


Table 5.6 Maximum interfacial shear stress (at 1% applied strain) and the fiber1 

matrix non-polar and polar interaction parameters. 

Cellulose (Lyocell) Lifshitz-van der Waals Lewis acid-base Maximum 

fiber work of adhesion, interaction interfacial shear 

w,'W (m~lm') parameter, I,-, stress, r,, 

(MPa) 

Untreated 105 

Amino-silanated 101 

Phenylamino- 96 

silanated 

Phenyl-silanated 9 5 

Octadecyl-silanated 92 

SMA-grafted 103 

Note: The wLW and I,-, values were calculated from y , d ,  K,, and K, values 

(Tables 5.4 and 5.5). Their variabilities were 2 2.0 m ~ l m ~  (for wULW ) 

and 2 0.01 (for Iu-,). 

The r,, averages were obtained from six replicates. Values in parenthesis are 

the standard deviations of the averages. The average values assigned 

with the same letters (i.e., A, By C, or D) are not significantly different 

from one another at 95% confidence level, as tested based on the 

Student-Newman-Keul method using Sigmastat software. An exception 

is the statistical difference between the untreated and octadecyl-silanated 

fibers, whose confidence level is at 90%. 



parameter ( Ia-, ), or the chemical incompatibility ( 3 )  at the fiberlpolymer interphase. 

Results of the analyses are expressed as the coefficient of correlations whose absolute 

values are between zero and one - the larger the value, the stronger the association 

.between two sets of data. The coefficients of correlation were 0.34 for w,LW, 0.69 for 

I,-, , and -0.62 for the absolute values of ( A S ) .  The positive coefficient for I,-, 

indicates that the maximum interfacial shear stress increased when the acid-base 

interaction was increased. The negative coefficient for ( 3 )  implies that the maximum 

interfacial shear stress increased when the chemical incompatibility was reduced. The 

low value of the coefficient for w,LW suggests that the changes in the maximum 

interfacial shear stress are weakly correlated with the Lifshitz-van der Waals work of 

adhesion. 

The interpretations from the correlation analyses do not imply that van-der 

Waals interactions are not important in the fiberlpolymer adhesion. Instead, it is more 

reasonable that such interactions (92-105 m.J/m2 in this study) contribute to the basic 

level of (fundamental) adhesion, which practically is more or less similar regardless of 

the interacting materials (Pisanova and Mader 2000). Indeed, the differences in the 

level of adhesion in different fiberlpolymer systems are a result of acid-base 

interactions. For example, Mangipudi et al. (1 994) employed a surface forces apparatus 

to directly measure the work of adhesion of polyethylene (PE), a non-polar material, 

and polyethylene terephthalate (PET), a polar material. They found that the values of 

the work of adhesion for PERE and PERET, which are dominated by the Lifshitz-van 



der Waals interactions, are quite similar, i.e. 66 and 77 m ~ l m ~ ,  respectively. However, 

for the PETIPET system, where acid-base interactions are also present, the work of 

adhesion exhibits a considerably high value of 122 m ~ l m ~ .  

The preceding discussions suggest that further examinations are warranted of the 

effects of acid-base interactions on practical adhesion. Compared to the untreated 

fibers, mine-silanated fibers displayed a stronger acid-base interaction with 

polystyrene, hence also a stronger practical adhesion. This observation agreed with the 

finding of Beshay and Hoa (1990), who reported that amine silanation of wood fibers 

improved the tensile property of fiberlpolystyrene composites. This observation, on the 

other hand, contradicted the study of Felix et al. (1993), where cellulose fibers pre- 

treated with amino-silanes yielded a fiberlpolystyrene composite of inferior tensile 

strength. Such a discrepancy originated from the extent of silanation which influenced 

the surface chemical properties of the treated fibers. In the present study, the amine- 

silanated fibers had both acidic and basic characteristics although the basicity was more 

prominent (K,=0.33; K, = 0.52; Table 5.5). Such a bipolar characteristic enhances 

interactions with polystyrene, which is also bipolar (KA=0.28; K, = 0.46; Table 5.5) 

so that the acidic sites from the fibers can interact with the basic cites from the 

polystyrene, or vise versa. In the study of Felix et al. (1993), however, the amine- 

silanation was performed, presumably with a more complete surface coverage, to yield 

a monobasic surface (K, = 0.05; K, = 0.35; see Table 5.5). The monobasic surface 



bonded poorly with polystyrene, which is weak in acidity. In brief, the above 

discussion reinstates the worthiness of measuring acid-base characteristics for 

understanding material interactions and predicting the properties of the composites. 

Figure 5.4 plots the relationship between z,, and I,-, . The data points for all 

silanated fibers form a positive, linear trend line, showing an increase of the level of 

practical adhesion with the increase of acid-base interactions between cellulose fibers 

and polystyrene. The trend line, however, overestimates the untreated cellulose fibers 

and styrene copolymer esterified (SMA) fibers. The outlying nature of these two data 

points may be attributed to the fewer number of available or accessible sites for acid- 

base interactions. Indeed, noting from Equation 5.9, the number of sites participating in 

the acid-base interactions (N) is as important as the energy of the interactions (-  AHAB 

or Ia - , )  in affecting the work of adhesion. The silanated fibers have increased acid- 

base sites because of the silane polymerized networks that could possibly form by 

attaching to merely a bonding site on the cellulose fibers. The general trend line 

observed for all silanated fibers is an indication that the silanes polymerized to more or 

less similar extents thereby, allowing similar accessibility for acid-base sites, leaving 

only I,-, as the influencing factor for determining the extent of fiberlpolymer adhesion. 

On the other hand, the grafted styrene copolymer is expected to form on fibers as chains 

of loops and tails that intermingle with one another. This typical polymeric nature 

resulted in an interphase that impeded polystyrene penetration and reduced accessible 

interaction sites. 



Figure 5.4 

Phenyl 

Phenylamine SMA- 

treated 

Untreated 

1 Octadecyl 

0.2 0.24 0.28 0.32 0.36 

Acidaase interaction parameter, I,+, 

Effects of acid-base interaction on maximum interfacial shear stress. 

Note: Error bars correspond to the 95% confidence interval of the mean. 

The regression analysis did not include untreated and SMA-treated 

fibers. 



In an attempt to account for the effects of penetration or interdiffusion at the 

fiberlpolymer interphase, the chemical compatibility at the interphase was examined 

with respect to the level of practical adhesion. From the published literature, the 

silanelpolymer interdiffusion, as determined by sputtered neutral mass spectrometry, 

was found to relate to the solubility parameters of the silane functional groups and the 

matrix polymer - the closer the solubility parameters of the two components, the higher 

the interdiffusion (Gentle et al. 1992). It was hypothesized that in adhesion, chemical 

compatibility has the role of ensuring a more intimate and a larger number of contacts 

between two interacting species to realize their potential interactions. Therefore, the 

subsequent attempt in this study was to examine how chemical compatibility influenced 

the effects of acid-base interactions on the fiberlpolymer (practical) adhesion. 

A model that relates (practical) adhesion to chemical compatibility and acid- 

base interactions is readily available from Equation 5.17. Based on Hansen's approach 

of incompatibility (Equation 5.1 5), Equation 5.17 can be rewritten as follows: 

A general expression was then made to relate the free energy of adhesion (AGadh ) and 

the maximum interfacial shear stress (r,,), analogous to that established (Equation 

5.6) by Wu (1982) for the relationship between fundamental and practical adhesion: 



where kg and kg are empirical constants. By inserting Equations 5.12 and 5.20 into 

Equation 5.19, the following equation was derived: 

Multiple regression analyses can be performed based on Equation 5.21. All the 

k parameters in the equation are constant values. Therefore, if V4,4' values are 

considerably constant for all the data points, a multiple regression analysis of r,, 

versus ( 3 ) '  and I should result in a negative coefficient (slope) for ( s ) ' ,  a 

positive coefficient for I,-, , and an intercept constant. Indeed, the regression results 

turned out as expected: 

r,, = -0.004 (6)' +30.4 la-, +3.O, 

except that the correlation between r,, and both the (G)' and I,-, is unsatisfactory, 

with a low R-square of 0.63. However, if the regression analysis was performed 

without the SMA-grafted fibers, the outcome of the regression analysis becomes: 



with a high R-square of 0.99. 

Table 5.7 shows values of the maximum interfacial shear stress predicted using 

Equation 5.23. The prediction was within a deviation of 2 0.5 MPa for the respective 

average z,, for all silanated fibers. The prediction was also accurate for the untreated 

fibers, which earlier presented an outlying data point in Figure 5.4. This success is an 

indication that chemical compatibility between untreated fibers and polystyrene 

accounts for the number of accessible acid-base sites, which in turn, influences the 

effects of acid-base interactions on the fiberlpolymer (practical) adhesion. 

For SMA-grafted fibers, however, the prediction (Table 5.7) overestimates the 

practical adhesion level (by 6 MPa), hence suggesting that factors other than solubility 

parameters also come into play. To attain the experimental z,, value, the measured 

Ia-, should be reduced by 20% of the measured value (from 0.34 to 0.27), or the 

multiplier for (s)' must be increased about 80 times (from -0.005 to -0.46). The first 

possibility implies that the I,-, value, determined from the adsorption of small 

molecules in IGC studies, was overestimated for the polymer chain (in SMA-fibers) 

where accessibility is largely restrained because of steric effects. The second possibility 

implies that the V4,4* value, hence the copolymer grafting density and interfacial 

volume, is excessively large thereby, based on Equations 5.13 and 5.14, resulted in 



Table 5.7 Predicted maximum shear stress (r,,) values for the cellulose- 

fiberlpolystyrene interphase. 

Cellulose (lyocell) Predicted maximum Accuracy of the prediction: 

fiber interfacial shear stress predicted - experimental 

Note: The prediction was based on: r,, = -0.005 (s)' + 75.0 I,-, - 8.4 (Equation 

5.23), using values of A 6  from Table 5.3, and I,-, from Table 5.6. 



a decreased mixing. Lin et al. (1996), who bonded polystyrene to glass fibers that were 

pre-tethered with polystyrene chains, also reported that the densely attached polymeric 

chain reduced the penetration of the matrix chain, hence decreasing the interfacial 

toughness of the resulting composites. Both possibilities, nevertheless, support the 

earlier postulation that the adhesion between SMA-fibers and polystyrene is affected by 

the reduced accessibility of the matrix polystyrene to the acid-base interaction sites on 

the fibers. 

Another possible reason for reduced accessibility which is not accounted for by 

the thermodynamic approach, i.e. ( s ) 2 ,  V4,q$, or In,, is the kinetic contribution. 

The interdiffusion of the styrene-copolymer and matrix polystyrene, though favored by 

the good chemical compatibility, may not be optimized considering the short time scale 

of the polymer droplet deposition and the fast solidification (solvent evaporation) 

process. 

5.6. Conclusions 

This study was conducted to examine the effects of interfacial chemistry on the 

maximum interfacial shear stress or practical adhesion level of the cellulose- 

fiberlpolystyrene composites. The data show that the extent of practical adhesion can 

be increased by increasing the acid-base interaction parameter (Ia-, ) and the chemical 

compatibility (reducing s )  between fibers and the matrix polymer. Therefore, 



interfacial chemistry plays a central role in the practical adhesion between cellulose 

fibers and amorphous polymers. More importantly, the contributions of interfacial 

chemistry to practical adhesion can be predicted using a modified diffusion model 

where I,-, is considered in addition to 6. The (practical) adhesion for SMA-grafted 

fibers was lower than estimated possibly because of the high grafting density which 

decreased matrix penetration, overestimation of the acid-base interaction parameter 

which did not account for steric effects, and kinetic contributions where the time scale 

of the polystyrene deposition and solidification process was too short for optimum 

interdiffusion. Overall, the predictability of the fiberlpolymer practical adhesion has 

been enhanced. Such an achievement, coupled with the existing knowledge of the bulk 

properties of fibers and matrix polymer, ultimately leads to a better engineering of 

composite properties. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

The overall objective of this dissertation was to gain an understanding of the 

relationship between interfacial chemistry and the micromechanics of the cellulose- 

fiberlpolymer composites. Regenerated cellulose (lyocell) fibers and polystyrene were 

chosen as the fiberlmatrix combination. The fibers were treated with amine-, 

phenylamine-, phenyl-, and octadecyl-silanes, and also styrene-maleic anhydride 

(SMA) copolymer. 

Inverse gas chromatography indicates that all the treatments examined in 

this study reduced the dispersive component of the surface free energy of the cellulose 

fibers from 49 m~lm'  to average values that ranged from 38-48 m ~ l m ~ .  Fibers esterified 

with styrene-maleic anhydride (SMA) copolymer displayed an increase in the average 

K, value from 0.36 (untreated) to 0.42. Fibers treated with silanes exhibited very 

similar Lewis acid characters (K, = 0.32-0.34), and this could be contributed by the 

acidic silicon atom or the uncondensed silanols (Si-OH). Overall, the different types of 

chemical treatments performed in this study produced fibers whose mean K, values 

spanned from 0.27 to 0.57. These fibers of different surface chemistry were expected to 

form interphases of different chemical natures with the polystyrene matrix. 



The adsorption of ethylbenzene onto cellulose fibers with different surface- 

chemical properties reveals that the enthalpies of specific adsorption (- M y )  are 

closely correlated to the interaction parameter (I,-,) values which were calculated by 

matching the K, and K, values between fibers and the matrix polymer. This 

observation implies that the fiberlmatrix acid-base interaction can be conveniently 

predicted from the respective acid-base characters (K, and K,) of the components 

prior to forming a composite. 

The concept of solubility was also used to predict chemical compatibility at the 

fiberlpolymer interphase. The solubility parameter for cellulose suggested by Hansen 

based on dextran is 38.6 J " ~ / c ~ ~ ' *  while the solubility parameter for polystyrene 

calculated from the Hoy approach was 19.3 ~ " ~ l c m ~ ' ~ ,  hence demonstrating an 

incompatibility between the two materials. The cellulose/polystyrene compatibility 

could be increased by introducing phenyl molecules onto cellulose, as evidenced from 

the low values of the incompatibility parameters ( 6  < 4 ~'"lcm'") calculated for 

phenyl-silane, phenylamino-silane, and the styrene copolymer. All other surface- 

modifying agents in this study have organofunctional groups that display 6 values 

(incompatibility with polystyrene) of up to 10 ~ " ~ l c m ~ ' ~ .  

The Rarnan micro-spectroscopic studies demonstrate that the local tensile strain 

and stress are not uniform along the fiberlpolymer interphase. The interfacial strain and 

stress are highest at the edge of the droplet, and these values tend to decline from the 

edge region to the middle region of the drop. The maximum of these local strains 



corresponds to a strain-control fracture of the matrix polymer. The minimum of the 

local tensile stress corresponds to the extent of fiber-to-matrix load transfer whose 

efficiency should also be indicative of the matrix-to-fiber load transfer in practical 

applications of fiber-reinforced composites. The slope of the tensile stress profile along 

the interface region allows for an estimation of the maximum interfacial shear stress 

which is indicative of the level of fiberlpolystyrene adhesion. As such, a novel micro- 

Raman tensile technique has been established for evaluating the practical adhesion of a 

potentially wide range of fiberlpolymer systems, especially for combinations involving 

ductile fibers and brittle polymers such as the lyocell/polystyrene system in the present 

study. 

The micro-Raman tensile techniques provided maximum interfacial shear stress 

values of 8.0 to 13.8 MPa, ranking hnctional groups of fibers according to their 

practical adhesion to polystyrene: alkyk untreated < phenyl = phenylamine = styrene 

copolymer < amine. Overall, the fiberlpolymer adhesion can be increased by increasing 

the acid-base interactions ( I ) ,  or reducing the chemical incompatibility (6) 

between the fibers and matrix. Therefore, interfacial chemistry plays a central role in 

the practical adhesion of cellulose-fibers and polystyrene. These conclusions should 

also be applicable to wood-plastic composites involving lignocellulosic fibers and 

amorphous polymers. 



An important implication from this study is that the contributions of interfacial 

chemistry to (practical) adhesion can be predicted using a modified diffusion model. 

The model, though failed to predict the (practical) adhesion between polystyrene and 

fibers grafted with styrene-maleic anhydride molecules (SMA), still provided a 

framework for explaining the anomaly. The practical adhesion of SMA-grafted fibers 

was lower than estimated possibly because of the high grafting density which decreased 

matrix penetration, overestimation of the acid-base interaction parameter which did not 

account for steric effects, and kinetic contributions where the time scale of the 

polystyrene deposition and solidification process was too short for optimum 

interdiffusion. Overall, the predictability of the fiberlpolymer practical adhesion has 

been enhanced. 

6.2. Recommendations for Future Studies 

This dissertation employed a molecular approach (chromatography and 

spectroscopy) in relating interfacial chemistry and micromechanics. The next step in 

the composite engineering design, which is recommended for future studies, is to 

produce composites under the conditions of the optimized practical adhesion so that the 

mechanical performance of the composite system can be evaluated and further 

optimized. 



Another recommended investigation is to examine the grafting of copolymer 

with different maleic anhydride (MA) contents and molecular weights. High MA 

content coupling is expected to result in a better coverage of the fiber surfaces, while 

high molecular weight coupling is anticipated to cause a brush-like interphase that is 

more likely to engage in molecular entanglement with the matrix polymer (Snijder and 

Bos 1999). Studying these different types of interphases at different grafting intensities 

(weight percent gain) should shed light to the efforts of accounting interfacial volume 

fraction for predicting (practical) adhesion using the modified diffusion model. 

Another important study is to subject the micro-composites to heat and water to 

investigate the hygrothermal attack on the fiberlpolymer interphase. For example, the 

attack of water is expected to result in fiber (restraint) swelling at the interphase which 

should be manifested from the changes in interfacial stresses if Raman mapping is 

performed. Also, stress relaxation at the fiberlpolymer interphase can be potentially 

studied by collecting Raman spectra at a fixed location at the interphase as a function of 

time while holding a strained fiber in position. The outputs of these investigations are 

expected to provide insights on how the fiberlpolymer interphase responds to 

environmental attack. 

The other worthwhile investigation is to study crystalline polymers such as 

polyethylene and polypropylene whose crystallinity can be nucleated by the fibers at the 

fiberlpolymer interphase. Collecting Raman spectra of cellulose along the 

fiberlpolymer interphase, as performed in the present study, will allow examination of 



the stress distributions and adhesion at the interphase. On the other hand, collecting 

spectra of polymer across the fiberlpolymer interphase will allow determination of the 

gradients of the crystallinity degrees at the interphase. Indeed, the peak intensities of 

the 808 cm-', 830 cm-', and 840 cm-'bands of polypropylene have been employed to 

determine its degree of crystallinity and the results approximated 93% of the values 

determined using the differential scanning calorimetry (Nielsen et al. 2002). 
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APPENDICES 



Appendix A. Equations and Data Reduction Procedures for the Probe 

Polarizability Approach in the Inverse Gas Chromatographic Studies 

In the probe polarizability approach of the inverse gas chromatographic (IGC) 

studies, the polarizability index is given by [(h v , ) " ~  a , ,  1, where h is the Planck7s 

constant (6.626 x J s), v is the characteristic electronic frequency (in s-') of the 

probe, a, is the deformation polarizabilities (in C m2 V-I) of molecules, and the 

subscript L refers to the probe liquid. The energy term, (h v ) ,  can be calculated from 

(Hiemenz and Rajagopalan 1997): 

where e is the elementary charge (1.602 x 10-l9 Coulomb), me is the mass of electron 

(9.109 x kg or 8.187 x 10-l4 J), a, is in C m2 V-I, and the factor 1.986 is for 

converting the calculated (h v) value to the unit of J. Equation A2 can be simplified to: 



Based on Equation A3, the polarizability index (in c3I2 m2 v-"~) can be expressed as: 

For ethylbenzene, the deformation polarizability ( a , )  was given in the Chemistry 

Handbook (Miller 1997) as 14.2 x lo-'' cm3 which can be converted to 1.580 x loJ9 

C m2 V-' (1 cm3 = 1.1 13 x 1 0-l6 C m2 v"). Using Equation A4, the polarizability index 

was calculated as 10.5 x C3/2 m2 v-1/2 (see Table 2.1). The values of 

[ (h vL)'I2 ] for other IGC probes in Table 2.1 had been calculated in the same way 

by Donnet et al. (1 99 1). 

Regardless of the molecular descriptors (vapor pressure, polarizabi ility etc.), 1 the 

total free energy of adsorption (AG, ; in kJ/mol) is generally expressed as (Donis and 

Gray 1980): 

where R is the gas constant (8.3145 J K - ~  mol-I), T is the column temperature (in K), 

V, is the net specific retention volume per gram of sample (in mug), S is the specific 



surface area of the sample (in m21g), P,,, is the adsorbate vapor pressure in the gaseous 

standard state (1.013 x lo5 Pa or ~ / m ~ ) ,  and x, is the surface or spreading pressure of 

the gas in the standard adsorption state (3.38 x lo4 N/m according to De Boer's 

definition of the standard state, and 6.08 x lom4 N/m according to Kemball and Rideal's 

definition; Mukhopadhyay and Schreiber 1994). The factor 1000 in the equation 

converts the energy unit from J to H, while the factor lo6 converts the retention volume 

from rnl to m3. Using a constant, K, ,  to represent the multiplication of VN , S, P,,, R,, 

and Equation A5 can be rewritten as: 

RT 
AG, = --(ln~, + l n ~ , ) ,  or 

1000 

where C represents [lo" RT In K,],  which is a constant value for the IGC column at a 

given temperature. 

In the probe polarizability approach, the London dispersive interaction between 

an adsorbate (probe) and an adsorbent (solid sample) is equated to the potential energy 

of interaction between two non-identical molecules, expressed as (Donnet et al. 1991): 



where AG; is the London dispersive component of the free energy (in kJ/mol) of 

adsorption, E, is the permittivity in vacuum (8.8542 x 10-l2 c2 J-' m-'), , is the 

distance between adsorbent (solid; subscript S) and adsorbate (liquid; subscript L) 

molecules (assuming constant as 0.3 x m), K in Equation A8 is the collective 

constant (in J~ c - ~  m4 mol-') involving N , n , E, , and rS,, of Equation A7. The factor 

1000 converts the energy unit from J to kJ. 

For adsorption of non-polar probes, the London interaction (AG; ) is also the 

total free energy of adsorption of the probes (AG,), and through substitution with 

Equations A6 and A8, the following equation is obtained: 

- AG, = - A G , ~ ,  or 

Based on Equation A9, a linear regression can be performed on the plots of [ RT In VN ] 

versus [ ( h ~ , ) " ~ a , , , ]  (the polarizability index tabulated in Table 2.1) for a series of 

n-alkanes (Figure 2.2). The intercept obtained will include the constant, C .  The slope 

18 1 



obtained is the representation of [ K ( h ~ , ) " ~ a ~ , , ]  which is related to the London 

dispersive component ( y t  ) of the solid surface, and is characteristic of a given solid 

sample. 

For adsorption of polar probes, the same regression constants established in the 

preceding paragraph can be used. The polarizability index [ (h vL)'I2 a o ,  ] of the polar 

probe liquid (from Table 2.1) was inserted into the regression formulae to predict the 

value of [ RT In V,  1, and hence Equation A9 can be more specifically expressed as: 

where the superscript ref means value predicted from the reference alkane line, and the 

subscript PL refers to polar probe liquid. Based on Equations A8, Equation A1 0 can be 

rewritten to express the - A G , ~  (in kJ/mol) of the polar-probe adsorption onto the solid 

samples: 

The specific, or Lewis acid-base, interaction of a polar probe [ AGY ; in kJ/mol] 

with the solid sample was calculated by subtracting the London dispersive component 

from the total free energy of adsorption: 



A G F  AG, - AG;, or 

- A G F  (-AG, ) - (-AG,~ ) 

By inserting Equations A6 and A1 1 ,  Equation A12 becomes: 

The expression in Equation A13 (which is similar to Equation 2.7) is graphically 

depicted in Figure 2.2 [plots of RTln VN versus (hv,)"'a,,,]. In the plots, the 

- AGT value is determined from the vertical difference between a point of [ RT In VN ] 

and the corresponding alkane line. 



Appendix B. A Modified Diffusion Model for Fundamental Adhesion 

In the study of Liu (1 994), the fundamental adhesion mechanism was considered 

to consist of two processes: (I) interfacial adsorption of the matrix polymer onto the 

fibers, and (2) interdiffusion (mixing) across the fiberlmatrix interface. Therefore, the 

free energy of adhesion (AG,,) is a summation of the free energies of adsorption 

( AG, ) and mixing ( AG, ): 

The enthalpies of the two processes could then be summed up to obtain the 

enthalpy of adhesion ( AHadh ): 

where the first term of Equation B2 represents the enthalpy of diffusion or mixing 

(AH, ; given in Equation 5.14), and the second term of the equation refers to the 

enthalpy of adsorption (AH,), which according to Fowkes and Mostafa (1978), is 

dominated by the acid-base interactions (AHAB ) in the case of non-polyolefin polymers 

and fillers. 



The entropy of adhesion (ASadh ) could be summed up likewise, but the entropy 

of adsorption can be neglected because the conformation of the fiber and matrix 

surfaces is not expected to change much during the adsorption process (Liu 1994). The 

entropy of adhesion, therefore, is solely contributed by the entropy of mixing (AS,; 

Flory 1942; Huggins 1942; Scott 1949): 

where R is the gas constant, V, is the molar volume of monomer repeat unit, x is the 

degree of polymerization, while the subscripts 1 and 2 are for component 1 

(wood/copolymer) and 2 (polystyrene). Other symbols bear the same meaning as 

Equation 5.14. 

The free energy of adhesion ( AGadh) can also be expressed as: 

but the contribution of ASadh can be neglected because this quantity, based on Equation 

B3, decreases rapidly to zero as the degree of polymerization (x) becomes very large for 



polymer of high molecular weight (Liu 1994). Under such a situation, the free energy 

of adhesion (AGO, ) is only affected by AH,, (Equation B2), and can be expressed as: 



Appendix C. An Example of Calculations for Solubility Parameter Components of 

an Amorphous Polymer Based on the Method of Hoy (1985) 

Polystyrene, an amorphous polymer, was used to illustrate the calculations of 

solubility parameter components based on the method of Hoy (1985). The structural 

groups of polystyrene and the corresponding values of molar attraction functions are 

presented in Table C. 1. 

Table C.l Structural groups of polystyrene and the calculated molar attraction 

function. 

..Group, i No. of functional W,i CFp, i  C q. CA';; 

groups, Ni (J cm3)'"/mol (J cm3)'"/mol (cm3/mol) 

-CH2- 1 269 0 15.55 0.020 

I 
- CH- 1 176 0 9.56 0.013 

CH aromatic 5 1205 3 12.5 67.10 0.090 

C aromatic 1 20 1 65.0 7.42 0.01 5 

Total: 1851 377.5 99.63 0.138 

Note: Refer to Table 5.1 for the values of group contributions to the molar attraction 

function. 



The calculations, using the values from table C. 1, are as follows: 

The molecular aggregation number, 

= 777~';' - - 777(0. 138) = 1.076 
V 99.63 

The number of repeating units per effective chain segment of the polymer, 

Solubility parameter (in J " ~ / c ~ ~ / ~ ) ,  

Polar force contribution to the solubility parameter (in J " ~ / c ~ ~ / ~ ) ,  

Hydrogen-bonding contribution to the solubility parameter (in ~ ' / ~ / c r n ~ / ~ ) ,  



Dispersion force contribution to the solubility parameter (in ~ " ~ / c m ' / ~ ) ,  

112 
6, = (6: - 6; - 6,2r1' = (19.35' - 8.25' - 5.15') = 16.72 

Note that the solubility parameter of polystyrene determined from experiments is 18.6 

J ' / ~ / c ~ ' / ~  (or 9.1 ~ a l ' / ~ / c m ' / ~ ;  Suh and Clarke 1967; Ahmad and Yaseen 1979) which is 

close to our calculated value. 
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