
The University of Maine The University of Maine

DigitalCommons@UMaine DigitalCommons@UMaine

Honors College

Spring 2019

A Shoulder Mechanisms for Assisting Upper Arm Function With A Shoulder Mechanisms for Assisting Upper Arm Function With

Distally Located Actuators Distally Located Actuators

Michael Jones
University of Maine

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Jones, Michael, "A Shoulder Mechanisms for Assisting Upper Arm Function With Distally Located
Actuators" (2019). Honors College. 511.
https://digitalcommons.library.umaine.edu/honors/511

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted
for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information,
please contact um.library.technical.services@maine.edu.

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/honors
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/511?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

A SHOULDER MECHANISM FOR ASSISTING UPPER ARM FUNCTION WITH

DISTALLY LOCATED ACTUATORS

by

Michael Jones

A Thesis Submitted in Partial Fulfillment

of the Requirements for a Degree with Honors

(Mechanical Engineering)

The Honors College

University of Maine

May 2019

Advisory Committee:

 Babak Hejrati, Assistant Professor of Mechanical Engineering, Advisor

 Vincent Caccese, Professor of Mechanical Engineering

Andrew Goupee, Assistant Professor of Mechanical Engineering

Mohsen Shahinpoor, Professor of Mechanical Engineering

Stefano Tijerina, Lecturer in Management

ABSTRACT

This thesis presents a new design for a shoulder assistive device based on a

modified double parallelogram linkage (DPL). The DPL allows for active support of the

arm motion in the sagittal plane, while enabling the use of a distally located motor that

can be mounted around the user’s waist to improve the weight distribution. The

development of the DPL provides an unobtrusive mechanism for assisting the movement

of the shoulder joint through a wide range of motion. This design contains three degrees-

of-freedom (DOFs) and a rigid structure for supporting the arm. The modified DPL uses

a cable-driven system to transfer the torque of the motor mounted on the user’s back

through the links to the arm. The proposed design assists with the flexion/extension of the

arm, while allowing the adduction/abduction and internal/external rotations to be

unconstrained. A kinematic analysis of the cable system and linkage interaction is

presented, and a prototype is fabricated to verify the proposed concept.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES .. v

PREPARATION OF THESIS .. 1

Introduction ... 1

Literature Review .. 5

DESIGN PROCEDURE ... 7

Preliminary Design .. 7

Shoulder Rail ... 9

Distal Motor Cable Driven DPL Kinematics .. 11

DPL Version 1 ... 16

DPL Version 2 ... 18

DPL Version 3 ... 19

DPL Version 4 ... 20

DPL Version 5 ... 20

DPL Version 6 ... 26

DPL Version 7 ... 27

EXPERIMENTS AND RESULTS: .. 31

Motor Functionality... 31

Workspace Analysis .. 34

CONCLUSION AND FUTURE WORK: .. 36

REFERENCES ... 37

APPENDICES .. 38

APPENDIX A ... 39

APPENDIX B ... 40

APPENDIX C ... 51

AUTHOR’S BIOGRAPHY .. 61

iv

LIST OF FIGURES

Figure 1: Planes of the human body. .. 2

Figure 2: Motions of the shoulder joint that an exoskeleton needs to account for in its

design. ... 3

Figure 3: Rendering of shoulder rail concept mounted to backpack on person................ 10

Figure 4: Three-views of the double parallelogram mechanism on the shoulder, (a) top

view with the left arm at an angle, (b) back view and, (c) side view. 12

Figure 5: Cable and pulley mechanism schematics. ... 12

Figure 6: Tension created when the motor rotates the input pulley. 14

Figure 7: Slack created when the pulley at point B rotates... 14

Figure 8: Modified cable and pulley mechanism with cable constrained at B. 15

Figure 9: Cable is kept in tension when the modified pulley system bends at B. 16

Figure 10: Geometric diagram to find the cable length on the RHS of B. 16

Figure 11: First DPL prototype. .. 17

Figure 12: First DPL prototype input (right) and output (left). .. 17

Figure 13: Second DPL prototype. ... 18

Figure 14: Simplified cable guide. .. 19

Figure 15: Crossbar output shaft with cable passing through center, (a) crossbar

vertically aligned, (b) crossbar at some off-axis angle. .. 20

Figure 16: Version 5 of the DPL mechanism. .. 22

Figure 17: Output pulley with the cable in groove. .. 22

Figure 18: Output pulley cable bend point, (a) DPL at right angle, (b) DPL in open

position, (c) DPL in closed position. .. 22

Figure 19: Actuation of DPL in throughout the internal/external rotation, (a) 90°

position, (b) open position, (c) closed position. .. 24

Figure 20: Experimental results of input to output rotation of DPL at 90° angle. 24

Figure 21: Experimental results of input to output rotation of DPL at fully

open position. .. 25

Figure 22: Experimental results of input to output rotation of DPL at fully closed

position. ... 25

Figure 23: DPL mechanism version 6. ... 27

Figure 24: Input pulley is mounted out of plane from the DPL and a second cable

transfers the torque from the motor. ... 27

Figure 25: Rendering of the exoskeleton mounted on the user. 29

Figure 26: Input cable mounts directly to the motor shaft. ... 29

Figure 27: Final design for distal motor DPL. .. 30

Figure 28: Three-views of the double parallelogram mechanism on the shoulder,

(a) top view with the left arm at an angle, (b) back view and, (c) side view. 30

Figure 29: Input cable guide aligns the cable along the vertical axis of DPL. 30

Figure 30: Experimental setup for testing exoskeleton rotation. 31

v

Figure 31: Rotation angles of the motor input shaft, the output shaft, and the

dummy’s arm. ... 33

Figure 32: The DH parameter diagram of the exoskeleton prototype in

operational configuration. ... 34

Figure 33: Workspace of DPL end effector .. 35

LIST OF TABLES

Table 1: Table of values for the DH parameters. .. 35

1

PREPARATION OF THESIS

Introduction

Robotic exoskeletons have been used to assist people with limited range of

motion in performing daily tasks while they are worn by their users. Exoskeletons can

take different forms such as full-body, lower-limb, and upper-limb exoskeletons

depending on their use case scenarios. Upper-limb exoskeletons are particularly useful

for their assistance with daily activities such as eating, lifting objects, brushing teeth, etc.

These types of exoskeletons can be designed to assist with the shoulder, elbow, and hand

mobility. This thesis focuses on the design of a shoulder exoskeleton for upper-arm

mobility. The scope of the project is to design a proof-of-concept prototype that can

move the arm in the sagittal plane of motion. The planes of motion of the human body are

shown in Fig. 1, and the motions of the shoulder joint are shown in Fig. 2. The motion on

the sagittal is the motion in which the arm moves during walking and reaching tasks, so it

is desired to have a system that is capable of swinging the arm as well as assisting with

lifting the arm. For this project, the designed prototype will be capable of partially

assisting the user in the sagittal plan motion and will not provide complete power for

movements. While a control system and implementation will be necessary in the future,

the goal of this project is to focus on proving a proof of concept for an exoskeleton and

presenting the design of necessary mechanical components to enable the desired

kinematics. The kinematic analysis of the proposed design will be also presented in this

thesis. This thesis covers a comprehensive literature review of the existing shoulder

2

exoskeletons, the preliminary design, prototyping, and testing of a novel assistive

shoulder exoskeleton.

Figure 1: Planes of the human body.

3

Figure 2: Motions of the shoulder joint that an exoskeleton needs to account for in its design.

The challenge with designing an exoskeleton for the arm is to determine the

sufficient number of degrees of freedom (DOFs) to provide an adequate assistance, while

keeping the weight of the mechanism low to avoid fatigue on the user. A DOF of an

exoskeleton is a motion that allows the body to move in a particular way. The shoulder

joint is a ball-and-socket connection that has three DOFs, which means that an

exoskeleton, which allows the shoulder to move in all natural DOFs, must have at least

three DOFs. An exoskeleton can have more DOFs than the part of the body it is

supporting, which results in more freedom of movement and excessive complexity. An

exoskeleton that matches the number of DOFs of the body part will be as mechanically

simple as possible but be more rigid than if it had an excessive number of DOFs. The two

types of DOFs are active and passive. An active DOF is powered by the system and uses

4

some type of actuator to move the body. A passive DOF is a motion that the exoskeleton

allows, and it only depends on the user to move it. It is important to consider the correct

number and types of DOFs into an exoskeleton design to achieve the desired motion.

Without the correct layout, an exoskeleton can experience inefficiency, backlash, and

undesired back driving.

Back driving is a phenomenon that can occur in exoskeletons that either have too

many DOFs that are not aligned properly or in exoskeletons that do not have enough

freedom of movement. Back driving is when a motion of the exoskeleton or the user

results in the unintended motion of the other. For example, if a shoulder exoskeleton has

four DOFs that are not aligned properly, when the person moves their arm in a certain

way, the exoskeleton could be forced to move in unintended ways. This motion can be

described as a “floppy” exoskeleton. This is an example of the body motion back driving

the exoskeleton. In the opposite fashion, an exoskeleton can be built in such a way that

when an active DOF of the exoskeleton is actuated with the motor or when the user

moves, it causes unintended motion on the user. This can be harmful to the person if the

exoskeleton moves unexpectedly, which could hurt the user. An exoskeleton that is prone

to back driving has to be avoided for the purpose of keeping users safe, comfortable, and

not damaging the exoskeleton.

This thesis project begins with a literature review, goes through the design and

prototyping process for finding the optimal shoulder exoskeleton configuration, and

finishes with testing of the final prototype. This thesis will document all of the steps

taken throughout this process. An additional component of this thesis is a research paper

accepted in the 41th IEEE International Engineering in Medicine and Biology Conference

5

(EMBC 2019). This paper was also accepted for presentation at EMBC 2019 that will be

held in Berlin, Germany, July 2019.

Literature Review

 More recently, the importance of arm swing for gait rehabilitation has been

presented by Hejrati et al. [1], [2], which capitalizes on the design of a wearable assistive

device to induce arm swing. The challenge with designing an exoskeleton for the arm is

to determine the sufficient number DOFs to provide adequate assistance, while keeping

the weight of the mechanism low to avoid user fatigue.

Several designs exist for overcoming this problem such as soft cable-driven

exoskeletons, which rely on the user’s own body to provide the structure. A soft

exoskeleton has the benefit of moving the joint without causing joint misalignment

because the cables use the skeletal structure of the body for support [3], [4]. Dinh et al.

[4] attempted to mitigate slacking and backlashing of the cable-driven systems by pre-

tensioning the cables and using a nonlinear adaptive controller to actuate the system.

Barns et al. [2] proposed a design which uses a pulley-belt mechanism and a cable-driven

haptic paddle to transfer the torque generated by two distal motors located around the

user’s waist to their arms.

A spherical mechanism provides a rigid structure that closely follows the

shoulder’s movement and can fully support the movement of the arm [5], [6]. Hsieh et al.

[6] used linear stepper motors instead of DC motors. This actuator change allowed them

to use two slider-crank mechanisms and two spherical mechanisms to design a shoulder

6

joint with 2 active and 4 passive DOFs. Although this design was unobtrusive, compact,

and lightweight, the spherical mechanism is a complex solution and requires many

components to follow the shoulder movements.

A design by Liu et al. [7] can provide assistance up to 30% of a human’s arm

weight during flexion/extension. The design has one powered and two passive DOFs,

therefore it is relatively light and weighs only 5.1 kg. A similar mechanism by Sui et al.

[8] provides 4 active and 1 passive DOFs and weighs 8.4 kg for both arms. These designs

focus on reducing the weight of the mechanism, but only provide a fraction of the lifting

force that a healthy person could exert. A design by Ebrahimi et al. [9] has 3 active and 9

passive DOFs and can generate up to 40 N-m of torque for shoulder flexion/extension

and up to 24 N-m of torque for elbow flexion/extension. A tradeoff between these design

concepts would be necessary to satisfy both capability and weight requirements.

This paper presents a modification to the double parallelogram linkage (DPL),

which is used in previous studies [10], [11] to allow unconstrained internal/external

rotations and use cables to transfer the torque through a rigid mechanism. The proposed

mechanism uses a DPL to provide 3 DOFs on the shoulder: 1 active DOF for assisting

arm flexion/extension and 2 passive DOFs for other rotations. The system is intended to

be used as an assistive mechanism to augment the user’s arm strength during lifting tasks.

Therefore, its generated torque will be low to keep the weight down. The conceptual

design, geometric analysis, and prototyping of the mechanism are presented in this thesis.

7

DESIGN PROCEDURE

Preliminary Design

 The preliminary design followed the design principal of using a DPL system to

provide the structure for the exoskeleton. This idea was primarily influenced by the

design by Bai et al. [10]. The purpose of using such a design is to prevent collision with

the user, while also providing a structurally rigid platform for supporting the shoulder. It

is a 3-DOF system that allows for passive internal/external rotation and powered

flexion/extension and abduction/adduction rotations. The design by Bai et al. [10] use

two motors, one that mounts to the user’s back and the other one mounts on the outside of

the arm. The benefit of this setup is that it has two powered DOFs and enough range of

motion to allow for normal arm movement. A standout feature of the DPL mechanism is

that the motor, which controls flexion/extension, moves with the user’s arm and is always

aligned with the plane of the elbow joint. This was seen as favorable as the mechanism

will assist the motion in the plane of the elbow joint instead of only the sagittal plane. For

daily tasks such as eating and reaching, this capability is desirable.

 The DPL mechanism with two powered DOFs has some downsides such as

adding weight and having more inertia on the shoulder due to the motor mounted to the

arm. The entire weight of a shoulder exoskeleton is important to keep as low as possible

since the user has to carry the weight on their body. If the weight of the mechanism is

mounted to a backpack, then the back and legs have to take up the weight. For this

reason, low weight is a critical design point for the exoskeletons. The scope of this thesis

calls for a powered DOF in the sagittal plane. This means that the extra weight of an

8

abduction/adduction motor can be left out of the design. If the motor mounted to the

user’s back is removed and replaced with a passive DOF, then the weight of the device

will rest on the user’s arm, further impeding their range of motion. This effect could

negate the benefit of a shoulder exoskeleton by making the user work more to support the

weight of the system. To solve this problem, the motors would ideally be moved off the

arms and have their weights supported by the backpack. By doing this, the overall weight

of the system is reduced, and the weight felt by the arms is significantly decreased.

 The other issue with mounting a motor on the user’s arm is that as the arm moves,

the inertia of the motor will make it harder for the exoskeleton to follow the motion of the

arm. As the weight of the system rotates, the moment arm created by the distance

between the back mount and the motor on the arm will create a significant torque that the

user will feel on their body. If they move their arm too fast, they might not be capable of

handling the torque generated by a heavy motor on their arm. To prevent this, the motor

should be mounted closer to the center of gravity of the user to reduce the torque

transferred to the user. By looking at the two issues associated with the DPL presented by

Bai et al. [10], it is noticeable that by moving the weight of the exoskeleton closer to the

user’s body and off their arm, it will be more comfortable and less fatiguing. The new

design should follow this design philosophy and work towards reducing the weight of the

system carried by the arm.

9

Shoulder Rail

 The shoulder rail concept is the first design explored in the design process and is

intended to reduce complexity of the overall system and allow for smooth operation. It

uses a circular rail that wraps around the shoulder that connects from the back of the

shoulder to the side of the arm as shown in Fig. 3. This design is intended to use only one

motor to power the motion of the shoulder instead of multiple motors. The motor should

be mounted to the back of the user to reduce the weight felt by the arm. The rails that

wrap around the shoulder have a slider that follows the internal/external rotation of the

arm and has a cuff that connects to the upper-arm to move the user’s arm. This slider

would passively follow the arm as the user moves their arm around. The motor would

connect on the user’s back in a comfortable position and use cables to transfer the torque

of the motor to the arm. The rail would be a semi-circular curve that carries a slider

around the pivot point of the shoulder. Since the rail is stationary and a slider runs along

it, the rail would be stationary at all times. The problem with the rails always being in the

same position is that when the user raises their arm, their arm could collide with the rails

in some positions. There was no configuration found that would allow for free range of

motion at all times. The cable drive showed potential in this design and was explored in

detail.

 By using a cable to transfer the torque to the output slider of the rail system, the

torque of the motor could be transferred to another point. The cable can be set up like a

pulley system that has an input and output pulleys and the rotation of one matches the

rotation of the other. By using a pulley in the rail design, one of the pulleys would be

moving relative to the other pulley so that the distance would always be changing. The

10

problem with this approach is that a pulley system that uses a cable relies on tension in

the cable to create rotation. As the distances between the pulleys change, the cable will

not remain tensioned, so the cable will not transmit the torque. A cable and pulley system

also requires the points where the pulleys are mounted to be rigid. As the cable pulls on

the cable, it creates a force that will pull the pulley in the direction of the cable force if

the system is not rigid. These problems resulted in the rail design not being further

explored but the cable and pulley system proved to be a potential solution for mounting

the motor on the user’s back.

Figure 3: Rendering of shoulder rail concept mounted to backpack on person.

11

Distal Motor Cable Driven DPL Kinematics

The design of the final shoulder mechanism design uses a combination of a DPL

and a modified cable drive. The DPL shown in Fig. 4 allows for internal/external rotation

(left arm in Fig. 4 (a)) by aligning the output link with the outside of the arm. The input

shaft mounts on the torso and is aligned with the axis of abduction/adduction rotation of

the shoulder and provides a passive DOF. The output shaft aligns with the axis of

flexion/extension rotation and provides the active DOF. The sizing of the mechanism to

the user is determined by D1 and D2 and can be adjusted to fit a wider variety of sizes. By

combining the DPL with the modified pulley mechanism, the torque from the input shaft

mounted onto the torso can be transferred to the output shaft connected to the user’s arm.

The input axis is along the vertical axis while the output axis is horizontal. In this

configuration, the cable is twisted 90° as it goes from the input to the output. The power

for the mechanism comes from a distally located stepper motor that uses a cable-driven

system to transfer the torque to the output shaft. As shown in Fig. 4, two cables transfer

the torque from the motor to the input shaft at point A and from the input shaft to the

output shaft at point C. The input shaft is mounted on the user’s back perpendicular to the

transverse plane. The input shaft is the interaction point between the two cables used in

the system: the motor cable and the DPL cable. The torque is transferred from the input

shaft to the output shaft similar to a simple cable drive mechanism with two pulleys as

seen in Fig. 5. This diagram simplifies the mechanism and allows for analysis of the

power transfer. Point B is a passive DOF hinge joint allowing link 1 and link 2 to actuate

freely based on the user’s motion. Point C corresponds to the powered flexion/extension

motion in the arm. The pulleys are connected with a continuous cable loop. It is desired

12

for B to be a free center-of-rotation while A powers the rotation of C. The issues with a

simple pulley layout are that cable tensioning and slacking occur during the motion.

Cable slacking and cable tensioning happen simultaneously when the mechanism actuates

at B to allow for internal/external rotation. For the purposes of examining them, the cable

tensioning and slacking are explained separately.

Figure 4: Three-views of the double parallelogram mechanism on the shoulder, (a) top view with the left

arm at an angle, (b) back view and, (c) side view.

Figure 5: Cable and pulley mechanism schematics.

13

Cable tensioning occurs when the motor initially starts to rotate the input pulley,

or the mechanism is actuated at B. Fig. 6 shows a scenario where A is rotated by the

motor, B is free to rotate, and C is locked. This case simulates the scenario that the user

wants assistance from the motor to raise their arm in flexion direction without moving

their arm in internal/external rotation. Point C is locked because during the motion the

output pulley, which is connected to the user’s arm, experiences significant resistance.

When the pulley at A is rotated counter-clockwise, tension is created in the cable on the

bottom. Since point B is the only place with free rotation, this tension will result in an

upwards movement of point B as shown in Fig. 7. The movement and subsequent rotation

of point B is an undesired outcome of the motor actuation.

Due to the tensioning of the cable, the opposite side of the cable becomes slack as

soon as tensioning occurs. Fig. 7 shows the result of the motor rotation. The final distance

Lf between the pulleys in Fig. 7 is shorter than the initial distance Li between the pulleys

in Fig. 6. Since the distance between the pulleys decreases, the cable will not stay in

contact with the pulleys and will no longer stay tensioned.

The same pulley setup can be kept, and a modification is made by constraining

the cable at B so that the cable passes through the axis of rotation at B. This modification

can be seen in Fig. 8. The cable is constrained at B by using a low friction guide hole to

prevent the cables from escaping. By passing the cables over the axis of B, the tension

will be maintained in the cable and slack will not be created. No torque will be generated

around point B from the tension force in the cable because the moment arm of the cable

is reduced to zero about B. The input pulley can still transfer torque to the output pulley

14

similar to the simple pulley configuration because the pulleys are connected by a

continuous loop of cable.

Figure 6: Tension created when the motor rotates the input pulley.

Figure 7: Slack created when the pulley at point B rotates.

 This modification separates and isolates the torque transfer from A to C from the

rotation at B. When the user wants to rotate their arm across their body in internal/external

rotation, 𝜃𝐵 changes but the cable only bends at point B and does not create tension or slack

as shown in Fig. 9.

 The total length of the cable on each side of point B is constant and can be seen by

comparing Fig. 8 with Fig. 9. At an angle of 𝜃𝐵 = 𝜋 shown in Fig. 8, the total length of the

cable on the right-hand side (RHS) of B noted by m is given by:

𝑚 = 𝐶1 + 𝐶2 + 𝐶3 (1)

15

 At some other arbitrary angles of 𝜃𝐵 shown in Fig. 9, the total length of cable on

the RHS of B noted by n is given by:

𝑛 = 𝐶4 + 𝐶5 + 𝐶6 (2)

 The values for m and n can be found by calculating the total length of the cable using

the triangles shown in Fig. 10, where 𝑥 = √𝐿1
2 − 𝑟2, 𝑦 = 𝑟𝑠𝑖𝑛(𝜃), and sin(𝜃) = 𝑟/𝐿1.

These relations are based on a small angle approximation for 𝜃 to assume y is a straight line.

Also, 𝐶1 = 𝐶4 = 𝜋 ∗ 𝑟.

𝑚 = 𝑛 = 2 ∗ (√𝐿1
2 − 𝑟2 +

𝑟2

𝐿1
) + 𝜋 ∗ 𝑟 (3)

 By constraining the cable in at the point of rotation where no torque is desired, the

tension of the cable will be isolated from the rotation of point B. The same analysis as in

(1)-(3) can be done to find the length of cable on the left-hand side (LHS) of B. For any

angle 𝜃𝐵, the total length of the cable (both on the LHS and RHS of B) remains constant,

therefore no tension is created.

Figure 8: Modified cable and pulley mechanism with cable constrained at B.

16

Figure 9: Cable is kept in tension when the modified pulley system bends at B.

Figure 10: Geometric diagram to find the cable length on the RHS of B.

DPL Version 1

 A prototype of this initial design concept was modeled and constructed using 3D

printing which allows for rapid prototyping and fast alterations. The design uses a cable

to provide the flexibility and a chain and sprocket to transfer the torque to the shafts

without slipping. The preliminary design is shown in Fig. 11. The cable passes through

the links from the input (right) to the output (left) and it is constrained in the middle by

the red guide, which is aligned with the shared point of rotation between the two

parallelograms shown in Fig. 8 as point B. The links are bent at the common axis as was

done in the DPL made by Bai et al. [10], and this angle was intended to be tailored to the

size of the system in future prototypes.

17

This prototype was succesful because it showed that the cable was a good way to

transfer torque through the DPL. When the input and output axes, shown as black dotted

lines in Fig. 4, were at a right angle to each other, the cable worked well to rotate the

output shaft. The output shaft has a sprocket connecting the cable by a chain shown in

Fig. 12. The cable allows the links of the DPL to move without affecting the cable

tensioning so the cable could always transfer torque. There were several problems that

occurred with the first prototpye. While the chains could transfer a large amount of

torque to the shafts without slipping, the chain could not bend with the DPL. A flexible

solution had to be found that could transmit the torque of the cable to the shaft, while

allowing the mechanism to open and close.

Figure 11: First DPL prototype.

Figure 12: First DPL prototype input (right) and output (left).

18

DPL Version 2

The second version of the DPL focused on incremental upgrades to simplify the

construction and optimize the shape. The length of the links was increased to allow for

the system to fit on a larger body size as seen in Fig. 13. Testing was done to find the

remote center of rotation and it was determined that with the bent links, the remote center

of rotation would move as the links actuated. Because the input and out axes were aligned

with the attachment points of the links, it was unnecessary to bend the links. A change

was made to make the links straight and the center of rotation became constant.

The central cable guide was simplified to a single part with low friction guide

holes instead of a roller as can be seen in Fig. 14. This was done to more precisely align

the cable with the axis because a single part could have tighter tolerances. This

improvement reduced cable movement and gave more consistent cable tension. The links

were improved by removing the connecting support from between the top and bottom

links, where the cable would pass through, so that there would not be any collisions

between the cable and the links.

Figure 13: Second DPL prototype.

19

Figure 14: Simplified cable guide.

DPL Version 3

The third iteration of the design focused on improving the kinematics of the

output shaft. The output shaft is the part of the mechanism that attaches to the user’s arm

and is driven by the motor. It is important that the output shaft is rotated by the motor

directly and not effected by any other sources such as movement in the links. The chain

used in the previous design had issues when the link was not at a right angle to the output

shaft because the chain could not bend at the axis, where the link attached to the output

enclosure. This caused tensioning and would lock up the system, and the chain could not

rotate on the gear. A new design was implemented, which used a 3D-printed shaft with a

crossbar that the cable would pass through as shown in Fig. 15. The crossbar has a hole

through it that allows the cable to pass through it. As the input motor spins, the cable

rotates the output shaft by pulling on the lever arm created by the crossbar as shown in

Fig. 15. The problem with this design is that as the crossbar moves out of vertical

alignment with the DPL axis (Point C on Fig. 4(a)), the cable is no longer in axis with the

output enclosure pivot point and the links cannot rotate freely. If the crossbar is at an

angle, the cable will prevent the DPL from moving with the user. The second problem

20

with this design is that as the crossbar rotates, the effective lever arm shortens as seen in

Fig. 15 by the change from L1 to L2. This means that as the motor rotates the output shaft,

the mechanism will lose torque to raise the user’s arm. This design also has a maximum

theoretical rotation of 180 degrees. The shape and size of the crossbar was experimented

with to try to find an optimal configuration.

Figure 15: Crossbar output shaft with cable passing through center, (a) crossbar vertically aligned, (b)

crossbar at some off-axis angle.

DPL Version 4

Version 4 of the DPL mechanism experimented with several design of the output

cross-bar. It was found that the crossbar design was limited to 180 degrees of rotation due

to the cable only being able to pull one side to a maximum angle of 90 degrees to either

side. All other configurations had a similar issue, so this design was determined to not be

suitable for the intended application.

DPL Version 5

Version 5 of the DPL with distal motor significantly improved the method for

transferring torque to the output shaft by using the cable. Based on the previous designs,

it was clear that a chain and gear would not be the ideal solution because of the inherent

21

stiffness in the chain. The crossbar design would not work because it changed its

geometry based on the angle of the output shaft. The solution needed to allow the cable to

have constant tension at any angle, rotate the output shaft, and not cause any backlashing,

which would move the shaft unintentionally. An output shaft design was constructed that

fit all of these criteria and the resulting prototype is shown in Fig. 16.

The basis for the improved output pulley uses a smooth disk that the cable wraps

around with a groove inside of the disk that the cable can wrap around as shown in Fig.

17. As one side of the cable is pulled on by the motor, it will cause the disk to rotate. The

groove cutout bends the cable beyond its minimum operating bend radius, which

effectively locks the cable in place inside the disk so that all tension causes a rotation of

the disk. In Fig. 17, if the cable on the top is pulled to the right, the tension will cause the

disk to rotate clockwise. This disk system can transmit much more torque without

slipping than wrapping the cable around a pulley without the groove. Compared to a set

screw, this grooved design has more range of motion because it can rotate more than 90

degrees to each side. This enables the design to transmit a large amount of torque by

using the cable bend radius to lock it in place and have a large range of motion. The cable

wraps around the disk, and there are no guides on the disk so that the cable can slide off

the disk to the side at any point along the disk. This is so that at any angle of the output

shaft rotation the DPL can actuate, and the cable will bend along the vertical axis of the

output enclosure. To keep the cable from slipping off the disk shown in Fig. 17, there is a

half-circle guide built into the casing that attaches to the output shaft. This creates a point

that aligns with the vertical axis that constrains the cable while allowing it to rotate the

output shaft, which attaches to the arm without unintended tensioning. As the DPL links

22

actuate, the cable bends at a single point as seen in Fig. 18. This output shaft design has

multiple benefits: it does not cause tensioning, the cable can rotate the output at any DPL

angle, and it has a higher torque capacity than a standard pulley setup.

Figure 16: Version 5 of the DPL mechanism.

Figure 17: Output pulley with the cable in groove.

Figure 18: Output pulley cable bend point, (a) DPL at right angle, (b) DPL in open position, (c) DPL in

closed position.

23

The input enclosure for this version of the design used an input pulley that was

mounted in the transverse plane which is the same plane that the DPL actuates in. A test

was performed for this configuration in three positions: 90 degrees, fully open, and fully

closed. The three positions of the DPL are shown in Fig. 19. The test measured the

rotation of the output shaft compared to the input shaft to measure how well the output

shaft follows the input shaft. This is important to see how well the cable is able to

transmit motion while the DPL is at different angles. The results of the test are shown in

Figs. 20-22. The ideal response is a line with a slope given by the ratio between the

diameters of the input and output pulleys. The output shaft should respond directly with

the rotation of the motor that connects to the input shaft. If the motion is ideal, then the

actual rotation will follow the ideal line. The results in Fig. 20 and 21 have the

experimental results lagging behind the ideal response as shown by the horizontal

distance from the ideal response to the actual response. This means that there is a lag

between the input and output pulleys due to the tensioning of the cable. If the cable does

not have enough tension, it will need to become tensioned by the motor before it can

rotate the output shaft. In Fig. 22, there is no lag in the system because the DPL is closed,

and the bend radius of the cable causes the response to be more direct. The experimental

response of the output shaft is above the ideal response, showing that the output shaft

rotated before the motor turned on. This means that when the DPL closes, corresponding

to an external rotation, the cable is rotating the output shaft due to the tension created and

causing backlashing. This is not a desirable result as it means that the DPL is not isolated

from the rotation of the motor. It was determined that the cause of these issues came from

the input pulley being in the transverse plane with the DPL. Since both the DPL and input

24

pulley were in the same plane, they were affecting each other unintentionally. To fix this,

the input shaft needs to be turned out-of-plane with the DPL actuation.

Figure 19: Actuation of DPL in throughout the internal/external rotation, (a) 90° position, (b) open position,

(c) closed position.

Figure 20: Experimental results of input to output rotation of DPL at 90° angle.

25

Figure 21: Experimental results of input to output rotation of DPL at fully open position.

Figure 22: Experimental results of input to output rotation of DPL at fully closed position.

26

DPL Version 6

Based on the test data, the design of the input enclosure needed to be changed to

have the pulley out-of-plane with the transverse plane to isolate the motion of the DPL

from the motor and cable. The input enclosure was changed to use the same design as the

output so that the pulley would be in the coronal plane and not affect the motion of the

DPL as shown in Fig 23. The motor was mounted vertically and had a second cable that

would transmit the torque to the main pulley as shown in Fig. 24. By changing the plane

of the input pulley, the DPL did not experience any backlash and the motion of the cable

was isolated from all other motions. The design was also made modular so that the motor

mount could be swapped out for any other motor mounts, which made switching motors

easier. The adapter that connects to the backpack was also made detachable so that any

other type of adapters could be used instead. This iteration had a problem with the

friction of the double cable layout. Any bend in the cable causes friction because the

cable needs to be in tension and it rubs against the plastic guide. Because there were two

cables, there was extra friction in the system that caused slipping of the secondary cable

connected to the motor. By having two cables, it also made it very difficult to align them.

An improvement needed to be made to remove the second cable and the extra

complexity.

27

Figure 23: DPL mechanism version 6.

Figure 24: Input pulley is mounted out of plane from the DPL and a second cable transfers the torque from

the motor.

DPL Version 7

Version 7 of the mechanism is the most recent and final design of the DPL made

for this thesis. It makes several improvements over the previous iteration for simplifying

the input enclosure. The new design mounts the motor horizontally closer to the user’s

back in an effort to make the system more compact. The final design is shown mounted

on the user in Fig. 25. The secondary cable is eliminated by putting the large input pulley

28

directly on the motor, shown in Fig. 26, and removing the complexity of the semicircle

guide and replacing it with a passive hole guide similar to the central cable guide seen in

Fig. 14. By simplifying the construction of the input, it makes the design more robust and

reduces friction. The new design is shown in Fig. 27. For testing purposes, a

potentiometer is built into the system at the motor shaft and output shaft to measure the

rotation and determine how responsive the cable is. The mechanism is mounted on a

backpack and aligned with the user’s shoulder as shown in Fig. 28. The cable is

constrained by two cables guides at point A and B. This design simplifies how the cable

aligns with the axes and reduces the friction of the cable and the cable guide, shown in

Fig. 29.

 This design improves upon the previous iteration by simplifying the construction

and the mounting point of the motor also provides a gravity compensation mechanism by

mounting on the opposite side of the backpack mounting point. Fig. 28(b) shows the

motor on the left side of the input axis and the DPL is on the right side of the input axis.

The input axis is the point where the system mounts to the backpack and is the balance

point of the mechanism. By using the motor as a gravity balance, the weight of the

mechanism resting on the user’s arm is reduced. Since the system only has a single

motor, the coronal plane axis is a passive DOF. This means that if the motor was

mounted at point C in Fig. 28(a), the user would feel the full weight of the motor. By

mounting the motor on the opposite side of point A, it balances the weight that the user

feels on their arm and the entire weight of the system is transferred into the backpack

which is closer to the body’s center of gravity. Another benefit of mounting the motor on

the back is that it reduces the inertia of the system as the DPL moves in the transverse

29

plane. The user will not have to fight the inertia of the mechanism because the weight of

the moving components will be reduced by mounting the motor on the back. This design

has improved balance over the previous iteration and is a less fatiguing mechanism to

wear.

Figure 25: Rendering of the exoskeleton mounted on the user.

Figure 26: Input cable mounts directly to the motor shaft.

30

Figure 27: Final design for distal motor DPL.

Figure 28: Three-views of the double parallelogram mechanism on the shoulder, (a) top view with the left

arm at an angle, (b) back view and, (c) side view.

Figure 29: Input cable guide aligns the cable along the vertical axis of DPL.

31

EXPERIMENTS AND RESULTS:

Motor Functionality

Testing was done on Version 7 of the DPL mechanism to test the rotation of the

motor, output shaft, and a dummy arm to verify the powered flexion/extension DOF. The

test was performed by mounting the exoskeleton to a dummy arm that had a 3 DOF hinge

to simulate the rotation of a human shoulder joint. The testing arm had a low weight so

that the motor could lift it and the results would be accurate to the exact motor rotation. A

potentiometer was mounted on the dummy arm at the axis of flexion/extension, which is

the motion that the exoskeleton powers. The testing setup is shown in Fig. 30 with the

exoskeleton connected. An adapter was made that would extend the output shaft enough

to connect to the dummy arm, but this would not be present when a person wears it. An

Arduino Mega 2560 was used to power the stepper motor and a second Arduino

Figure 30: Experimental setup for testing exoskeleton rotation.

32

measured the potentiometer readings. The Arduino code spins the motor for 90 degrees

back and forth to create an arm swinging motion (shown in Appendix A). A second

Arduino Mega 2560 handles the measurement of the three potentiometers by using a

Visual Basic (VB) interface to record the potentiometer measurements coming into the

Arduino. The VB interface and the code are shown in Appendix B and the Arduino code

to connect with the VB interface is shown in Appendix C. The results were averaged on a

5-point moving average to smooth out the measurement noise. The test results shown in

Fig. 31. The rotation of the motor reaches the most extreme angles of rotation because it

is powering the system. The output shaft rotates by the cable transferring the torque

through the DPL and the rotation is slightly less than the motor. The reason for the output

shaft not getting the same amount of rotation as the motor can be due to several factors

including cable tensioning, tolerancing, and imperfect pulley diameters that are not

perfectly circular. The dummy arm does not rotate as much as the motor and the output

shaft, and this is due to tolerancing in the test setup causing the potentiometer to follow

the rotation but with less overall rotation.

These factors can be mitigated by testing the prototype further and improving and

design limitations. However, it is not critical to refine the design to make the rotations

line up perfectly because of the intended purpose. The control system was not explored in

this thesis, but a feedback control system that follows the rotation of the user’s arm could

be used to mitigate the effects of tolerancing in the system. By designing a control system

that rotates the motor as much as needed to move the user’s arm, the motor will rotate

until the control system tells the motor to stop. The user’s arm will cause the motor to

move, whereas during testing the motor caused the arm to move. By designing a control

33

system that uses the user’s arm to control the motor, then the small misalignments seen

during testing will not matter.

This design has a passive abduction/adduction movement and allows for

internal/external rotation. It was observed that the design had unintended motion during

testing as the DPL fully opened. When the DPL is fully open as seen in Fig. 19(b), the

input and axis become opposite each other, and their axes become close to parallel. This

happens because the DPL allows the output axis to follow the arm during

internal/external rotation. As the axes start to align, they effectively become the same

axis. Since the output is being powered by the motor to lift the arm, but the input is free

to rotate, the motor will rotate the exoskeleton about the input axis when these axes

become aligned. Because the arm has significant resistance, the motor will lift up the

exoskeleton instead of the arm and the arm will not move if these axes are aligned. It

requires further testing to determine the severity of this effect. This effect is present on

any design that aligns an active DOF with a passive DOF because the DOFs will align

and become a single DOF. However, for the intended application, this effect is an

extreme case and in not expected to occur during normal operation.

Figure 31: Rotation angles of the motor input shaft, the output shaft, and the dummy’s arm.

34

Workspace Analysis

 The range-of-motion of the design was simulated in the transverse plane to show

the workspace of the DPL mechanism. As the arm rotates in internal/external rotation, the

mechanism will move with the arm in accordance with the size of the links. The DPL

uses links to maintain a constant center-of-rotation, so the motion of the end effector can

be tracked. The DH parameters of the mechanism are shown in Fig. 32 and the values of

the parameters are shown in Table 1. Only 𝜃2 and 𝜃3 are changed as they correspond with

the motion of the DPL in the transverse plane. The angle limits are determined by using

the CAD model of the mechanism and measuring the angles of the end-of-travel

positions. The result of the workspace analysis is shown in Fig. 33 as a curve in the

transverse plane which the end-effector of the exoskeleton traces as it moves in

internal/external rotation. The red star shows the remote center of rotation, where 𝜃4 in

Fig. 32 traces an arc around and the blue star that shows the position of the mounting

point 𝜃2 in Fig. 32.

Figure 32: The DH parameter diagram of the exoskeleton prototype in operational configuration.

35

i a
i
 d

i
 α

i
 ϴ

i

1 0 0
−𝜋

2
 𝜃1

∗

2 𝑎2 = 4.45𝑖𝑛 0 0 𝜃2
∗

3 𝑎3 = 4.8𝑖𝑛 0 0 𝜃3
∗

4 0 0
𝜋

2
 𝜃4

∗ +
𝜋

2

5 𝑎5 = 9.5𝑖𝑛 𝑑5 0 𝜃5
∗ −

𝜋

2

Table 1: Table of values for the DH parameters.

Figure 33: Workspace of DPL end effector

36

CONCLUSION AND FUTURE WORK:

The final prototype achieves the goal of the original design philosophy, which

was to provide rotation assistance in the sagittal plane while not encumbering the user

with extra weight on their arm. The newest version of the DPL design solves most of the

problems of the original design and makes the system more adaptable because of the

swappable motor mount and the backpack adapter. By mounting the motor distally from

the point where it assists the user, the weight of the exoskeleton is brought closer to the

user’s center of gravity to make it less fatiguing to wear. This is achieved with a pulley

system inside of a DPL mechanism. The motor provides a gravity balance that further

decreases the weight on the user’s arm and make the design more suited for rehabilitation

because the design will not put extra weight on the arm that needs help moving.

In the future, the design will need to be refined and a motor can be selected to

provide the desired torque to assist the arm. The primary refinements that should be made

are sizing the links to fit a person, using a continuous cable without any break points that

will impeed rotation, and optimizing the pulley ratios. A prototype will need to be

fabricated that can mount on a backpack and testing can be done to determine if the

system can handle the torque that needs to be generated. Testing will need to be done on

a person by mounting it and further refining the design. The prototype presented in this

thesis gives a geometically valid solution for mounting a distal motor to a DPL system

with 3 DOFs and using cables to transfer the torque.

37

REFERENCES

[1] B. Hejrati, A. Merryweather, and J. J. Abbott, “Generating Arm-swing

Trajectories in Real-time Using a Data-driven Model for Gait Rehabilitation with Self-

selected Speed,” IEEE Transactions on Neural systems and Rehabilitation Engineering

26, no. 1 (2018): 115-124.

[2] O. R. Barnes, B. Hejrati, and J. J. Abbott, “An Underactuated Wearable Arm-

swing Rehabilitator for Gait Training,” in 2015 IEEE Int. Conf. Robotics and Automation

(ICRA), pp. 4998-5003. IEEE, 2015.

[3] I. Galiana, F. L. Hammond, R. D. Howe, and M. B. Popovic, “Wearable soft

robotic device for post-stroke shoulder rehabilitation: Identifying misalignments,” in

2012 IEEE/RSJ Int. Conf. on Intel. Rob. and Syst., pp. 317–322. IEEE, 2012.

[4] B. K. Dinh, M. Xiloyannis, L. Cappello, C. W. Antuvan, S. C. Yen, and L. Masia,

“Adaptive backlash compensation in upper limb soft wearable exoskeletons,” Rob.

Auton. Syst., 92 (2017),173–186.

[5] H. S. Lo and S. S. Q. Xie, “Optimization of a redundant 4R robot for a shoulder

exoskeleton,” in 2013 IEEE/ASME Int. Conf. on Adv. Int. Mechatronics, pp. 798–803.

IEEE, 2013.

[6] H. C. Hsieh, D. F. Chen, L. Chien, and C. C. Lan, “Design of a Parallel Actuated

Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation,” IEEE/ASME

Trans. Mechatronics 22, no. 5 (2017): 2034–2045.

[7] C. Liu, C. Zhu, H. Liang, M. Yoshioka, Y. Murata, and Y. Yu, “Development of a

light wearable exoskeleton for upper extremity augmentation,” in 2016 23rd Int. Conf. on

Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE, 2016.

[8] D. Sui, J. Fan, H. Jin, X. Cai, J. Zhao, and Y. Zhu, “Design of a wearable upper-

limb exoskeleton for activities assistance of daily living,” in 2017 IEEE Int. Conf. on

Adv. Intel. Mechatronics (AIM), pp. 845–850. IEEE, 2017.

[9] A. Ebrahimi, “Stuttgart Exo-Jacket: An exoskeleton for industrial upper body

applications,” in 2017 10th Int. Conf. on Human Syst. Interactions (HSI), pp. 258–263.

IEEE, 2017.

[10] S. Bai, S. Christensen, and M. R. U. Islam, “An upper-body exoskeleton with a

novel shoulder mechanism for assistive applications,” in 2017 IEEE Int. Conf. on Adv.

Intel. Mechatronics (AIM), pp. 1041–1046. IEEE, 2017.

[11] S. Christensen and S. Bai, “Kinematic Analysis and Design of a Novel Shoulder

Exoskeleton Using a Double Parallelogram Linkage,” J. Mech. Robot.10, no. 4 (2018):

41008.

38

APPENDICES

39

APPENDIX A

/*

 Wiring: Connect ENA+, DIR+, and PUL+ to the Mega's +5V pin

 Connect PUL- to D13, ENA- to D4, and DIR- to D2

 Enable - HIGH locks the rotor, LOW free wheels it regardless of pulsing

 TB6600 Driver pins set 1,2,3 to OFF and 4,5,6 to ON

*/

// the setup function runs once when you press reset or power the board

int PUL=2; //define Pulse pin

int DIR=4; //define Direction pin

int ENA=9; //define Enable Pin

void setup() {

 pinMode (PUL, OUTPUT);

 pinMode (DIR, OUTPUT);

 pinMode (ENA, OUTPUT);

}

void loop() {

 for (int i=0; i<16576; i=i+1) //Forward 6400 steps

 {

 digitalWrite(DIR,LOW);

 digitalWrite(ENA,HIGH);

 digitalWrite(PUL,HIGH);

 delayMicroseconds(200);

 digitalWrite(PUL,LOW);

 delayMicroseconds(200);

 }

 for (int i=0; i<16576; i=i+1) //Backward 6400 steps

 {

 digitalWrite(DIR,HIGH);

 digitalWrite(ENA,HIGH); //LOW causes a pause and more forward rotation

 digitalWrite(PUL,HIGH);

 delayMicroseconds(200);

 digitalWrite(PUL,LOW);

 delayMicroseconds(200);

 }

}

40

APPENDIX B

Module Module1

 Public filepathway As String

 Public interval As Double

 Public log As Boolean

 Public start_time As Double

End Module

'Developed from the work of martyncurrey.com

'Developed from the work of martyncurrey.com

'Developed from the work of martyncurrey.com

'

'Arduino Wiring Assumption -

'

'D0,D1 - Not used. Reserved for communications

'A0,A1 - Implemented analog inputs

'D2,D4,D9 - Digital outputs

'D10,D11,D12,D13 - Digital inputs

'D7,D8 - Reserved for Adafruit Ultimate GPS Logger Shield use

41

'D3,D5 - PWM analog outputs

'D6 - Servo output

'

'

Imports System

Imports System.IO.Ports

Public Class Crosby_PC_Control

 ' Global variables

 Dim comPORT As String

 Dim receivedData As String = ""

 Dim connected As Boolean = False

 Dim count = 0

 Dim File_Opened As Integer

 Dim Analog_in_A0 As String = " "

 Dim Analog_in_A1 As String = " "

 Dim Analog_in_A2 As String = " "

 Dim Analog_in_A3 As String = " "

 Dim Digital_out_D9 As String = " "

 Dim Digital_out_D4 As String = " "

 Dim Digital_out_D2 As String = " "

 Dim Servo_D6_text As String = " "

 Dim Analog_out_D3 As String = " "

 Dim Analog_out_D5 As String = " "

 Dim Digital_in_D10 As String = " "

 Dim Digital_in_D11 As String = " "

 Dim Digital_in_D12 As String = " "

 Dim Digital_in_D13 As String = " "

 Dim Filename As String = " "

 Dim start_time As Double

 Dim current_time As Double

 ' When the program starts; make sure the timer is off (not really needed) and add the

available COM ports to the COMport drop down list

 Private Sub Crosby_PC_Control_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 Sampling_timer.Enabled = False

 D10_Value_lbl.Text = "LOW"

 D11_Value_lbl.Text = "LOW"

 D12_Value_lbl.Text = "LOW"

 D13_Value_lbl.Text = "LOW"

 File_Opened = 0

42

 start_time = (DateTime.Now - New DateTime(1970, 1, 1, 0, 0, 0, 0)).TotalSeconds

'unix time

 populateCOMport()

 End Sub

 'The refresh button updates the COMport list

 Private Sub refreshCOM_BTN_Click(sender As Object, e As EventArgs) Handles

refreshCOM_CB_BTN.Click

 SerialPort1.Close()

 populateCOMport()

 End Sub

 Private Sub populateCOMport()

 comPORT = ""

 comPort_ComboBox.Items.Clear()

 For Each sp As String In My.Computer.Ports.SerialPortNames

 comPort_ComboBox.Items.Add(sp)

 Next

 End Sub

 Private Sub comPort_ComboBox_SelectedIndexChanged(sender As Object, e As

EventArgs) Handles comPort_ComboBox.SelectedIndexChanged

 If (comPort_ComboBox.SelectedItem <> "") Then

 comPORT = comPort_ComboBox.SelectedItem

 End If

 End Sub

 ' When the Connect button is clicked; if a COM port has been selected, connect and

send out a HELLO message.

 ' Then wait for the Arduino to respond with its own HELLO.

 ' When the HELLO is received we are connected; change the button text to Dis-

connect.

 Private Sub connect_BTN_Click(sender As Object, e As EventArgs) Handles

connect_BTN.Click

 comPORT = comPort_ComboBox.SelectedItem

 If (connect_BTN.Text = "Connect") Then

 If (comPORT <> "") Then

 SerialPort1.Close()

 SerialPort1.PortName = comPORT

 SerialPort1.BaudRate = 9600

 SerialPort1.DataBits = 8

 SerialPort1.Parity = Parity.None

 SerialPort1.StopBits = StopBits.One

 SerialPort1.Handshake = Handshake.None

 SerialPort1.Encoding = System.Text.Encoding.Default

 SerialPort1.ReadTimeout = 10000

43

 SerialPort1.Open()

 'See if the Arduino is there

 count = 0

 SerialPort1.WriteLine("<HELLO>")

 connect_BTN.Text = "Connecting..."

 connecting_Timer.Enabled = True

 Else

 MsgBox("Select a COM port first")

 End If

 Else

 'connect_BTN.Text = "Dis-connect"

 'close the connection a reset the button and timer label

 Sampling_timer.Enabled = False

 Timer_LBL.Text = "Timer: OFF"

 SerialPort1.Close()

 connected = False

 connect_BTN.Text = "Connect"

 populateCOMport()

 End If

 End Sub

 'The connecting_Timer waits for the Arduino to say HELLO.

 ' If HELLO is not received in 2 seconds display an error message.

 ' The connecting_Timer is only used for connecting

 Private Sub connecting_Timer_Tick(sender As Object, e As EventArgs) Handles

connecting_Timer.Tick

 connecting_Timer.Enabled = False

 count = count + 1

 If (count <= 8) Then

 receivedData = receivedData & ReceiveSerialData()

 If (Microsoft.VisualBasic.Left(receivedData, 5) = "HELLO") Then

 'if we get an HELLO from the Arduino then we are connected

 connected = True

 connect_BTN.Text = "Dis-connect"

 Sampling_timer.Enabled = True

 Timer_LBL.Text = "Timer: ON"

 receivedData = ReceiveSerialData()

 receivedData = ""

 SerialPort1.WriteLine("<START>")

44

 Else

 'start the timer again and keep waiting for a signal from the Arduino

 connecting_Timer.Enabled = True

 End If

 Else

 'time out (8 * 250 = 2 seconds)

 RichTextBox1.Text &= vbCrLf & "ERROR" & vbCrLf & "Can not connect" &

vbCrLf

 connect_BTN.Text = "Connect"

 populateCOMport()

 End If

 End Sub

 'After a connection is made the main timer waits for data from the Arduino

 'Only OK1, OK2 or OK3 is available.

 Private Sub Timer1_Tick(sender As Object, e As EventArgs) Handles

Sampling_timer.Tick

 receivedData = ReceiveSerialData()

 RichTextBox1.Text &= receivedData

 Dim tmp As String

 tmp = Microsoft.VisualBasic.Left(receivedData, 3)

 'If receivedData contains a "<" and a ">" then we have data

 If ((receivedData.Contains("<") And receivedData.Contains(">"))) Then

 parseData()

 End If

 'Tell the Arduino to send the analog pin values

 SerialPort1.WriteLine("<SA>")

 'Tell the Arduino to send the digital input pin values

 SerialPort1.WriteLine("<SD>")

 'Put code that needs to repeat at every data sampling here

 If log = True Then

 Dim current_time As Double = (DateTime.Now - New DateTime(1970, 1, 1, 0, 0,

0, 0)).TotalSeconds

 Dim elapsed As Double = current_time - start_time

 Dim Dummy_Pot As Double = A1_Value_lbl.Text

 Dim Arm_Pot As Double = A0_Value_lbl.Text

45

 Dim Motor_Pot As Double = A2_Value_lbl.Text

 Dim Dummy_Vertical_Pot As Double = A3_Value_lbl.Text

 My.Computer.FileSystem.WriteAllText(filepathway, Format(elapsed) + "," +

Format(Dummy_Pot) + "," + Format(Arm_Pot) + "," + Format(Motor_Pot) + vbCrLf,

True)

 ElseIf log = False Then

 End If

 'End of sampling code

 End Sub

 Function ReceiveSerialData() As String

 Dim Incoming As String

 Try

 Incoming = SerialPort1.ReadExisting()

 If Incoming Is Nothing Then

 Return "nothing" & vbCrLf

 Else

 Return Incoming

 End If

 Catch ex As TimeoutException

 Return "Error: Serial Port read timed out."

 End Try

 End Function

 'Clear the RecievedDtaa test box

 Private Sub clear_BTN_Click(sender As Object, e As EventArgs) Handles

clear_BTN.Click

 RichTextBox1.Text = ""

 End Sub

 'Toggle the digital output states

 Private Sub Pin9_BTN_Click(sender As Object, e As EventArgs) Handles

Pin9_BTN.Click

 If (connected) Then

 If (Pin9_BTN.Text = "D9 OFF") Then

 SerialPort1.WriteLine("<P009ON>")

 Pin9_BTN.Text = "D9 ON"

 Else

46

 SerialPort1.WriteLine("<P009OF>")

 Pin9_BTN.Text = "D9 OFF"

 End If

 Else

 MsgBox("Not connected")

 End If

 End Sub

 Private Sub Pin4_BTN_Click(sender As Object, e As EventArgs) Handles

Pin4_BTN.Click

 If (connected) Then

 If (Pin4_BTN.Text = "D4 OFF") Then

 SerialPort1.WriteLine("<P004ON>")

 Pin4_BTN.Text = "D4 ON"

 Else

 SerialPort1.WriteLine("<P004OF>")

 Pin4_BTN.Text = "D4 OFF"

 End If

 Else

 MsgBox("Not connected")

 End If

 End Sub

 Private Sub Pin6_BTN_Click(sender As Object, e As EventArgs) Handles

Pin2_BTN.Click

 If (connected) Then

 If (Pin2_BTN.Text = "D2 OFF") Then

 SerialPort1.WriteLine("<P002ON>")

 Pin2_BTN.Text = "D2 ON"

 Else

 SerialPort1.WriteLine("<P002OF>")

 Pin2_BTN.Text = "D2 OFF"

 End If

 Else

 MsgBox("Not connected")

 End If

 End Sub

 'The OK button acts as soon as the button is clicked. It does not wait for the user to

release the button

 'There is no of for the OK button

 Private Sub ok_BTN_MouseDown(sender As Object, e As MouseEventArgs)

 If (connected) Then

 SerialPort1.WriteLine("<NKOK>")

 End If

47

 End Sub

 Function parseData()

 ' uses the global variable receivedData

 Dim pos1 As Integer

 Dim pos2 As Integer

 Dim length As Integer

 Dim newCommand As String

 Dim done As Boolean = False

 While (Not done)

 pos1 = receivedData.IndexOf("<") + 1

 pos2 = receivedData.IndexOf(">") + 1

 'occasionally we may not get complete data and the end marker will be in front of

the start marker

 ' for exampe "55><"

 ' if pos2 < pos1 then remove the first part of the string from receivedData

 If (pos2 < pos1) Then

 receivedData = Microsoft.VisualBasic.Mid(receivedData, pos2 + 1)

 pos1 = receivedData.IndexOf("<") + 1

 pos2 = receivedData.IndexOf(">") + 1

 End If

 If (pos1 = 0 Or pos2 = 0) Then

 ' we do not have both start and end markers and we are done

 done = True

 Else

 ' we have both start and end markers

 length = pos2 - pos1 + 1

 If (length > 0) Then

 'remove the start and end markers from the command

 newCommand = Mid(receivedData, pos1 + 1, length - 2)

 ' show the command in the text box

 RichTextBox1.AppendText("Command = " & newCommand & vbCrLf)

 'remove the command from receivedData

 receivedData = Mid(receivedData, pos2 + 1)

 'Evaluate and post the inputs to the Arduino

48

 If (newCommand.Substring(0, 3) = "D10") Then

 If (newCommand.Substring(3, 1) = "0") Then

 D10_Value_lbl.Text = "LOW"

 Digital_in_D10 = "LOW"

 ElseIf (newCommand.Substring(3, 1) = "1") Then

 D10_Value_lbl.Text = "HIGH"

 Digital_in_D10 = "HIGH"

 End If

 End If

 If (newCommand.Substring(0, 3) = "D11") Then

 If (newCommand.Substring(3, 1) = "0") Then

 D11_Value_lbl.Text = "LOW"

 Digital_in_D11 = "LOW"

 ElseIf (newCommand.Substring(3, 1) = "1") Then

 D11_Value_lbl.Text = "HIGH"

 Digital_in_D11 = "HIGH"

 End If

 End If

 If (newCommand.Substring(0, 3) = "D12") Then

 If (newCommand.Substring(3, 1) = "0") Then

 D12_Value_lbl.Text = "LOW"

 Digital_in_D12 = "LOW"

 ElseIf (newCommand.Substring(3, 1) = "1") Then

 D12_Value_lbl.Text = "HIGH"

 Digital_in_D12 = "HIGH"

 End If

 End If

 If (newCommand.Substring(0, 3) = "D13") Then

 If (newCommand.Substring(3, 1) = "0") Then

 D13_Value_lbl.Text = "LOW"

 Digital_in_D13 = "LOW"

 ElseIf (newCommand.Substring(3, 1) = "1") Then

 D13_Value_lbl.Text = "HIGH"

 Digital_in_D13 = "HIGH"

 End If

 End If

 If (newCommand.Substring(0, 2) = "A0") Then

 A0_Value_lbl.Text = newCommand.Substring(2, 4)

 Analog_in_A0 = Format(Val(A0_Value_lbl.Text) * 1 * (5 / 1024),

"#####.#0")

 A0_Value_lbl.Text = Format(Val(A0_Value_lbl.Text) * 1 * (5 / 1024),

"#####.#0")

49

 End If

 If (newCommand.Substring(0, 2) = "A1") Then

 A1_Value_lbl.Text = newCommand.Substring(2, 4)

 Analog_in_A1 = Format(Val(A1_Value_lbl.Text) * 1 * (5 / 1024),

"#####.#0")

 A1_Value_lbl.Text = Analog_in_A1

 End If

 If (newCommand.Substring(0, 2) = "A2") Then

 A2_Value_lbl.Text = newCommand.Substring(2, 4)

 Analog_in_A2 = Format(Val(A2_Value_lbl.Text) * 1 * (5 / 1024),

"#####.#0")

 A2_Value_lbl.Text = Analog_in_A2

 End If

 If (newCommand.Substring(0, 2) = "A3") Then

 A3_Value_lbl.Text = newCommand.Substring(2, 4)

 Analog_in_A3 = Format(Val(A3_Value_lbl.Text) * 1 * (5 / 1024),

"#####.#0")

 A3_Value_lbl.Text = Analog_in_A3

 End If

 End If ' (length > 0)

 End If '(pos1 = 0 Or pos2 = 0)

 End While

 End Function

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 log = False

 Dim saveFileDialog1 As New SaveFileDialog() 'Create the dialog object

 saveFileDialog1.Filter = "Text File|*.txt|CSV file|*.csv" 'Choose a file extension

 saveFileDialog1.Title = "Name your results file" 'Choose the title of the dialog box

 saveFileDialog1.ShowDialog() 'Open the file dialog

 filepathway = saveFileDialog1.FileName 'Store the full file pathway with file name

 Label18.Text = filepathway 'Put the chosen file name on the form so I can see it

 My.Computer.FileSystem.WriteAllText(filepathway, filepathway + "," +

DateTime.Now + vbCrLf + "Seconds Elapsed (sec)" + "," + "Dummy Pot (A1)" + "," +

50

"Arm Pot (A2)" + "," + "Motor Pot (A2)" + "," + "Dummy Vertical Pot (A3)" + vbCrLf,

True)

 'The “TRUE” indicates that the computer should append the data if the file already

exists

 End Sub

 Private Sub TextBox1_TextChanged(sender As Object, e As EventArgs) Handles

TextBox1.TextChanged

 interval = TextBox1.Text

 Sampling_timer.Interval = interval

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click

 If Button2.Text = "Start Logging" Then

 log = True

 Button2.Text = "Stop Logging"

 start_time = (DateTime.Now - New DateTime(1970, 1, 1, 0, 0, 0,

0)).TotalSeconds

 ElseIf Button2.Text = "Stop Logging" Then

 log = False

 Button2.Text = "Start Logging"

 End If

 End Sub

End Class

51

APPENDIX C

#include <Servo.h>

Servo myservo;

Servo myservo2;

/* **

Adapted from arduinoVBserialcontrol by Stephen Abbadessa

Previous foundation code by www.martyncurrey.com

Crosby_Machine_Controller_v4

Pin Assignments -

 Pins

 A0 -

 A1 -

 A2 -

 A3 -

 D13 - Digital Input

 D12 - Digital Input

 D11 - Digital Input

 D10 - Digital Input

 D9 - Digital Output

 D8 - Reserved for Adafruit Ultimate GPS Logger Shield

 D7 - Reserved for Adafruit Ultimate GPS Logger Shield

 D6 - Servo Output

 D5 - PWM Analog Output

 D4 - Digital Output

 D3 - PWM Analog Output

 D2 - Digital Output

 D1 - Not used. Reserved for communications

 D0 - Not used. Reserved for communications

 D21 - Servo2 output

USB Serial Commands

The expected commands are:

Pin HIGH / LOW

<P001ON> - P001 = Pin 1. ON = HIGH

<P001OF> - P001 = Pin 1. OF = LOW

<V003XXX> - Digital pin3 set PWM to XXX

Other.

52

<HELLO>

<FON>

<FOF>

<DON>

<DOF>

*/ ///

boolean debug = true;

// length of command is 20 chrs

// if you need longer commands then increase the size of numChars

const byte numChars = 20;

char receivedChars[numChars];

boolean newData = false;

int sensorValue;

boolean feedback = true;

void setup()

{

 pinMode(13, INPUT);

 pinMode(12, INPUT);

 pinMode(11, INPUT);

 pinMode(10, INPUT);

 pinMode(9, OUTPUT);

 pinMode(8, OUTPUT); //GPS Shield Xmits on this pin

 pinMode(7, OUTPUT); //GPS Shield Receives on this pin

 pinMode(6, OUTPUT);

 pinMode(5, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(2, OUTPUT);

 myservo.attach(6);

 myservo2.attach(21);

 Serial.begin(9600);

 sendStartMessage();

 //analogReference(INTERNAL1V1);

 analogReference(DEFAULT);

 sensorValue = analogRead(A0);

 delay(100);

53

 sensorValue = analogRead(A0);

 delay(100);

 sensorValue = analogRead(A0);

 delay(100);

}

void loop()

{

 if (Serial.available() > 0) { recvWithStartEndMarkers(); }

 if (newData) { parseData(); }

}

/*********************

* sends a start up message over serial.

* Assumes serial is connected

*

* Global:

* debug

* Local:

*

*/

void sendStartMessage()

{

 Serial.println(" ");

 Serial.println("arduinoVBserialControl Ver 1.0");

 Serial.println(" ");

 Serial.println("DON = debug on");

 Serial.println("DOF = debug off");

 Serial.println("START to reset");

 Serial.println(" ");

 if (debug) { Serial.println("Debug is on"); }

 else { Serial.println("Debug is off"); }

 Serial.println(" ");

}

/*********************

* Checks receivedChars[] for commands

*

* Global:

* receivedChars[]

* newData;

*

* Local:

54

*

*/

void parseData()

{

 newData = false;

 if (debug) { Serial.println(receivedChars); }

 // HELLO

 // If the Arduino receives "HELLO" it sends "HELLO" back

 // This is used by the VB program to show it is connected

 if (strcmp(receivedChars, "HELLO") == 0)

 {

 Serial.println("HELLO");

 //Blink the LED on pin 13 to show "HELLO" was received

 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,LOW);

 }

 if (strcmp(receivedChars, "START") == 0)

 {

 sendStartMessage();

 }

 // PIN

 // P001ON - P for pin. 001 is the button number. ON = on

 // P001OF - P for pin. 001 is the button number. OF = off

 if (receivedChars[0] == 'P')

 {

 int tmp = convertToNumber(1); //Returns the integer value of three digits after

poistion 1

 if (receivedChars[4] == 'O' && receivedChars[5] == 'N') {

digitalWrite(tmp,HIGH); }

 if (receivedChars[4] == 'O' && receivedChars[5] == 'F') {

digitalWrite(tmp,LOW); }

 } // PIN

 //PWM

 // V001220 - V for "variable Voltage = PWM". 001 is the pin number. 220 is the

duty cycle

 if (receivedChars[0] == 'V')

 {

 int loc = convertToNumber(1);

 int duty = convertToNumber(4);

55

 analogWrite(loc, duty);

 } // PWM

 //Servo

 // S001220 - 001 is the pin number. 220 is the duty cycle

 if (receivedChars[0] == 'S')

 {

 int loc = convertToNumber(1);

 int duty = convertToNumber(4);

 if (loc==6)

 {

 myservo.write(duty);

 }

 if (loc==21)

 {

 myservo2.write(duty);

 }

 }

// Send Analog Port Values when asked

 if (receivedChars[0] == 'S' && receivedChars[1] == 'A')

 {

 Serial.print("<A0");

 sensorValue=analogRead(A0);

 if ((sensorValue<1000) && (sensorValue>=100))

 {

 Serial.print("0");

 }

 if ((sensorValue<100) && (sensorValue>=10))

 {

 Serial.print("00");

 }

 if ((sensorValue<10) && (sensorValue>0))

 {

 Serial.print("000");

 }

 if ((sensorValue==0))

 {

 Serial.print("0000");

 }

 Serial.print(sensorValue);

 Serial.println(">");

 Serial.print("<A1");

56

 sensorValue=analogRead(A1);

 if ((sensorValue<1000) && (sensorValue>=100))

 {

 Serial.print("0");

 }

 if ((sensorValue<100) && (sensorValue>=10))

 {

 Serial.print("00");

 }

 if ((sensorValue<10) && (sensorValue>0))

 {

 Serial.print("000");

 }

 if ((sensorValue==0))

 {

 Serial.print("0000");

 }

 Serial.print(sensorValue);

 Serial.println(">");

 Serial.print("<A2");

 sensorValue=analogRead(A2);

 if ((sensorValue<1000) && (sensorValue>=100))

 {

 Serial.print("0");

 }

 if ((sensorValue<100) && (sensorValue>=10))

 {

 Serial.print("00");

 }

 if ((sensorValue<10) && (sensorValue>0))

 {

 Serial.print("000");

 }

 if ((sensorValue==0))

 {

 Serial.print("0000");

 }

 Serial.print(sensorValue);

 Serial.println(">");

 Serial.print("<A3");

 sensorValue=analogRead(A3);

 if ((sensorValue<1000) && (sensorValue>=100))

 {

 Serial.print("0");

57

 }

 if ((sensorValue<100) && (sensorValue>=10))

 {

 Serial.print("00");

 }

 if ((sensorValue<10) && (sensorValue>0))

 {

 Serial.print("000");

 }

 if ((sensorValue==0))

 {

 Serial.print("0000");

 }

 Serial.print(sensorValue);

 Serial.println(">");

 }

 // Send the digital Port Values when asked

 if (receivedChars[0] == 'S' && receivedChars[1] == 'D')

 {

 Serial.print("<D10");

 int digitalstate = digitalRead(10);

 if (digitalstate==1)

 {

 Serial.print("1");

 }

 else

 {

 Serial.print("0");

 }

 Serial.println(">");

 Serial.print("<D11");

 digitalstate = digitalRead(11);

 if (digitalstate==1)

 {

 Serial.print("1");

 }

 else

 {

 Serial.print("0");

 }

 Serial.println(">");

58

 Serial.print("<D12");

 digitalstate = digitalRead(12);

 if (digitalstate==1)

 {

 Serial.print("1");

 }

 else

 {

 Serial.print("0");

 }

 Serial.println(">");

 Serial.print("<D13");

 digitalstate = digitalRead(13);

 if (digitalstate==1)

 {

 Serial.print("1");

 }

 else

 {

 Serial.print("0");

 }

 Serial.println(">");

 }

 // ACKNOWLEDGMENT

 // FON

 // FOF

 if (receivedChars[0] == 'F')

 {

 if (receivedChars[1] =='O' && receivedChars[2] =='N') { feedback = true; }

 if (receivedChars[1] =='O' && receivedChars[2] =='F') { feedback = false; }

 if (feedback) { Serial.println("acknowledgment is on"); }

 else { Serial.println("acknowledgment is off"); }

 } // FEEDBACK

 if (receivedChars[0] == 'D')

 {

 if (receivedChars[1] =='O' && receivedChars[2] =='N') { debug = true;

Serial.println("Debug is on"); }

 if (receivedChars[1] =='O' && receivedChars[2] =='F') { debug = false;

Serial.println("Debug is off"); }

59

 }

}

/*********************

* Takes seial input and looks for data between a start and end marker.

*

* Global:

* Updates receivedChars[] with the received data

*

* Local:

*

*/

void recvWithStartEndMarkers()

{

// function recvWithStartEndMarkers by Robin2 of the Arduino forums

// See http://forum.arduino.cc/index.php?topic=288234.0

 static boolean recvInProgress = false;

 static byte ndx = 0;

 char startMarker = '<';

 char endMarker = '>';

 char rc;

 if (Serial.available() > 0)

 {

 rc = Serial.read();

 if (recvInProgress == true)

 {

 if (rc != endMarker)

 {

 receivedChars[ndx] = rc;

 ndx++;

 if (ndx >= numChars) { ndx = numChars - 1; }

 }

 else

 {

 receivedChars[ndx] = '\0'; // terminate the string

 recvInProgress = false;

 ndx = 0;

 newData = true;

60

 }

 }

 else if (rc == startMarker) { recvInProgress = true; }

 }

}

/*********************

* converts 3 ascii characters to a numeric value

*

* Global:

* Expects receivedChars[] to contain the ascii characters

*

* Local:

* startPos is the position of the first character

*

*

*/

int convertToNumber(byte startPos)

{

 unsigned int tmp = 0;

 tmp = (receivedChars[startPos]-48) * 100;

 tmp = tmp + (receivedChars[startPos+1]-48) * 10;

 tmp = tmp + receivedChars[startPos+2]-48;

 return tmp;

}

void sendOK(int val)

{

 // The 3 command buttons wait for the OK signal

 Serial.print("OK");Serial.println(val);

}

61

AUTHOR’S BIOGRAPHY

 Michael B. Jones was born in Portland, Maine on July 27, 1997. He was raised in

Gray, Maine and graduated from Cheverus High School in 2015. Michael majors in

Mechanical Engineering and is a member of the 3D printing club.

 After graduation, Michael will start work for Pratt and Whitney in North Berwick

Maine as a structural engineer.

	A Shoulder Mechanisms for Assisting Upper Arm Function With Distally Located Actuators
	Recommended Citation

	tmp.1584644648.pdf.hd9oS

