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ABSTRACT 

 
 
 

This project sought to provide thorough instructions to fitting the SIR epidemiological 

model to influenza data and defend its use in this context. Directions for coding the SIR 

model in the R programming language are detailed. This includes estimating parameter 

values, such as infection and recovery rate, and how to double check these values. This 

project also included analysis of problems that can arise when fitting this model. This 

includes accounting for vaccination rate and issues with the nature of this type of data. 

Either these problems were explored, and solutions were provided, or suggestions were 

provided for future research.
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I. INTRODUCTION 
 
 
 
 There are many ways to mathematically model disease surveillance data. These 

models are important to predict the disease behavior and to optimize preventative 

measures, such as vaccinations and general cleanliness. For example, analyzing data 

about influenza epidemics shows that the season typically starts around May in the 

American Tropics.1 This information can then be used to start vaccinations in April, and 

then modelling this next season’s data can further refine the timing of preventative 

measures.1 Using this to more efficiently allocate resources can decrease morbidity and 

mortality of the influenza.2 It is also important to note that while the mortality rate of 

influenza is low in Northern America for the typical flu season,2 there are still socio-

economics effects on the population that make this worthwhile to study.3 These effects 

include the cost of medical care and loss of productivity. It has been estimated that the 

economic cost because of the influenza is between 13.9 thousand to 957.9 million dollars 

per season in the US as of 2010.3 In short, using modeling and analysis of flu data to 

implement strategic prevention measures is important because it can lead to decreases in 

mortality rates and lessen the socio-economic impact that the influenza has on the 

nation.   

 One such mathematical model that can be used to study influenza data is the 

deterministic SIR epidemiological model. In this model, the population is divided into 

three separate groups, or compartments, that describe the group’s status, relevant to the 

disease in question, at a point in time.4 These groups are Susceptible (S), Infectious (I), 

and Recovered (R). People within the S group have not yet been infected by the disease 
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of interest. The I group consists of people who are currently infected with the disease and 

capable of infecting others, while people in the R group were formerly infected and have 

since recovered from the disease (and as a result are immunized). Equation 1 shows the 

system of ordinary differential equations used to determine how much of the population 

is within each group at a specific time (t) for the SIR model.   

Equation 1. 

 N = S + I + R 

dS(t) =  -β * S*I  
  dt           N 
 
dI(t)  =   β * S*I - γ*I 
  dt          N 
 
dR(t) =  γ*I 
  dt 

 

Where N is the population size, β is the infection (or contact) rate and γ is the recovery 

rate.4 The SIR model assumes that there is a constant population size N, that the rates of 

infection and recovery remain constant, and that it is a well-mixed population, meaning 

that there is a chance for any infectious individual to contact and contaminate any 

susceptible individual.5 There have been previous papers and studies using the SIR model 

to analyze influenza data that support its application to the data sets used later in this 

paper.6,7,8 However, they have not been applied to model the influenza in the US.  
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II. DATA 
 
 
 
 The datasets used in this paper are available for public use through the Center for 

Disease Control (CDC) website.9 As this paper exclusively does secondary analysis of 

existing de-identified and publicly available data, IRB approval was not necessary. This 

IRB exemption is in accordance with Federal Policy 45 CFR 46.10210 and the University 

of Maine Policy Concerning the Protection of Human Subjects of Research.11  

 The information was collected by the CDC from public health and clinical 

laboratories across the nation. The data was collected by flu season and grouped into 

weeks, starting at week 40 of the year and continuing for 52 total weeks. The number of 

total specimens tested and the number of infected specimens by strain are reported for 

each week. Data is available for flu seasons from 1997 until the present.  

 In terms of the SIR model, the total number of infected specimens, regardless of 

strain, represent the Infectious (I) category of the model. However, the total number of 

specimens tested does not accurately represent the Susceptible (S) category of the model. 

This is a result of data collection from different regions of the nation using different 

testing practices, resulting in varying amounts of specimens tested as well as seemingly 

varying rates of infection.9 This is also a result of under-reporting that occurs with the 

influenza virus.2 Therefore the population size needs to be estimated. The method to 

estimate population size used in this paper will be addressed further in Chapter III. 
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III: CODING THE SIR MODEL IN R 
 
 
 

Before analyzing any data, at least a simplistic version of the code must first be 

set up. For the first round of code for the SIR model, the different compartmental groups 

are set up as proportions. This is a small adjustment to the sir.model() code found in the 

Appendix. 

##Proportion of Susceptible Individuals at Start 

p.total.s <- (total.s[1] / (total.s[1]+total.i[1])) 

##Proportion of Infectious Individuals at Start 

p.total.i <- (total.i[1] / (total.s[1]+total.i[1])) 

init.v <- c(S=p.total.s, I=p.total.i, R=0) 

 

This method provides cleaner and usually more easily interpretable results. The 

other method is to have the compartmental groups as the actual numerical values of 

individuals per group. Since the SIR model assumes there is a fixed population size N, 

both methods produce the same results. The proportional method simply makes it easier 

to quickly identify the relationship between the groups at any given point. This 

relationship is still present in the non-normalized version, but slightly obscured. 

However, for multiple reasons, I quickly shifted from using the proportions to 

using the non-normalized method. For starters, it fit better with the data sets I had. The 

data set provided the number of individuals per week within the S and I groups, so using 

proportions required transforming the data before fitting it to the model. Another problem 

the proportional method had was that N came from adding the initial S and I group 
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values. This is a problem specific to flu data because it would be abnormal for seemingly 

healthy individuals to seek medical care, so not all of the individuals in the S 

compartment would have visited a clinic. This means that the true N, calculated by the 

number of individuals within all three compartments at a given time, is not represented 

within the data. Since the N value is not represented within the data, N is included within 

the parameter vector in the sir.model() code along with the β and γ values.  

Another motivation to estimate N is to find the effective population size. There is 

not realistically total mixing in the population as not every infectious individual has at 

least a chance of contacting a susceptible individual. However, the SIR model works off 

the assumption that the population is well-mixed in this context. There is an effective 

population size where the population is well-mixed that can be estimated. This effective 

population size is the N that should be used when running the SIR code because this is 

the population estimate that will allow for the data to be fitted. 

The sir.model() code initially has guesses for the values of β, γ, and N in the 

parameter vector. This is done so that the code will actually run, which allows for 

forward progress as well as some basic debugging. As is, this code produces predictions 

of the values of S, I, and R per each week of the flu season, as well as a graph 

showcasing the numerical results of the ordinary differential equations (ODEs) of S, I, 

and R. The graph in Figure 1 clearly shows that the initial guess for the parameter values 

must be incorrect. Comparing the green line, representing the numerical results of the 

ODEs for the I group, and the black line, the actual data, shows that the parameter values 

must be better estimated. Ideally, the green and black line would very closely match, as 

this would indicate that the model fits the data. 
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Figure 1. This graph shows the SIR model results with the initial            
guesses of β and γ. The β and γ values used are found in the                       
legend, where β is 1 and γ is 0.1. The initial S value used is also  
found in the legend, where S=876.  
 

With the SIR model code set up, better estimates of the values of the parameters 

are needed. To find these, code is set up to run the sir.model() function with a range of β, 

γ, and N values. The initial guesses made for these parameters will first be run through 

the L1() function, which calls the sir.model() code and calculates the sum of squared 

residuals (SSR) between values from the data set and the predicted values when using the 

current β and γ values. Each different combination of the parameter values within a given 

range are run through the L1() function, and all of them have their SSR calculated. 
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The SSR is a method of comparing different models (in this case specifically 

different parameter values) to mathematically determine the best fitting model for the 

data. The model produces numerical results of the ODEs for S, I, and R over time. For 

our purposes, the I group is the main point of interest because this is the group where 

people are actively sick. Therefore, the residuals of the I group are calculated. To 

calculate the residuals, the predicted I values must be determined by the model using the 

numerical results of the ODEs.  The residuals of a model are the difference between the 

predicted I values and the I values from the data set at each given time point. The SSR is 

found by adding together all the residual values and then squaring them. This formula is 

shown in Equation 2. Relatively smaller residuals indicate better fitting models because 

that would mean the model more accurately predicts the data values. The larger the 

absolute value of a residual, the more inaccurate the model. Since SSR is calculated from 

summation of the residuals, the model with the smallest SSR is the best fitting model for 

the data over the entire time period. 

 

Equation 2.  

L(ϴ) = ∑ 	𝒏$𝟓𝟐
𝒊$𝟏 [y(ti) – ŷ(ti)]2, i=1, 2, …, 52 

Where ϴ = (β, γ, N), or the parameters of the SIR model, 

y(ti) are the observations from the data at time ti, and 

ŷ(ti) = f(ti, ϴ), and are the predictions from the ODEs at time ti.  
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Figure 2. This graph shows the resulting SIR model when the optimized               
parameter values are used. The β, γ, and initial S value used are found in the        
legend in that respective order. 
  
 

 Once the L1() function has returned optimized values for the parameters based off 

the model SSR, graphing the model again helps to visualize if the code is running well so 

far. The Figure 2 graph is produced by plugging the estimates β=1.86, γ=1.55, and 

N=287181 from the L1() function into the sir.model() code, instead of the initial guesses 

for the parameter values. It’s function is highlighted in Equation 1. The graph clearly 

shows that these new parameter values make the model fit the data much better than 

before. However, it is not guaranteed that these are the absolute best estimates for the 

parameter values. This will be explored further in the next chapter.  
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IV. HEAT MAP 
 
 
 

 It is possible that the L1() function may not perform as expected if the SSR values 

behave irregularly. For example, there may be a local minimum for the SSR values that is 

not a global minimum. In this case, the function could inaccurately conclude what the 

best estimate is for the parameter value. A local minimum would trick this function 

because it would produce a smaller SSR value than any combination of parameter values 

within a close range. The function continues to check new parameter values only so long 

as the SSR values keep decreasing from estimate to estimate. It is almost like water 

flowing down a hill. In the most common situation, gravity pulls the water down to the 

very bottom of the hill (the smallest SSR). However, it may be the case that the hill is not 

nicely conical like most other hills but is instead misshapen with rocks and lumps. These 

rocks and lumps could create divots that the water collects in and forms a puddle, stopped 

from reaching the bottom of the hill.  

 In order to determine that there are no local minimums or irregularities that affect 

our parameter estimates, a heat map (in the Appendix) is created. This calculates the 

SSR over a range of parameter values, for each combination within that range. This 

serves to visually represent the shape of the metaphorical hill.  

 

 The heat map graph, shown in Figure 3, visually depicts which values of β and γ 

produce a model with minimized SSR. The x-axis represents the β values and the y-axis 

represents the γ values. The smaller the SSR values are represented by the red color in the 

center. As the SSR increases, the graph changes color according to the rainbow. This 
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means the red and orange areas are the better parameter estimates, while the blue and 

purple areas provide the worst model fit.  

 

 
 Figure 3. This is a heat map that visually shows the ranges of β and γ where the SSR are 
 minimized. The red area shows the values where the SSR are smallest. The SSR values,  

shown by the colors, range from 4.0e+7 to 5.2e+7. The points added are the points of interest 
where the SSR appears to be minimized. The star is the point the optimization code chose as 
the best estimates for β and γ. 
 
 
This heat map is used to find the absolute minimum SSR values instead of taking 

the derivatives with respect to the parameters. This is in part because there is not a 

specific analytic expression known for f(t, ϴ), the function producing the SSR values. 

This is because f(t, ϴ) is evaluated through calls to the numerical ODE solver. As such, 
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the derivatives of f(t, ϴ) cannot be evaluated, so another method is needed for finding the 

absolute minimum of SSR, and the heat map is used instead.  

Unfortunately, the heat map also indicates that there is potentially some 

irregularity in the shape of the metaphorical hill. Instead of the water collecting nicely 

into a small little puddle, there is a gash in the earth collecting the flowing water. This 

means that there is potentially a large range of values for β and γ where the SSR varies 

little or not at all. It is necessary to further explore the parameter values along this ravine 

in order to ensure the parameter estimates provided by the L1() function are actually the 

best estimates.  

 As indicated in the heat map code in the Appendix, the points along the ravine 

have been manually added in order to capture the nuanced elevation changes. In 

summary, the points are placed where the colors in the heat map indicate a change in the 

SSR value. This includes at the edges of the ravine and places inside the ravine where the 

red color deepens, so the SSR decreases. The point provided by the L1() code is also 

placed on the heat map.  

 The next step is to graph the SIR model with each of these different parameter 

values in order to see if there is any obvious visual difference. If the graphs for parameter 

values, produced from the points on the heat map, produce models that are clearly worse 

fits, these estimates can be disregarded.  
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Figure 4. This shows six iterations of the same code with different parameter values. These are the 
parameter values that are the points of interest in Figure 3. The top left graph shows the iteration with the 
parameter values chosen by the code that optimizes the parameter estimates through minimizing the SSR. 
The y axis is the number of infected people. The first value in the legend is β, and the second value is γ. 
The SSR produced from these models are found at the top of each graph. The SSR values and close visual 
inspection show that the top left graph has the best fit for parameter values. 
 
 
 Figure 4 graphs the SIR models with different parameter estimates. Only the I 

group is shown in these graphs, as that is the group of the most interest. The line 

represents the model fit, while the circles are the actual data points. The numbers in the 

top right corner of each model graph are the β and γ values respectively.  
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The model on the top left of the image is produced using the parameter estimates 

provided by the L1() code. This image indicates that the bottom three models are clearly 

worse fits, and these parameter estimates can be ignored. The center top and right top 

models require a slightly closer look, but visual inspection still indicates that these 

parameter estimates do not provide the best model fit. Therefore, despite the potential 

irregularity shown on the heat map, the L1() function did indeed function as expected.  
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V. UPDATING CODE AND CHECKING RELIABILITY 
 
 
 

 Now that the population size N has been estimated the code needs to be tweaked 

so that N is no longer a parameter. Reducing the number of parameters in a model has 

many benefits. This reduces the computational cost of the model, allowing the code to 

run faster. Reducing computational cost also helps minimize the complexity of the 

problem. However, in this particular case it can also be used to reaffirm that the code is 

working correctly.  

It can sometimes be difficult to determine if complex code is executing correctly. 

Removing N as a parameter will help determine the if the code produces reliable results. 

In this context, reliable means that the results are consistent. The accuracy of the model is 

determined using the SSR (described in detail in Chapter III). An unreliable model will 

give different results even when the initial conditions remain unchanged. This alone is a 

problem because the SIR model is deterministic, not stochastic, so there should not be 

variation in the results when the initial conditions are the same. Unreliable results can 

lead to wrong interpretations and bad predictions. Therefore, it is important to ensure the 

code produces reliable results.  

The code is adjusted by making some changes in the initial condition and 

parameter vectors fed into the code. The complete changes between this version of the 

code and the code from Chapter III are highlighted in the sir.model.vacc() code found in 

the Appendix. The sir.model.vacc() shows four iterations of coding for the SIR model 

with different parameters. As labeled, two of these iterations use the coding method from 
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Chapter III, and the other two use the method discussed in this chapter to remove N as a 

parameter. 

By removing N as a parameter and running the code again, the results of the two 

models can be compared to determine reliability. In theory, removing N as a parameter 

and instead using the estimate for N within the initial conditions should produce the same 

results. That is the case with this code. Taking any of the three parameters (N, β, or γ) and 

fixing them will still produce the same results. Therefore, the code is reliable and the SSR 

determines its accuracy. This indicates that the modeling method described in this paper 

is appropriate for modeling influenza data.  
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VI. ACCOUNTING FOR VACCINATIONS 
 
 
 
 An area of great interest in studying and modeling flu data is the relationship 

between vaccination and the amount of people infected. Using the CDC website where 

the data come from, there is also information on the percent of adults and children 

vaccinated in a given year. In this section, the flu data for 2012 to 2013 is modeled. For 

this particular year, 41.5% of adults and 56.6% of children (people 17 or younger) 

received the flu vaccine.12  

 Starting with the more conservative vaccination percentage, the sir.model() code 

is adjusted to account for 41.5% of the S group actually starting within the R group. This 

requires using both rounds of model code done in Chapter III and V. For the 

unvaccinated version of the model, the methods used in these chapters is followed 

exactly. However, for the model that accounts for vaccination, there are some 

adjustments that need to be made.  

 For the model accounting for vaccination, the initial parameter values must be 

changed. Since vaccination provides immunity to a disease, people with vaccinations will 

actually begin in the R group. The model is run so that the value of N as a parameter is 

estimated while vaccination rate is accounted for.  This means the estimated value of N 

differs whether vaccination rate is included in the model or not. This step cannot be 

skipped because it is possible that the estimated population size will differ based on this 

adjustment to the S and R groups. In the Appendix, full coding is shown for setting up the 

models and comparing them under sir.model.vacc. These changes focus on the initial S, 



 17 

I, and R values used, and the sir.model() code can be adjusted using the following two 

lines of code: 

 

init.v <- c(I=total.i[1],R=(41.5/(100-41.5))*total.s[1]) 

state.value <- c(I=total.i[1],R=(41.5/(100-41.5))*total.s[1]) 

 

 Once this is done, the method in Chapter V can be used. This iteration of the 

model should be the version that accurately represents how accounting for vaccination 

changes the SIR model. Then, similar to the method explained in Chapter III, the 

residuals of the two models are compared in order to determine which model better fits 

the data.  

 Looking at the residuals shows that the models did not behave as initially 

expected. The SIR model that accounts for vaccinated individuals has a significantly 

larger residual, suggesting that this model is a worse fit than the model that does not 

account for vaccination. The sir.model.vacc code was run again using 56.6% vaccination 

rate, as that was the upper end of the vaccination range provided from the CDC website. 

Again, this results in the residuals indicating that the model accounting for vaccination is 

a poor fit compared to the other model. 

These results are peculiar. A more likely result would be that there is no 

difference in residuals between the two models. If this occurred, it could be due to how 

the data was collected. Individuals who are vaccinated are not measured and 

differentiated from unvaccinated individuals. Lacking this variable in the data set would 

mean that the best β and γ values were chosen so that vaccination rate was implicitly 
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accounted for with these values (meaning that the true β and γ values are different, but 

the values used best estimate the behavior of the data set). However, the residuals were 

not similar values, but instead the residual for the model accounting for vaccination had 

residuals that were nearly 100 times larger.  

The discrepancy in the residuals prompted further exploration. As the vaccination 

rates from the CDC website did not appear to accurately capture the vaccination rate, a 

range of potential rates were considered. This involved inputting different vaccination 

rates into the code and observing if the discrepancy between the residuals decreased or 

increased. The difference between the residuals decreased as the proposed vaccination 

rate decreased. Eventually, a proposed vaccination rate for the model yielded a residual 

value smaller than the model that does not account for vaccination.  

The residuals indicated that the behavior of the data is best captured with a 

0.005% vaccination rate for the flu season over 2012 and 2013. This is illustrated in 

Figures 5 and 6. Figure 5 shows the model fit without accounting for vaccination, and 

Figure 6 shows the model fit when accounting for a vaccination rate of 0.005%. The 

residuals calculated are reported in these figures as well, and they are very similar 

numbers.  

A possible explanation for this might stem from the set up of the model. It is 

possible that vaccination rate was accounted for when estimating N, with population size 

and vaccination rate acting as confounding variables. As such, the model cannot 

distinguish between N and vaccination rate, and they are both essentially represented by 

the parameter N. This would explain why a vaccination rate so close to zero would 

produce a relatively small SSR. A future model with ongoing vaccination rate, as 
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opposed to the pulse vaccination rate used here, may perform better. However, setting up 

this future model would be dependent on having data available about ongoing vaccination 

rates. 

A vaccination rate of 0.005% differs astronomically from the proposed 

vaccination rate or 41.5% for this flu season. There are a few potential reasons for this 

phenomenon outside of the scope of this project. The CDC states on their website that the 

data they have is incomplete. The data is collected from public health laboratories and 

clinics, requiring individuals to seek medical care in order to be considered in this data 

set.  

 

Figure 5. This is the graph of the SIR model fitted to the 2012-2013 flu data without  
accounting for vaccination rate. The SSR calculated for this model is found in the legend.  
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Figure 6. This is the graph of the SIR model fitted to the 2012-2013 flu data that accounts for a 
vaccination rate of 0.005%. The SSR calculated is in the legend. 
  
 
 Only including data where individuals had to choose to visit public labs or clinics 

for treatment introduces some problems to consider. People sometimes avoid seeking 

medical care even when necessary, for reasons such as dissatisfaction with previous 

medical care, the cost of care, time constraints, or because they suspect they will improve 

over time regardless.13 Therefore, the data does not necessarily accurately express the I 

group in the SIR model. As symptoms of the flu are typical of a minor illness, such as 

coughing, fatigue, and fever,14 people likely do not seek medical care. They will most 

likely get better without seeking explicit medical care, and therefore do not pursue it for 

the reasons previously listed.  
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However, aversion to seeking medical care could also mean that the data of 

vaccination rate also fails to be accurately documented. There is a particular aversion to 

vaccines, especially with parents being concerned with vaccinating their children. In a 

poll, around 77% of parents reported concern over at least one childhood vaccine.15 

These reasons are mainly due to religious concerns, personal beliefs (that building a 

natural immunity is superior to receiving a vaccine), safety concerns, and desire for more 

information on the vaccine before getting it.15 Parental concern over vaccinations may 

influence the vaccination rate, making the true vaccination rate smaller than the CDC’s 

estimation.   

Another point of interest is that the CDC’s vaccination rate was based on self-

report and that they are aware they overestimate the vaccination rate.16 The CDC website 

indicates that they know their estimate is generous because the number of doses 

manufactured for the vaccine is smaller than the amount of people who claim to be 

vaccinated. In an attempt to further explore this, the number of doses manufactured can 

be compared to the US population size around the 2012-2013 flu season. For the 2012-

2013 flu season, 134.9 million flu vaccine doses were manufactured in the US.17 

Vaccination doses were not considered past March 1st, 2013. The estimated total US 

population size on March 1st, 2013 was 315.4 million.18 Therefore, if every single dose 

made was administer to a person, this would give a vaccination rate of about 43% 

vaccination rate. This assumes all vaccines were used and none of the vaccines had any 

extraneous factor that caused their failure, such as delivery or storage problems. This is 

very close to the CDC’s estimated 41.5% vaccination rate for adults. However, their 

estimate for children is 56.6% were vaccinated in the 2012-2013 season.16 The US 
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Census Bureau does attempt to count children as well in the Decennial census and 

therefore total population size. In 2013, 23.3% of the US population was under the age of 

18.19 Given this information, it can be deduced that there were around 241.9 million 

adults and 73.5 million children in the US. Using the CDC vaccination rate estimations, 

100.4 million adults and 41.6 million children were vaccinated that flu season. This 

suggests that the vaccination rate for this season cannot be 56.6% for children, since only 

considering adult vaccination at 41.5% vaccination rate would allocate 100.4 million of 

the available doses. This would leave 34.5 million of the total 134.9 million doses 

available for children, making the highest possible vaccination rate 47% for children. 

Also, using the CDCs vaccination rate estimate and the population size for adults and 

children, 142 million people got vaccinated. This would be a total vaccination rate of 

45% for the US population. Again, there were only 134.9 million doses available, not 142 

million. That means these numbers must be an overestimation by at least 7 million. The 

information on both the adult and child vaccination rate and the number of doses 

manufactured came from the same source. Between this information and the nature of 

self-report studies, this indicates a large range in which the true vaccination rate might 

lie. This suggests that the true vaccination rate may be different from the estimates for it. 

In addition, there are still other factors to consider when determining vaccination rate.  

Other sources that estimate the vaccination rate per year still estimate a much 

higher percentage than estimated by the SIR model in this paper. However, estimated 

vaccination rates become significantly lower when focusing research on specific groups 

of people. It is unclear whether this is due to behaviors common to these groups, or 

whether closer scrutiny reveals much lower vaccination rates in general. One group that 
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has been studied in relation to flu vaccination rates is the homeless. This is a high-risk 

group for susceptibility to illness and aversion to seeking medical care. It is estimated 

that the flu vaccination rate is less than 25% for the homeless in New York City.20 Given 

the struggles commonly experienced by the homeless, a low vaccination rate is logical. 

However, even groups who have easy access to health care are found to have low flu 

vaccination rate when studied in detail. The CDC estimates that only 36% of healthcare 

workers chose to receive the flu vaccine. In a case study from the 1990s, only 10% of 

healthcare workers employed by a long-term care facility reported getting vaccinated for 

the flu.21 

 To tie vaccination rate to a previous point of interest in this chapter, the residuals 

between the model accounting for vaccination (with a 0.005% vaccination rate) and the 

model not accounting for vaccination are very similar. While the model accounting for 

vaccination has the smaller residuals (and is therefore the better fit), the similar residuals 

indicate that there is not a huge difference in how well the two models predict the 

behavior of the data set. This was originally the expected result and indicates that 

vaccination rate is implicitly accounted for in the original data set.  

In summary, previous research supports the idea that the true flu vaccination rate 

per year is generally overestimated. Given this information and the fact that the very 

small vaccination rate of 0.005% predicts the behavior of the data, it is not so far 

stretched to believe the true vaccination rate is much closer to 0.005% than the highest 

estimate of 56.6%. This is not to say 0.005% is the true vaccination rate, as that is very 

unlikely. However, these results do emphasize the need for further research. Further in- 
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depth research would need to be done where the infectious status of the population is 

better recorded. Given a more complete data set, the method of accounting for 

vaccinations using the SIR model described here could be used to estimate the true 

vaccination rate. This could then be used to both better model influenza data and to better 

direct preventative measures to decrease the spread and severity of influenza.  
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VII. DISCUSSION 
 
 
 
 This paper aimed to apply the SIR epidemiological model to influenza data and 

defend its use in this context. It also serves to illustrate an area of research that needs to 

be further expanded upon. These findings defend the use of the SIR model for flu data. 

They also highlight the uncertainty of the flu vaccination rate for the US within current 

research. The ultimate goal of this paper was to provide thorough instructions for fitting 

the SIR model to flu data and to identify potential problems that may arise.  

 Use of the SIR model is defended in multiple methods throughout this paper. The 

influenza fits in with the assumptions of the models. Images and figures used show at a 

glance that the model can closely predict the behavior of the data. This is supported in a 

more mathematically rigorous manner as well through minimization of the sum of 

squared residuals (SSR). Using the parameters that produce a model with the smallest 

SSR ensure the model as accurate as possible. The use of the SIR model in this context is 

also defended by determining that the model is accurate. This is done by fixing parameter 

values, like N, and making sure the results of the model do not change. Therefore, the use 

of the SIR model in this context is shown to be sound.  

 Fitting the SIR model to flu data highlighted the trouble with accounting for 

vaccination rate. Estimates for flu vaccination rate in the US during the 2012-2013 flu 

season were used to show these problems. Firstly, most sources appeared to greatly 

overestimate the vaccination rate. This leads to the second problem, which is the lack of 

complete data. The overestimation of the vaccination rate is a product of multiple 

variables. There is the unreliability of self-report, such as with the CDC’s estimates. 
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There are also social, health, and educational influences that push parents to not vaccinate 

their children. The findings in this study for a very low vaccination rate are also found in 

previous case studies.20, 21 It is also supported by self-acknowledged limitations within 

studies estimating the vaccination rate.  

 For these reasons, the vaccination rate of 0.005% found in this paper is likely to 

more accurately model reality.  However, this vaccination rate is unlikely to be the true 

vaccination rate in 2012-2013. This would admittedly be a very small vaccination rate 

and would not make sense in conjunction with self-report studies previous done that 

suggest a larger rate. This paper does not propose that the true vaccination rate is 0.005% 

in 2012-2013. The SIR model is a deterministic model, which means it does not have 

inherent randomness. The world naturally has some inherent randomness. It is also much 

more complex than this model accounts for. It is also important to note that for these 

reasons, the best estimate for vaccination rate may not be the true vaccination rate. While 

0.005% is very unlikely to be the true vaccination rate, it is the best estimate in this case. 

This also serves to bring up many questions. As such, this paper does not claim to know 

the true vaccination rate, but instead serves to show that more research needs to be done 

on what the true flu vaccination rate per year actually is in the US.  

 More research on vaccination rate would ideally be done through more modeling 

using more thorough and complete data. However, this type of data can be very hard to 

obtain. Therefore, in addition to collecting more complete data, this paper suggests using 

Bayesian statistics to better model the data and estimate the true parameter values.  
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VIII: FUTURE RESEARCH SUGGESTION: BAYESIAN STATISTICS 
  
 
 

Bayesian Statistics is a data analysis method that could be applied to the influenza 

data sets. This method is based off Bayes’ theorem, which is an equation to calculate 

conditional probability (how likely a certain event is to occur, while accounting for 

conditions that may be related to the event) and given in Equation 3. When the prior 

conditions are indeed related to the event of interest, this theorem allows for calculating a 

more accurate probability that the event will occur. Bayesian statistics is an extension of 

Bayes’ theorem, where prior conditions and information are accounted for when 

analyzing data.  

Equation 3. 

𝑃(𝐴|𝐵) = 		
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 Bayesian inference has a general format that it follows. There needs to be a prior 

distribution, a likelihood function, and a posterior distribution. The prior probability 

distribution is chosen by the statistician and is the expected distribution of the data. If 

nothing is known about the data and a distribution cannot be reliably chosen, Jeffreys 

prior is used (which is a non-informative prior, in order to not affect the results). The 

likelihood function is based off the data collected, which is conditional to its parameters. 

The posterior distribution is the distribution of the parameters after taking the observed 

data into consideration. This differs considerably to the more commonly used Frequentist 

methods of data analysis.  
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Bayesian statistics and Frequentist statistics contrast in multiple ways. Frequentist 

statistics never account for the probability of the hypothesis. The probability of rejecting 

the null hypothesis compared to the probability of failing to reject the null hypothesis is 

not considered. Bayesian statistics is also able to better accommodate for latent variables. 

These are variables that are “hidden” in the data set, and not explicitly observed.  For 

example, vaccination rate is a hidden variable in the flu data sets used. Bayesian is also 

more resilient to outliers and abnormalities in the data. Another point of interest is that 

Bayesian models can account for incomplete and missing data.  

There are different types of missing data. Some is missed randomly, meaning that 

there is no relation between the missing data and the observed values. However, some 

data is missing not at random (MNAR). This is a type of missing data where there is a 

relationship between the value observed and its likelihood to be missed. For example, 

people who only experience mild flu symptoms are less likely to go to the doctor and will 

therefore be less likely to be counted into the data set. Bayesian statistics can 

accommodate for this by using two different prior probability distributions depending on 

the likelihood of a participant to be counted in the data set.22 Next, using Bayesian 

statistics method, data is simulated. The simulated data can then be used to make better 

inferences and predictions. Simulated data allows for this because it provides a range of 

possible data behavior. The data gathered from one season is just one possible way it 

could potentially behave. This is in part due to the natural variation and stochastic nature 

of the world. Using Bayesian statistics and simulated data could provide a range of 

parameter values and their credible intervals, which would better account for inherent 

randomness.  
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There has been some previous research done on applying Bayesian statistics to the 

SIR model. One study analyzed the prevalence of Foot and Mouth disease in cow and 

sheep farms in England.23, 24 However, this study was more focused on the infection 

period for the disease, instead of the infection rate. As a result, their data simulation was 

based around analyzing the variance in time, rather than around analyzing the amount of 

farm animals infected. Another study looked at respiratory syncytial virus in Spain using 

the SIRS model.25 This model is comparable to the SIR model, but people who have 

recovered from the disease will eventually become susceptible to it again.  Their 

simulated data used a discrete time measurement. They focused their simulation to 

further analyze the amount of weekly hospital visits, which is a discrete time model. This 

is similar to how the influenza data sets would need to be simulated. A binomial 

distribution was used as the prior probability distribution, with the number of infections 

at a given time and the likelihood of hospitalization as the parameter values. The number 

of infections was also modeled with a binomial distribution, with the amount of 

susceptible people and the infection rate as the parameters. This information was then 

plugged into the SIRS model and the authors used Markov chain Monte Carlo simulation 

techniques in order to simulate the data. This allows for more accurately predicting the 

timing and magnitude of respiratory syncytial virus epidemics, as well as better inference 

by quantifying the uncertainty surround the SIRS parameters.  

The use of Bayesian statistics to model the respiratory syncytial virus is a similar 

application to the SIR model application suggested by this paper. Right now, there is not 

very much research done on applying Bayesian statistics to the SIR model, particularly  
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not in conjunction to analyzing influenza data from the US. This would be an important 

next step because a better understanding of influenza data can allow for more effective 

preventative measures to be taken. This would in turn result in better general health and 

reduce the socio-economic effects the influenza has on the US each year.  
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APPENDIX 
 
 
 
sir.model(): 

setwd("C:/Users/…") 

library(deSolve) 

 

data<-read.csv("2017-18 public health lab.csv") 

data$Notes<-NULL 

total.people <- c(data$TOTAL.SPECIMENS[1:52]) 

total.i <- c(data$Total.Infected[1:52]) 

total.s <- total.people-total.i 

 

#start of I and R at start 

init.v <- c(I=total.i[1],R=0) 

state.value <- c(I=total.i[1],R=0) 

 

# Time frame 

t <- length(data$WEEK) 

data$Time <- 1:t 

time.v <- data$Time[1:52] 

 

##Start of function 

 

sir.model <- function(parms.v=c(1, 0.1, total.s[1]), init=init.v, times=time.v, 

label.t="SIR Model 2017-2018"){ 

 

#SIR function EQUATIONS 

sir.equation <- function(times=time.v, state.value=state.value, parms=parms.v) { 
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β <- parms[1] 

γ <- parms[2] 

S <- state.value[1] 

I <- state.value[2] 

R <- state.value[3] 

 

  with(as.list(c(state.value, parms)), { 

 

#β is transmission rate 

#γ is recovery rate 

 

 N <- S+I+R 

 dS <- -β*((S*I)/N) 

 dI <- (β*((S*I)/N))-(γ*I) 

 dR <- γ*I 

 

 return(list(c(dS, dI, dR))) 

  }) 

} 

 

## Solve using ode (General Solver for Ordinary Differential Equations) 

out <- ode(y = c(parms.v[3],init.v), times = time.v, func = sir.equation, 

parms=c(parms.v[1],parms.v[2])) 

 

out <- as.data.frame(out) 

# Delete time variable 

out$time <- NULL 

# Show data 

head(out, 10) 
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out$N <- NULL 

 

#Plot 

i.v <- c(data$Total.Infected[1:52]) #actual data 

 

matplot(x = time.v, y = out, type = "l", xlab = "Time by Weeks", ylab = "Number of 

Individuals", main = label.t,lwd = 1, lty = c(4,3,2), bty = "l", col = c(2:4, "black"), 

ylim=c(0,max(i.v)), xlim=c(0,52)) 

legend("topright", c("Susceptible", "Infected", "Recovered", "Data", "Beta = 

1.85896","Gamma = 1.55068","Initial S = 287181.6"), col = c(2:4, "black"), bty = "n", 

lty = c(4,3,2,1,0,0,0)) 

lines(y=i.v, x=time.v, col="black") 

return(out) 

} 

 

 

## The below line of code uses the SIR equations to produce results,  

## which are estimates of how the data acts over time 

# Solve using ode (General Solver for Ordinary Differential Equations) 

out <- ode(y = init, times = time.v, func = sir.equation, parms=parms.v) 

 

out <- as.data.frame(out) 

# Delete time variable 

out$time <- NULL 

# Show data 

head(out, 10) 

 

#Plot 

i.v <- total.i  #actual data 
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matplot(x = time.v, y = out, type = "l", xlab = "Time", ylab = "Susceptible and 

Recovered", main = "SIR Model",lwd = 1, lty = 1, bty = "l", col = 2:4, ylim=c(0,3500)) 

legend(40, 0.7, c("Susceptible", "Infected", "Recovered"), pch = 1, col = 2:4, bty = "n") 

lines(y=i.v, x=time.v) 

 

return(out) 

} 

sir.model() 

 

 

L1(): 

##This needs the same setup before the function as the sir.model(), however that is 

omitted ##here to avoid excessive repetition 

 

#Call our sir.model() function in order to use it in our L1() function 

source("C:\\...\\sir model.R") 

 

L1 <- function(parms.v=c(0.3,0.1,total.people[1]), times=time.v, I.v=i.v, init=init.v) { 

 

β <- parms.v[1] 

γ <- parms.v[2] 

N <- parms.v[3] 

 

#Retrieving the estimate I values over time 

out <- sir.model(parms.v, init, time.v) 

odeI.v <- out$I 

 

#Calculating the SSR 

res.v <- I.v - odeI.v 

return(sum(res.v^2)) 
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} 

 

#Finding the best parameter values 

par.v=optim(c(.3,0.1,1139),fn=L1, times=time.v, I.v=i.v, init=init.v)$par 

print(par.v) 

 

#Best Β estimate 

p1 <- par.v[1] 

#Best Γ estimate 

p2 <- par.v[2] 

#Best N estimate 

p3 <- par.v[3] 

 

Heat Map: 

#call our L1() function in order to use it within this code 

source("C:\\...\\L1 optimizing.R") 

 

resolution = 100 

β.v = seq(0, 4, len=resolution) 

γ.v = seq(0, 4, len=resolution) 

# rows are β, cols are γ 

A.m = matrix(NA, nrow=resolution, ncol=resolution) 

for (βIndex in 1:resolution) { 

  β = β.v[βIndex] 

  for (γIndex in 1:resolution) { 

    γ = γ.v[γIndex] 

    A.m[βIndex,γIndex] = L1(c(β,γ,S=2.871816e+05), time.v, i.v, init.v) 

  } 

} 

x <- seq(min(β.v),max(β.v), length=nrow(A.m)) 
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y <- seq(min(γ.v),max(γ.v),length=ncol(A.m)) 

image(log(A.m),col=rainbow(500), x=x, y=y, xlim=c(0,4), ylim=c(0,4)) 

grid(col="black") 

points(1.85896, 1.55068, pch=8) 

points(2, 1.7) 

points(2.4, 2.05) 

points(2.125, 1.8) 

points(1.6,1.33) 

points(1.75, 1.45) 

 

library(lattice) 

xlim <- list(at=seq(min(β.v),max(β.v),by=0.5)) 

ylim <- list(at=seq(min(γ.v),max(γ.v),by=0.5)) 

levelplot(log(A.m), row.values=β.v, column.values=γ.v, aspect="fill", xlab="β", 

ylab="γ", scales=list(x=xlim, y=ylim)) 

 

 

sir.model.vacc 

##Chapter III method 

library(deSolve) 

 

data<-read.csv("2012-13.csv") 

 

total.people <- c(data$TOTAL.SPECIMENS) 

total.i <- c(data$Total.Infected) 

total.s <- total.people-total.i 

i.v <- c(data$Total.Infected) 

# Time frame 

t <- length(data$WEEK) 
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data$Time <- 1:t 

time.v <- data$Time 

 

vacc.percent <- 0.005 

 

#start of I and R at start 

init.vU1 <- c(I=total.i[1],R=0) 

state.valueU1 <- c(I=total.i[1],R=0) 

 

###SIR FUNCTION TO FIND S VALUE UNVACC 

sir.model.U1 <- function(parms.v=c(1, 0.1, total.s[1]), init=init.vU1, times=time.v){ 

 

#SIR function EQUATIONS 

sir.equation <- function(times=time.v, state.value=state.valueU1, parms=parms.v) { 

 

β <- parms[1] 

γ <- parms[2] 

S <- state.value[1] 

I <- state.value[2] 

R <- state.value[3] 

 

  with(as.list(c(state.value, parms)), { 

 

#β is transmission rate 

#γ is recovery rate 

 

 N <- S+I+R 

 dS <- -β*((S*I)/N) 

 dI <- (β*((S*I)/N))-(γ*I) 

 dR <- γ*I 
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 return(list(c(dS, dI, dR))) 

  }) 

} 

 

## Solve using ode (General Solver for Ordinary Differential Equations) 

out <- ode(y = c(parms.v[3],init.vU1), times = time.v, func = sir.equation, 

parms=c(parms.v[1],parms.v[2])) 

 

out <- as.data.frame(out) 

out$time <- NULL 

head(out, 10) 

out$N <- NULL 

 

#Plot 

i.v <- c(data$Total.Infected) #actual data 

matplot(x = time.v, y = out, type = "l", xlab = "Time", ylab = "Susceptible and 

Recovered", main = "SIR Model",lwd = 1, lty = 1, bty = "l", col = 2:4, 

ylim=c(0,max(data$Total.Infected))) 

legend("topright", c("Susceptible", "Infected", "Recovered", parms.v), pch = 1, col = 

2:4, bty = "n") 

lines(y=i.v, x=time.v) 

 

return(out) 

} 

 

###L1 FUNCTION 1 

L1.U1 <- function(parms.v=c(1, 0.1, total.s[1]), times=time.v, I.v=i.v, init=init.vU1) { 

 

β <- parms.v[1] 

γ <- parms.v[2] 
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S <- parms.v[3] 

 

out <- sir.model.U1(parms.v, init, time.v) 

odeI.v <- out$I 

res.v <- I.v - odeI.v 

return(sum(res.v^2)) 

} 

par.vU1=optim(c(1, 0.1, total.s[1]),fn=L1.U1, times=time.v, I.v=i.v, init=init.vU1, 

upper=c(20,20,1000000), lower=c(0,0,0), method="L-BFGS-B")$par 

#print("Parms for Unvacc SIR model to Find Init S") 

#print(par.vU1) 

R2.U1 <- L1.U1(parms.v=c(1, 0.1, total.s[1]), times=time.v, I.v=i.v, init=init.vU1) 

#print("Sum of R^2") 

#print(R2.U1) 

 

##Chapter V method 

### SIR MODEL UNVACC WITH UPDATED S 

 

#start of S I and R at start 

#S is average of optim S values 

init.vU2 <- c(S=par.vU1[3],I=total.i[1],R=0) 

state.valueU2 <- c(S=par.vU1[3],I=total.i[1],R=0) 

 

sir.model.U2 <- function(parms.v=c(par.vU1[1], par.vU1[2]), init=init.vU2, 

times=time.v){ 

 

#SIR function EQUATIONS 

sir.equation <- function(times=time.v, state.value=state.valueU2, parms=parms.v) { 

 

β <- parms[1] 

γ <- parms[2] 
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S <- state.value[1] 

I <- state.value[2] 

R <- state.value[3] 

 

  with(as.list(c(state.value, parms)), { 

 

#β is transmission rate 

#γ is recovery rate 

 

 N <- S+I+R  

 dS <- -β*((S*I)/N) 

 dI <- (β*((S*I)/N))-(γ*I) 

 dR <- γ*I 

 

 return(list(c(dS, dI, dR))) 

  }) 

} 

 

## Solve using ode (General Solver for Ordinary Differential Equations) 

out <- ode(y = init.vU2, times = time.v, func = sir.equation, parms=parms.v) 

 

out <- as.data.frame(out) 

out$time <- NULL 

head(out, 10) 

out$N <- NULL 

 

#Plot 

i.v <- c(data$Total.Infected) #actual data 

matplot(x = time.v, y = out, type = "l", xlab = "Time", ylab = "Susceptible and 

Recovered", main = "SIR Model Not Accounting for Vacciantion",lwd = 1, lty = 1, bty 

= "l", col = 2:4, ylim=c(0,max(data$Total.Infected))) 
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legend("topright", c("Susceptible", "Infected", "Recovered", parms.v), pch = 1, col = 

2:4, bty = "n") 

lines(y=i.v, x=time.v) 

 

return(out) 

} 

 

###L1 2 

L1.U2 <- function(parms.v=c(par.vU1[1], par.vU1[2]), times=time.v, I.v=i.v, 

init=init.vU2) { 

 

β <- parms.v[1] 

γ <- parms.v[2] 

out <- sir.model.U2(parms.v, init, time.v) 

odeI.v <- out$I 

res.v <- I.v - odeI.v 

return(sum(res.v^2)) 

} 

 

par.vU2=optim(c(par.vU1[1], par.vU1[2]),fn=L1.U2, times=time.v, I.v=i.v, 

init=init.vU2, upper=c(20,20,1000000), lower=c(0,0,0), method="L-BFGS-B")$par 

#print("Parms for Unvacc SIR Model Updated Init S") 

#print(par.vU2) 

R2.U2 <- L1.U2(parms.v=c(par.vU1[1],par.vU1[2]), times=time.v, I.v=i.v, 

init=init.vU2) 

#print("Sum of R^2") 

#print(R2.U2) 

 

##Chapter III method 

### SIR TO FIND S VALUE VACC 



 45 

 

 

#start of I and R at start 

init.vV1 <- c(I=total.i[1],R=(vacc.percent/(100-vacc.percent))*total.s[1]) 

state.valueV1 <- c(I=total.i[1],R=(vacc.percent/(100-vacc.percent))*total.s[1]) 

 

###SIR MODEL VACC TO FIND S 

sir.model.V1 <- function(parms.v=c(1, 0.1, total.s[1]), init=init.vV1, times=time.v, 

label.t="SIR Model 2012-13"){ 

 

#SIR function EQUATIONS 

sir.equation <- function(times=time.v, state.value=state.valueV1, parms=parms.v) { 

 

β <- parms[1] 

γ <- parms[2] 

S <- state.value[1] 

I <- state.value[2] 

R <- state.value[3] 

 

  with(as.list(c(state.value, parms)), { 

 

#β is transmission rate 

#γ is recovery rate 

 

 N <- S+I+R 

 dS <- -β*((S*I)/N) 

 dI <- (β*((S*I)/N))-(γ*I) 

 dR <- γ*I 

 

 return(list(c(dS, dI, dR))) 

  }) 
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} 

 

## Solve using ode (General Solver for Ordinary Differential Equations) 

out <- ode(y = c(parms.v[3],init.vV1), times = time.v, func = sir.equation, 

parms=c(parms.v[1],parms.v[2])) 

 

out <- as.data.frame(out) 

out$time <- NULL 

head(out, 10) 

out$N <- NULL 

 

#Plot 

i.v <- c(data$Total.Infected) #actual data 

matplot(x = time.v, y = out, type = "l", xlab = "Time", ylab = "Susceptible and 

Recovered", main = label.t,lwd = 1, lty = 1, bty = "l", col = 2:4, 

ylim=c(0,max(data$Total.Infected)), xlim=c(1,52)) 

legend("topright", c("Susceptible", "Infected", "Recovered", parms.v), pch = 1, col = 

2:4, bty = "n") 

lines(y=i.v, x=time.v) 

 

return(out) 

} 

 

L1.V1 <- function(parms.v=c(1, 0.1, total.s[1]), times=time.v, I.v=i.v, init=init.vV1) { 

β <- parms.v[1] 

γ <- parms.v[2] 

S <- parms.v[3] 

out <- sir.model.V1(parms.v, init, time.v) 

odeI.v <- out$I 

res.v <- I.v - odeI.v 

return(sum(res.v^2)) 
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} 

par.vV1=optim(c(1, 0.1, total.s[1]),fn=L1.V1, times=time.v, I.v=i.v, init=init.vV1, 

upper=c(20,20,1000000), lower=c(0,0,0), method="L-BFGS-B")$par 

#print("Parms for Vacc SIR Model to Find Init S") 

#print(par.vV1) 

R2.V1 <- L1.V1(parms.v=c(1, 0.1, total.s[1]), times=time.v, I.v=i.v, init=init.vV1) 

#print("Sum of R^2") 

#print(R2.V1) 

 

##Chapter V method 

###SIR MODEL VACC WITH UPDATED S 

 

#start of S I and R at start 

#S is average of optim S values 

#adjust s by 41.5% b/c thats the vaccination estimate per adults 

init.vV2 <- c(S=(par.vV1[3]*(1-

(0.01*vacc.percent))),I=total.i[1],R=(par.vV1[3]*(0.01*vacc.percent))) 

state.valueV2 <- c(S=par.vV1[3]*(1-

(0.01*vacc.percent)),I=total.i[1],R=(par.vV1[3]*(0.01*vacc.percent))) 

#https://www.cdc.gov/flu/fluvaxview/coverage-1516estimates.htm 

 

###SIR VACC UPDATED S 

sir.model.V2 <- function(parms.v=c(par.vV1[1], par.vV1[2]), init=init.vV2, 

times=time.v){ 

 

#SIR function EQUATIONS 

sir.equation <- function(times=time.v, state.value=state.valueV2, parms=parms.v) { 

 

β <- parms[1] 

γ <- parms[2] 
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N <- state.value[1] 

I <- state.value[2] 

R <- state.value[3] 

S <- (1-(0.01*vacc.percent))*N 

  with(as.list(c(state.value, parms)), { 

 

#β is transmission rate 

#γ is recovery rate 

 

 N <- S+I+R 

 dS <- -β*((S*I)/N) 

 dI <- (β*((S*I)/N))-(γ*I) 

 dR <- (γ*I) 

 

 return(list(c(dS, dI, dR))) 

  }) 

} 

 

## Solve using ode (General Solver for Ordinary Differential Equations) 

out <- ode(y = init.vV2, times = time.v, func = sir.equation, parms=parms.v) 

 

out <- as.data.frame(out) 

out$time <- NULL 

head(out, 10) 

out$N <- NULL 

 

#Plot 

i.v <- c(data$Total.Infected) #actual data 

matplot(x = time.v, y = out, type = "l", xlab = "Time", ylab = "Susceptible and 

Recovered", main = "SIR Model Accounting for Vaccination",lwd = 1, lty = 1, bty = 

"l", col = 2:4, ylim=c(0,max(data$Total.Infected))) 
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legend("topright", c("Susceptible", "Infected", "Recovered", parms.v), pch = 1, col = 

2:4, bty = "n") 

lines(y=i.v, x=time.v) 

 

return(out) 

} 

 

L1.V2 <- function(parms.v=c(par.vV1[1], par.vV1[2]), times=time.v, I.v=i.v, 

init=init.vV2) { 

 

β <- parms.v[1] 

γ <- parms.v[2] 

out <- sir.model.V2(parms.v, init, time.v) 

odeI.v <- out$I 

res.v <- I.v - odeI.v 

return(sum(res.v^2)) 

} 

 

par.vV2=optim(c(par.vV1[1], par.vV1[2]),fn=L1.V2, times=time.v, I.v=i.v, 

init=init.vV2, upper=c(20,20), lower=c(0,0), method="L-BFGS-B")$par 

#print("Parms for Vacc SIR Model Updated Init S") 

#print(par.vV2) 

R2.V2 <- L1.V2(parms.v=c(par.vV1[1], par.vV1[2]), times=time.v, I.v=i.v, 

init=init.vV2)  

#print("Sum of R^2") 

#print(R2.V2) 

 

######################### 

##The section of code below will give the R^2 results 

## in a quick and easy to read format 
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if (R2.U2 < R2.V2) { 

 

print("UnVacc model has a smaller sum(R^2)") 

print("UnVacc") 

print(R2.U2) 

print("Vacc") 

print(R2.V2) 

 

} else if (R2.U2 > R2.V2) { 

 

print("Vacc model has smaller sum(R^2)") 

print("UnVacc sum(R^2)") 

print(R2.U2) 

print("Vacc sum(R^2)") 

print(R2.V2) 

 

}  

 

print(R2.V2-R2.U2) 
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