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(a) (b) 

                                 
                                                     (c) 

Figure 7.9 Similarity rankings of dataset DI against QO, with cost model D. 

 

Figure 7.10 Hybrid CNG highlighting the overlap, coveredBy, and inside relations that 
participate in dataset DI.  

The differences in the similarity rankings between the pairs of models, however, are 

more accentuated when the elements of the query relation and the elements of the dataset 
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relations are placed farther away on the graph. Such an example is when dataset DII’s 

relations are compared against QI2. The elements [i d] and [i cB] of query QI2 are placed 

farther away from the elements of the rest of the relations, as they are situated close to the 

edges of the graph (Fig. 7.11). In such cases, the magnitude of the difference between the 

similarity values of relations in consecutive evaluation rounds is bigger for the pair 

CMA-CMD (Fig. 7.8 and Fig. 7.4) than the magnitude of the respective similarity 

differences for pair CMB-CMC (Fig. 7.5 and Fig. 7.3).  

The magnitude of the similarity differences changes for the two pairs of models, 

when it comes to relations with elements that are in even greater distances from the 

elements of QI2 on the graph, such as the elements of relations with principal relation 

covers, contains, and equal (i.e., elements [cv ct], [ct ct] and [e ct]) (Fig. 7.11). Models 

CMA and CMD have the same similarity value for any number of holes and get a zero 

value when no holes are left (Fig. 7.8b,c), whereas models CMB and CMC keep 

increasing the similarity values of these relations, as more holes are dropped (Fig. 7.5b,c).  

 

Figure 7.11 Highlighted elements. Elements of query QI2 [i d] and [i cB] with solid 
ellipses and elements [cv ct], [ct ct] and [e ct] from the relations in dataset DII with 
dashed ellipses.  
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The rankings in this case depend on how the different costs in δ(t1,t2) contribute to 

the overall dissimilarity value (Eqn. 7.1). For both pairs of models, cost 
  

! 

z1

"
max

RRh#RRh  steadily 

decreases in value, since the more holes are dropped, the less remaining [cv ct], [ct ct] 

and [e ct] elements need to be transformed to the [i d] and [i cB] elements. For pair 

CMA-CMD, cost 
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z2

"
max

RRh#RR  changes with big increments as more holes are dropped. The 

bigger value in each evaluation round balances out the decreases in 
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"
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RRh#RRh  and keeps 

the similarity constant for almost all rounds (Fig. 7.8b,c). For pair CMB-CMC, however, 

the increments in 
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"
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RRh#RR  are much smaller and do not balance out the decrease in cost 

  

! 

z1

"
max

RRh#RRh , making the overall δ(t1,t2) value lower, as more holes are dropped. 

Consequently, the similarity value becomes higher in each evaluation round, imposing 

relations with more holes to rank lower than relations with fewer or no holes 

(Fig. 7.5b,c).  

4. Overall, cost-assigning methods that more notably differentiate the cost of dropping 

a hole from the cost of change in the topological relation between regions produce 

more distinct and expected—according to the evaluation criteria—similarity 

rankings.  

Such cost models also avoid increasing similarity values with number of holes that 

gets less and less equal to that of the query, when the relations under comparison are very 

different. So it may be suggested that such models, as for example CMA and CMD, are 

to be preferred for the similarity evaluation between relations with different number of 

holes. However, the attractiveness of the FDM for comparing such relations is its 

flexibility to adjust to any cost-assigning approach that is deemed appropriate according 

to the application at hand, without the fear of inexplicable or totally unexpected similarity 

results. This stability is provided by the basic infrastructure of the method, which is the 
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specific placement of the relations on the hybrid CNG. The infrastructure provides a 

benchmark against which the rankings of the various cost assigning techniques are 

criticized and with which the results may also be explained.  

7.4 Summary 

The assessment of the FDM as a similarity evaluation technique between relations with 

different numbers of holes and the interpretation of the similarity results were discussed. 

Three evaluation criteria set a benchmark against which four different cost models were 

examined for their rankings of various combinations of datasets and queries. None of the 

results of the cost models greatly deviates from the expected rankings set by the criteria. 

All models rank first those relations that have most of the three parameters—principal 

relation, refining relations, and number of holes—in common with the query. However, 

models with cost-assigning techniques that more solidly differentiate the costs of 

changing the topological structure of a region from the change that happens in the 

topological relation between two regions produce fewer controversial results. The 

controversy is generally generated with highly different relations whose elements are 

separated from the query’s elements by longer distances on the hybrid CNG. 

Nevertheless, the results demonstrate that FDM is a reliable method for comparing 

relations with different numbers of holes, with some evidence for an ability to adapt to 

any cost model that may better accommodate the needs of an application.  



180 

Chapter 8  Conclusions 

Versatile spatial data types are required for modeling complex spatial objects, often 

characterized by the presence of holes. To date, however, relations between hole-free 

regions have been the prevailing tools for spatial qualitative reasoning, limiting the 

ability to query and compare more complex spatial configurations. This thesis focused on 

the topological relations of single-holed regions and their composition inferences, 

examining how the presence of holes affects spatial reasoning and requires the 

development of new qualitative models and quantitative measurements for analysis. For 

advanced query answering, similarity evaluation among topological relations is a 

desirable asset of any geographic database. Using the topological relations for single-

holed regions, a method of comparing relations featuring a multi-holed region 

complements the analytic framework developed in this thesis. Insights about the 

differences between reasoning over hole-free regions and reasoning over holed regions is 

expected to contribute to the design of future geographic information systems that more 

adequately process complex spatial phenomena and are better equipped to answer 

similarity database queries. This chapter summarizes the thesis (Section 8.1), describes 

the major findings and contributions (Section 8.2), and discusses possible future research 

avenues motivated by the results of this thesis (Section 8.3).  
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8.1 Summary of the Thesis 

This thesis developed a formal framework for spatial reasoning with topological relations 

featuring single-holed regions using the eight possible relations between two hole-free 

regions defined in the 9-intersection (Egenhofer and Herring 1990). The Single-Holed 

Regions Model (S-HRM) comprises a set of 23 relations between a hole-free and a 

single-holed region, a set of 152 relations between two single-holed regions, composition 

tables of both sets, as well as their conceptual neighborhood graphs. Both sets involve 

relations that are jointly exhaustive and pairwise disjoint, differentiating between 

different topological structures imposed by the hole’s presence. A custom-made checker 

verified that the spatial configuration of each relation and relation composition is valid 

according to Mackworth’s (1977) network consistency constraints.  

The compositions of the new sets of relations enabled qualitative inferences that 

were complemented with such quantitative measures as the composition crispness and the 

cumulative frequencies. The quantitative composition analysis supports the assumption 

that the presence of holes is responsible for more refined inference results.  

Spatial phenomena of the real word often contain multiple holes. To examine 

relations featuring a multi-holed region, this thesis developed the Multi-Holed Region 

Model (M-HRM) and a method, called the Frequency Distribution Method (FDM), for 

comparing relations between a hole-free and a multi-holed region for their similarity. 

FDM builds on the representation of relations between a hole-free and a multi-holed 

region as multi-element relations, comprising as many elements—relations between the 

hole-free and a single-holed region—as the number of holes, considering each hole as if 

it were the only one.  
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Based on the conceptual neighborhood graph of the elements, FDM assesses the 

similarity between relations with a multi-holed region having the same number of holes 

as the complement of their dissimilarity. Dissimilarity is computed as the minimum cost 

of transforming one relation’s elements to those of the other. The cost of the element 

transformation equals the distance of the two elements along the neighborhood graph. 

The transportation algorithm (Murty 1976; Strayer 1989) is employed to calculate the 

minimum cost in cases for which multiple transformations are possible. The similarity 

evaluation method demonstrated that among relations whose multi-holed regions have the 

same number of holes, the placement of the holes with respect to the hole-free region is 

as influencing for the similarity rankings as is the relation between the hole-free region 

and the host of the holes. 

The FDM was, subsequently, modified to compare for their similarity relations 

featuring a multi-holed region when the regions have different numbers of holes. The 

difference in the number of holes was added to the representation of the relation with the 

fewer holes in the form of the relation between two hole-free regions created by the hole 

elimination. As a result, this thesis introduced the concept of simultaneously evaluating 

the change in the topological relation between regions with the change in a region’s 

topology caused by eliminating a hole. To accommodate such changes, a hybrid graph is 

required so that the neighborhood graph of relations between a hole-free and a single-

holed region is connected to the graph of relations between hole-free regions. The cost 

for hole elimination from each relation was added to the graph, enabling the method to 

compute the dissimilarity between relations with different numbers of holes.  

There are different approaches for assigning a cost to hole elimination from a 

single-holed region. This thesis examined four different cost-assigning methods and their 
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similarity rankings for two synthetic datasets. The behavior of each model was studied 

against a baseline for the similarity results. The analysis of all rankings verified the 

expected behavior for the models and the dependability of the method, as none of the 

models produced completely extraordinary results. Differences between the rankings are 

intensified in cases where relations under comparison have the fewest characteristics in 

common and it is suggested that cost-assigning techniques that more distinctly 

differentiate the cost of hole elimination from that of change in the topological relation 

produce the most expected patterns in the similarity rankings.  

8.2 Contributions and Major Findings 

In this thesis, a comprehensive formal framework for qualitative reasoning with relations 

featuring single-holed regions was developed. This framework differs from previous 

approaches that either ignored the holes or treated them with techniques suited to 

relations for hole-free regions. This section discusses the major contributions of this work 

and the research findings that address the hypothesis of the thesis.  

8.2.1 Contributions 

The main contributions of this thesis are the following: 

• A formal framework for relations featuring single-holed regions. 

The Single-Holed Region Model is an exhaustive collection of binary relations involving 

one or two single-holed regions, explicit conceptual neighborhood graphs that define the 

sequence of relation change, and complete composition tables with valid inference 

results. New quantitative measures introduced with the model, help quantify the results of 

the composition analysis and reveal patterns related with the existence of the holes.  
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The set of 23 relations between a hole-free and a single-holed region is novel in its 

approach to cover relations between multi-sorted regions—regions originating from two 

different domains. Members of other explicit sets of relations are typically of the same 

type, namely either simple, hole-free regions, or complex regions with possible 

separations of the exterior as well as the interior. Through the converse property of the 

constituent relations, the concept of a converse relation still exists (i.e., the relations 

between a single-holed and a hole-free region, tRhR=  

! 

t
RRh

). However, there is neither an 

identity relation, nor is any relation reflexive, symmetric, or transitive. Therefore, the 

basic requirements are not met for a relation algebra. Lack of symmetric relations results 

in an asymmetric 23-tRRh CNG. Many of these properties, such as an identity relation, 

symmetric relations, and transitivity are restored for the 152 relations between two sing-

holed regions.  

• A model for comparing relations between a hole-free and a multi-holed region for 

their similarity, which is independent of the number of holes.  

The Frequency Distribution Method developed in this thesis is a model for comparing 

relations with multi-holed regions that is independent of the number of holes. Instead of 

explicitly accounting for each hole separately, multi-holed region relations are 

summarized with the Multi-Holed Region Model, which uses the frequencies of the 

relations’ single-holed region elements. FDM departs from previous efforts involving the 

tedious enumeration of binary relations between the holes, the host, and the external 

regions. The utilization of the transportation algorithm for evaluating the minimum cost 

of relation transformation makes for an elegant approach to similarity evaluation that 

relies on the actual conceptual neighborhood graph of the relations for producing 

similarity values. Such an approach enables the quantification of the qualitative change of 
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relations traced on the neighborhood graph, providing a numerical representation of the 

differences and commonalities between relations with a multi-holed region.  

• Concurrent evaluation of the change in the topological relation between regions with 

the change in the topological structure of a region.  

This thesis introduced a novel way of thinking about relations similarity, with the concept 

of assessing in parallel the change in a binary with the change in a unary topological 

relation. Creating the hybrid graph that connects the neighborhood graph of single-holed 

region relations with that of the hole-free region relations, FDM makes up for a reference 

model of bringing the two changes together and enabling the similarity evaluation 

between relations with different numbers of holes. Such an approach takes into account 

the difference in the topological structure of the participating regions, in contrast to 

previous similarity evaluation methods that only assess either the numerical difference of 

regions as components of a relation, or the differences in the topological relations 

between the regions.  

• A reliable similarity evaluation method for relations with different numbers of holes, 

adaptable to different cost-assigning methods. 

The underlying structure of the method—the hybrid conceptual neighborhood graph—

ensures that the FDM may be used with different cost-assigning methods for evaluating 

the cost for eliminating a hole, without resulting in utterly contentious similarity 

rankings. The cost values assigned to the edges that connect the single-holed region 

relations with their principal relations do not affect the neighboring of either the hole-free 

or the single-holed region relations. The reliance on the basic structure of the 

neighborhood graph allows flexibility on the cost assigning procedure for meeting the 

needs of an application. 



186 

8.2.2 Major Findings  

The hypothesis of the thesis stated that taking into consideration the existence of holes in 

two-dimensional regions, imposes new constraints on the topological relations that can 

hold between such regions, and affects the inferences of the reasoning processes towards 

more refined results. This thesis addressed the hypothesis with the following findings: 

• Reasoning with holed regions differs from reasoning with hole-free regions, 

producing more refined composition inferences.  

The quantification of the composition analysis verifies that new constraints imposed on 

the topological relations from holes differentiate the reasoning with relations over holed 

regions from that with relations over hole-free regions. The numerical analysis indicates 

that acknowledging the holes, instead of favoring a hole-free region approach, leads to 

less ambiguous inferences for a little over 50% of the cases. Such results indicate that a 

model of topological relations of holed regions favors better decision making by 

providing more refined and accurate outcomes. In addition, the inference results 

demonstrate that the more holes that are initially involved in the composition of relations, 

the higher the percentage of unique relation results, which implies complete certainty in 

the outcome.  

• Consideration of the placement of the holes during the similarity evaluation among 

relations with a multi-holed region enables more exact similarity rankings. In 

particular: 

− When the multi-holed regions contain equal numbers of holes, the holes’ 

placement with respect to the hole-free region affects the similarity, as much as 

the relation between the hole-free region and the host does.  
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When comparing relations over regions with the same number of holes, FDM’s basis is 

the structure provided by the neighborhood graph of the 23 single-holed region relations. 

Therefore, two relations that have different principal relations, but share all or most 

refining relations, may be regarded as more similar than relations that share the same 

principal relation, but differ in all or most refining relations. Responsible for this 

similarity evaluation result is the shorter distance between relations that share the same 

refining relations on the graph. Conversely, longer distances separate relations with 

different refining relations. The similarity rankings in this thesis demonstrate that taking 

into consideration the placement of the holes, instead of solely relying on the overall 

relation between the hole-free and the host region, returns more detailed similarity 

rankings.  

− When the multi-holed regions have different numbers of holes, the placement of 

the holes matters even more for the similarity rankings, especially when the 

relations under comparison are topologically very different.  

The numerical similarity differences among the various cost-assigning models 

demonstrated that the placement of the holes with respect to the hole-free region affects 

the similarity ranking more strongly when the relations under comparison have fewer or 

no elements in common. Longer distances on the hybrid graph between relations that do 

not share common refining relations more explicitly display the difference among various 

cost models, resulting in more prominent differences in the numerical rankings of such 

relations. The similarity rankings examined in this thesis suggest that the more distinct 

the costs assigned to cross-level edges are from the costs of the distances between intra-

level relations, the more expected are the rankings.  
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These findings verify the hypothesis that spatial reasoning about relations over 

regions with holes differs from reasoning about relations over hole-free regions. The 

additional constraints imposed by the holes lead to sets of more fine-grained relations, 

more refined composition inferences, and more accurate similarity comparisons. The 

topological relation between a hole-free region and the host region of the holes is a key 

controlling parameter of the inference mechanisms. However, it is the relations between 

the hole-free region and the holes that refine the composition results and finalize the 

similarity rankings, especially for relations over multi-holed regions with very different 

hole placements.  

8.3 Future Work 

This thesis presented a formal framework for reasoning with single-holed region relations 

and used it as a basis for developing a similarity assessment method for multi-holed 

region relations. The results open new research avenues and anticipate further 

development of the reasoning tools presented in this thesis. This section first discusses 

some research alternatives about the S-HRM and then provides guidance about 

expanding the range of the FDM.  

8.3.1 Alternatives to the S-HRM 

The S-HRM developed in this thesis is based on two principal assumptions: (1) the 

relation between the generalized region B* and its hole BH is always t(B*, BH) = contains, 

and (2) the neighborhood graph of the eight relations between two hole-free regions 

captures only the A-neighbors,  so that if a region expands from the inside relation it can 

be transformed to coveredBy in one step, but not to equal. Conversely, if a region is 
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reduced in size when it contains the other region, it can be converted to covers, but not to 

equal. It is possible, however, to allow for different or additional relations to hold 

between the generalized region and the hole, which would result in different relation sets 

than the ones derived in this thesis. The CNGs of the sets are also modified with the 

addition or elimination of certain edges, due to different topological constraints for the 

different host-to-hole relations.  

8.3.1.1 Relaxing the Definition of the Single-Holed Region 

Chapter 3 defined that a single-holed region B comprises the generalized region B* and 

the hole BH, which is completely inside B*. A less restrictive model allows the hole to be 

coveredBy (Fig. 8.1a) or even equal to B* (Fig. 8.1b), leading to different semantics of a 

region with a hole (Egenhofer et al. 1994).  

  
(a) (b) 

Figure 8.1 Single-holed region B in different relations with the hole BH: (a) BH 

coveredBy B* or (b) BH equal to B*. 

According to the constraint of the hole placement, the sets of relations between a 

hole-free and a single-holed region, or between two single-holed regions, would be 

different than the ones developed in S-HRM. Seven different sets of tRRhs may be 

developed, allowing either one of the three different relations between the hole and the 

generalized region or combinations thereof: (BH inside B*), (BH coveredBy B*), (BH equal 

B*), (BH inside or coveredBy B*), (BH inside or equal B*), (BH coveredBy or equal B*) 

and (BH inside or coveredBy or equal B*). 
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The relaxation of the hole placement definition is interesting, because it implies a 

variation in the set of realizable relations. For instance, the set of tRRhs for which the hole 

is always coveredBy the generalized region has the same number of relations as the set 

developed in this thesis, namely 23. However, five relations—[i e], [i cv], [i ct], [cB ct], 

and [e ct]—have been replaced by five different ones (Fig. 8.2)—[m m], [cB cB], [cB e], 

[e cv], and [cv cv]—due to the new limitations imposed by the coveredBy relation, on the 

relation between the hole-free region and the hole. Accordingly, the conceptual 

neighborhood graph for the 23-tRRh based on the coveredBy relation is different (Fig. 8.3). 

     
(a) (b) (c) (d) (e) 

Figure 8.2 The five new tRRh relations when the hole is coveredBy the generalized region: 
(a) [m m], (b) [cB cB], (c) [cB e], (d) [e cv], and (e) [cv cv]. 

 

Figure 8.3 The 23-tRRh CNG for which BH coveredBy B*.  

It is expected that allowing combinations of two or all three relations between the 

hole and the generalized region will result in sets of relations larger than 23. For example, 
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if both inside and coveredBy are allowed, the set comprises 28 relations. The increased 

sets of relations produces larger composition tables, and inferences are expected to be 

less refined than the ones derived in this thesis, due to fewer topological constraints.  

Accordingly, the CNGs will expand, and the FDM for evaluating similarity 

between relations featuring multi-holed regions will have to be based on larger tables of 

costs. Further work is then required for providing all possible topological configurations 

of relations with single-holed regions and making the S-HRM a more complete 

framework for extracting composition inferences. Such a complete framework would be 

used with the FDM for similarity rankings among a wider range of holed-region relations. 

8.3.1.2 Relaxing the Scaling Transformation Requirements 

The conceptual neighborhood graphs developed in this thesis support connectivity of the 

A-neighbors only. In A-neighbors, the scaling transformation is responsible for 

restraining connectivity of relation equal with relations coveredBy and covers only. Such 

a constraint forces the expansion or reduction of a region in relations inside and contains, 

respectively, to be a two-step procedure in order to change to equal. However, if that 

constraint is relaxed, the scaling transformation from inside or contains to equal can be a 

one step procedure. This is the scenario of two regions being concentric, and one of them 

expanding or collapsing to equality with the other region. Such a neighborhood captures 

the C-neighbors (Egenhofer and Al-Taha 1992; Freksa 1992). 

Accordingly, if the regions have the same size and shape, the translation or rotation 

transformation between relations overlap and equal can also be reduced to one step, 

instead of two—through coveredBy or covers—and vise versa, as it is in the A-
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neighborhood graph. The one step transformations result in the B-neighbors (Egenhofer 

and Al-Taha 1992; Freksa 1992).  

The implication that the relaxation of the scaling transformation has on the S-HRM 

and the FDM is that tRRhs featuring equal as any of their constituent relations are to be 

connected with the appropriate relations having inside and contains as their constituent 

relations, while losing the links to relations with coveredBy and covers as their principal 

relation. The only tRRh with equal as its principal relation is [e ct] and it is connected with 

relations [cB ct] and [cv ct], which have the same refining relations (Fig. 6.5b). In the C-

neighbors graph, these links are removed and replaced by the links between [e ct] and 

relations [i ct] and [ct ct], which also share the same refining relations, but have now 

inside or contains as their principal relations (Fig. 8.4). Additionally, the only tRRh with 

equal as its refining relation is [i e], connected with [i cB] and [i cv]. These links are now 

replaced by the links with [i i] and [i ct] (Fig. 8.4).  

 

Figure 8.4 The 23-tRRh CNG featuring the C-neighbors. 

Further work is needed in order to evaluate how the change in the neighborhoods of 

the 23-tRRh CNG and the table of costs affect the similarity results. It is expected that 
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relations with equal in any of their constituent relations would now rank closer to the 

inside and contains constituent relations, rather than coveredBy and covers, which was 

the case for the similarity results examined in this thesis. Analogous work would have to 

examine the effects on the similarity rankings of the B-neighbors, whereby translation 

and rotation may directly change the relation from overlap to equal, and vise versa. 

8.3.2 Relations of Holed Regions on the Sphere 

The regions participating in the relations developed in S-HRM are embedded in the two-

dimensional plane. There are many GIS applications, however, that deal with phenomena 

that spread across the entire globe, such as a national minority’s world-wide distribution 

or the spatio-temporal spread of a disease over two or more continents. Such applications 

require semantic models of spatial relations proper for the sphere, the two-dimensional 

surface embedded in the three-dimensional space, and its particular properties 

(Usery 2002).  

While most models of topological relations apply to regions embedded either in the 

two- or three-dimensional space, a set of 11 relations based on the 9-intersection, has 

been developed for the sphere   

! 

IP
2 , where   

! 

IP " IR  such that   

! 

IP  is connected and 

min(  

! 

IP )=max(  

! 

IP ) (Egenhofer 2007). For applications such as monitoring the long-term 

change of the position of the ozone hole in the earth’s atmosphere, a model of relations 

over holed regions on the sphere is of value. Further work is required then to develop the 

set of relations between a hole-free and a single-holed region and between two single-

holed regions, using the set of 11 sphere relations, in the same way such sets were 

developed for the plane, in this thesis. It is expected that the corresponding sets will be 

larger, since there are three more binary relations—attach, entwined, and embrace—
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realizable only on the sphere, in addition to the eight realizable both on the plane and the 

sphere.  

In Chapter 3, a region with a hole on the plane was defined as a spatial region with 

a separated exterior. The separations are the outer exterior, an unbounded set separated 

from the interior of the region by the outer boundary, and the inner interior, bounded 

from the inner boundary of the region. The inner interior fills the region’s hole. On the 

sphere, however, this separation is not so clear, since the outer exterior is now bounded as 

well, and homeomorphic to a half-sphere. The fact that both the inner and the outer 

exterior of the region on the sphere are bounded by the boundaries of the region and are 

homeomorphic to half-spheres makes is difficult to distinguish which one is the hole and 

which one is the exterior, especially in the case where the region’s extend surrounds the 

sphere (Fig. 8.5). Furthermore, in such a depiction, both regions could either be in 

relation meet or attach with the region.  

 

Figure 8.5 An ambiguous depiction of the hole in a region that sits on the sphere.  

It is, therefore, crucial for the derivation of the sets of relations with a single-holed 

region on the sphere to enforce some constraint about the relation between the region and 

its hole, as for example the one used in this thesis for regions in the plane—the hole is 

always inside the region. Then it is only the region’s outer exterior that is in relation 

attach with the region. This kind of constraint ensures that the relations between a hole-

free region and the generalized region or the hole of the single-holed region can be 
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clearly specified on the sphere. Absence of such a constraint would create yet another 

visual confusion, as the mere demarcation of the holed region on the sphere using Jordan 

curves does not suffice for distinguishing the hole, from the outer exterior of the region.  

8.3.3 Extending the FDM 

The similarity evaluation method developed in this thesis enables the comparison of 

relations with one multi-holed region. There are certain aspects of the method that need 

to be further enhanced in order for the FDM to provide more complete answers to 

database similarity queries. Improvements include enabling the method to compare 

relations where both holes are multi-holed, to differentiate holes according to their 

distinctive roles, and to possibly group holes according to their properties. In addition, 

FDM as developed in this thesis, offers numerical similarity results. It is highly desirable 

to examine how these numbers are matched against natural language expressions that 

people use when asked to compare relations for their similarity. 

8.3.3.1 M : N-Holed Regions Relations 

In case both regions in a relation have holes, a technique analogous to the one developed 

in this thesis, the M-HRM, for summarizing the relations in hole placement frequencies 

needs to be adopted. With the sets of relations for single-holed regions, two possibilities 

exist for summarizing the m : n-holed relations: (1) using the set of 23-tRRhs, one region at 

a time is considered as hole-free and the tRRhs with the other region are recorded in 

frequency vectors (Fig. 8.6), or (2) using the set of 152-tRhRhs, both regions are considered 

as single-holed and the tRhRhs between them are recorded for all pairs of holes (Fig. 8.7).  
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Figure 8.6 The 2-holed region to 2-holed region relation between A and B as the union of 
two multi-element relations, each of which may be broken down to two elements.  

 
 

 

Figure 8.7 The two tRhRhs that form the 2-holed to 2-holed region relation between A and 
B. 

With the set of 23 tRRhs, two frequency vectors VA and VB are defined for each of 

the two relations under comparison. As in the 2-holed region to 2-holed region relation in 

the example (Fig. 8.6a), this duplexity is necessary since each of the regions, A and B, are 

in turn considered as hole-free and their relations with the holes of the other region are 

recorded (Fig. 8.6b and 8.6c). The deviation from the method developed in this thesis is 

that rather than one cost, two costs—c1 and c2—of transformations of the two vectors 

summarizing one relation into the vectors of the other relation, are recorded. The final 

cost c of the relation transformation then is the sum of these two costs.  

Using the set of 152-tRhRh, the relation in the example would be the union of two 

single-holed to single-holed region relations (Fig. 8.7). The frequencies would then be 

recorded in an analogous way and the costs for relation transformations would have to be 

acquired by the 152-tRhRh CNG. It is an open question whether the two methods based on 

the two different relation sets produce the same or different similarity results.  
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8.3.3.2 Holes with Different Roles 

The relations compared in this thesis are over regions in which all holes have the same 

role. The role of a hole may have a two-fold interpretation—it may have to do with its 

relative importance in comparison with the rest of the holes, or it may be related to its 

semantics. In the first case, all holes may be of the same nature, for example, coverage 

holes in a network setting, various lakes in the same plain, patches of different land use in 

an agricultural division, or oil deposits in an underground geologic formation. In the 

second case, holes or their content may belong to ontologically different categories. For 

example, in an urban environment, holes may be open-air recreational parks, state 

protected land, a chemically contaminated and restricted area, or a natural discontinuity 

such as a lake or a hill.  

In case the holes are all of the same nature, the importance of each hole is relative. 

It may be measured by the size of the hole, or any of the other properties of the hole or its 

content that is appropriate for the application. In the example of the oil-baring geologic 

formation, the bigger the size of a hole, the higher its economic value. In other cases the 

importance of a hole may be related to the hole’s relative placement or neighboring with 

an accessibility point. The cost of relation transformations examined in this thesis, did not 

take into consideration different weights for holes. To enable the differentiation of holes 

according to their importance, a weight factor wij needs to be added to the calculation of 

the cost (Eqn. 8.1). The values of the weight factor and the property to which it is 

associated are depended on the application under consideration and are the subject of 

further research.  

 
  

! 

z=min( wijcijxij
j=1

n

"
i=1

p

" )  (8.1) 
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However, if the holes vary semantically, defining a weight factor is a more 

complicated, multi-variable procedure. The mere addition of the weight factor is not 

enough, as the weights themselves would be attributed to properties of holes of different 

nature, which may not be comparable. It is left for future work to decipher the 

appropriate linking property that would allow semantically different holes to be attributed 

a weight from the same scale.  

8.3.3.3 Hole Generalization 

Examining holes for their properties may also allow for certain groupings of holes. For 

example, if holes are judged for their size, smaller holes that are in proximity (Fig. 8.8a) 

may be seen as one single hole (Fig. 8.8b). In such a case, when compared with other 

relations, it is interesting to examine whether relations over regions with grouped holes 

and their ungrouped versions, share the same similarity against other relations. Groups of 

holes may also have different implications for map generalization. When moving to 

smaller scale map representations, the size of map objects is compared against a certain 

threshold. For example, holes smaller than the threshold are eliminated. A different 

approach is to replace a number of neighboring small holes with a single bigger one hole, 

much like in Gestalt theory of perception (Wertheimer 1923), which would meet the size 

threshold. The single hole would need to cover the spatial extent of the group of holes. 

What is necessary then, is a method to determine the relation between the newly formed 

conglomeration and the rest of the regions involved in a topological relation.  
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(a) (b) 

Figure 8.8 Hole generalization: (a) a number of small holes getting replaced by (b) a 
single hole.  

8.3.4 Introducing Human Language Expressions 

With the development of any new GIS application, the goal is to facilitate interaction 

between user and system in a way that feels intuitive and natural to the user. Therefore, 

for FDM to be a complete similarity evaluation method, it needs to be calibrated 

according human subjects’ similarity assessments, and to incorporate natural-language 

expressions in the results’ presentation. 

To calibrate the method, a series of human subject tests need to be performed in 

order to examine how people rank the relations in the same datasets evaluated by FDM. 

Examination of the test results will verify whether or not people judge similarity between 

relations with multi-holed regions with the same criteria as FDM does. It is also desirable 

to enable FDM to express the similarity results with natural-language expressions much 

like people do. To realize this, various similarity percentage ranges need to be matched 

against certain assessment terms that people use, such as almost identical, very similar, 

similar, and not similar. This matching resembles the effort to extend the terminology of 

expressing topological relations involving regions with broad boundaries, since the firm 

terms that concern regions with crisp boundaries cannot cover vague spatial objects 

(Bejaoui et al. 2008).  The difference in the case of FDM is that ranges of absolute 

numerical similarity values will have to be matched with vague natural language terms.  

Achieving so, will facilitate a human-computer system collaboration that resembles more 
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the person-to-person communication and will contribute to the development of more 

interactive, innovative systems.  
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