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ABSTRACT	
  
	
  

Mycobacteriophage (phage) are a group of viruses that infect bacteria in the genus 

Mycobacterium. Two phage lifestyles are lytic and temperate. Lytic phage only carry out 

the lytic life cycle, resulting in host cell lysis. Temperate phage are capable of completing 

both lytic and lysogenic life cycles. During the lysogenic life cycle, a phage-encoded 

integrase facilitates integration at sites attP in the phage genome and attB in the host to 

form a lysogen. The cluster E mycobacteriophage integration system is poorly 

understood. Ukulele, a lysogenic cluster E phage, is being used to identify the Cluster E 

attP and characterize lysogeny regulation. A putative attP containing sequence was 

identified in the Ukulele genome by computational analysis. To confirm the presence of 

attP, this sequence will be inserted into a plasmid and transferred into integrase 

expressing M. smegmatis (pST-KT-int). Cells will be screened for plasmid integrated into 

the genome. To characterize the role of the integrase in lysogeny regulation, we will 

determine the impact of integrase expression levels on induction event frequency in M. 

smegmatis (pST-KT-int) – Ukulele lysogens. 	
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1.0 Introduction	
  
             	
  
         Mycobacteriophage (phage) are a diverse group of viruses that infect bacteria in 

the genus Mycobacterium, including non-pathogenic M. smegmatis and medically 

relevant M. tuberculosis. M. tuberculosis is the causative agent of tuberculosis, one of the 

oldest known human diseases (Smith, I et al,. 2003). Although some treatments exist to 

fight tuberculosis, further investigation is required to combat emerging antibiotic resistant 

strains. Mycobacteriophage are valuable molecular tools that provide insight into their 

hosts, including pathogenic M. tuberculosis. Phage are the most abundant and diverse 

biological entity on Earth, and mycobacteriophage appear to be a diverse population as 

well (Rohwer, 2003) (Hatfull, 2010). Further characterization of mycobacteriophage is 

required to increase our understanding of the diversity and evolution of phage and  their 

hosts.	
  

In order to examine the diversity and the relationships within this population, 

mycobacteriophage are divided into clusters. Clusters are groups of phage sharing 

nucleotide sequence similarity spanning 50% or more of their genomes (Hatfull, 2012). 

Phage that do not share 50% nucleotide sequence similarity across their genome with any 

other identified phage are known as singletons (Hatfull, 2012). As of January 31st, 2016, 

there are 1064 sequenced phage divided into clusters A–Z with 6 singletons. Some 

clusters are well characterized such as clusters A, O, M K, and G (Hatfull , 2010) 

(Cresawn et al., 2015)(Pope et al., 2014)(Pope et al., 2011)(Broussard et al., 2012). Other 

clusters, like cluster E, remain poorly understood.	
  

Ukulele is a temperate cluster E phage (Beacham et al., 2015). Temperate phage 

are capable of integrating their genome into that of the host at phage integration site, attP 
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and bacterial site, attB, forming a lysogen. Ukulele is capable of forming stable lysogens 

that demonstrate superinfection immunity to infection by Ukulele and other cluster E 

phage (Beacham et al., 2015).  Superinfection immunity is the ability to prevent infection 

by closely related phage, a common characteristic of lysogens (Hatfull, 2010). Analysis 

of the Ukulele genome reveals further evidence that Ukulele is a temperate phage.	
  

The Ukulele genome encodes genes required to regulate lysogeny. Ukulele gp49 

encodes a tyrosine integrase, the enzyme responsible for facilitating site-specific 

integration into the host genome (Beacham et al., 2015)(Grindley et al., 2006). Although 

Ukulele encodes an integrase, the cluster E attP sequence acted upon by the integrase, 

has not been identified. Ukulele gp52 gene encodes a predicted winged-helix tertiary 

structure consistent with DNA binding domains in regulatory proteins such as a repressor 

or excise (Beacham et al., 2015). Phage immunity  repressors are responsible for 

lysogeny maintenance by suppressing expression of lytic genes and preventing 

superinfection (Donnelly-Wu et al., 1993). An excise gene provides directionality for the 

integrase to facilitate excision of the phage genome from that of the host (Lewis et al., 

2003). Comparison with other phage cluster integration cassettes suggests that gp52 

likely encodes a repressor or Cro-like protein (Beacham et al., 2015). Further 

investigation is required to determine gp52 function.  If gp52 does not encode an excise, 

and other putative excise genes are not identified, this suggests that Ukulele requires an 

alternative mechanism for facilitating excision from the host genome. One potential 

alternative  mechanism for excision is through altering expression levels of integrase as 

in  cluster G phage (Broussard et al., 2012). Cluster G phage do not encode an excise, but 

controls integration and excision by regulating integrase expression levels (Broussard et 
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al., 2012). Although Ukulele is a temperate phage, further investigation is required to 

characterize cluster E integration and excision mechanisms and to identify the attP site. 

We are using Ukulele as a model to identify the Cluster E attP site and characterize 

lysogeny regulation.  	
  

         In this study, we performed computational analyses of the Ukulele genome to 

predict the location of  the Ukulele attP. The Ukulele integration cassette was compared 

to that of well-characterized phage Lambda and L5 (Grindley et al., 2006) (Peña et al., 

1997). Regulatory elements in the integration cassette, such as promoters and repeat 

motifs were identified to narrow down regions of the integration cassette that likely 

contained the attP site. In order to perform attP integration assays and study the effects of 

integrase expression levels on lysogeny regulation, we constructed a strain of M. 

smegmatis that expresses the Ukulele integrase (M. smegmatis (pST-KT-Int)). To  

confirm the function of the putative  attP sequence we are cloning the putative attP-

containing sequence into a non-mycobacterial plasmid and screening for integration into 

the genome of the M. smegmatis strain that expresses the Ukulele integrase.  To 

investigate the potential role of integrase expression levels in the excision process, 

integrase was  induced in M. smegmatis (pST-KT-Int)-Ukulele lysogens to observe the 

effects of integrase expression levels on lysogeny maintenance.	
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2.0 Literature Review	
  

2.1 Mycobacteriophage and Mycobacterium Research	
  

Mycobacteriophage (phage) are a diverse group of viruses that infect bacteria in 

the genus mycobacterium (Hatfull, 2012). The Mycobacterium genus includes M. 

tuberculosis, the causative agent of tuberculosis (TB), and closely related, non-

pathogenic, M. smegmatis. Phage are used as molecular tools and serve as valuable 

models for investigating virus/host interactions (Hatfull, 2010). Phage are valuable agents 

for gaining insight into their host bacterium, including M. tuberculosis, the most 

prevalent bacterial killer among humans (Smith et al., 2003). 	
  

 Evidence of TB was identified in human remains dating back 4,000 years ago, 

making M. tuberculosis one of the oldest known infectious diseases (Smith et al., 2003). 

M. tuberculosis is transferred by aerosol particles, initially infecting the respiratory 

system (Smith et al., 2003). TB is primarily a pulmonary disease, but when active the 

infection can be carried by the lymphatic system and blood to disseminate further than 

the respiratory system (Smith et al., 2003). Antibiotic treatments exist to fight M. 

tuberculosis infection, but the need for more potent therapies still remains (Smith et al., 

2003). Phage are valuable molecular tools for increasing understanding of virus/host 

interactions and gaining insight into their pathogenic hosts. Temperate phage integration 

systems are useful for genetic manipulation of M. tuberculosis (Smith et al., 2003). 	
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2.2 Phage Clustering	
  

 Mycobacteriophage are highly abundant and diverse biological entities (Hatfull, 

2012).  In order to study relationships between between phage, they are sorted into 

clusters (Hatfull, 2012). Clusters are groups of phage sharing nucleotide sequence 

similarity across 50% or more of their genomes (Hatfull, 2012). Singleton phage do not 

share nucleotide sequence similarity across 50% or more of their genomes with any other 

phage (Hatfull, 2012). Organizing phage into clusters based on sequence similarity 

allows for insights into the genetic evolution of phage and characterization of groups of 

phage with similar genetic features (Hatfull, 2012). As of April 25th, 2016, 1142 phage 

have been sequenced and organized into clusters A–Z with 6 singletons (phagesDB). 

Some phage clusters, such as Clusters A and G, are well characterized (Hatfull, 2012) 

(Broussard et al., 2012). Other clusters, such as Cluster E, remain poorly understood 

(Hatfull, 2012). 	
  

	
  

2.3 Phage Lifestyles	
  

 Two common phage lifestyles are lytic and temperate. Lytic phage are only 

capable of completing the lytic life cycle. Some lytic phage circularize their genomes 

immediately after infecting the host genome and begin the process of replicating progeny 

(28). Replication of progeny and expression of phage encoded lysins cause the host cell 

to burst. Host cell lysis, the lytic life cycle, can be seen on a lawn of infected bacteria as a 

clear plaque (Hatfull, 2012). Temperate phage are capable of completing both the lytic 

and lysogenic life cycle.	
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 During the lysogenic life cycle, the phage genome circularizes after infection and 

expresses a phage-encoded integrase (Hatfull, 2010). The integrase facilitates integration 

into the host genome at phage integration site, attP, and homologous bacterial site, attB 

(Grindley et al., 2006). Recombined attP and attB form identical sites attL and attR, 

which flank the integrated phage genome, or prophage (Grindley et al., 2006). Cells 

carrying prophage  are called lysogens. The integrated phage genome is replicated with 

the host genome when producing daughter cells (28). Phage can excise their genome 

from the host when signaled by a DNA damage stressor (Dodd et al., 2005). Excision 

from the host genome leads to expression of lytic phage genes, production of progeny, 

and host cell lysis. The lysogenic life cycle can be seen on a lawn of infected bacteria as a 

turbid plaque (Hatfull, 2012). 	
  

	
  

2.4 Lysogeny Regulation	
  

Temperate phage are capable of completing both the lytic and lysogenic life 

cycles. The decision of which life cycle to complete is dependent on the growth rate of 

the bacterial host population, and expression of transcription factors in early phage 

infection (Herskowitz et al., 1980)(Maslov et al., 2015). Lytic growth is favorable during 

rapid bacterial growth and low phage multiplicity of infection  (Herskowitz et al., 1980). 

During this period, bacteria are actively expressing host factors required for phage 

replication, and there is an increasing population of bacterial host for phage to infect 

(Maslov et al., 2015). This makes it favorable for phage to propagate infection 

throughout the population and produce progeny (Maslov et al., 2015). Alternatively, 

during periods of slow or declining bacterial growth, it is favorable for phage to choose 
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the lysogenic life cycle (Maslov et al., 2015). During the lysogenic life cycle, the phage 

genome can be replicated with the host genome.	
  

	
  

2.4.1 Lambda and L5 Lysogeny Regulation 	
  

Lysogeny is maintained by a phage encoded immunity repressor protein that 

prevents expression of lytic genes and prevents infection of closely related invading 

phage (Hatfull, 2012). The phage genome is replicated with the host genome when the 

bacterial host produces daughter cells. The advantage of this lifestyle is that the phage 

genome continues to replicate , and the phage remains dormant until resources required to 

produce progeny are available. 	
  

In E. coli phage Lambda, the lifestyle decision is determined by transcriptional 

factors binding an operator site affecting both lytic and lysogenic gene expression 

(Herskowitz et al., 1980). The transcriptional factors are CI and Cro, which promote 

lysogenic and lytic lifestyles respectively (Dodd et al., 2005). CI binds to OR operator to 

shut down lytic gene expression and promote lysogenic gene expression and lysogeny 

maintenance (Dodd et al., 2005). Cro binds the OR to promote lytic gene expression and 

prevent CI expression, preventing lysogeny (Dodd et al., 2005). Mycobacteriophage L5 

utilizes a similar lifestyle regulation system (Nesbit et al., 1995). L5 gp71 encodes the L5 

repressor protein responsible for regulating lytic and lysogenic gene expression (Brown 

et al., 1997). Directionality of the L5 integrase, which facilitates both integration and 

excision, is determined by a phage encoded excise protein (Lewis et al., 2003). In the 

absence of the excise protein, the integrase facilitates integration into the host genome 
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(Lewis et al., 2003). In the presence of the excise, the integrase binds to the attL and attR 

sites to facilitate excision from the host genome (Lewis et al., 2003). 	
  

	
  

2.4.2 Cluster G Lysogeny Regulation	
  

Cluster G phage utilize an alternative method to regulate lysogeny and switch 

lifestyles . Upon infection, Cluster G phage begin expressing both an integrase and Cro-

like protein (Broussard et al., 2012). The integrase is unstable and is degraded quickly 

(Broussard et al., 2012). However, if the bacteria are in a stagnant growth phase, fewer  

proteases are available to degrade the integrase protein. Under these conditions, increased 

levels of  integrase facilitates integration of the phage genome into the host genome 

(Broussard et al., 2012). The Cluster G attP is present within the 3′ end of the phage 

repressor gene (Broussard et al., 2012). Upon integration, the constitutively expressed 

repressor gene is truncated and activated (Broussard et al., 2012). After integration into 

the host genome, integrase levels greatly decrease and the active repressor maintains 

lysogeny by competitively binding an operator site to shut down lytic gene expression 

(Broussard et al., 2012). The phage genome is excised from the host genome when 

integrase expression increases and facilitates excision from the host genome (Broussard 

et al., 2012). Alternatively, if during initial infection of the host, the bacteria are in a 

rapid growth phase, the protease levels will be high and the integrase quickly degraded 

(Broussard et al., 2012). These conditions allow a cro-like protein to bind the operator 

site responsible for lytic and lysogenic growth. Binding of the cro-like protein shuts down 

lysogenic gene expression and promotes lytic growth (Broussard et al., 2012). Cluster G 
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does not encode an excise protein (Broussard et al., 2012). Binding to the att sites, attP, 

B, L, and R, is dependent on the amount of integrase present (Broussard et al., 2012). 	
  

	
  

2.5 attP Integration Sites	
  

 Phage integrate into the host genome at phage integration site, attP, and host 

integration site, attB. Site-specific recombinases, phage-encoded integrases, recognize 

specific sites in the phage and host genomes and facilitate recombination at these 

homologous sites (Grindley et al., 2006). Some tyrosine integrases use particular motifs, 

or arm-type binding sequences, to orient their positioning on DNA and facilitate efficient 

integration (Grindley et al., 2006). 	
  

 Lambda and L5 use arm-type binding motifs to aid in efficient integration 

(Grindley et al., 2006)(Peña et al., 1997). Lambda has 5 arm-binding sites flanking either 

side of the attP core (Grindley et al., 2006). The two sites located upstream of the attP 

are arranged in an inverted repeat surrounding the integration host factor and the three 

downstream of the attP are all oriented in the same direction (Grindley et al., 2006). L5 

attP is located upstream of the L5 integrase gene. L5 has 7 arm-type binding sites, P1–7. 

P1–3 are located upstream of the attP and P4–7 are downstream (Peña et al., 1997). P1 

and 2 are oriented in the forward direction, while P3 is in the reverse (Peña et al., 1997). 

Downstream from the attP, P4 and 5 are oriented in the forward direction and P6 and 7 in 

the reverse (Peña et al., 1997). 	
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3.0 Materials and Methods	
  

3.1 Bacterial strains and growth conditions.	
  

 Mycobacterium smegmatis mc2155 (ATCC: 700084; NC_008596.1) was used for 

mycobacteriphage isolation and propagation, lysogen isolation, and integrase expression 

experiments. M. smegmatis was grown at room temperature or at 37° C with shaking at 

200 rpm in complete 7H9 broth (Becton Dickinson (BD) Franklin Lakes, NJ), 

supplemented with 10% albumin dextrose, 1 mM CaCl2, 50 µg mL-1 carbenicillin 

(Sigma, St. Louis, MO), and 10 µg mL-1 cyclohexamide (Sigma) or on 7H10 agar plates 

(BD) supplemented with 10% albumin dextrose, 1 mM CaCl2 (Sigma).	
  

 Escherichia coli XL1-Blue (7), obtained from John T. Singer at the University of 

Maine, was used for construction of recombinant plasmids. E. coli was grown at 37° C in 

Luria broth (L-broth) (1% tryptone, 0.5% yeast extract, 0.5% NaCl, and 0.4% glucose) 

(BD) and on L-agar (L-broth with 1.6% agar) (BD). 	
  

When appropriate, antibiotics were added to the media. Kanamycin (Sigma) was 

added to media to a final concentration of 20 µg mL-1 for M. smegmatis and 50 µg mL-1 

for E. coli. Hygromycin (Sigma) was added to media to a final concentration of 50 µg 

mL-1 for M. smegmatis and 200 µg mL-1 for E. coli. Ampicillin (Sigma) was added to 

media to a final concentration of 50 µg mL-1 for E. coli. 	
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3.2 Viruses and growth conditions.	
  

 Mycobacteriophage Ukulele was isolated by students at the University of Maine 

in 2011 from a soil sample collected from Old Orchard Beach, ME (3). Phage samples 

were stored in phage buffer solution (10 mM Tris (pH 7.5), 10 mM mgSO4, 69 mM 

NaCl, and 1 mM CaCl2). 	
  

	
  

3.3 Bioinformatic analysis of Ukulele integration cassette.	
  

Ukulele DNA was isolated and prepared by students at the University of Maine and 

sequenced at the University of Pittsburgh in 2012 using 454 sequencing methods. The 

Ukulele genome was annotated by Gwendolyn M. Beacham (Beacham et al., 2015). 

Putative promoters in the integration cassette were identified in Geneious (Kearse et al., 

2012) using an outlined model of M. smegmatis promoters (Newton-Foot et al., 2013) 

and programs in DNA Master (Lawrence, 2007 ) that identify potential −10 and −35 

sequences. Putative arm-type binding sites were identified using Multiple EM for Motif 

Elucidation (Bailey et al., 1994). Comparison of putative attP containing region was 

completed using alignment tools in Phamerator (Cresawn et al., 2011) and NCBI BLAST 

(Blast). 	
  

	
  

3.4 Plasmids.	
  

 Mycobacterial expression plasmid pST-KT (Parikh et al., 2013) was used to 

express the Ukulele integrase gene in M. smegmatis. pST-KT contains a multiple cloning 

site (MCS), kanamycin resistance gene, a modified Tet repressor (TetR) gene, and 

mycobacterial promoter Pmyc1 with TetR operator site (tetO) (Parikh et al., 2013). 
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Expression of a cloned gene is controlled by anhydrotetracycline (ATc) induction of the 

Pmyc1tetO promoter. Proteins expressed from cloned genes are tagged with hexahistidine 

and FLAG tags (Parikh et al., 2013). pST-KT replicates extrachromosomally in E. coli 

and M. smegmatis with a  copy number ~23 (Parikh et al., 2013). 	
  

 attP-containing sequences were cloned into plasmid pBR322 (Bolivar et al., 

1977). pBR322 contains a MCS, ampicillin resistance gene, and a tetracycline resistance 

gene (Bolivar et al., 1977). pBR322 replicates extrachromasomally in E. coli with a copy 

number of 15–20 (Bolivar et al., 1977). 	
  

	
  

3.5 Primer design and DNA sequencing.	
  

 Primers were designed based on the target sequence and desired restriction sites 

using Primer3 (Primer3) (Table 1). All recombinant plasmids were sequenced at the 

University of Maine DNA sequencing lab.	
  

	
  

3.6 PCR amplification. 	
  

 The Ukulele integrase gene was amplified using flanking primers gp49XbaI-R 

and gp49HindIII-L (Table 1) in a 25-µL reaction containing 0.5 µM of each primer, 1 ng 

of Ukulele template DNA, Taq polymerase, and PCR master mix according to the 

manufacturer’s recommendations (Promega, Madison, WI). The reaction was heated for 

2 cycles at 95°C for 2.5 min, 53° C for 45 s, and 72° C for 1 min followed by 35 cycles of 

95° C for 1 min, 63° C for 45 s, and 72° C for 1 min, and a final extension at 72° C for 5 

min. 	
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 The region of the Ukulele genome containing the putative attP and integrase gene 

was amplified using flanking primers potattPintSpeI-L and potattPintPacI-R in a 25-µL 

reaction containing 0.5 µM of each primer, 1 ng of template DNA, and Q5 polymerase 

with PCR master mix as recommended by the manufacturer (New England BioLabs 

(NEB), Ipswitch, MA). The reaction was heated for 2 cycles at 95° C for 2.5 min, 53° C 

for 45 s, and 72° C for 1 min, followed by 35 cycles at 95° C for 1 min, 53° C for 1 min, 

and 72° C for 1 min, and a final extension at 72° C for 1 min.	
  

 The region in the Ukulele genome containing the putative attP was amplified 

using flanking primers attPintergenic-L and attPintergenic-R in 25-µL reactions 

containing 0.5 µM of each primer, 1 ng of template DNA, Q5 polymerase with PCR 

master mix as recommended by the manufacturer (NEB). The reaction was heated at 98 ° 

C for 30 s, followed by 2 cycles at 98° C for 10 s, 67° C for 30 s, and 72° C for 1 min, 35 

cycles at 98° C for 10 s, 67° C for 30 s, and 72° C for 30 s, and a final extension at 72° C 

for 1 min. 	
  

 The Ukulele potential attP containing insert was identified by amplification of 

pBR-attP using flanking primers pbrattP-L and DipbrattP-R in 25-µL reaction 

containing 0.5 µM of each primer, 1 ng, of template DNA, Taq polymerase with PCR 

master mix as recommended by the manufacturer (Promega). The reaction was heated at 

95° C for 30 s, followed by 2 cycles at 95° C for 10 s, 57° C for 30 s, and 68° C for 1 min, 

35 cycles at 98° C for 10 s, 57° C for 30 s, and 68° C for 30 s, and a final extension at 68° 

C for 1 min. 	
  

 PCR products were purified using a QiaQuick PCR Purification kit according to 

the manufacturer’s recommendations (Qiagen).	
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3.7 Agarose gel electrophoresis.	
  

 Gels for electrophoresis were prepared using 1 – 2 % SeaKem LE agarose (Lonza, 

Rockland, ME) and SeaPlaque (Lonza) agarose dissolved in TAE (40 mM Tris base, 2 

mM Na2EDTA 2H2O, 20 mM Glacial Acetic Acid.) buffer. DNA samples were prepared 

for electrophoresis in a running dye (3 % Ficoll 400, 0.04 % bromophenol blue, 0.04 % 

xylene cyanol, and 10 mM EDTA). Samples were visualized by staining with 0.5 ng mL-1 

ethidium bromide and photographed using a ChemImager. 	
  

	
  

3.8 Restriction endonuclease digests.	
  

 Restriction endonuclease digests were completed according to the manufacturer’s 

recommendations (NEB). Reactions contained buffers supplied by the manufacturer 

(NEB). Reactions were terminated by heat inactivation at 68° or 80° C for 20 min or by 

performing phenol chloroform extractions	
  

	
  

3.9 Ligations.	
  

Ligations were performed using ratios of insert:vector ranging from 1:1 – 21:1. 

Reactions were performed in 20-µL volumes containing 1 unit of T4 DNA ligase (NEB), 

T4 ligase buffer (NEB), 100 ng of DNA, and when necessary 0.4 mM dATP and 50 µg 

mL-1 BSA. Reactions were incubated at 13° C overnight and terminated by heating at 65° 

C for 10 min.	
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3.10 Plasmid construction. 	
  

pST-KT-int was generated by cloning the Ukulele integrase gene into the MCS of 

inducible mycobacterial expression plasmid pST-KT (Figure 1) (Parikh et al., 2013). 

Amplification of the integrase gene with primers gp49(XbaI)-L and gp49(HindIII)-R 

(Table 1) produced a PCR product with XbaI and HindIII restriction sites immediately 

upstream and downstream, respectively, of the integrase open reading frame. Purified 

PCR product and pST-KT plasmid were digested with restriction endonucleases XbaI and 

HindIII (NEB). Digested products were purified by gel electrophoresis and gel extracted 

using QIAquick Gel Extraction Kit (QIAgen) according to the manufacturer’s 

recommendations.  Competent E. coli cells were transformed with 10 µl of ligation 

reaction according to a previously described procedure (Cohen et al., 1972). Using a 

QiaPrep spin miniprep kit (Qiagen), plasmid DNA was isolated from kanamycin resistant 

E. coli XL1-Blue transformants and screened for the presence of the integrase insert by 

restriction endonuclease assays with BamHI and HindIII. pST-KT and pST-KT-int were 

electroporated into electrocompetent M. smegmatis mc2155 as described previously 

(Kessel et al., 2008).	
  

To construct pUV15-attP-int, a Ukulele genomic sequence containing the putative 

attP and entire integrase gene (attP-int) was PCR amplified and digested with SpeI and 

PacI prior to ligation reactions with SpeI and PacI digested mycobacterial vector pUV15-

tet-ORm (Figure 2) (Guo et al., 2007). Ligation reactions were transformed into One Shot 

Top10 E. coli competent cells according to the manufacturer’s recommendation (Life 

Technologies, Grand Island, NY). Plasmid DNA was isolated from overnight cultures of 

hygromycin resistant E. coli transformants using the QIAprep Spin Miniprep kit 
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according to the manufacturer’s recommendation (Qiagen Inc. USA, Valencia, CA). 

Transformants were screened for the presence of the attP-int insert by restriction 

endonuclease assays with HindIII.	
  

To construct pBR-attP, a Ukulele genomic sequence containing the entire 

putative attP containing region within the intergenic region between gp48 and gp49 

(attP) was PCR amplified and digested with BamHI and HindIII prior to ligation 

reactions with BamHI and HindIII digested E. coli vector pBR322 (Figure 3) (Bolivar et 

al., 1977). PCR amplified sequence was purified by phenol chloroform extraction, and 

ethanol and ammonium acetate precipitation. A 4014 bp digested pBR322 fragment was 

purified by gel electrophoresis and purified by gel extraction using the Qiagen gel 

extraction kit (Qiagen, Valentia, CA) according to the manufacturer’s instructions .  

Competent E. coli cells were transformed with 10-µL of ligation reaction as previously 

described (Cohen et al., 1972).  Using a QiaPrep spin miniprep kit (Qiagen), plasmid 

DNA was isolated from ampicillin resistant, tetracycline sensitive E. coli XL1-Blue 

transformants and screened for the presence of the putative attP containing sequence by 

PCR with primers pbrattP-L and pbrattP-R (Table 1). 	
  

	
  

	
  
3.11 Expressing Ukulele integrase from pST-KT-Int.	
  

M. smegmatis mc2155 was transformed with pST-KT-Int using a previously 

described procedure (Kessel et al., 2008). M. smegmatis containing pST-KT-Int (M. 

smegmatis (pST-KT-Int)) was cultured in complete media with TWEEN 80 (0.0025%) 

and kanamycin, shaking at 220 rpm for 4 d.  The culture was subcultured to an OD600 of  

0.02 in complete media with kanamycin. Once the culture reached an OD600 of 0.60, 
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cultures were induced with a 0-, 5-, 10-, or 25 ng mL-1 anhydrous tetracycline (ATc). 

ATc induces integrase expression by inhibiting TetR from binding to the tetO site in the 

promoter upstream of the integrase. Induced cultures were incubated at 37° C for 14 h and 

then room temperature without shaking for 12 h. In volumes of 0.5 ml, aliquots of each 

culture were infected with 0 and 160 PFU of Ukulele. After 20 min, the cells were plated 

in 4.5 ml of 7H9 top agar on L-agar plates containing 50 µg mL-1 carbenecillin, 10 µg 

mL-1 cyclohexamide, and 20 µg mL-1 kanamycin and incubated at 37° C.	
  

	
  

3.12 Lysogen Isolation.	
  

Ukulele M. smegmatis (psT-KT) and Ukulele M. smegmatis (pstkt-int) lysogens 

were isolated plating serial 10-fold serial dilutions of each M. smegmatis strain onto 

7H10 Kanamycin plates seeded with 109 particle forming units (PFUs) of Ukulele. 

Resulting colonies were streaked onto new 7H10 Kanamycin plates to remove the 

colonies from free viral particles. The colonies were tested for superinfection immunity 

to Ukulele by spotting 107, 106, 105, 104, 103, 102, 101, and 0.5 Ukulele PFUs on lawns of 

potential lysogens. M. smegmatis (mc1552) was used as a control. Lysogens that were 

resistant to lysis by Ukulele lysate were kept for future procedures.	
  

  	
  

3.13 Inducing integrase expression in Ukulele lysogens.	
  

M. smegmatis (pST-KT-Int)-Ukulele lysogens were cultured in complete media 

with TWEEN 80 (0.0025%) and kanamycin, shaking at 220 rpm at 25° C for 8 d. The 

culture was subcultured to an OD600 of 0.02 in complete media with kanamycin. Once the 

culture reached an OD600 of 0.60, cultures were induced with 0-, 5-, 10-, or 25 ng mL-1 
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anhydrous tetracycline (ATc). Induced cultures were incubated at 25° C for 48 h. In 

volumes of 0.5 ml, aliquots of each culture was plated in 4.5 ml of 7H9 top agar on L-

agar plates containing kanamycin and incubated at 25° C. 	
  

	
  

3.14 Western Blot Analysis.	
  

Expression of Ukulele integrase in M. smegmatis (pST-KT-Int) from plasmid 

pST-KT-Int was confirmed using Western Blot analysis. Cells were prepared for lysis in 

lysis buffer (Phosphate buffer saline containing 5% glycerol, and 0.1 mm silica beads). 

Cell lysate was obtained by bead beating 1 mL of cell sample in the Qiagen TissueLyser 

II (Qiagen) for 3 min. Lysate was clarified by centrifugation at 16,100 x g for 10 min. 

Total protein concentration from each lysate was determined by measuring A280 

absorbance, assuming Absorbance:protein is 1:1 mg/ml.	
  

20 – 30 µg total protein from each lysate was resolved on a 9% SDS-PAGE by 

electrophoresis as previously described (Schagger et al., 1987). Protein was transferred 

from the SDS gel to a nitrocellulose membrane with 0.45 µm pores (Bio-Rad 

Laboratories, Hercules, CA) by electrotransfer. Membranes were treated with blocking 

buffer (0.1% Tween20, 20 mM Tris, 0.5M NaCl, 5% BSA, pH 7.5) to decrease 

background signal. The membrane was incubated with monoclonal primary antibody and 

1 µg ml-1 Mouse Anti-His 6X (ThermoFisher Scientific Waltham, MA) in blocking 

buffer for 30 min. Primary antibodies were detected by incubaction with Immun-Star 

Goat Anti-Mouse (GAM)-HRP Conjugate (Bio-Rad Laboratories) 1 hour at .04 µg ml-1 

in blocking buffer. Antibodies were detected by incubation with HRP substrate according 

to the manufacturer’s instructions (Bio-Rad Laboratories).	
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4.0 Results	
  

4.1 Computational analysis of Ukulele integration cassette.	
  

 Because attP sequences are typically located upstream of the integrase gene, a 

close analysis of the intergenic region between gp48 and and the integrase gene, gp49, 

was carried out. gp48 and gp49 are divergently transcribed and therefore the region was 

analyzed for the presence of promoters. A putative leftward and rightward promoter were 

identified in the intergenic region upstream of gp49 (Figure 3A).  To identify potential 

integrase arm-type binding sites, the integrase cassette was analyzed for repeat motifs 

(Grindley et al., 2006) (Peña et al. 1997). There are eight EWMotif1sites within a 625-bp 

region of the attP site (Figure 3B). Based on the location of the putative arm-type binding 

motifs and promoter sequences, we predict that the attP site is located between 

coordinates 37,101 – 37,170 of the Ukulele genome (Figure 3C).	
  

	
  

4.2 Plasmid Constructions.	
  

 In order to confirm that the gp48/gp49 intergenic sequence contains the attP site, 

we developed an assay to detect integration activity of this sequence. This required 

cloning the gp48/gp49 intergenic sequence into an E. coli cloning vector and the 

integrase gene into an inducible mycobacterial expression vector (Figures 1 and 2). 	
  

An inducible plasmid containing the Ukulele integrase gene, pST-KT-Int, was 

constructed by cloning the integrase gene into mycobacterial expression plasmid pST-KT 

(Parkih et al., 2013). The integrase gene was amplified with the addition of restriction 

tags for XbaI and HindIII. Prior to adding to ligation reactions, pST-KT and the integrase 

PCR product  were digested with XbaI and HindIII yielding expected fragment sizes of 
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5297-and 891-bp products, respectively (Figure 4). Recombinant plasmid was isolated 

from kanamycin resistant E. coli transformants and analyzed by restriction endonuclease 

digest analysis with BamHI and HindIII (Figure 5). Digestion of plasmid from three of 

the transformants produced the expected fragment sizes of 5296 and 896 bp, indicating 

the presence of the integrase insert (Figure 2). pST-KT-Int was sequenced to confirm the 

orientation and sequence of the integrase gene. 	
  

We were unable to construct pUV15-attP-int. The Ukulele sequence spanning 

both the putative attP and the integrase gene, Ukulele attP-Int, was amplified with the 

addition of restriction tags for SpeI and PacI (Figure 6) and digested with restriction 

endonucleases SpeI and PacI. We were unable to clone the attP-Int fragment into SpeI- 

and PacI- digested pUV15-tet-ORm. Only non-recombinant pUV15-tet-ORm was 

isolated from hygromycin resistant E. coli  transformants. HindIII digestion of plasmid 

isolated from transformants produced the fragment sizes of 276, 1199, 3200, and 3351 

bp, as predicted for the empty plasmid. None of the digested plasmid samples contained 

the 4418-bp fragment expected for plasmids carrying the attP-Int insert (Figure 7). 	
  

We were unable to successfully construct pBR322-attP. Ukulele putative attP 

containing sequence was successfully amplified with the addition of restriction tags for 

BamHI and HindIII (Figure 8.). Amplification of the intergenic sequence was confirmed 

by DNA sequencing. pBR322 and attP were digested with BamHI and HindIII to produce 

4014- and 308-bp, respectively. We were unable to clone the attP fragment into BamHI 

and HindIII digested pBR322. All transformants contained recombinant plasmid with 

inserts other than Ukulele sequence. BamHI endonuclease digestion was used to 

determine the length of the complete plasmid isolated from ampicillin resistant E. coli 
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transformants. Of the 20 transformants, four of them contained plasmids that were  larger 

in size  than the expected 4323 or 4361 bp expected for pBR-attP and pBR322, 

respectively (Figure 9). Recombinant plasmids greater than expected product sizes were 

not considered for sequencing (Figure 9). Plasmids isolated from ampicillin resistant E. 

coli transformants were analyzed by restriction endonuclease digestions and DNA 

sequencing. The total length of plasmids isolated from ampicillin resistant E. coli 

transformants was determined by BamHI endonuclease digestion. (Figure 9). BamHI and 

HindIII restriction endonuclease digestion was used to determine the length of sequence 

between BamHI and HindIII cut sites in plasmid isolated from ampicillin resistant E. coli. 

Only ~4,300 bp plasmids, the expected length for pBR322 and recombinant pBR322-

attP, that also contained a BamHI and HindIII endonuclease digestion product 300–400 

bp in length were submitted for sequencing. 14 plasmids were sequenced using primer 

pbr322F to determine the sequence between the plasmid BamHI and HindIII cut sites. 

Only non-recombinant pBR322 was isolated from ampicillin resistant E. coli. 	
  

	
  

4.3 Generation of an integrase competent strain of M. smegmatis and the impact of 

expression on Ukulele plaque morphology.	
  

 pST-KT-Int was electroporated into M. smegmatis to generate an integrase 

competent strain of M. smegmatis. This strain will be used to determine the effects of 

integrase expression in lysogeny regulation and to perform attP integration assays. To 

induce expression of integrase in M. smegmatis cells, cultures were treated with 0-, 5-, 

10-, and 25-ng mL-1 ATc. 	
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 M. smegmatis (pST-KT) and M. smegmatis (pST-KT-int) cells induced with ATc 

were infected with Ukulele lysate to observe plaque morphologies. Ukulele lysate 

produced turbid plaques on both strains of M. smegmatis (data not shown). There was no 

detectable difference in plaque formation frequency between the strains. 	
  

 To further characterize the role of integrase expression levels in lysogeny 

regulation, M. smegmatis (pST-KT-Int) and M. smegmatis (pST-KT)-Ukulele lysogens 

were isolated. To confirm the isolation of true lysogens, putative M. smegmatis (pST-KT) 

and (pST-KT-Int)-Ukulele lysogens were tested for superinfection immunity to Ukulele 

lysate. Varying doses of Ukulele lysate (10–107pfu) were applied to lawns of each M. 

smegmatis lysogen. Ukulele infection produced clearings on confluent lawns of the  M. 

smegmatis control but not on lawns of M. smegmatis (pstKT) #2 and M. smegmatis 

(pstKT-Int) #3-Ukulele lysogens. Superinfection immunity assays confirmed the isolation 

of true lysogens.	
  

	
  

4.4 Western Blot Analysis of Ukulele Integrase expression in M. smegmatis	
  

 We were unable to detect integrase expression in M. smegmatis (pST-KT-Int). 

The primary antibody detected an off target protein of unknown size in all samples (data 

not shown).	
  

	
  

5.0 Discussion	
  

 Temperate mycobacteriophage integrate their genomes into the host genome at 

integration site attP, a crossover exchange facilitated by a phage-encoded integrase. 

Temperate phage are of interest for their potential use as molecular tools and to better 
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study lysogenic relationships with their bacterial hosts. Some temperate 

mycobacteriophage systems such as that of L5 and Cluster G, are better characterized 

than others (Peña et al. 1997)(Broussard et al. 2012). By characterizing more integration 

systems, we enhance our understanding of how to use phage integrases as tools for 

genetic manipulation. Cluster E is a poorly studied cluster with an uncharacterized 

integration system and unidentified integration site,  attP. We are using temperate cluster 

E mycobacteriophage Ukulele as a model to identify and characterize the cluster E 

integration site and the role of the integrase in lysogeny regulation. We have identified a 

putative attP containing region and begun to characterize the role of the integrase in 

lysogeny regulation. 	
  

 A putative attP containing region (37, 101 – 37170) is located upstream of the 

Ukulele integrase gene. Phage attP sites are typically located in close proximity to the 

integrase gene (Peña et. al. 1997)(Dodd et. al., 2006). Therefore we  focused our search 

within the intergenic region upstream of gp49, the Ukulele integrase gene. To more 

precisely predict the location of the attP site within the intergenic region between gp48 

and gp49, we identified SigA-like putative promoters for gp48 and gp49 (Figure 5A) 

(Newton-Foot et al., 2013). Although possible, it is unlikely that the attP site is located 

with the promoter for a gene. Integration at a promoter site would likely disrupt the 

expression of the promoters target gene. Additionally, identifying arm-type binding 

sequences in this region may also help us better define the location of attP. Tyrosine 

integrases, like that of Ukulele, often require arm-type binding sites flanking the attP 

core to facilitate efficient integration. We identified eight repeat sequences surrounding 
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the predicted attP integration region that may represent arm-type binding sites for the 

Ukulele integrase (Figure 5B).	
  

 The repeat sequences, EWMotif1, are potential arm-type binding sites for the 

Ukulele integrase. EWMotif1 is similar to previously identified L5 and Lambda arm-type 

binding sites Like L5 and Lambda, it is 11-bp long and alternating forward and reverse 

sequences flanking a putative attP core (Figure 5B)(Peña et al., 1997) (Grindley et al., 

2006). Identification of putative arm-type binding sites is further indication that the attP 

site is likely located between coordinates 37,101 – 37,170 (Figure 5C). The region of the 

Ukulele genome (37,101 – 37,170) predicted to contain the attP site is highly conserved 

in cluster E phage, suggesting that this sequence likely has a critical function in cluster E 

phage (Table 2). 	
  

The Ukulele attP sequence is likely conserved amongst other temperate cluster E 

phage. Because phage integrases are site-specific recombinases, the attP site is likely 

conserved amongst temperate cluster E phage (Grindley et al., 2006). The integrase is 

conserved among Cluster E phage and will only act upon a specific attP sequence, 

therefore the attP site must also be conserved for the integrase to be functional. We have 

determined the most likely region to contain the Ukulele attP is the intergenic region 

upstream of the Ukulele integrase gene, gp49. Previously identified attP sites,  putative 

regulatory sequences, and high sequence conservation among Cluster E phage all indicate 

that the attP is likely located upstream of the integrase gene. Given the data from 

computational analysis, we expect the predicted attP containing region to be sufficient 

for integration into the genome of M. smegmatis expressing Ukulele integrase. 	
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To confirm the presence of attP upstream of the integrase, we will clone the 

putative attP containing sequence and screen for integration in a strain of M. smegmatis 

expressing Ukulele integrase. If the intergenic region upstream of the integrase contains 

the attP, this sequence should be sufficient for Ukulele integrase to act upon and facilitate 

integration into the M. smegmatis genome. For our first approach, we planned to clone 

both the attP containing sequence and the integrase gene into a single mycobacterial 

plasmid, pUV15-tet-ORm. If the intergenic region does contain the attP site, cloning both 

the attP containing sequence and the integrase gene into a plasmid should allow for 

integration of pUV15-attP-int into the M. smegmatis genome. We successfully amplified 

the Ukulele sequence containing both the intergenic region and integrase gene by PCR; 

however, we were unable to isolate a recombinant plasmid. It is possible that 

uncontrolled expression of the Ukulele integrase in E. coli could be inhibiting cell growth 

and preventing isolation of pUV15-attP-Int plasmid. Because the attP-Int PCR product 

contains the sequence upstream of gp49, it includes the promoter for the integrase gene 

(Figure 2C). The putative integrase gene promoter is a SigA-like promoter and is likely 

constitutively active in mycobacterial cells. While most phage integrases, such as the 

Lambda integrase, can be expressed in E. coli, other phage integrases, such as intB a 

lambda-like integrase, int-B13, from an integrative and conjugate element (ICE) in 

Pseudomonas knackmussi, are toxic and impossible to clone without tight gene regulation 

in E. coli ( Miyazaki et al. 2013). Uncontrolled expression of the Ukulele integrase in E. 

coli may have been toxic, thus preventing the isolation of recombinant transformants. It is 

also reasonable to speculate that cloning both the attP site and integrase gene into the 
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same plasmid would be difficult because of the reactivity of uncontrolled integrase 

expression in the presence of the attP.	
  

To prevent this reactivity and potential toxic effects of uncontrolled integrase 

expression, we planned to clone the putative attP containing region and integrase gene 

separately into E. coli plasmid pBR322 and mycobacterial vector pST-KT, respectively. 

pBR322 encodes an ampicillin resistance gene and lacks a mycobacterial origin of 

replication. If the cloned intergenic sequence contains the attP site, pBR322-attP in the 

presence of integrase expressed from pSTKT-int, should integrate into the M. smegmatis 

genome. The intergenic sequence upstream of gp49 was successfully amplified by PCR; 

however, we were unable to isolate a recombinant plasmid. It is possible that the attP 

sequence is reactive within the E. coli transformants, preventing isolation of a 

recombinant plasmid. Additionally, it is possible that hybridization flanking restriction 

sites PCR cloned onto the target insert are not sufficient for efficient BamHI and/or 

HindIII restriction endonuclease digestion. If either end of the insert is not cleaved by a 

restriction endonuclease, either BamHI or HindIII, the insert sequence and pBR322 will 

not have homologous sticky ends to allow for directionally inserting the attP sequence 

into the plasmid vector. Further investigation of the length and GC content of the insert 

hybridization sequence may aid in creating the pBR322-attP recombinant plasmid.	
  

Once pBR322-attP recombinant plasmids are isolated, integration assays will be 

completed to confirm the presence of attP upstream of gp49. The plasmid pBR322-attP 

will be electroporated into competent M. smegmatis (pST-KT-Int), which is capable of 

expressing integrase after treatment with ATc. Because pBR322 cannot be maintained 

extrachromosomally in mycobacterial cells, only cells with integrated pBR322-attP will 
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be selected on plates containing both ampicillin and kanamycin. Identification of an 

integrated pBR322-attP plasmid will confirm the presence of attP within the intergenic 

region upstream of gp49. If the integration assay reveals that the cloned sequence 

contains the attP, we will further characterize the sequence required for efficient 

integration. In addition to identifying the Ukulele attP site, we plan to determine if 

integrase expression levels are implicated in lysogeny regulation.	
  

To observe the effects of integrase expression on Ukulele lifestyle regulation, we 

aimed to alter the expression levels of Ukulele integrase in M. smegmatis (pSTKT-Int) 

cells. Integrase expression was induced with ATc at concentrations of 0, 5, 10, and 25 ng 

µL-1. ATc induces integrase expression by competitively binding TetR to prevent it from 

acting on its target site. TetR is constitutively expressed repressor encoded by pSTKT-int, 

that binds an operator tetO within the promoter PmyctetO to prevent expression of the 

downstream gene (Parikh et al., 2013). Because increasing ATc decreases the amount of 

TetR bound to tetO, we expect integrase expression levels to increase with increased ATc 

concentrations (Parikh et al., 2013). To determine if integrase expression levels play a 

role in Ukulele lifestyle regulation, M. smegmatis (pSTKT-int) cultures treated with ATc 

were infected with Ukulele lysate and plated to observe plaque morphologies. If integrase 

expression levels do play a role in lifestyle regulation, we expect to see a difference in 

plaque morphology  between cultures expressing different amounts of integrase.	
  

Ukulele integrase expression levels do not appear to regulate the directionality of 

the integrase. If the integrase expression levels are implicated in lysogeny regulation, we 

might expect to see a difference in Ukulele plaque morphology when altering integrase 

expression levels in M. smegmatis. However, there was no detectable difference in plaque 
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morphology in the presence of increased integrase expression levels. These results 

suggest that Ukulele integrase expression levels are not implicated in integrase 

directionality or lysogeny regulation. One possibility is that Ukulele does encode an 

unidentified excision protein that controls directionality of the integrase. Another 

possibility is that the increased integrase expression levels were promoting excision but 

because the Ukulele control plaques were clear, we could not visually detect increased 

excision activity. However, it is difficult to interpret these results without knowing if M. 

smegmatis (pST-KT-Int) is expressing Ukulele integrase. We have not yet completed 

Western Blot analysis to confirm that M. smegmatis (pST-KT-Int) is expressing Ukulele 

integrase, and if the integrase levels are increasing when we induce expression with 

increased ATc. It is also possible that Ukulele uses an alternative mechanism to control 

integrase directionality and lysogeny regulation is  unique from that of L5 and Cluster G 

phage (Lewis et al., 2003) (Broussard et al. 2012). Further investigation is required to 

determine if Ukulele integrase expression levels are responsible for controlling integrase 

directionality in lysogeny regulation. 	
  

Altering Ukulele integrase expression levels may be a mechanism used to regulate 

the integration system by controlling the directionality of the integrase. Since we have 

been unable to identify the excision gene in the Ukulele genome, it is reasonable to 

speculate that the integrase expression levels may be involved in regulating the 

directionality of the phage integrase. However, it is possible that Ukulele encodes an 

excise protien. Ukulele gp52 has been identified as a potential repressor or excise. Before 

we can rule out the possibility of an excise assisting in integrase directionality, we need 

to determine the function of gp52. Additionally, because we have been unable to confirm 
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that the integrase is being expressed in M. smegmatis, we can only speculate that the 

integrase expression levels may play a role in lysogeny regulation. Further investigation 

of the Ukulele genome, effects of altering integrase expression levels, and identification 

of the attP site are required to better characterize the Ukulele integration system.	
  

	
  

5.1 Future Directions	
  
	
  

If integration assays of the putative attP containing sequence confirm the 

presence of attP upstream of the integrase, continued efforts are required to determine the 

sequence required for efficient integration. To further characterize the putative attP 

containing region, we propose to introduce site directed mutagenesis of the intergenic 

sequence to determine the minimum sequence required for efficient integration. We will 

complete integration assay on the mutated sites to identify the minimum sequence 

required for efficient integration and the Ukulele attP core. Some integrases, like that of 

L5, require arm-type binding sites in addition to the attP core to facilitate integration 

(Peña et al., 1997). It is currently unclear if the Ukulele integrase requires arm-type 

binding sites for efficient integration. 	
  

Once the attP core has been identified, we plan to determine if arm-type binding 

sites are essential for Ukulele integrase to facilitate efficient integration. One way to 

investigate this is to complete an integration assay comparing the efficiency of integration 

of the attP core to that of the Ukulele sequence containing the attP core and all potential 

arm-type binding sites. Equal integration efficiency for both sequences suggests that only 

the attP core is essential for efficient integration. However, greater integration efficiency 

of the sequence containing both the attP core and putative arm-type binding sites than 
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that containing only the attP core suggests that the arm-type binding sites enhance 

integration efficiency. Identification of the attP core will allow us to further characterize 

the regulation mechanisms of the Ukulele integration system.	
  

 If integration assays reveal that the intergenic sequence does not contain the attP 

I propose refocusing the search for the attP within predicted repressor genes. We have 

been unable to identify a Ukulele excise gene. Cluster G phage do not encode an excise 

which makes is reasonable to speculate that the Ukulele integration system may function 

similar to that of cluster G, including using a similar attP site. Cluster G phage attP site is 

located within the repressor gene (Broussard et al., 2012). Because the cluster G attP is 

located within the repressor gene, integration results in expression of a truncated 

repressor protein (Broussard et al., 2012). Because the cluster G repressor is only active 

in its truncated form, cleavage of the attP site and integration into the host genome acts 

as a genetic switch to maintain lysogeny (Broussard et al., 2012). Although identification 

of the Ukulele repressor, the protein required for lysogeny maintenance, is currently in 

progress, members of the lab have identified putative repressor genes, gp52 and gp53 

(Beacham et al., 2015). An integration assay similar to that used to test the putative attP 

containing region could be applied to examine the reactivity of putative repressor genes 

with the Ukulele integrase. If the attP site is not located upstream of the integrase, I 

suggest cloning the putative repressor gene into pBR322 and completing integration 

assays to screen for integration of the repressor gene into the M. smegmatis genome. If 

the Ukulele integration system functions similar to Cluster G, it is also possible that 

integrase expression levels are used to control integrase directionality in lysogeny 

regulation.	
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We propose to alter integrase expression levels in M. smegmatis (pST-KT-Int)-

Ukulele lysogens as an alternative method to characterize the role of integrase expression 

levels in lysogeny regulation. We isolated both M. smegmatis (pST-KT-Int) and M. 

smegmatis (pST-KT)-Ukulele lysogens. These lysogens will be induced with varying 

levels of ATc to induce integrase expression, M. smegmatis (pST-KT) and M. smegmatis 

mc2155 will be used as a non-integrase expressing control strains. If increased Ukulele 

integrase expression levels promote excision in Ukulele lysogens, as seen in Cluster G, 

we expect to see an increase in induction events in the M. smegmatis (pST-KT-Int) 

lysogens compared to the control strains. The induction events would be seen as plaques 

on a lawn of lysogens. If there is an increase in induction events after treatment with 

ATc, it is likely that integrase expression levels are used to control integrase 

directionality in Cluster E phage. 	
  

 We will continue our efforts to confirm the presence of the Ukulele attP 

upstream of the integrase gene. Because lysogeny regulatory mechanisms and the attP 

site are likely conserved amongst cluster E phage, it is likely that the Ukulele lysogeny 

regulation system can be used as a model for other cluster E phage. Identifying the 

Ukulele attP and determining the role of integrase expression levels in Ukulele lysogeny 

regulation will greatly enhance our understanding of cluster E integration systems. Well 

characterized integration systems also have the potential to be used as molecular tools to 

study their hosts. Characterization of cluster E integration systems can contribute to the 

greater understanding of mycobacteriophage integration systems and virus-host 

relationships. 	
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Figure 1. 
Experimental design for plasmid pST-KT-Int construction. Ukulele integrase, gp49, 
was directionally inserted into plasmid pST-KT at complementary sticky ends created by 
XbaI and HindIII restriction endonuclease digestion. 	
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Figure 2. Experimental design for plasmid pbr-attP construction. Intergenic 
sequence upstream of Ukulele gp49 will be directionally inserted into plasmid pBR322 at 
complementary sticky ends created by HindIII and BamHI restriction endonuclease 
digestion.	
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Figure 3. Identification of promoters and integrase arm-type binding sites in 
the Ukulele integration cassette. A.) Geneious (Kearse et al., 2012) map of intergenic 
region between gp48 and gp49 containing putative promoter elements (green arrows). B.) 
Consensus sequence for EWMotif1, the potential integrase arm-type binding sites. C.) 
Geneious map of intergenic region between gp48 and gp49, containing putative 
promoters (green arrows), arm-type binding sites (blue arrows) and putative attP 
containing region (red box, 37,101 – 37,170). 	
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Figure 4. Agarose gel electrophoresis of XbaI and HindIII digested Ukulele 
integrase gene. Lanes 1 and 4 contain the molecular size markers. Lanes 2 and 3 contain 
the 891 bp XbaI and HindIII digested integrase PCR product.	
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Figure 5. Agarose gel electrophoresis of BamHI and HindIII restriction 

endonuclease digest analysis of plasmid isolated from kanamycin resistant E. coli 
transformants. Lanes 1 and 11 contain molecular size markers. Plasmid DNA isolated 
from transformants (lanes 2 – 8), or control plasmid pST-KT (lane 10) was digested with 
BamHI and HindIII.	
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Figure 6. Agarose gelelectrophoresis of a 1460 bp region of the Ukulele 
genome containing the putative attP site and the integrase gene (attP-Int) (36,700 – 
38,139). Lane 1 contains the molecular size marker. Lanes 2 and 3 contain the PCR 
product attP-Int.	
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Figure 7. Agarose gel electrophoresis of HindIII restriction endonuclease 
digest analysis of plasmid DNA from hygromycin resistant E. coli transformants. 
Lanes 1 and 6 contain molecular size markers. Plasmid DNA isolated from transformants 
(lanes 2 – 4) or control plasmid pUV15-tet-ORm (lane 5) was digested with HindIII.	
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Figure 8. Agarose gel electrophoresis of BamHI restriction endonuclease 
digest analysis of plasmid isolated from ampicillin resistant E. coli transformants. 
Lanes 1 in rows 1 and 2 contain molecular size markers. Plasmid DNA isolated from 
transformants (lanes 2 – 12 row 1 and lanes 2 – 10 row 2), or control plasmid pBR322 
(lane 11 row 2) was digested with BamHI.	
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Figure 9. Agarose gel electrophoresis of BamHI and HindIII restriction 
endonuclease digest analysis of plasmid isolated from ampicillin resistant E. coli 
transformants. A. Lanes 1 and 18 contain molecular size markers. Plasmid DNA 
isolated from transformants (lanes 2 – 17), or control plasmid pbR322 (lane 10) was 
digested with BamHI and HindIII. B. Lanes 1 and 7 contain molecular size markers. 
Plasmid DNA isolated from transformants (lanes 2 – 5), or control plasmid pBR322 (lane 
6) was digested with BamHI and HindIII.	
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Table 1. Primers.	
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Table 2. NCBI BLAST alignment of Ukulele putative attP (37,101-37,170) with other 
cluster E mycobacteriophage genomes.	
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