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ABSTRACT 

 

 The shoulder joint is an extremely complex joint, with a wide range of motion 

(ROM), which makes designing an upper extremity exoskeleton a complicated task. This 

thesis presents a 3-degree-of-freedom (DOF) exoskeleton with a modified double 

parallelogram mechanism (DPM) that fits any wearer independent of their biological 

frame.  The DPM is remarkably useful in wearable robotics. The mechanism creates a 

remote center of rotation about the shoulder joint while remaining unobtrusive and not 

colliding with the wearer’s body. Its fixed link lengths, however, requires it to be specially 

fitted to each individual user. This is inconvenient for most exoskeletons that utilize a 

DPM, since wearers often vary in body shape, size, and build. By connecting the two 

parallelograms with a mediating link and implementing a sliding-pin joint, the proposed 

modified DPM allows for a much larger ROM than the original design of the mechanism. 

This allows it to fit onto almost any anthropometric frame. The exoskeleton provides active 

assistance during flexion/extension while allowing free abduction/adduction and 

internal/external rotations. The experimental results demonstrate the proposed design’s 

ability to provide assistance during a wide range of shoulder motions.
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INTRODUCTION 

 

Robotic exoskeletons are becoming increasingly popular in neuromuscular 

rehabilitation and daily task assistance methods. When designing exoskeletons there are 

many parameters that must be considered. For instances, the design must be ergonomic 

and comfortable for the wearer. An ergonomic design typically includes multiple passive 

degrees of freedom (DOF) to prevent the exoskeleton from restricting any movements of 

the wearer. In addition, the design should not collide with the wearer during assistive 

movements or be obtrusive in any way. Accounting for these parameters is especially 

difficult when designing an exoskeleton for the shoulder. The shoulder joint has multiple 

movement patterns across multiple movement planes and makes creating an exoskeleton 

challenging.  

 The design of Hsieh et al. [1] addresses the complexity of the shoulder joint by 

utilizing two linear actuators, a 4-revolute (4R) spherical mechanism, and a 5-revolute 

(5R) spherical mechanism. The design has 2 powered DOFs, and 4 passive DOFs. The 

multiple passive DOFs prevent any potential joint misalignments while the exoskeleton is 

in use. This improved ergonomics, however, also increased the design’s complexity and 

bulkiness. There are multiple moving parts that add to the potential of design failure, and 

the presence of the 5R mechanism on top of the shoulder may be obtrusive to some users. 

In addition, flexion/extension is achieved by actuating internal/external and 

abduction/adduction rotations simultaneously. Accomplishing flexion/extension, in the 

sagittal plane, may overextend the mechanism and result in stiffness issues.  
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Our design team desires an exoskeleton that is simple, low profile, and 

unobtrusive while directly powering flexion/extension. All these qualities should be 

accomplished by the exoskeleton while maintaining ergonomics and avoiding any joint 

misalignments.  

 An exoskeleton that accomplishes some of these qualities is the design of [2]. By 

utilizing a double parallelogram mechanism (DPM) the exoskeleton is less complicated 

and obtrusive than the exoskeleton by Hsieh et al. [1], while maintaining comparable 

ergonomics. This design has passive internal/external rotation and active 

abduction/adduction and flexion/extension rotation. The DPM forms a remote center of 

rotation about the humeral head of the user’s shoulder and will prevent any joint 

misalignment during internal/external rotation. This is assuming the design is fitted to the 

anthropomorphic frame of the wearer.  

When determining the link lengths of the DPM, Christensen et al. [2] simplified 

the shoulder to a sphere whose diameter was determined using data gathered by Peebles 

et al. [3]. The ergonomics of a DPM, however, is highly dependent upon how well it is 

sized to the individual body of the wearer. Since wearers have varying body sizes, a 

standardized exoskeleton will not fit everyone ideally. 

 This thesis presents an exoskeleton utilizing a modified DPM with a much larger 

range of motion (ROM) than the original design. The increased ROM of the modified 

DPM allows the presented exoskeleton to fit onto a large range of users and negates the 

need for a specially fitted exoskeleton. This design is based on the design proposed by 

Christensen et al. [2], where the original DPM is used. The proposed exoskeleton has 3 

DOFs with powered flexion/extension and passive abduction/adduction and 
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intern/external rotations. In this paper, the proof of concept of the design is presented. 

Also, a forward kinematic analysis is presented to demonstrate the ROM of the design. 

Finally, a prototype is fabricated and tested.  

  



 
4 
 

LITERATURE REVIEW 

 

Robotic exoskeletons are becoming increasingly popular in neuromuscular 

rehabilitation methods and daily task assistance; however, many designs are fixed to a 

desk, wall, or another structure that prevents the free movement of users [4 – 6]. These 

stationary devices can be improved remarkably by increasing their range of mobility. 

Redesigning stationary devices into backpack mountable models is a promising avenue 

for more user-friendly exoskeletons. Although a mobile, wearable exoskeleton design 

seems like a simple improvement to a stationary rehabilitation robot, it comes with its 

own plethora of complications. Most notably, one must consider the exoskeleton’s weight 

and weight placement on the wearer. In addition, factors common to both mobile and 

stationary designs, including torque transmission and ergonomics must be addressed. 

These parameters are often determined by the exoskeleton’s intended application. For 

example, if an exoskeleton is intended to be used for an industrial application it will be 

required to generate a substantial amount of torque, be extremely robust, and fairly 

comfortable to wear. As such, designers must employ relatively large actuators, rigid 

links, and multiple passive DOFs to fulfill the requirements simultaneously. If the 

exoskeleton is intended to be used by civilians for daily living tasks, however, torque 

generation and robustness would become less important while ergonomics would take 

precedence. In both scenarios all three parameters are important, but the exoskeleton’s 

application determines how important each parameter is. 
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Lightweight, Low Torque Versus Heavy, High Torque  

 As one might imagine, high torque generating exoskeletons are typically heavier 

than their low-torque counterparts. This is due to the size of the actuators required to 

generate large amounts of torque. Large actuators are not only heavier than small 

actuators but also require a more robust frame to be mounted on. One can create a more 

robust frame by changing the material it is made of or by changing its physical size. The 

increase in the actuator size and a proportional increase in the frame robustness can have 

a substantial impact on the weight of the exoskeleton. 

When comparing wearable exoskeleton designs, it should be noted that the 

difference between what is deemed as light and heavy, while subjective, is on the scale of 

only a few kilograms. For an exoskeleton that is intended to be used for rehabilitation and 

daily task assistance, the weight should not exceed 10% of the wearer’s body weight – a 

conventional standard for hiking backpacks [7]. Assuming a 75 kg person, the 

exoskeletons should not weight more than 7.5 kg. Similarly, what is deemed as a low 

torque generating exoskeleton is subjective and will be classified here as anything below 

10 N.m.  

Making an accurate comparison of current designs is a challenging task. Different 

designs are at varying points in the prototyping process; therefore, it is difficult to gather 

accurate weight measurements that can be compared. In addition, there isn’t a standard 

way authors record torque generation, so comparing these values may be challenging as 

well. In some cases, the weight or torque values might not even be reported. None-the-

less, we can examine exoskeleton designs and draw conclusions to determine the 

relationship between these two parameters: weight and torque generation.  
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Figure 1 (a), the design of Liu et. al. [8] can provide powered assistance up to 

30% of a human’s mass during flexion/extension. The design has two powered and two 

passive DOFs. Flat Maxon 75 watt brushless DC motors (140 grams) are employed to 

actuate flexion/extension of both the shoulder and elbow joints, while medial 

supination/pronation of the shoulder and abduction/adduction of the forearm are passive. 

The motors for each active joint are connected to harmonic drives via a pulley system 

which results in a 300:1 gear ratio that ultimately rotates the wearer’s arm at 90 degrees 

per second. The design utilizes aluminum for structural parts, Carbon Fiber Reinforced 

Plastic for nonstructural parts, and acrylic resign for complex shaped parts of the frame 

work. By virtue of the lightweight frame materials, relatively small motors and harmonic 

drives, and the low torque requirement this design only weights 5.1 kg – well under the 

targeted weight. 

The design by Christensen et al. [2], Figure 1 (d), provides power assistance up to 

50% a human’s mass. The design has 3 active and 1 passive DOFs, powering shoulder 

abduction/adduction and flexion/extension and elbow flexion/extension. Three Maxon 

EC 60 brushless DC motors (2400 grams) are used to actuate the active DOFs. The 

motors are directly connected to harmonic drives at each joint’s axis of rotation. While 

the exoskeleton’s total weight is not reported, we can calculate a projected minimum 

weight from the mass of the motors and other hardware. Accounting for the 6 actuators 

and 2 double parallelogram linkages (200 grams) the minimum mass of the exoskeleton 

would be 15.2 kg. This value isn’t accounting for the mass of the backpack nor the mass 

of the rigid links and cuffs that attach to the wearer’s torso and arms. So while the 

exoskeleton by Christensen et al. [2] can generate substantially more torque than the 
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exoskeleton by Liu et al. [8], it is also at least 3 times heavier. Neither exoskeleton is 

better or worse than the other: they were simply designed and sized for their respective 

intended applications. 

From the designs in Figure 1 (a) and (d) we can surmise lighter weight 

exoskeletons generate lower torques than heavier exoskeletons. This trend can also be 

seen in lightweight designs shown in Figure 1 (b) and (c) and heavy designs Figure 1 (e), 

and (f).  

Figures 1 (b) and (c) utilize spring-based gravity balancing mechanisms to shift 

the bulk of the exoskeleton’s weight to the wearer’s hips. This weight can then be passed 

to the lower extremities exoskeleton and transferred directly to the ground. When 

wearing Figure 1 (b), the design of Park [6], the user only experiences 2.72 kg per arm 

for a total weight of 5.44 kg. This exoskeleton has powered shoulder flexion/extension 

and abduction/adduction and is capable of generating 15-20 N-m of torque. Figure 1 (c), 

the design by Sui et al. [10], provides 4 active and 1 passive DOFs and weights 8.4 kg for 

both arms. Unfortunately, output torque values and motor sizes were not reported. 

Figures 1 (e) and (f) are examples of high torque generating designs from 

Carignan et al. [11] and Ebrahimi et al. [12] respectively. Figure 1 (e) weighs 24 kg for 

both arms, has 5 active DOFs, and can generate up to 30 N-m of torque for shoulder 

flexion/extension. Figure 1 (f) has 3 active and 9 passive DOFs and can generate up to 40 

N-m of torque for shoulder flexion/extension and up to 24 N-m of torque for elbow 

flexion/extension. The exoskeleton’s mass was not reported. 



 
8 
 

 

Figure 1 Examples of light weight, low torque and heavy, high torque exoskeletons (A) Liu et. al. [8] (B) Hsieh et. al. 
[1] (C) Sui et. al [10] (D) Christensen et. al. [2] (E) Carignan et. al. [11] (5) Ebrahimi et. al. [12] 

Rigid Links Versus Cable Driven  

In both types of exoskeletons, the ones that employ rigid links and are cable 

driven, DC motors are typically used to actuate the exoskeletons. There are some designs 

that utilize pneumatic actuators [13]; however, these are often too heavy to be carried on 

a user’s back and as such will not be discussed in this paper.  

It has been known that anatomical joints are hardly ever perfectly revolute [14]. 

With this being said, an exoskeleton with a single axis joint leads to misalignment 

between the wearer and the exoskeleton. This misalignment can cause discomfort for the 

wearer or even pain and injury. Implementing multiple passive DOFs into joint designs is 
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a common method used to mitigate misalignment between anatomical and artificial axes 

of rotation.  

The design of Liu et al. [8] shown in Figure 1 (A) and Figure 2 (B) has a shoulder 

joint with 3 DOFs, one active and two passive.  In Figure 2 (B) the first and third DOFs 

are passive and allow for scapular movement during shoulder raising. This compensation 

allows the active DOF to rotate ergonomically despite a moving axis of rotation.  

The design of Christensen et al. [2] shown if Figure 1 (D), and again in Figure 2 

(A), utilizes a double parallelogram linkage (DPL) to achieve 3 DOFs at the shoulder. 

The exoskeleton powers shoulder abduction/adduction and flexion/extension resulting in 

two active and one passive DOFs. The DPL shown in Figure 2 (A), creates a remote 

center that moves with the shoulder to reduce joint misalignment. Having only 1 passive 

DOF; however, means that an adaptive control algorithm will need to be implemented to 

actively sense when the shoulder joint is moving. In particular, the motor responsible for 

abduction/adduction will also need to account for scapula elevation and depression. 

Overall the exoskeleton is reported to have good mobility.  

Hsieh et al. [1] replaced DC motors with linear stepper motors. This actuator 

change allowed them to use two slider-crank mechanisms and two spherical mechanisms 

to design a shoulder joint with 2 active and 4 passive DOFs. Figure 2 (C), shows the 5R 

and 4R spherical mechanisms used to power shoulder flexion/extension and 

abduction/adduction. By utilizing linear stepper motors with spherical mechanisms Hsieh 

et al. [1] was able to design a minimally invasive, compact, lightweight shoulder joint. 

When using rigid links in an exoskeleton, each link’s orientation angle can be 

easily tracked by placing an encoder at the joints. This makes control algorithms 
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relatively simple and allows for accurate control of the exoskeleton. On the other hand, 

joint misalignments while minimized are still prevalent due to the inflexible nature of the 

rigid links. In addition, rigid-link frames are often intrusive and not gentle for users to 

wear. A solution to completely get rid of joint misalignments and have a more ergonomic 

exoskeleton, is to use a cable driven system. 

 Such a system can be seen in Figure 2 (D), a design by Cappello et. al. [15]. This 

design places the actuating system on the wearer’s back and runs cables across the 

shoulder joint. The cables use Bowden sheathes and have rigid cuff-like connections on 

the wearer to raise the arm. The absence of rigid links will completely mitigate joint 

misalignment since there isn’t an artificial joint to be misaligned from. In addition, since 

there is no need for a large frame in this design, one can surmise that it is not only light 

weight but also comfortable to wear. These qualities make the exoskeleton extremely 

ergonomic. This style of design falls under the umbrella of soft robotics and is known for 

having a less intrusive interaction with wearers than conventional exoskeletons which use 

rigid links.   

 While soft robots excel in ergonomics, they lack in and control and movement 

accuracy. Designers of soft robotic exoskeletons must recognize the multitude of physical 

limitations that cable driven systems have: slacking, backlashing, slippage, and friction in 

Bowden sheaths. Dinh [16] attempted to mitigate slacking and backlashing by pre-

tensioning the cables and using a nonlinear adaptive controller to actuate the system. 

Slippage between the wearer’s arm and the exoskeleton was addressed by using tighter 

arm cuffs. Finally, friction was tackled by using PTFE lined Bowden sheathes. Even with 
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these mechanical and electrical solutions, joint movement inaccuracies are still a major 

dilemma needing further attention.  

Cable driven systems are lightweight and extremely ergonomic while being hard 

to control. On the other hand, rigid link systems are easy to control but are typically 

heavier and less ergonomic. When choosing between which type of exoskeleton to 

employ, designers must assess their application’s requirements and pick accordingly. 

 

Figure 2 (A) Christensen et. al. [2] (B) Liu et. al. [8] (C) Hsieh et. at. [1] (D) Cappello et. al. [15]. 

Locally Versus Distally Mounted Actuators 

 When designing wearable exoskeletons, the location where weight is mounted on 

the wearer is of the utmost importance. Placing a large amount of weight at the end of the 

user’s arm, for example, will create large moments about the shoulder joint. This will 
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require the motors actuating flexion/extension and abduction/adduction to work 

unnecessarily hard. Moving mass closer to the wearer’s torso is a far more efficient and 

effective design strategy.   

Placement of weight along the torso is also crucial. Typically, motors are mounted 

on the upper back while batteries reside just above the hips. Mounting motors on the 

upper back places them closer to the shoulders making it easy to transmit their power to 

and across such a complex joint. As previously discussed, Figures 1 (D) and (F) have 

motor placements on the upper back for abduction/adduction and the side of the shoulder 

for flexion/extension. While this design is simple it is not as efficient as it could be. 

Moving the actuators to the back as in Figure 2 (C) removes a large amount of weight 

from the arm, thereby reducing the moment induced on the shoulder joint. Cable driven 

systems, as in Figure 2 (D) are also very effective in actuator placement. A negligible 

amount of weight is placed on the wearer’s arms, again inducing a minuscule moment. 

A 2007 study conducted by Abe et al. [17] found that carrying weight on one’s 

upper back is more energy efficient than carrying the same weight on the lower back. The 

study measured oxygen consumption as 14 men walked on a treadmill with 15% of their 

respective body weights placed on their upper and lower backs. In addition, a 2011 study 

conducted by Simpson et al [18] examined the effects of load placement on female 

hikers. In this study, 15 experienced female hikers traversed a 2 km simulated hiking trail 

carrying 30% of their body weights at a high, medium, and low position along on their 

backs. Electromyography (EMG), ground reaction force (GRF), and subjective 

preference data was collected. While there were slightly less discomforts reported for 

load placement on the lower back than upper, the majority of participants preferred a 
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higher load placement over medium or low. A higher load placement corresponded to a 

decrease in gastrocnemius EMG activation and an increase in GRF deceleration impact 

peak. Despite this data the authors admit that an ideal load placement location cannot be 

recommended and should be determined based of the individual’s preference. This 

suggests an exoskeleton with the ability to move where the weight is located would be 

ideal.  

Like most things, exoskeleton design is largely based on the desired functionality. 

An exoskeleton that is required to only supply 15 N.m of torque assistance during 

shoulder flexion/extension does not need to use extremely large actuators that will 

unnecessarily add mass to the design. Similarly, an exoskeleton that must generate 40 

N.m of torque cannot use small actuators whose stall torque is well under this desired 

value. Designers must realize that every aspect of an exoskeleton has advantages as well 

as limitations, and this paper attempted to highlight a few of the most common.  
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PRELIMINARY DESIGNS  

Design Iteration 1  

 

 The first exoskeleton was designed with simplicity in mind. This design has 

powered flexion/extension and passive abduction/adduction. A linear slider between the 

two mounting points was intended to allow for various sized wearers, however, this 

adjustability was only accounted for along the back of the wearer. One can deduce that, 

when the exoskeleton is worn like a backpack, the linear slider will allow for variation in 

the breadth of the back of the wearer. The thickness of the back of the wearer was 

neglected. In other words, adjustability perpendicular to the back is not included. It was 

determined that this lack of adjustability would not allow for internal/eternal rotation and 

would make the wearer feel restricted when worn.  
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Figure 3 Design iteration 1 

 

Design Iteration 2 

 

 The second design iteration sacrificed simplicity for adjustability. Two scissor 

linkages allow for adjustability in both the breadth and thickness of the wearer’s back. 

This design is worn in the identical fashion as design iteration 1, but for simplicity only 

the back plate was shown. The two scissor linkages can increase or decrease in length to 

fit onto various sized wearers, and the rotary joint between them can allow for 

internal/external rotation. Therefore, this design has powered flexion/extension and 

passive internal/external rotation and abduction/adduction rotations.  
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 This design, however, was not prototyped for two reasons. First, this exoskeleton 

seemed to lack rigidity. In order for the exoskeleton to assist the movement of the wearer, 

it must be rigid enough to withstand the torque being transmitted. It was predicted this 

design could not withstand any significant amount of torque. The second reason concerns 

safety of the design during use. With multiple pitch points in the design, commercial use 

of this exoskeleton may not be the safest. For these reasons, this design was not furthered.  

 

Figure 4 Design Iteration 2 

Design Iteration 3 

 The third design iteration attempted to achieve internal/external rotation while 

remaining rigid and safe. A curved rail wrapped around the shoulder of the wearer, and 

the motor was mounted to the rail with a slider. This mechanism would allow for a fixed 

radius of rotation about the shoulder joint of the wearer, which allows for 

internal/external rotation. The motor would power flexion/extension, and a rotary bearing 

would allow for abduction/adduction.  
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 Two problems were evident in this design. First, since the rail has a fixed, curved 

radius it is not adjustable and cannot fit onto to different wearers. Secondly, since the rail 

wraps around the shoulder of the wearer it would constantly be in front of the wearer. 

This is cumbersome and not ideal. A mechanism that extends during internal rotation and 

collapses during external rotation would be ideal. Such a mechanism is presented in this 

thesis and is the cumulating exoskeleton in the design iteration process.  
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Figure 5 Design Iteration 3 
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CONCEPTUAL DESIGN  

 

The proposed exoskeleton utilizes a modified DPM with a proximally located 

actuator. The modified DPM allows for ergonomic and passive internal/external rotation. 

While the proximally located actuator provides flexion/extension assistance. The 

proximal location of the actuator was chosen for its simplicity. Placing the actuator 

directly on the joint mitigates the need for additional mechanisms that may be 

unnecessarily complex or cumbersome. The exoskeleton will be mounted on a backpack 

via a rotary bearing. This will allow for passive abduction/adduction. 

Original DPM Design  

The conventional DPM, shown inFigure 6Error! Reference source not found. 

Figure 6Error! Reference source not found., is made of six links with seven axes of r

otation. Links (1) and (2) are fixed to the wearer’s back and arm respectively. Links (3) to 

(6) comprise the remaining sides of the two parallelograms. Two four-sided geometric 

shapes are formed with only six links because links (4) and (5) are both a short, and long, 

side of the parallelograms. This is, they are composed of both the labeled side, (4), and 

the adjacent side of the opposite parallelogram of the same color. What results is a sturdy 

mechanism that strictly rotates about a remote center (RC).  
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Figure 6 Original Design of Double Parallelogram Mechanism 

 The DPM rotates about the RC with a fixed radius. This radius of rotation can be 

adjusted to any desired value, however, this requires altering the lengths of links (3) to (6). 

Altering the link lengths will require an entirely new mechanism to be fabricated and 

installed on the exoskeleton. Since wearers vary in terms of their anthropomorphic 

measurements, a new exoskeleton will be needed for each wearer. This is extremely 

impractical. If the exoskeleton is not specially fitted to the wearer, joint misalignment will 

occur during internal/external rotation which could result in pain or even injury during use.  

Modified DPM Design 

The proposed, modified DPM includes seven links and seven axes of rotation, it is 

shown in Figure 7 below. Similar to the original design, links (1) and (2) are attached to 

the back and arm of the wearer respectively. The additional link, (7), is a mediating link 

that joins the two parallelograms in the mechanism. Links (3) to (5) all have the same 

length, and link (6) is a sliding-pin joint.  
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Figure 7 Modified design of Double Parallelogram Linkage 

 In use, link (1) will be mounted on the upper back of the wearer via a rotary 

bearing, and link (2) will house the actuator and be attached to the upper arm of the 

wearer. As the mechanism actuates, the orientation of link (2) changes to remain 

perpendicular to the arm of the wearer.  This is possible due to the sliding-pin joint of 

link (6). It can be seen that as the mechanism actuates, the length of link (6) changes, and 

enables the mechanism to form a RC. This RC, however, does not have a fixed radius. By 

using link (7) as a mediating link between the two parallelograms, they are able to move 

independently of one another. That is parallelogram 1-3-7-4 can rotate without affecting 

parallelogram 2-5-7-6, and vice versa. Effectively, parallelogram 1-3-7-4 controls the 

placement of the end effector in the x-axis, while parallelogram 2-5-7-6 controls the 

placement in the y-axis. This is shown in Figure 8 and Figure 9 respectively.  
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Figure 8 Rotation of Parallelogram 1-3-7-4 

 

Figure 9 Rotation of Parallelogram 2-5-7-6 

 

Forward Kinematic Analysis 

Links (4) and (5) are pinned together through link (7), and effectively behave similar 

to a two-degree-of-freedom, serial-link robot. In fact, links (4) and (5) are exactly a two-

degree-of-freedom, serial-link robot, and links (3) and (6) provide appropriate articulation 

boundaries for the mechanism. These boundaries were directly measured from the 3D 

printed prototype and are presented in Table 1 below. Figure 10 depicts the exoskeleton 
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configuration used to determine its DH parameters. This configuration is not the zero-

angle position of the mechanism since the zero-angle position is unintuitive and 

impractical; rather, the presented configuration resembles how the exoskeleton would be 

worn.  The axes of rotation are also shown in Figure 11 on the 3D printed prototype for 

clarification. 

 

 

Figure 10 DH frames of exoskeleton 
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Figure 11 Labeled rotation axes on prototype 

 

A simplified forward kinematic analysis was conducted in which actuation of the 

exoskeleton was restricted to the transverse plane. Rotation about 𝐳& is physically 

responsible for abduction/adduction of the exoskeleton. Rotation 𝜃( about 𝐳) is used to 

align the mechanism with the upper arm of the wearer and does not affect the range of 

motion of the exoskeleton. In addition, rotation 𝜃* about 𝐳( corresponds to 

flexion/extension of the arm of the wearer which does not typically occur in the 

transverse plane. For the reasons explained above, rotations about 𝐳& , 𝐳), and 𝐳( were 

not included in the forward kinematic analysis. The DH parameters used for the analysis 

are presented in Table 1. 
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Table 1. DH parameters for forward kinematic analysis 

Link i 𝑎, (m) 𝑑, (m) 𝛼, (°) 𝜃, (°) 

1 0.0016 0 -90 𝜃/∗ 

2 0.1016 0 0 𝜃1∗ 

3 0.1016 0 0 𝜃)∗ 

4 0 0 90 𝜃(∗ −
𝜋
2 

5 𝑎* 0 0 𝜃*∗ −
𝜋
2 

 

 The rotation of 𝜃/ is in the frontal plane and responsible for abduction/adduction. 

When 𝜃/ equals 0°, the upper arm of the wearer will be in neutral position. Therefore, 

when mounted to the wearer, there will be a bracket the exoskeleton can rest on that will 

prevent 𝜃/ rotation below 0°. This configuration was assumed for the forward kinematic 

analysis. The rotation of 𝜃1 is independent of every other rotation in the mechanism and 

has a range of -61° to +58°. While 𝜃) can rotate independently of 𝜃1, the range that 𝜃) 

can rotate within is dependent upon the angle of 𝜃1. For instance, when 𝜃1 equals -61°, 

𝜃) has a rotation range from 83° – 152°. However, when 𝜃1 equals 58°, 𝜃) has a rotation 

range from -30° – 97°. As 𝜃1 increases, the bounds of  𝜃) rotation decreases while its 

rotation range increases. The rotation of 𝜃( solely aligns the end effector with the upper 

arm of the wearer and has no bearing on forward kinematics. The rotation of 𝜃* actuates 

flexion/extension, and therefore, is only limited by the anatomical range of motion of the 

wearer. Since the exoskeleton was not in zero angle position when the DH parameters 
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were determined, both 𝜃( and 𝜃* require an offset of -90° to accurate record the rotation 

angles. The kinematic analysis conducted does not include the rotation of either 𝜃( or 𝜃*.  

 To conduct the forward kinematic analysis a MATLAB program was created to 

plot the position of 𝑂) = 𝑂( as 𝜃1 and 𝜃) rotated through their ROMs. For the first value 

of 𝜃1, -61°, the entire range of 𝜃) was tested. After the rotation of 𝜃) was exhausted, the 

value of 𝜃1 was increased by 1°, and the range of 𝜃) was tested again. These steps were 

repeated for the entire range of 𝜃1 angles. This process ensured all angles of 𝜃1 and 𝜃) 

rotation were examined and recorded. The point of interest, 𝑂) = 𝑂(, is a negligible 

distance from where the mechanism will attach to the upper arm of the wearer, and 

accurately represents the range of motion of the exoskeleton. Again, the analysis was 

conducted for a test case where the exoskeleton begins in a configuration corresponding 

to the upper arm in neutral position and actuates through its ROM in the transverse plane. 

The rotation matrices of links 2 and 3 were calculated using Equation 1 below.  

Equation 1 

𝐑	,8/
, = 𝑹:;<=(𝜃,) ∗ 𝑹@;(𝛼,) 

 The rotation matrices were used to determine the position vector for each link 

using Equation 2.  

Equation 2 

𝐝	,8/
,8/,, = 𝑑, ∗ 𝐳	,8/

, + 𝑎, ∗ 𝐑	,8/
, ∗ 𝐱	,8/

, 

 Finally, the position vector for links 2 and 3 were added together to yield the 

vector connecting 𝑂/ to 𝑂) = 𝑂( using Equation 3. 

Equation 3 

𝐝	/ /,) = 𝐝	/ /,1 + 𝐑	/ 1 ∗ 𝐝	1 1,) 
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 Repeating this process for every 𝜃1 and 𝜃), will yield a plot that depicts the 

locations the exoskeleton can reach in the transverse plane. A resolution of 1° was 

utilized during plotting.  

The results of the forward kinematic analysis are presented in Figure 12 below. 

Figure 12 is the map of where 𝑂) = 𝑂( can be positioned relative to	𝑂/ in the transverse 

plane. The orientation of the end effector is handled by the sliding-pin joint of link (2) 

and (6). This joint allows the end effector to remain perpendicular to the arm of the 

wearer during any actuation of the mechanism. 

 

Figure 12 Forward kinematic analysis results of modified DPM shown in the transverse plane formed by 𝒙		 / and 𝒚		 /  

 To clarify the range of motion achievable by the mechanism Figure 1313Error! 

Reference source not found. is presented below. Figure 1313-A demonstrates an 

example of the exoskeleton placement on a wearer, and Figure 1313-B demonstrates the 

𝑂/ 
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achievable ROM. The exoskeleton will be mounted to the wearer with the frame of an 

Alice Backpack. It is worth noting 𝑂/ is located at (0,0), and is close to where the 

exoskeleton will be mounted onto wearers.  

 
Figure 13 Example modified DPM configuration with ROM 

  

 A second analysis was conducted which examined the flexion/extension arm 

swing achievable by the exoskeleton; this corresponds to 𝜃* rotation. In reality, 𝜃* can 

achieve an infinite number of rotations in either direction, clockwise or counterclockwise. 

In other words, there is not a mechanical limitation that prevents rotation about 𝑍(. 

Instead, the mobility of the wearer will determine the rotation limitation of 𝜃*. A 

simplified analysis plotted the achievable arm swing trajectory assuming the following 

configuration parameters. The same MATLAB program discussed previously was 

utilized when conducting this analysis.  

Table 2 Flexion/Extension analysis parameters 

Parameter Value 

𝑎* 0.1778 m 

𝜃/ 0° 

𝜃1 0° 
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𝜃) 90° 

𝜃* -120° – 90° 

 

 The parameter 𝑎* is the distance between 𝐳( and 𝐳* along 𝐱*. This corresponds to 

the length of an arm cuff that will attach to the upper arm of the wearer, extending from 

the humeral head to approximately the middle of the humerus bone. The arm cuff has not 

been designed yet but has been approximated to 0.1778 meters. The angles of 𝜃/, 𝜃1, and 

𝜃) have been chosen since they place the plane of 𝜃* rotation in the sagittal plane. The 

rotation of 𝜃( has been excluded since it only pertains to the orientation of the end 

effector and does not influence the kinematic analysis. Finally, the rotation of 𝜃* has been 

approximated from the mobility of the author. The results of the flexion/extension 

kinematic analysis are presented below.  
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Figure 14 Flexion/Extension kinematic analysis results 

 

 

 

PROTOTYPING  

 

A prototype of the exoskeleton was 3D printed out of PLA. The exoskeleton is 

shown in Figure 15 below. The Figure 15 demonstrates the same configurations as Figure 

6—acute, neutral, and obtuse mechanism configurations.  
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Figure 15 Exoskeleton Configurations, (A) Acute Configuration, (B) Neutral Configuration, (C) Obtuse Configuration 

   

  



 
32 

 

TESTING  

 

 To test the exoskeleton a pseudo-shoulder joint was created. The joint was 3D 

printed out of PLA and includes a cuff that attaches to a foam arm. The arm is only for 

aesthetic purposes and does not represent the actual weight of a human arm. Figure 16 

(A) shows the pseudo-shoulder joint without the exoskeleton mounted, and Figure 16 (B) 

includes the mounted exoskeleton.  

 

 

Figure 16 (A) Pseudo-shoulder joint without mounted exoskeleton, (B) Pseudo-shoulder joint with mounted exoskeleton 
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The shoulder has 3 DOFs, allowing for flexion/extension, abduction/adduction, 

and internal/external rotation. The size of the joint was determined using approximate 

shoulder measurements of the author. An axis collinear with the axis of 

abduction/adduction is used to mount the exoskeleton to the shoulder joint with a rotary 

bearing. The shoulder joint, with labeled axes, is shown in Figure 177. 

 

Figure 17 Exoskeleton mounted on pseudo-shoulder 

 

Three tests were conducted to quantify the ROM of the mechanism during 

flexion/extension. Flexion/extension was tested since it is the movement pattern most 

used during daily living. Each test varied the angle of internal rotation to ensure 

flexion/extension can be accomplished at all angles. The three testing orientations are 

detailed in Table 33 below. 
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Table 3 Testing scenarios 

Test Number Mechanism Orientation 𝜃1 Angle 𝜃) Angle 

Test 1 Acute -2° 45° 

Test 2 Neutral  14° 66° 

Test 3 Obtuse 47° 100° 

 

 It is worth mentioning the orientations of the mechanism described in Table 33 

correspond to the orientations depicted in Figure 6 (A), (B), and (C) respectively. In 

addition, the joint angles tested are all within the boundaries described in Table 1. The 

acute and obtuse orientation angles were limited by the shoulder stand used for testing. 

These angles are the maximum angles achievable by the test stand not the mechanism.   

 To record the rotation of the arm during flexion/extension, a ¾-turn potentiometer 

was attached to the rotating axis on the shoulder stand. This axis is directly connected to 

the arm which performs flexion/extension. The potentiometer was supplied with 5V, and 

the output voltages were read by a Visual Basic program. A Nema 17 stepper motor with 

a 5.18:1 planetary gearbox was used to actuate the arm. An Arduino Mega and a TB6600 

microstep stepper motor driver was used to control the stepper motor. The hardware used 

is shown below. Based on the motor controller settings and the gearbox ratio, enough 

pulses were sent to the motor for it to rotate 180 degrees. The Arduino code then 

switched the direction of rotation for another 180 degrees. This was repeated three times, 

and was consistent for each test. Presented below are the results for each of the three tests 

in Table 33. 
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Figure 18. (A) TB6600 microstep stepper motor driver, (B) Nema 17 with 5:1 planetary gearbox, (C) Arduino Mega 

 

Figure 19 Acute Graph with Offset 
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Figure 20 Neutral Graph with Offset 

 

Figure 21 Obtuse Graph with Offset 
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 All of the graphs presented above have a considerable offset from the ideal 

rotation. This was found to be due to the ‘delay()’ command in Arduino. The logic for 

actuating the motor is as follows. The output pin was set to ‘HIGH’, this supplies it with 

5 volts, and was followed by a 200 microsecond delay using the ‘delay ()’ command. 

After the delay, the output pin was set to ‘LOW’, which supplies 0 volts to the motor, and 

was followed by another 200 microsecond delay. This is considered one pulse which 

rotates the motor a minuscule amount. A total of 16,576 pulses were required to rotate the 

motor the desired 180 degrees. Using an oscilloscope, the actual value of the delay was 

determined to be 209 microseconds. Multiplying this inaccuracy by 2, for both the on and 

off cycles, and then by 16,576, for each pulse, accounts for the large phase shift seen in 

Figure 199, Figure 2020, and Figure 21. Presented below are the modified graphs, whose 

ideal rotation lines account for the delay inaccuracy. 
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Figure 22 Acute Graph without Offset 

 

Figure 23 Neutral Graph without Offset 
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Figure 24 Obtuse Graph without Offset 
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CONCLUSIONS AND FUTURE WORK 

 

This thesis presents a 3 DOF exoskeleton utilizing a modified DPM. The 

exoskeleton provides assistance during flexion/extension, with a proximally located 

actuator, and it is passive during abduction/adduction and internal/external rotation. The 

modified DPM increases the ROM of the exoskeleton and allows it to fit onto a wide 

range of anthropomorphic frames. This mitigates the potential for joint misalignment 

during internal/external rotation. Experiments demonstrated that flexion/extension is 

possible in acute, neutral, and obtuse mechanism configurations.  

 Currently, scapular elevation/depression is not a passive DOF allowed by the 

exoskeleton. Future design iterations will focus on this DOF. In addition, the link lengths 

and design will be optimized. Finally, the design should be mounted to a backpack so that 

it can be worn, and an arm cuff must be designed to attach to the arm of the wearer.  
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