object such as with her arms 

outstretched or by holding the pointer close to the eyes or looking in a different direction 

while pointing. What are the different types of errors in pointing with a handheld device? 

What are the appropriate strategies to overcome errors in pointing? These questions are 

relevant because they help us find the best way to identify the targets in a computational 

model. 



Question 2: How to correct the errors in query-by-pointing? 

A mathematical model with a coordinate system centered at the neck can be used to 

correct the errors in pointing with arms outstretched. A pilot study was conducted to 

calibrate the model. Significant improvements in the result were obtained after applying 

the correction factor to the data obtained while pointing with arms outstretched. Is this an 

appropriate strategy to overcome errors in pointing? What are the key variables on which 

the accuracy of the model depends upon? 

Question 3: What are the qferent challenges involved in query-by-pointing using a 

smart pointer? 

Based on the assumption that a real world object can be represented on a handheld device 

by an accurate surface model and reduction in the pointing error, a user can identify 

remote objects in the real world by pointing at them. What are the different algorithms 

involved in the line-of-sight computation based on the pointing direction? The 

determination of the object fkom a given user location depends on suitability of the line- 

of-sight algorithms based on the location of the user and the object in a given surface 

model. 

For correct results the direction of the handheld device, measured with the 

gyroscope, needs to be corrected such that the pointing direction @,a) coincides with the 

line-of-sight of the user. For this purpose pointing error compensation method has been 

designed which considers the person's body measurements fkom neck-shoulder joint, 

neck-center of the eyes, and the arm length. We hypothesize that: 



Pointing error coinpeilsation method reduces the discrepancy 

between the uilgular values of the line-of-sight over the tip of the 

pointer and the pointer direction while pointing with our arms 

extended. 

1.3.4 Scope of Thesis 

Querying remote geographic objects by pointing at them using a handheld device 

depends on the user location (from GPS) and the pointing direction (from orientation 

sensors). The line-of-sight computation between the user and the pointed object does not 

depend on the distance between the user and the pointed object. This work is based on the 

assumption that an accurate surface model can represent real world objects. We address 

the different algorithms involved in the line-of-sight computation in a terrain model based 

on the pointing direction but the focus was not on developing faster and accurate 

algorithms for surface modeling. An overview of the algorithms is provided (Chapter 2 

and 3) for point visibility computations on a digital terrain model. The prototype for line- 

of-sight computation further demonstrates its suitability in query-by-pointing. To 

determine what object the user is pointing at, we assumed that pointing direction of the 

handheld device matches with the line-of-sight of the eye of the user. This assumption 

however, does not hold true. We develop a method to reduce the angular shift between 

the line-of-sight computation of the eye over the tip of the pointer and the pointer 

direction while pointing with arms outstretched. A descriptive model was considered with 

a coordinate system centered at the user's neck. The distances measured from; neck to 

eye, neck to shoulder, shoulder to handheld pointer, and the pointing direction are the key 



variables required for compensating errors in pointing. The results of the pilot study 

conducted using a gyro-enhanced sensor further proved the accuracy of the model. The 

pointing error compensation method focused on pitch correction. 

1.4 Approach 

This thesis is concerned with evaluation of a pointing error compensation method to 

reduce pointing errors. For a pointer-based query system to materialize we need a digital 

model of the real world, line-of-sight algorithms between the user and pointed object, and 

methods to compensate for errors in pointing. A large percentage of the knowledge 

inherent in a real world system is dependent upon the spatial association of system 

components (Gimblett and Ball 1991). Spatial relations do not exist in the world in any 

meaningful sense. Rather, they exist in minds, to aid in making sense of the world, and in 

interacting with it (Mark and Frank 1989); therefore, our concern is with human 

perception of the real world objects and their representation. Models can be used as a 

surrogate of the real world. The appropriateness of the model is determined by the 

sufficiency of information it provides about the system. Mathematically we see a 

situation similar to a homomorphism, which essentially is a mapping that preserves 

structure (Frank et al. 1997). 

The first section of this thesis is concerned with modeling the terrain surface and 

understanding the algorithms involved for computing the line-of-sight between the 

observer point (user) and the target point (pointed object) based on the pointing direction 

in a given terrain model. The terrain model is a mesh of interlocking triangles that 

provides an efficient approximation of the terrain surface. In the second phase the 



research focuses on developing a method to reduce the errors in pointing with arms 

outstretched. A pointing error compensation method was developed to correct the errors 

in pointing. The results of the pilot study were used to evaluate the pointing error 

compensation method. 

1.5 Major Results 

The survey about the pointing behavior of people using a pointer equipped with 

orientation sensors provided new insights about the errors in pointing. It showed that the 

pointer should be held close to the user's eyes before pointing to an object. When using it 

with arms outstretched, however, often big deviations occur between the line-of-sight of 

the eye and the pointer direction. In order to correct for such errors, we suggested a 

method based on a coordinate system centered at the neck and distances measured from 

the neck to eye, neck to shoulder, shoulder to handheld point, and the pointing direction. 

The results of the experiment conducted using orientation sensors calibrated the model 

and demonstrated that it reduced such errors in pointing with arms outstretched. 

Pointing promises to be an appropriate modality to formulate a spatial query. To 

enable such a system we need a better understanding of the algorithms involved in query- 

by-pointing. There are many algorithms available for computing the line-of-sight 

between the user and the object in a given TIN model; however, many algorithms are of 

theoretical interest and not of much practical significance because of difficulty in 

implementation. We explain the algorithms and complexities involved in computing the 

line-of-sight between the two points. The prototype of line-of-sight computation based on 



the pointing direction specified by the user demonstrates the suitability of point visibility 

algorithms for query-by-pointing. 

1.6 Intended Audience 

The intended audiences of this research are researchers, developers, and practitioners in 

all areas of interactive mobile information system. This thesis may be of interest to GIs 

professionals working in developing new user interfaces for future spatial information 

technologies. This thesis may also be of interest to researchers concerned with 

alternative, multi-modal forms of human-computer interaction. 

1.7 Organization of Thesis 

The remainder of the thesis is organized into five chapters. 

Chapter 2 reviews the terrain modeling techniques for the generation of the TIN model. It 

discusses the algorithm involved in computing the TIN model from a set of sample data 

points and the complexities involved in it. 

Chapter 3 addresses the problem of computing the line-of-sight in a TIN model. The 

algorithm discussed is important for understanding the concept of query-by-pointing to 

query remote objects using a handheld device based on the concept of homomorphism. It 

also describes the design and implementation of a prototype for computing line-of-sight 

between the user and the target point based on the pointing direction 

Chapter 4 provides the background for the approach to error detection, methods for 

dealing with such errors in the line-of-sight terrain model, and the assessment of the 



implication of errors in pointing to a target using a handheld device by a user. We 

introduce a mathematical correction model for correcting errors in remote pointing using 

a handheld device with arms outstretched. 

Chapter 5 describes the experiment conducted in a room using gyro-enhanced sensors 

and three participants to evaluate the model, and compare the pitch values after applying 

the error correction factor with the pitch values based on the user and target location in 

the given room. 

Chapter 6 summarizes the findings of this thesis, draws conclusions, and presents 

future research directions. 



C h a p t e r  2 

DIGITAL TERRAIN MODELS 

A terrain can be described as an extent of ground, region, or territory (Petrie and Kennie 

1991). It is part of the earth's surface. The five major features of terrain distinguished in 

military maps are hills, saddles, valleys, ridges, and depressions (Military 2001). Terrain 

also comprises of cliffs, overhangs, and other constructed features, such as cuts and fills, 

which result fkom the cutting-through of high areas and the filling-in of low areas to form 

a level bed for a road. Surface modeling is a general term to describe the process of 

representing a physical or artificially created surface by means of a mathematical 

expression. Terrain modeling is a particular category of surface modeling that deals with 

the specific problems of representing the surface of the Earth. 

Digital representations of the terrain are central elements of the mapping process. 

Unlike in surface modeling, where a unique mathematical expression can often be used to 

define the feature of interest, it is difficult in terrain modeling to define precisely the 

structure of the terrain by a single global mathematical function. Nowadays, the modeling 

techniques are also used to create digital design models of proposed structures, such as 

roads and buildings. The ability to accurately model a given terrain will help solve line- 

of-sight computations (Chapter 3) on a given terrain to identify the object the user is 

pointing at. The following section describes algorithms and data structures used to model 

a given terrain. 



2.1 Modeling Terrain 

A digital terrain model (DTM) is a digital representation of a portion of the Earth's 

surface (Peucker 1977). It is a representation of the continuous surface of the ground by a 

large number of selected points with known coordinates in an arbitrary coordinate field 

(Laflamme and Miller 1958). Obtaining a DTM is a three-step process. The first step 

consists of acquiring three-dimensional coordinates that represent the area to be surveyed. 

The second step involves division of the terrain surface into simple sub-regions (e.g., 

triangles). The third step determines a piecewise polynomial function that describes a 

terrain approximation for each sub-region. 

DTMs have been in existence for decades. They have been applied widely in 

geoscientific applications since the 1950s. The early work of Miller and La Flamme 

(1958) was concerned specifically with the use of cross-sectional data to define the 

terrain. Since then, several other terms, such as digital elevation model (DEM), digital 

height model (DHM), and digital ground model (DGM), have been coined to describe the 

surface. Although in practice these terms are often presumed to be synonymous, they 

often refer to quite distinct concepts. DTM is a more complex and all-embracing concept 

involving not only heights and elevations, but also other geographical elements and 

natural features, such as rivers, ridges, hills, and mountains (Petrie and Kennie 1991). 

They have become major constituents of geographical information processing. In GIs, 

DTMs provide an opportunity to model, analyze, and display phenomena related to 

topography or other surfaces (Weibel 1997). 

The place of DTMs among real-world applications has been constantly evolving, 



adapting to the changing needs of a multi-discipline workplace. Initially, DTMs were 

developed to work with large-scale mapping projects. As the use of DTMs grew, they 

became specialized to include a variety of applications, such as landscape architecture 

and mechanical part modeling. 

Many interesting application problems on terrain involve visibility computations. 

Describing a terrain through visibility information applies to geomorphology, line-of- 

sight communication problems, and navigation and terrain exploration (de Floriani and 

Magillo 1993). Problems that can be solved based on visibility consist of determining 

whether a given object located on a terrain is visible from a viewpoint located on the 

terrain. The choice of data sources and data structures for modeling a given terrain is 

critical for solving visibility problems. 

2.1.1 Data Structures 

The acquisition of accurate three-dimensional coordinates that represent the surface of 

the terrain is a vital stage in the process of terrain modeling. It is possible to form such 

models using a range of different techniques. The particular technique used will depend 

on factors such as the size of the area to be surveyed, the required accuracy of the data, 

and the type of information that will eventually be extracted from the model (Petrie and 

Kennie 1991). The DTM data derived from ground surveys, photogrammetric data 

capture, or from any other source must be structured to enable handling by subsequent 

terrain modeling. 

There are two common groups of approaches for terrain modeling techniques: (1) 

using a rectangular grid or (2) using a triangulation. In the rectangular grid approach, the 



data comprising the terrain model are measured or collected in the form of a rectangular 

grid. Grids present a matrix structure that record relations between data points implicitly 

(Figure 2.1 a). The shortcoming of this regular grid-based approach is that the distribution 

of data points is not related to the characteristics of the terrain itself. If the data-point 

sampling is conducted on the basis of a regular grid, then the density must be high 

enough to accurately portray the smallest terrain features present in the area being 

modeled. If this is done, then the density of the data collected will be too high in most 

areas of the model, leading to unnecessary and redundant data (Kostli and Sigle 1986). 

The triangulation approach is being used increasingly in terrain modeling (Figure 

2.lb). This method, referred to as triangular irregular network (TIN), is often used in 

terrain and surface modeling (Milne 1988). The triangular models represent the ground 

surface as series of non-overlapping, contiguous triangles with a data point at each node. 

The heights of additional points can be determined by interpolation. The triangulated 

method, therefore, overcomes the grid-based difficulties, providing a much more efficient 

method for representing surface terrain. With the use of TINS it is also possible to 

accurately define irregularities, such as sharp ridges and embankments. 



Figure 2.1: The two most commonly used data structures for DTMs: (a) a rectangular 
grid and (b) a triangulated irregular network (TIN). 

2.1.2 TIN Models Based on Triangulation 

A terrain model is represented by a set of vertices v, a set of edges e, and a set of 

triangular faces f (Figure 2.2). The three-dimensional coordinates of the original data 

points are assigned to the vertices. Each edge connects two vertices and is the intersection 

of exactly two faces. The terrain is approximated by the polyhedron consisting of the 

triangles. Inside the triangles, the surface is assumed to be planar. 

The major drawback of terrain models based on triangulation is the irregular 

shape of triangles generated from a single set of randomly located measured data points. 

Also, a triangulation often took an exorbitant time to execute in a computer (Petrie and 

Kennie 1991). These problems have been overcome, using either the Delaunay 

triangulation method (Delaunay 1934) or the radial sweep algorithm (Mirante and 

Weingarten 1982) to generate triangles from a given dataset. 



Figure 2.2: Projection of a TIN. 

2.2 Construction of a TIN 

The radial sweep algorithm was devised by Mirante and Weingarten (1982). The input 

data are in the form of randomly located points with x, y, and z coordinates. The point 

nearest to the centroid of the dataset is selected as the starting point for the triangulation. 

From this central point the distances and bearings to all other points in the dataset are 

calculated and the points are ordered by bearing. The radiating line (i.e., plane swept by a 

radius from a center point) to each point is established, and a long thin triangle is formed 

by connecting a line between the new point and the previous point. Although this 

algorithm results in non-overlapping triangles, the shapes and connections between 

triangles are undesirable. For many applications, a good triangulation is one without thin 



or elongated triangles (McCullogh 1983); therefore, the other most common optimization 

criterion for triangulation, the Delaunay criterion (1934), is often used for modeling the 

terrain. The Delaunay triangle has a unique vertex and no other vertex within the 

structure lies within the circle centered at this vertex. This method has several advantages 

over other triangulation methods: 

The triangulation is independent of the order in which the points are processed. 

The triangles are as equi-angular as possible, thus reducing potential numerical 

precision problems created by long skinny triangles (Figure 2.3). 

It ensures that any point on the surface is as close as possible to a node. 

Figure 2.3: Two triangulations: (a) a Delaunay triangulation (equiangular triangle) and 
(b) an arbitrary triangulation (long and thin triangle). 



2.2.1 An Algorithm for Computing a Delaunay Triangulation 

There are many Dealunay triangulation algorithms, some of which have been surveyed 

and evaluated by Fortune (Fortune 1992). Several optimal-time algorithms for Delaunay 

triangulations have been proposed in the literature. The divide-and-conquer algorithm 

(Guibas and Stolfi 1985) and the sweep-line algorithm (Fortune 1987), achieve optimal 

time complexity. Alternatively, a family of incremental algorithms has been used in 

practice because of their simplicity and robustness. 

The Bowyer Watson algorithm is often used for building a Delaunay 

Triangulation for its simplicity. This is an incremental algorithm, meaning that points are 

added one at a time into an existing triangulation and, although described for two 

dimensions, can be easily extended to three or more. When a new point is inserted 

anywhere within the bounding box the topology around the inserted point is updated. All 

triangles whose circumcircles contain the inserted point are removed and the resulting 

cavity is triangulated by linking the inserted point to all vertices of the cavity boundary 

(Figure 2.4). 

For an efficient implementation of the Bowyer-Watson algorithm, the information 

about coordinates of the original points, the neighboring elements, and the center of the 

n-dimensional circumsphere are permanently stored and updated during processing for 

each geometrical entity (i.e., point, edges, and triangle). This simple linking scheme 

automatically guarantees the Delaunay property of the new elements. 



Figure 2.4: Updating a Delaunay triangulation: (a) a Delaunay cavity and (b) the 
reconnection step. 

2.2.2 Computational Complexity 

The efficiency of an algorithm is measured by its time and storage complexity. Assuming 

a computational model time refers to the number of steps, as a function of number of 

points N, needed to complete the computation. Storage refers to the amount of storage 

space needed and is also measured as a function of n. To define the complexity of the 

algorithm used one need to highlight, what components are dependent on the number of 

points and, therefore, play an important part in the complexity equation. The time T 

needed to generate a triangulation for N points is 0 ( N ~ ) .  The optimal time is 0 (n log n). 

To improve the time complexity of the algorithm it is then necessary to implement a data 

structure that allows an efficient search of the first element to be deleted independently 

from the way the points are sorted. 



2.2.3 Data Structure for TIN 

Data structures are a way to organize data in a computer. Common examples of data 

structures are arrays, stacks, priority queues, and trees (Weiss 1995). Several data 

structures have been proposed for efficiently representing geometric models as a basic set 

of functionalities, such as Boolean operations and point location (de Berg 1997). There 

are two popular ways of storing TINS: one is based on triangles and the other based on 

points and their neighbors. The two structures are simplified versions of data structures 

that can store arbitrary planar subdivisions, such as doubly connected edge list or quad- 

edge structures (Figure 2.5) commonly used in GIs and computational geometry (de Berg 

1997; Dobkin and Tal 1995). 

Figure 2.5: A triangulation and its corresponding representation by (a) quadedge and 
(b) triangular data structures. 



2.3 Summary 

Digital terrain models (DTMs) are a major constituent of geographic information 

processing. One of the common digital terrain models is a triangulated irregular network 

(TIN). This chapter explored the individual elements of DTM techniques for the 

generation of TINS. We also discussed ways to represent a TIN in a data structure and 

reviewed an algorithm to construct a Delaunay Triangulation. Building a triangulation for 

a set of points can be seen as an efficient way of defining the relationship for geometric 

data sets. The particular method for building triangulations is considered optimal in 

regard to the shape of the elements generated, because the triangle shapes are as close as 

possible to those of regular triangles. This is an important property in spatial interpolation 

and visualization. Despite the fact that the Bowyer-Watson algorithm is not the fastest 

available, it has been preferred for simple algorithm design and ease of integration. This 

chapter reviewed the method to generate a TIN model that will be used for demonstrating 

the query-by-pointing concept in a given terrain in the next chapter. 



Chapter  3 

LINE-OF-SIGHT COMPUTATIONS 

Visibility problems on terrain are concerned with the computation of visibility 

information from a viewpoint, which can lie outside or inside the domain, or solving 

optimization problems with the use of visibility information. Examples of optimization 

problems related to visibility are finding the minimum number of towers of a given 

height necessary to view an area of the terrain or determining intervisibility between two 

points located on the terrain (de Floriani et al. 2003). Line-of-sight computation problems 

consist of finding a visibility network connecting two or more sites such that every two 

consecutive nodes of the network are mutually visible. Applications include the location 

of fire towers, radar sites, television or telephone transmitters, path planning and 

navigation (Nagy 1994). With recent advances in computer hardware and mobile GIs it 

might be possible to identify an object on a terrain by pointing at it using a handheld 

device in a given TIN model (Egenhofer and Kuhn 1998). Visibility computation 

algorithms are the basis for solving query-by-pointing using a handheld device. The 

remainder of this chapter describes in detail an algorithm used for computing the line-of- 

sight between objects and the user. The design and implementation of a prototype for 

computing line-of-sight between the user and the target point based on the pointing 

direction is also discussed. 



3.1 Line-of-Sight Computations on TINS 

Visibility problems on terrains can be divided into computation of visibility structures, 

which provides information about the portions of the terrain visible or invisible from a 

given view point, and visibility queries, which determine whether a given entity located 

on the terrain is visible from a given viewpoint (de Floriani and Magillo 1999). The basic 

visibility structure for a terrain is the viewshed, which is the collection of the surface 

portions visible from a viewpoint. Another visibility structure is the horizon of a 

viewpoint, which determines the farthest portion on the terrain that is visible from a 

viewpoint for every radial direction around it in the X-Y plane. 

A visibility query related to a point involves the line-of-sight computation to 

determine whether it is visible from a viewpoint. It is a fundamental step in identifying 

objects in a given terrain by pointing at them. Given a terrain elevation model E and two 

spatial objects represented by two points A and B, this work concentrates on the visibility 

test between A and B. We want to compute if there is any obstacle on E blocking the 

visibility between A and B. In this context the visibility test can be expressed as the 

following spatial query: Is there an intersection between the line segment AB and any of 

the triangles on E? We need specialized data structures that can query very large amounts 

of spatial data. 

Line-of-sight algorithms must be efficient in identifying the object being pointed 

at in the terrain model. Visibility problems considered in this work operate on the basis of 

a point of view located on the terrain. 



3.2 Theoretical Background 

In this section, some basic notions about Digital Terrain Models, the definition of the 

point visibility problem, and its existing solutions are introduced. The common 

terminology and definitions used in the visibility problems on the terrain are also 

discussed. 

3.2.1 Digital Models of a Terrain 

A Delaunay triangulation has an important property for visibility computation: it is 

possible to define a partial order relation (called the before1 behind relation), with respect 

to any point inside the domain of the subdivision (de Berg et al. 1991). Given a planar 

subdivision C and a point 0 in the plane, an edge e l  of C is said to be before an edge e2 

(and e2 behind e l )  with respect to 0 if and only if there exist a ray r emanating from 0 

and intersecting first e l  and then e2 (de Floriani and Magillo 1994). Figure 3.1 shows 

different situations of the beforehehind relation. 

Given a subdivision with the beforehehind relation, visibility information can be 

incrementally computed for each face or edge by taking into account only the 

configuration of that portion of the terrain formed by those faces and edges which come 

before in the order. Visibility problems on a terrain are classified into point, line, and 

region visibility on the basis of the dimensionality of their output information. 



Figure3.1: BeforeBehind Subdivision: a<b<c; d<e; f<g w.r.t to the observer point 0 .  

3.2.2 Common Terminology 

A candidate point is any point P = (x, y, z) belonging to or above the terrain. Given an 

observation point (an arbitrary candidate point) 0, and a spherical coordinate system 

centered at 0 ,  a visual ray R is identified by the pair (€),a), called view direction, where 8 

is the horizontal angle or the angle between the projection r of ray R on the X-Y plane 

with the X-axis, and a is the vertical angle or angle between ray R and the X-Y plane 

(Figure 3.2). 



AB 1 VB and A 

Figure 3.2: Observer at 0 pointing to A. 

Point visibility problems compute the set of points, chosen in a candidate set, visible 

fkom a predefined observation point, whereas line visibility problems compute curves on 

the terrain with special visibility characteristics with respect to an observation point, such 

as the computation of a horizon. 

3.2.3 Point Visibility 

Two points are mutually visible when the straight-line segment joining them lies above 

the terrain and touches them at its two extremes. Figure 3.3 shows how sample terrain 

data is projected on to the X-Y plane. 



3.3 Existing Algorithm for Point Visibility 

Many practical algorithms (Boissonnat and Dobrindt 1992; de Floriani 1989; Lee 1991) 

as algorithms of theoretical interest (Preparata and Shamos 1985), have been proposed 

for computing point visibility. We first discuss the concept of horizon, which serves as a 

good background for understanding the algorithm. Finally we discuss a "brute-force 

approach" and a faster approach for computing point visibility in a TIN model. 1 

3.3.1 Horizons on a Two-Dimensional Terrain Model 

The computation of the horizon of an observation point on a terrain is a well-defined 

problem in computational geometry, and several algorithms have been developed for its 



solution (Atallah 1989; de Floriani and Magillo 1993; Hershberger 1989) . Given a 

terrain M, and a viewpoint V = (xo, yo, zo), the horizon of the terrain with respect to 

viewpoint V is a function p = h (€I), defined for 0 E [0,2n], and for every radial direction 

9, h (9) is the maximum value a such that each ray emanating from V in a view direction 

(€I$), with p > a, does not intersect the terrain (de Floriani and Magillo 1993, 1999). 

This implies that the horizon of the terrain provides for each radial direction the 

minimum elevation that must have a visual ray emanating from the viewpoint in the 

given direction to pass above the surface of the terrain. Figure 3.4 shows an example of a 

horizon on a two-dimensional terrain model. 



Figure 3.4: Horizon of an observation point 0 on a terrain, projected on the X-Y plane 
in a given direction. 

From a given observer point, the bearing to all the other points in the data set is first 

calculated and then the points are sorted and placed in order by bearing. Figure 3.2 shows 

that from any given two points we can derive the relationship between coordinates and 

the view direction (9,a). From Figure 3.2 we have equation 3.1 a-d: 

BC 
tan 8= - 

OC 

tan 8 = Ya - YO (3.1 b) 
xa - xo 

AB 
tan a= - 

OB 



(za - zo) 
tan a = 

J(xa - xo)' + ( ya - yo) ' 

There is a relationship from a given observer point 0 to all the points on the terrain 

model. To reduce the horizon on a polyhedral terrain model to the upper set of segment, 

the edges of the terrain are expressed in a spherical coordinate system, centered at the 

viewpoint, and with only the two angular coordinates. This transformation produces a set 

of segments in the 8-a plane. Given a collection of segments in the plane, if the segments 

can be regarded as opaque barriers, then their upper envelope consists of the portions of 

the segments visible from a point. The upper envelope maps any x value, in the segment 

having a maximum angle a value over x (if such segment exists). Figure 3.5 shows an 

example of a horizon on a polyhedral terrain and the corresponding upper envelope of 

segments. It has been shown (Edelsbrunner 1989) that the complexity of the upper 

envelope of p segments in the plane is O(p a (p)) and, therefore, the complexity of the 

horizon of a polyhedral terrain with n vertices is equal to O(n a (n)). The upper envelope 

of p segments can be computed by either static divide-and-conquer approach or by a 

dynamic incremental one. In the next section the divide and conquer algorithm (Atallah 

1989) is discussed. 



Figure 3.5: Set of segments in the 0 - a plane, obtained by projecting the 
terrain edges, and the corresponding envelope (de Floriani and Magillo 1994). 

3.3.2 A Divide-and-Conquer Approach 

The algorithm for computing the upper envelope of a set of segments uses a sweep line 

algorithm for reporting all intersecting segment pairs having a maximum value P= h,@) 

in the terrain model. The divide part recursively splits the set of segments into two 

halves. The conquer part merges the results through a sweep line technique for 

intersecting two chains of segments. The sweep line algorithm moves a vertical line r 

from left to right through the (0-a)  plane and reports all intersecting segment pairs. The 

events are represented by the vertices of the two given envelopes, and the intersection 



points between them. At any event the sweep line status maintain the segments 

intersecting the sweep line I in sorted order, from top to bottom. Figure 3.6 illustrates the 

sweep line status of a pair of intersecting segments at different intervals. 

Figure 3.6: (a) Sweep line status (e8, e7, e6, e5) and (b) sweep line status 
(e8, e6, e7, e5). 

The status of the sweep line is the set of segments intersecting it. The status changes 

while the sweep line moves to the right, but not continuously. The current status of the 

sweepline is represented by the pair of segments, one each partial envelope, that are 

intersected by the sweep line, ordered according to their height. Only at particular points 

is an update of the status required. These points are called event points of the plane sweep 

algorithm. In this algorithm, the event points are the endpoints of the segments and the 

intersection points. The event may be an intersection point or a right end point or a left 

end point (Figure 3.7). By computing the upper envelope of such segments, we obtain a 



function that associates with each direction 0 the segment having maximum azimuth in 

direction 0 (i.e., the horizon or function h,(0) for 0[0,2n] from a given view point V). 

b 
last e 

b 
e u last e e u 

Figure 3.7: Processing an event e during Atallah's (1989) merging procedure with (a) 
an intersection point; (b) a right end point, and (c and d) left end points. 

3.3.3 A Brute-Force Approach 

Given a polyhedral terrain model, a point of observer location 0, and a view direction 

@,a), the ray shooting problem consists of determining the first face of the polyhedral 



terrain model hit by a ray emanating from an observer point 0 .  The mutual visibility of 

two points observer 0 and the target point T reduces to computing the intersection of the 

projection on the X-Y plane of segment s = OT, with the edges of the polyhedral terrain 

model. At each intersection point P between segment s and an edge e l  of the polyhedral 

terrain model (PTM) we test whether s lies above the edge of PTM corresponding to e l .  

If s is above the corresponding terrain edge at any such intersection point, then 0 and T 

are mutually visible (Figure 3.3). In general this process has a linear time complexity, in 

the worst case it is the number of edges of PTM, which is O(n), where n is the number of 

vertices of the TIN model. 

3.3.4 Faster Approach 

The second approach preprocesses the terrain model with respect to the observer point 0 

and builds a data structure on which the problem of computing the visibility of a point P 

from 0 can be solved in logarithmic time. The data structure has been proposed by Cole 

and Sharir (1989). The horizon tree data structure (Figure 3.8) is a balanced binary tree in 

which every node corresponds to a subset of edges and stores a partial horizon. The root 

corresponds to the whole set of edges of the terrain. Each left child corresponds to the 

half of the edges, associated to its parent, that are closest to the observer point 0, whereas 

each right child corresponds to the remaining half. Every node of the tree stores the 

partial horizon (Section 3.3.1) computed on the edges associated with the left child. An 

example of a horizon tree is illustrated in the Figure 3.4. A horizon tree can be computed 

in optimal time, since each partial horizon can be computed by a single application of the 

algorithm of Atallah. 



A ray-shooting query, represented by a view direction (8, a) ,  can be answered by 

descending the horizon tree, starting at the root. For any node v visited, the value P=hv(8), 

is computed and compared with a. If a>P, then the visual ray r, identified by @,a), 

passes above the current horizon, and the search continues in the right subtree of v; 

otherwise r passes below the current horizon, and the search continues in the left subtree. 

At the end of the process two consecutive horizons are found such that the visual ray 

passes above the first one, but below the second (de Floriani and Magillo 1994). In 

descending tree T, one node is visited at each level. For each node v the interval of the 

horizon associated with v containing ray r must be located. Figure 3.9 illustrates 

processing of a ray-shooting query on a horizon tree. 
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Figure 3.8: Visual ray r hits the point P on the terrain. 



Figure 3.9: Processing a ray-shooting query on the horizon tree (de Floriani and Magillo 
1994). 



A horizon tree can be computed in optimal O(na(n)logn) time, since each partial horizon 

can be computed by a single application of the algorithm of Atallah (1989) for 

determining the horizon of a point of view on a TIN model. 

3.4 Prototype For Line-of-Sight Computations 

The prototype demonstrates the suitability of point visibility algorithms for query-by- 

pointing. The building block for query-by-pointing is a surface model representing real 

world objects to be queried. The line-of-sight computation on a TIN model is based on 

the pointing direction (Figure 3.10). The location of the user (x, y, z) and the pointing 

direction (8 and a angles) are given as input to the TIN model. The pointing direction 

and the user location is used to compute the horizon from the given user location (i.e. is 

the farthest portion on the terrain that is visible from an observer point for every radial 

direction around it in the X-Y plane). This information is used to preprocess a terrain 

model into a horizon tree data structure that supports fast responses to ray shooting 

queries to determine the first point on the model hit by a query ray emerging from a point 

in a specified direction. 
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Figure 3.10: Process flow in a TIN model. 

3.4.1 User Interface 

Input to the prototype, interactive building of a TIN model, and line-of-sight computation 

on the model are the main features of the user interface. It consists of a text area for 

displaying the triangulation, a set of buttons used for line-of-sight computation on the 

TIN model, two slider bars representing the pointing direction, and a separate window 

displaying the location (x, y, z) of the observation and the target point. Triangulation of 

sample input points is enabled through mouse clicks in the viewer window. The input of 

sample data points can also be read from a file and is displayed as a menu item in the 

application. The user interface implements a model formulation mechanism, and the 

query-by-pointing mechanism for the results. The following section describes the two 

mechanisms. 

3.4.1.1 Model Formulation Mechanism 

The TIN model represents the surface as series of non-overlapping contiguous triangles 

with a data point at each node of the triangle. The heights of additional points inside the 

triangle can be determined by spatial interpolation based on height value of the three 
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vertices of the triangle. The sample input points are passed as mouse click event in the 

text area (Figure 3.1 1). As soon as four points are clicked in the text area the application 

checks the circum circle property and displays the delaunay triangulation in the given text 

area. The input of sample data points can also be read off from a file by choosing the 

appropriate menu command. 

Open 

(427.0.18.0) 

Figure 3.1 1 : Displaying TIN models. 

3.4.1.2 Query-By-Pointing Mechanism 

The user initiates a query by changing the values of the two-slider bars representing the 

pointing direction @,a) (Figure 3.12). The application can determine the first face of the 

triangle hit by a ray emanating from an observer point P, based on the value from the 

two-slider bars. The observer point P can be selected on the TIN model by clicking on the 



model afier setting the pointing direction. A ray traces a path according to the 

information provided and hits a face of a triangle in the given model. 

Figure 3.12: Slider representing pointing direction (0, a). 

3.4.2 Guided Tour 

This guided tour explains the steps involved in a typical pointing query. The task of 

query-by-pointing consists of three steps: (1) configuration of the sufice model, (2) 

adjusting the pointing direction, and (3) presentation of the results. In the first step, the 

user configures the TIN model by clicking on the window provided (Figure 3.1 1). The 

second step consists of adjusting the pointing direction, that is, the user adjusts the slider 

bars representing pointing direction. For a handheld device the input would be taken from 

gyro-enhanced sensors. When the parameters are adjusted a ray emanates from a given 

observer point and hits the first face of the triangle visible from the given observer 

location (Figure 3.1 3). The observer location is represented by the first click on the DTM. 

This face can further be queried to identify the object being hit by the ray. 
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Figure 3.13: Ray-Shooting-Query from an observer location. 

The value of the slider bars can be changed and the ray-shooting query can again be 

performed on the same model. Another TIN model can also be constructed by clicking on 

the text area provided. The details of the ray shooting query is presented in a separate pop 

up window that gives information about the location of the observer and the target point 

located in a given face of the triangle (Figure 3.14). It also gives information about the 

height of the ray when it crosses any intermediate blocking edges and the height of the 

point at which the ray crosses a given blocking edge. 



Ray Height at Obstacle Obstacle height 
(1) 878.08 81 0.07 
(2) 924.24 469.42 

Obsetver Location = (31 1.0,159.0,858.0) 
Target Location = (382.0,237.0,980.47) 

Figure 3.14: Corresponding details of the observer and target points. 

3.5 Summary 

In this chapter, the problem of computing point visibility on digital terrain models was 

addressed. The algorithms required for computing point visibility were discussed in 

detail. These algorithms are important for understanding and computing the line-of-sight 

between the user and the object at which the user might point using a mobile device. This 

information is important for identification of the object a person is pointing at. The 

prototype architecture, design and specification were discussed to understand the data 

flow and the interaction between the application program and the user. 



C h a p t e r  4 

POINTING ERRORS 

There are various sources of error while using a handheld device (equipped with a GPS 

unit and orientation sensors) for querying remote geographic objects by pointing at them. 

There can be errors in the GPS unit, used to provide the location of the user or in 

recording the exact pointing direction from the orientation sensors. There can also be an 

error in the line-of-sight of the user and the pointer direction. For query-by-pointing using 

point visibility algorithms (Chapter 3) we need to reduce the pointing errors to correctly 

identify a potential target. Several studies have shown that pointing to visual targets 

without movements of the user is complex by itself. It is well known that people make 

consistent errors when asked to point to visual targets in space (Soechting and Flanders 

1989) . 

This chapter develops a method for error compensation while pointing using a 

handheld device with arms outstretched. 

4.1 Errors in Pointing 

Pointing and clicking requires good hand-eye coordination, which like any other physical 

task takes time and practice to learn. Many research and commercial systems have 

investigated isometric joysticks and other pointing devices, however, the domain is 

typically desktop computing (Barrett et al. 1995). Pointing with a handheld pointing 

device is a function of the distance and the width of the target (Mackenzie 1992). Several 



studies have shown that subjects undershot faraway targets in a systematic way, whereas 

they sometimes overshot nearby targets (Soechting and Flanders 1989). For query-by- 

pointing the user should be able to point at targets with reasonable accuracy so as to 

identify the target correctly. The error in pointing is also dependent on the level of detail 

the user wishes. For example, if a user is pointing to a window of a far away building 

then the degree of pointing error is more critical compared to when the user is pointing at 

a building as a whole at the same distance. The pointing should be more accurate when 

users point at a window than pointing at the building. 

4.2 Problem Formulation and Analysis 

In this study, we were primarily interested in the difference between the line-of-sight of 

the eye and the pointer direction. Deviations between the two can lead to wrong 

identification of the potential target; therefore, the pointing behavior of subjects with the 

pointer held close to the eyes and with their arms outstretched was studied in order to 

reduce the error in pointing. 

Mathematically, solving the pointing error problem corresponds to finding the 

angle the eye makes with the X-Y plane while pointing at a potential target. This angle 

can be compared with the pitch values obtained while pointing with arms outstretched. 

The corrected pitch values can be used as an input for line-of-sight computation on a TIN 

model stored in a handheld device. 



4.3 Human Figure Model 

The human body has 40 degrees of freedom (Philips et al. 1993). Figure 4.1 shows the 

articulated model of the human figure. Pointing to a potential target by a human can be 

achieved by using different degrees of freedom in his or her elbows, wrists, and shoulder. 

Searching a three dimensional space for a solution based on so many degrees of 

freedom is complex. In order to reduce the complexity of finding a solution for errors in 

pointing in three-dimensional space, the following assumption is imposed as a constraint 

to find a solution for pointing errors: 

The arm is held straight such that the line-ofsight of the eye 

over the tip of the pointer coincides with the direction of the 

pointer while focusing on potential targets. 

Figure 4.1: Articulated model of the human figure with degrees of freedom (dofs). 



4.4 Pointing Error Compensation 

The pointing error correction problem involves computation of a correction factor that 

reduces the angular difference between the line-of-sight of the eyes over the tip of the 

pointer and the pointer direction. Figure 4.2 shows the error in pointing to potential 

targets with the user's arm outstretched. 

Target r - l  
Figure 4.2: Pointing error between the eye and the arm. 

To solve this problem, a pointing error correction method was developed that 

computes the angle between the ray emanating from the eye and the X-Y plane. A 

descriptive model was considered with a coordinate system centered at the user's neck 

between two shoulders (Figure 4.3). The problem addressed in the following section is: 

given a coordinate system centered at the neck, the distances from neck to eye, neck to 



shoulder joint, shoulder joint to handheld point, and the pointing direction (€),a), we wish 

to compute the pitch (vertical angle a ), between the eye and the X-Y plane. 

The following notation will be used in the model. 

SP: distance between shoulder and the pointer. 

EN: distance between eye and the neck. 

NS: distance between neck and the shoulder. 

P,,: projection of point P on the X-Y plane. 

P,,: projection of point P on the Z-Y plane. 

8: the horizontal angle between the projections of SP, that is, SP,, with the X-axis. 

a :  the vertical angle between SP and the X-Y plane. 

yl: the angle between the handheld pointer, eye, and neck (i.e. LPEN ). 



Figure 4.3: User's coordinate syst em centered e neck. 

4.5 Determination of Correction Factor 

Given the distances SP, EN, NS and the pointing direction that comprises of pitch (angle 

made with X-Y plane) and yaw (angle between the direction of the pointer tip and the 

axis perpendicular to it), the correction factor can be derived as follows. Figure 4.3 shows 

the mathematical model with neck as the origin. 



Figure 4.4: Coordinate system centered at the neck N. 

From ASP% we have: 

SP, = SP * cos( a )  

PP, = SP * s i n ( a )  

From ANSPry we have: 

PIP -v =NS~+SP,'-~*NS*S&,*COS(~O-Q) (4.3) 



From ANPPXI, we have: 

From the figure 4.5, we know that EPzy = EN - NPzy 

NP,, =PP,,,, Therefore EPq, = EN- PP,,.. 

From AEPTP we have: 

Since PP,,,=N&,, , 

From AENP we have: 

Y = cos -' ( EN' + EP' - NP' 
2 * E N * E P  

1 

Thus, we can compute correction factor as follows: 

Where 8 E [0,2n] and a E [- %,%I 
The angle made by the eye with the X-Y plane is 90- y ~ .  

The pointing error compensation algorithm is shown below: 



Computation Program for Compensating Errors in Pointing 

Program: Pointing Error Compensation for pointing using a smart pointer with arms 
outstretched: Numeric 
Input: Pitch (a), yaw (8) obtained form the orientation sensors and the distances from 
the neck to the eye (EN), shoulder joint (NS), and the distance from the shoulder joint to 
the handheld point (SP). 
Output: Compensation factor (CF), angle made by the eye while looking at the target 
with the X-Y plane. 
method: 

(1) From the triangle made by the projection of the handheld point P onto the 
X-Y plane (P,,) with the shoulder joint (S) and the handheld point P we 
have: 

Spry := SP * cos(a) 

(2) From the triangle made by the neck (N), shoulder joint (S), and the 
projection of pointer P onto the X-Y plane (P,,) we have: 

(3) From the triangle made by the neck (N), handheld point (P), and the 
projection of pointer P onto the X-Y plane (P,,) we have: 

(4) From the triangle made by the handheld point (P), eye (E), and the 
projection of handheld point P onto the Y-Z plane (Py,) we have: 

(5) From the triangle made by the eye (E), neck (N), and the handheld point (P) 
we have: 

(6) Compute correction factor (CF), the angle made by the eye while looking at 
target with the X-Y plane: 

C F : =  d2- Y 



4.6 Summary 

For query-by-pointing the user should be able to point at targets with reasonable accuracy 

so as to identify the target correctly. This chapter describes a method for error 

compensation while pointing with arms outstretched. This chapter also presents a 

computational program to minimize the angular difference between the line-of-sight of 

the pointer and the eyes while using a handheld device to identify remote geographic 

objects by pointing at them. The computational algorithm reduces the 3-dimensional 

problem to 2-dimensions, thus simplifying the problem. 



Chapter  5 

ALGORITHM ASSESSMENT 

This chapter, describes a pilot study with a gyro-enhanced orientation sensor and three 

participants to perform pointing at specified targets in a given room. The results for the 

experiment were used to test the pointing error compensation method developed earlier 

(Section 4.5) for pointing using a handheld device. 

5.1 Experimental Setup 

The goal of the experiment was to track the difference between the line-of-sight of the 

eye over the tip of the pointer and the direction of the pointer. We conjectured that 

pointing is more accurate if the pointer is held close to the eyes than with the arms 

outstretched due to lesser difference in the respective line-of-sight. All participants held a 

gyro-enhanced sensor between their thumb and forefingers. The gyro is used for pitch 

(angle made with the X-Y plane), yaw (angle between the direction of the pointer tip and 

the magnetic north), and roll (rotation along axis perpendicular to the pointer tip) 

measurements. We assumed that the pen mounted on the pointer might be more stable in 

focusing on targets for accurately measuring the angles (Figure 5.1). Nine targets points 

were marked at three different corners of the room (41 1 X 360 X 240 cm3). The subjects 

pointed at the targets and the observations for pitch and yaw were made. All pointing 

movements were made using the right arm. Subjects stood up straight and made pointing 

movements in two conditions: (1) pointer held close to their eyes and (2) pointer held in 

a hand with the arm outstretched such that the line-of-sight of the eye over the tip of the 



pointer coincided with the direction of the pointer. The subject stood at a fixed position 

facing the target point in the room. Restrictions were imposed on head and eye 

movements such that the head was always held straight. 

Figure 5.1: Subject pointing at a target points. 

5.2 Observations 

To analyze the pointing data in a spherical coordinate system with the origin at the 

middle of the neck, measurements were taken of distances from the middle of the neck to 

the center of the eyes, shoulder joint, and from tip of the shoulder to the handheld pointer 

for all subjects. Table 5.1 shows the measurements for the different subjects pointing to 

specified targets in a room. 



Subjects Distances from eye- Distances from neck- Distances from 
neck (EN) (cm) shoulder (NS) (cm) shoulder-handheld 

pointer (SP) (cm) 

D 26 27 69 
F 20 2 1 64 
C 2 1 2 1 69 

Table 5.1: Measurements for three different subjects (D, F, C) with center of the 
neck as the origin. 

The room measurements were also taken to calculate the true pitch values based on 

subject and target location. Table 5.2 shows the pitch values and distances of different 

target points based on subject location. 

Target 
Points 

1 

True pitch values based on 
observer and target location 

(RC) (degrees) 
16.50 
-8.50 

-39.20 
10.56 
-5.32 

-27.10 
10.38 
-6.85 

-26.70 

Distance from the observer 
location (cm) 

Table 5.2: True pitch values based on observer and target location (RC). 



5.3 Accuracy of Orientation Sensors when Pointing 

The orientation sensors can handle maximum angular velocity (accuracy of rate readings) 

of 300 degrees per second. Although the sensors provide a good dynamic response, they 

are more prone to errors while pointing to potential targets. The small variations in pitch 

values can be significant if the target is located at a far away distance (Fitts 1954). We 

conducted the experiment by holding the sensors close to the eyes (called telescope 

pointing) and compared the pitch values with the values based on the location of subject 

and target in the room (called room coordirzates). Each subject pointed three times to nine 

different targets. Table 5.3 shows the preliminary results from pointing at various marked 

targets by subjects. 



Target Subject Telescope pointing Room Coordinate Difference of TP 
Points Observations (TP Pitch) (degrees) (RC Pitch) (degrees) and RC (degrees) 

D 1 19.20 2.70 
D2 17.90 1.40 
D3 17.70 1.20 
F 1 20.00 3.50 
F2 2 1 .OO 4.50 
F3 19.00 2.50 
C 1 20.60 4.10 
C2 18.20 1.70 
C3 23.10 6.60 
D 1 -4.50 4.00 
D2 -4.50 4.00 
D3 -4.70 3.80 
F 1 0.00 8.50 

2 F2 1 S O  -8.50 7.00 
F3 4.50 4.00 
C 1 -3.10 5.40 
C2 -4.20 4.30 

Table 5.3: Pitch deviation for all subjects for target points (a) 1-5 (TP vs. RC), 
and (b) 6-9 (TP vs. RC) 



Table 5.3 Continued 

Target Subject Telescope pointing Room Coordinate Difference of TP 
Points Observations (TP Pitch) (degrees) (RC Pitch) (degrees) and RC (degrees) 

D 1 -23.30 3.80 



We used the results to observe the deviation in pitch values while holding the pointer 

close to the eyes with true pitch values based on measurement of observer and target 

location. Table 5.4 shows the standard deviation of pitch values based on the mean of 

differences of pitch values based on pointer held close to the eyes and location of 

observer and target in the room. The standard deviation is calculated first by deviations of 

each subject per target and also on deviations per target by all subjects. Figure 5.2 shows 

standard deviations per target. 

Target Subjects Mean (TP -RC) Standard Mean (TP-RC) Standard 
Points per subject per deviation per per target deviation 

target subject per target per target 
D 1.76 0.8 1 

1 F 3.50 1 .OO 3.13 1.64 

Table 5.4: Standard deviations based on the mean value of differences between 
TP and RC by (1) per subject per target, and (2) per target. 



Standard deviations per target 
TP vs RC 

OStandard deviations of TP 

1 2 3 4 5 6 7 8 9 

Target points 

Figure 5.2: Standard deviations per target for TP vs. RC. 

I'he pitch values vary with subjects, but follow a similar pattern. The deviations are 

maximum for target points (3,6,9) and lesser for target points (1,2,4,5,7,8) from the true 

pitch values. Figure 5.3 shows standard deviations based on elevations of the targets. 



S t a n d a r d  dev iat ion  o f  po ints  based  o n  their  e levat ions  for  T P  v s  R C  

O H i g h e s t  elevation points (1,4,7) 
-Points at the same level (2,5,8) 
OPoints at the bottom (3.6.9) 

L 3 
O b s e r v a t i o n s  

Figure 5.3: Standard deviations of points based on elevations TP vs. RC. 

We can see from Figure 5.3 that pointing at a target point located at a higher elevation 

is more accurate than pointing downwards while holding the pointer close to the eyes. 

However, the deviations are not too large. This suggests that the line-of-sight of the eye 

over the tip of the pointer coincides better when the pointer is held close to the eyes. 

People can point in different ways. Another test was conducted by holding the ann 

straight and pointing with arms outstretched 

5.4 Pitch Deviations from Different Pointing Styles 

When we assume that the errors in pointing while holding the pointer close to the eyes 

(telescope pointing) are due to the slight difference in the respective line-of-sight of the 

pointer and the eye, the pitch deviation when pointer is held away from the eyes would be 



far more compared to the earlier case. Data from the measurements of pitch values while 

pointing with arms outstretched (AOS) was compared with the pitch values obtained 

while holding the pointer close to the eyes (TP). Table 5.5 shows the variation of pitch 

values for all subjects. 



Target Subject 
Point observations 

TP Pitch 
(degrees) 

19.20 
17.90 
17.70 
20.00 
2 1 .oo 
19.00 
20.60 
18.20 

AOS pitch 
(degrees) 

32.50 
28.60 
29.80 
39.10 
37.00 
37.50 
18.10 
28.30 

Difference of AOS 
and TP (degrees) 

13.30 

Table 5.5: Deviations of pitch values for all subjects for target points (a) 1-5 
(AOS vs. TP), and (b) 6-9 (AOS vs. TP) 



Table 5.5 Continued 

Target Subject TP Pitch AOS pitch Difference of AOS 
Points Observations (degrees) (degrees) and T 

1 
1 
1 
1 

'P (degrees) 
4.00 
2.30 
1.30 
2.00 
9.00 
1.50 
4.00 
8.20 



Table 5.6 shows the standard deviation of pitch values based on the mean of 

differences of pitch values based on pointing with arms outstretched and pointer held 

close to the eyes. The standard deviation is calculated first by deviations of each subject 

per target and also on deviations per target by all subjects. Figure 5.4 shows the 

deviations from true pitch values. 

Target Subjects Mean (AOS -TP) Standard deviation Mean (AOS-TP) Standard 
Points per subject per per subject per per target deviation 

target target per target 
D 12.03 1.30 

Table 5.6: Standard deviations based on the mean value of differences between 
AOS and TP by (1)  per subject per target, and (2) per target. 



Standard deviation per target A O S  vs. T P  

0 Standard  devia t ion  I o f A O S  

~ a r ~ e t  points  

Figure 5.4: Standard deviations of pitch values per target for AOS vs. TP. 

We can see that the variations are higher when pointing with arms outstretched than 

holding the pointer close to the eyes. The plot follows a different pattern while pointing at 

various targets with arms outstretched than telescope pointing. The deviation is least 

while pointing at target points (2,6,8) and is maximum while pointing at target points 

(1,4,7) (Figure 5.5). We can conclude that the probability of errors increases while 

pointing at target points located at a higher elevation than pointing downwards with arms 

outstretched. The pointing error compensation algorithm was applied to the data obtained 

while pointing with arms outstretched. 



S t a n d a r d  d e v i a t i o n s  of p o i n t s  based o n  t h e i r  e l e v a t i o n  

O H i g h e s t  e leva t ion  poin  1s  ( 1 , 4 , 7 )  

1 I P o i n s t  a t  s a m e  leve l  ( 2 , 5 , 8 )  

Figure 5.5: Standard deviations of points based on elevations AOS vs. TP. 

5.5 Accuracy Improvement After Computational Error Compensation 

The error correction was applied to the data obtained while pointing with arms 

outstretched (AOS) and compared with true pitch values (RC) and also with values 

obtained while holding the pointer close to the eyes (TP). Table 5.7 shows the standard 

deviation of the corrected pitch values (CP), AOS pitch values, and TP pitch values with 

respect to the values based on user and target location (RC). 



Target 
Point 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Standard deviation of AOS 
pitch values w.r.t RC 

SD (AOS vs. RC) 
16.29 
17.17 
14.57 
13.90 
14.94 
15.99 
14.21 
16.20 
16.38 

Standard deviation of CP 
pitch values w.r.t RC 

SD (CP vs. RC) 
3.75 
5.82 
5.17 
3.90 
3.27 
5.44 
2.18 
3.86 
6.37 

Standard deviation of 
TP pitch values w.r.t RC 

SD (TP vs. RC) 
9.47 
4.58 
5.87 
9.68 
6.42 
3.95 
8.46 
4.70 
3.08 

Table 5.7: Standard deviation of AOS, CP, TP w.r.t true pitch values (RC). 

The plot (Figure 5.6) shows the standard deviations of the pitch values from the true 

pitch values for three different cases. The pitch values after the correction factor is 

applied are much closer compared to the values obtained while pointing with arms 

outstretched. 

Standard Deviations of AOS, CP and TP w.r.t RC 

Figure 5.6: Standard deviations from RC for pitch values based on arms outstretched 
(AOS), corrected pitch values (CP), and telescope pointing (TP). 



The standard deviation of the corrected values is less for all the target points compared 

to values obtained while pointing with arms outstretched. With three subjects, we got 

some significant results. We found a novel way of correcting the error in pointing using a 

handheld device with arms outstretched by measuring the angles and distances between 

shoulder, neck, and eyes. The results of the experiment were in close agreement to the 

expected results of the error computational model. The pitch values after the correction 

factor was applied were much closer to actual pitch values based on the room 

coordinates. Although there is still a slight difference between the pitch values, it might 

be the result of errors in measurement of distances between the neck, shoulder and the 

eyes. Also the pitch values of the gyroscope varied in the range of few degrees and hence 

it was difficult to record the exact pitch value while pointing at potential targets. The 

errors might also be due to the difference in the angular displacement of the head with the 

pointer angular movement while pointing on a potential target. 

The errors in pointing to targets at a higher elevation were much more while pointing 

with arms outstretched than in telescope pointing. Where as while pointing at target 

points located at a lower elevation the results from telescope pointing showed more 

deviation than while pointing with arms outstretched. We conclude that since it is easier 

to move the wrist upward than downwards while holding the pointer close to the eyes the 

probability of error increased for target points located at a lower elevation while holding 

the pointer close to the eyes. In the case of pointing with arms outstretched the results are 

less accurate while pointing at target points located at a higher elevation as the pull of 

gravity is much more when the arm is held out straight and pointing at a higher angle 

than while pointing downwards. We varied the distances between the eye, neck and arm 



length. The corrected pitch values varied in the range of few degrees but the change was 

not too large. Thus we can conclude that even for a taller or shorter person the pointing 

error compensation method would still hold good. We conclude that in order to guarantee 

accurate results while pointing with arms outstretched, the vertical head-and-eye 

orientation over the tip of the pointer should move in synchronization while focusing on 

potential targets. The hypothesis of this thesis is defined as: Pointing error compensation 

method reduces the differences between the line-of-sight and the pointer direction while 

pointing with arms outstretched. We supported our hypothesis by conducting an 

experiment using orientation sensors and three subjects who pointed at specified targets 

in a given room. The results fi-om the pilot study confirmed our hypothesis. 

5.6 Summary 

This chapter describes the experiment conducted to calibrate and test the pointing error 

compensation model. The goal of the experiment was to find out the focus of attention 

target while pointing with arms outstretched. The results from the experiment showed 

less deviation fiom the true pitch values in comparison to the values obtained while 

pointing with arms outstretched. The errors in pointing to targets at a higher elevation 

while pointing with arms outstretched were greater than the ones in telescope pointing. 

However, for points located at a lower elevation the results from telescope pointing 

showed more deviation than while pointing with arms outstretched. In order to guarantee 

accurate results while pointing with arms outstretched the angular head-and-eye 

orientation over the tip of the pointer should be proportional to the pointer angular motion 

while focusing on potential targets. 



Chapter  6 

CONCLUSIONS AND FUTURE WORK 

This thesis deals with algorithms and errors while pointing with a mobile handheld 

device. Important issues in this context include computation of a line-of-sight model, and 

an error correction factor for handheld devices when used for pointing at distant targets to 

query a given object. This chapter summarizes the thesis work and presents conclusions. 

Future work on this thesis is also highlighted. 

6.1 Summary 

The main objective of this thesis was to compensate for errors while pointing with a 

handheld device for querying remote geographic objects. In this context there were three 

main areas to investigate: (1) the algorithms involved in the line-of-sight computation for 

a TIN model, (2) pointing error compensation method, and (3) the evaluation of pointing 

error compensation method. The following three sections summarize the investigations in 

each of the three areas. 

6.1.1 Algorithms 

The algorithms focused on the TIN model and line-of-sight computations. The objective 

was to obtain an efficient model that can be used as a base for computing line-of-sight 

model based on pointing direction. There are many algorithms available for computing 

the line-of-sight between the user and the object in a given TIN model; however many 



algorithms are of theoretical interest and not of much practical significance because of 

difficulty in implementation. The algorithms and the complexities involved in computing 

the line-of-sight between two points were discussed in detail. 

6.1.2 Pointing Error Compensation Method 

We considered a spherical coordinate system centered at the neck to compensate for 

errors in pointing while pointing with arms extended. An error correction factor was 

computed based on the distances measured from the center of the neck to the center of the 

eyes, center of the neck to the shoulder joint, and fiom the shoulder joint to the handheld 

pointer. The pointing direction @,a), were also used for computing the pointing error 

compensation factor. 

6.1.3 Evaluation of Pointing Error Compensation Method 

A pilot study was conducted using a gyro based orientation sensor and three participants 

to perform pointing at specified targets in a given room. The goal of this study was to 

evaluate the pointing error compensation method. The pitch (a)  values were collected for 

each participant pointing to the same target in a room: (1) with their arms outstretched 

and (2) by holding the pointer close to the eyes. The error correction factor was computed 

for different participants by considering a spherical coordinate system centered at the 

neck and measuring the distances fiom the neck to the eye, shoulder and the arm length. 

The error correction factor was applied to the data obtained from the gyroscope when 

users pointed with their arms outstretched and compared to the actual pitch values based 

on room coordinates. The result of this experiment gave us an insight into how errors can 



be corrected for a user when he or she is pointing with his or her arms outstretched and 

can be helpful for human computer interaction for designing accurate systems for 

querying spatial information by pointing using a handheld device. 

6.2 Conclusions 

In the present study we have investigated the ability to correct errors in pointing using 

arms outstretched by considering an articulated human model with a spherical coordinate 

system centered at the neck. Under the assumption that the line-of-sight coincides with 

the tip of the pointer while pointing at potential targets, our descriptive model gave the 

best fit for correcting the errors in pointing. The distances from the neck to the eye and 

shoulder, shoulder to the pointer held in arms outstretched, and the angles obtained from 

the gyroscope are the key variables involved in computing the correction factor while 

pointing with arms outstretched. The corrected pitch values varied in the range of few 

degrees for varying distances between the eye, neck, and the handheld pointer. This 

showed that the pointing error compensation method gives consistent results for different 

users. The hypothesis of this thesis is: Pointing error compensation method reduces errors 

in pointing with arms outstretched. We support our hypothesis by conducting an 

experiment using orientation sensors and three subjects who pointed at specified targets 

in a given room. Furthermore, we found that subjects always overshot nearby targets. 

This result was in good agreement with findings reported earlier in the previous studies 

(Stratta and Lacquaniti 1997). The descriptive model that we used to correct pointing 

errors assume that the errors related to pointing are more if there are more degrees of 

freedom. The pitch values obtained when the pointer was held close to the eyes are much 



closer to the actual pitch values based on the room coordinates. Based on the results 

obtained from the subjects in our experiment, we can conclude that it is very important to 

reduce the difference in the line-of-sight of the eye over the pointer tip and the pointer 

direction for query-by-pointing. 

The results of the experiment with a gyro-enhanced orientation sensor are 

promising. The errors in pointing to targets at a higher elevation were greater while 

pointing with arms outstretched than in telescope pointing, where as while pointing at 

target points located at a lower elevation the results from telescope pointing showed more 

deviation than while pointing with arms outstretched. We conclude that in order to 

guarantee accurate results while pointing with arms outstretched the vertical head-and- 

eye orientation over the tip of the pointer should move in synchronization while focusing 

on potential targets. The variations in the pitch values after applying the correction factor 

could be traced and attributed to the inaccuracies in measuring the distances between 

arm, eyes, and shoulder. The pitch values from the sensors were also inaccurate as it 

varied in the range of few degrees while focusing on a potential target. Thus, it was not 

possible to record the exact pitch values. However, the accuracy of the initial data 

showed significant improvement after the correction factor was applied. We are thus 

confident that with accurate distance measurements and precise pitch values from the 

sensor, the correction model can drastically reduce the difference between the line-of- 

sight of the eye over the tip of the pointer and the pointer direction. 

We can further conclude that point visibility algorithms can be used for query-by- 

pointing using a handheld device based on the pointing error compensation method. 



6.3 Future Work 

This section lists a set of possible future research tasks that look attractive for future 

exploration. 

6.3.1 Alternate Pointing Methods 

As computerized devices become increasingly ubiquitous and interacting at a distance 

becomes more common, it will be important to provide interaction techniques that are 

quick, convenient, and accurate. Pointing with arms outstretched using a handheld device 

offers an interesting way to interact with mobile GIs. However, further research is 

required to investigate alternative methods of pointing. The ideal pointing device is a 

camera since many people are familiar with it. For a more exact selection of potential 

target by a handheld device, it can be mounted with a digital camera. The user can select 

a potential target and then record the exact pitch and yaw values. The pointing direction 

along with user's location can then be used for line-of-sight computation on the TIN 

model. Many interesting questions in this context are: 

How far is the potential target from the user? 

What is the level of-detail the user is interested in querying a potential 

target? 

How can advance computational model be developed to respond in real time? 



6.3.2 Alternate Ways of Interacting at a Distance 

Cameras tracking hand or eye movements will not be able to get more than a very crude 

estimate of where the user is pointing. Even with a digital camera, the shaking of users 

hand and the resolution of today's cameras results in an inability to point reliably at 

anything smaller. Given these human limitations we can use pointing for referencing a 

broad area of interest. The objects of interest can then be snarfed or copied onto the users 

handheld device so the detailed work can be performed more accurately (Myers et al. 

2001). The concept of semantic snarfing can be applied to query-by-pointing for mobile 

handheld devices and can be further investigated. While this approach seems promising it 

raises challenging questions. How can we generate a cone centered on the line-of-sight 

from the head to the hand, starting at the hand, and projecting away from the person? 

How can the area contained within this cone be used as a broad area of interest from 

which the objects to be queried can be snarfed? 

6.3.3 Pointing in Augmented Reality 

The basic idea of augmented reality is to superimpose graphics, audio and other sense 

enhancements over a real-world environment in real-time. The three components needed 

to make an augmented system work needs a head mounted display, tracking system, and 

a mobile computing power. For query-by-pointing a user can view where he or she is 

pointing using the head mounted display. Thus a user can query the object when he or she 

is sure about the object of interest. Augmented reality is still in an early stage of research 

and development at various universities and high-tech companies. It can be an accurate 



method for querying spatial information using smart head mounted displays that shows 

the user where he is pointing. 

6.3.4 Efficient Surface Approximation Models 

Terrains are three-dimensional objects, represented in a two-dimensional domain. For 

line-of-sight computation using a handheld device to identify constructed objects like 

buildings, it should be represented using efficient algorithms. Efficient algorithm to build 

Delaunay tetrahedrizations (i.e., the 3D extensions of triangulations) can be further 

explored for better representation of a surface. Much preliminary work is still needed to 

identify general modeling and computational issues that offer a key to a more integrated 

approach to spatial information handling. 

6.3.5 Mobile Environment 

Many line-of-sight related problems on terrains still lack of practically satisfactory 

solutions: we can mention problems such as the update of visibility for a moving 

viewpoint. More research efforts should be spent on finding algorithmic methods and 

investigating the problem, since they have a high impact on applications and a 

fundamental importance in the development of information systems of the future. 



6.3.6 Blue-Eyed Vision of the Future 

The portable smart pointer discussed in this thesis does not exist yet. However our future 

environment will actively support the use of handheld devices embedded in our 

environment completely interconnected, intuitive and effortlessly portable. Important 

questions in this context include: 

How to design a better user interface for human-computer interaction? 

How to efficiently query a large spatial database? 

How to represent man made objects like buildings most accurately for query-by- 

pointing? 

How to point accurately at targets to reduce the angular shift between the line-of- 

sight of the eye and the pointer? 
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