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ABSTRACT 
 
 
 

Arsenic, a metalloid, is one of the most prominent toxins in Maine drinking water.  There 

are approximately 86,500 Maine citizens exposed to water containing arsenic over the 

maximum contamination level causing adverse effects including nausea, multiple 

cancers, and a reduction of full scale IQ and executive function.  In drinking water, 

arsenic arises both by the natural leaching from bedrock and from the use of chemicals 

such as pesticides, embalming fluids, and wood preservatives.  Although there are many 

known arsenic water remediation techniques, finding a method compatible for multiple 

arsenic isotopes is challenging.  In this work, we test the low-energy and low-cost 

technique coupling ferric chloride pre-treatment coagulation with liquid-gated membrane 

filtration.  We find that flocs are formed under specific conditions and can be filtered out 

of the water, bringing the arsenic with it.  We were additionally able to determine the size 

of these particles using dynamic light scattering and associated pH changes during pre-

treatment steps.  This work provides evidence that liquid-gated membrane filtration can 

be used to effectively filter out arsenic containing flocs.  These experiments lay the 

groundwork for a new approach to arsenic remediation of Maine drinking water using 

membrane filtration, in a low-cost, self-cleaning system. 
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INTRODUCTION 
 
 
 

As early as 1993, the World Health Organization recommended that the 

Maximum Contamination Level (MCL) for arsenic (As) in drinking water should be 

lowered to 10 µg/L, but it wasn’t until 2001 that the United States officially lowered the 

MCL from 50 µg/L1.  In comparison iron (Fe) and magnesium (Mg) have current MCLs 

of 200 µg/L and 50 µg/L respectively, despite the fact that arsenic has a 100 times higher 

cancer risk than any other water contaminant with an MCL.  Today, approximately 13 

million US citizens are exposed to drinking water over the 10 µg/L limit2. 

Studies conducted on Maine wells have determined there is still much 

improvement to be made in the way of our water remediation methods and drinking water 

quality.  Bedrock wells account for providing water to nearly 50% of Maines population 

with 12-13% of those same wells having a MCL over 10 µg/L 3.  Looking particularly at 

the watershed in Northport, Maine, studies were conducted to make conjectures about 

Maine and overall New England water quality.  When looking at both bedrock wells and 

drift wells, bedrock wells were found to have higher contamination levels with a greater 

variance, whereas drift wells consistently had contamination levels below the MCL and a 

lower variance.  The study found 69% of all bedrock wells tested exceeded the MCL and 

one cluster of bedrock wells that had an arsenic contamination level of 1810 µg/L.  This 

finding, combined with studies of soil components in correlation to water contamination, 

concluded that most arsenic levels in Maine are naturally occurring from the bedrock and 

not human influence.  Additionally this study found no correlation between the 

concentration of arsenic in the bedrock and that of the water, suggesting that hydrologic 
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Figure 9: (A i) Ferric chloride mixed into arsenic-doped Orono water. (A ii) Ferric chloride flocs in arsenic-
doped DI water. (B)DLS data for As complexes in DI Water samples, peaks at 58, 91, 255, 712, and 1106 

nm.  (C) DLS data for As complexes after Non-LGM. 
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CONCLUSION 
 
 
 
 There appears to be a logical progression of experiments for future iterations of 

this project.  Firstly we would like to replicate the experiments already conducted to 

increase the sample size and verify reproducibility of the results, mainly in regards to the 

number of peaks for post-filtration DLS.  With more time for experimentation we would 

have run trials with lower concentrations of ferric chloride, analyzed the size of flocs 

formed in the mixing process, and compared the effectiveness of remediation.  

Additionally this would allow us to analyze the effect the filtration process as well as the 

remediation of arsenic and ferric chloride had on sample pH.  In a similar vein, we would 

also have liked to compare the rate of arsenic removal in the samples we doped to be 100 

ppb compared to a lower concentration that would more closely reflect the average levels 

in which these methods would be implemented.  Lastly, as previously mentioned LGMs 

have been studied for their self-cleaning properties10,17,18.  We would have therefore liked 

to run experiments to compare those results to the fouling rate of these flocs in the future.  
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APPENDIX 
 
 
 
Table A3: Full data set from ICP-MS.  All values are reported as parts-per-billion. 

Doped 
Standard 

[As] 

Pre-
Filtration 

[Fe] 

Post LGM 
Filtration 
[As] 

Post Non-
LGM 
Filtration 
[As] 

Post LGM 
Filtration 
[Fe] 

Post Non-
LGM 
Filtration 
[Fe] 

94.07 3949.00 25.15 33.88 1708.91 1829.30 
102.92  8.20 42.98 375.21 1979.24 
110.27  26.47 35.84 1089.54 1906.48 
61.73      
94.79      
99.95      
104.34      
117.00      
110.47      
110.60      
95.89      
114.67      
122.23      
126.92      
119.20      
120.81      

 
Table A4: Statistical analysis of LGM vs. Non-LGM for [As]

 

F-Test Two-Sample for Variances t-Test: Two-Sample Assuming Equal Variances

Variable 1 Variable 2 Variable 1 Variable 2
Mean 1905.00667 1057.88373 Mean 19.9421438 37.5689718
Variance 5621.94164 445439.088 Variance 103.761589 22.9528859
Observations 3 3 Observations 3 3
df 2 2 Pooled Variance63.3572377
F 0.01262112 Hypothesized Mean Difference0
P(F<=f) one-tail0.01246382 df 4
F Critical one-tail0.05263158 t Stat -2.7121998

P(T<=t) one-tail0.02670782
t Critical one-tail2.13184679
P(T<=t) two-tail0.05341564
t Critical two-tail2.77644511
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Table A5: Statistical analysis of LGM vs. Non-LGM for [Fe]

 

Table A6: Statistical analysis of LGM vs. Non-LGM for volume

 

TableA7: Statistical analysis of LGM vs. LGM Control for volume

 

F-Test Two-Sample for Variances t-Test: Two-Sample Assuming Equal Variances

Variable 1 Variable 2 Variable 1 Variable 2
Mean 1905.00667 1057.88373 Mean 1057.88373 1905.00667
Variance 5621.94164 445439.088 Variance 445439.088 5621.94164
Observations 3 3 Observations 3 3
df 2 2 Pooled Variance225530.515
F 0.01262112 Hypothesized Mean Difference0
P(F<=f) one-tail0.01246382 df 4
F Critical one-tail0.05263158 t Stat -2.184688

P(T<=t) one-tail0.04712475
t Critical one-tail2.13184679
P(T<=t) two-tail 0.0942495
t Critical two-tail2.77644511

F-Test Two-Sample for Variances t-Test: Two-Sample Assuming Equal Variances

Variable 1Variable 2 Variable 1Variable 2
Mean 26.6667 43.3333 Mean 26.6667 43.3333
Variance 308.333 133.333 Variance 308.333 133.333
Observations 3 3 Observations 3 3
df 2 2 Pooled Variance 220.833
F 2.3125 Hypothesized Mean Difference0
P(F<=f) one-tail 0.30189 df 4
F Critical one-tail 19 t Stat -1.3736
Variance is Equal  P(T<=t) one-tail 0.12076

t Critical one-tail 2.13185
P(T<=t) two-tail 0.24152
t Critical two-tail 2.77645
Means are Equal

F-Test Two-Sample for Variances t-Test: Two-Sample Assuming Equal Variances

Variable 1Variable 2 Variable 1Variable 2
Mean 26.6667 34.6667 Mean 26.6667 34.6667
Variance 308.333 116.333 Variance 308.333 116.333
Observations 3 3 Observations 3 3
df 2 2 Pooled Variance 212.333
F 2.65043 Hypothesized Mean Difference0
P(F<=f) one-tail 0.27394 df 4
F Critical one-tail 19 t Stat -0.6724
Variance is Equal P(T<=t) one-tail 0.26909

t Critical one-tail 2.13185
P(T<=t) two-tail 0.53817
t Critical two-tail 2.77645
Means are Equal
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Table A8: Statistical analysis of LGM Control vs. Non-LGM Control

 

Table A9: Statistical analysis of Non-LGM vs. Non-LGM Control

 

F-Test Two-Sample for Variances t-Test: Two-Sample Assuming Equal Variances

Variable 1Variable 2 Variable 1Variable 2
Mean 68.5 34.6667 Mean 68.5 34.6667
Variance 594.75 116.333 Variance 594.75 116.333
Observations 3 3 Observations 3 3
df 2 2 Pooled Variance 355.542
F 5.11246 Hypothesized Mean Difference0
P(F<=f) one-tail 0.1636 df 4
F Critical one-tail 19 t Stat 2.19758
Variance is Equal P(T<=t) one-tail 0.04645

t Critical one-tail 2.13185
P(T<=t) two-tail 0.0929
t Critical two-tail 2.77645
Means are not Equal

F-Test Two-Sample for Variances t-Test: Two-Sample Assuming Equal Variances

Variable 1Variable 2 Variable 1Variable 2
Mean 68.5 34.6667 Mean 43.3333 68.5
Variance 594.75 116.333 Variance 133.333 594.75
Observations 3 3 Observations 3 3
df 2 2 Pooled Variance 364.042
F 5.11246 Hypothesized Mean Difference0
P(F<=f) one-tail 0.1636 df 4
F Critical one-tail 19 t Stat -1.6155
Variance is Equal P(T<=t) one-tail 0.09076

t Critical one-tail 2.13185
P(T<=t) two-tail 0.18151
t Critical two-tail 2.77645
Means are Equal
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Table A10: Mathcad sheet used for solving the series of equations correlating paddle speed to desired 
velocity gradient.
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