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Figure 5.2. Benthic organic matter standing crop for (A) habitat-weighted (reach- 

specific), and (B) habitat-specific values for each reach. Error bars are 90% 

confidence intervals. 



EU WU ED WD BB SWP 

BOM < 2mm 

small woody debris 

misc. litter > 2mm 

maple litter 

American beech litter 

bedrock 

100 1 

B O M < 2 m m  
80 . 

mm small woody debris 

misc. litter > 2mm 60 ' 

KZBB maple litter 40. 

American beech litter 
20 . 

ED WD BB SWP 0 J- 

debris dam 

WU ED WD BB SWP 

riff letrun ~ o o l  

EU WU ED WD BB SWP EU WU ED WD BB SWP 

Figure 5.3. The distribution of organic matter among BOM types (American 

beech leaves, maple leaves, small woody debris, >2mm miscellaneous, or < 

2mm miscellaneous) for (A) habitat-weighted (reach-specific), and (B) habitat- 

specific values. 



In debris dams and riffle/runs for all reaches except SWP, small woody debris 

decreased and leaf litter increased from upstream to downstream. 

Invertebrates 

Total invertebrate richness was similar among reaches and ranged from 

39 to 49 taxa (Table 5.2). Habitat-weighted biomass ranged from 0.38-0.65 g 

A F D M / ~ ~ ,  with the lowest value occurring in WU and the highest in SWP (Table 

5.2). Habitat-weighted density varied from -3500-6000 individuals/m2 among 

reaches (Table 5.2). 

Habitat-specific invertebrate richness ranged from 24 to 46 taxa with 

bedrock having the lowest richness and other habitats having similar values 

(Table 5.2). Habitat -specific biomass followed a pattern similar to that of benthic 

organic matter with debris dams > pools = riffle/runs > bedrock (Table 5.2). 

Habitat-specific densities varied across reaches. Debris dams tended to have 

the most individuals while other habitats had similar density. However, ED had 

the highest density in pool rather than debris dams (Table 5.2). 

Total habitat-weighted production increased along the stream permanence 

gradient (Fig. 5.4A). The lowest production was found in EU and WU (1.68k 0.18 

and 1.65 k0.11 g AFDM m-2y-' + 90% C.I.), followed by ED, WD, and BB (2.19 + 

0.23, 2.09 + 0.1 2, and 2.0 k 0.13) and SWP (2.89 k 0.1 9). The distribution of 

habitat-weighted production among functional groups also differed among 

reaches (x2 = 43.3, p i 0.01 ; Fig 5.5A). 



Table 5.2. Habitat-weighted (reach-specific) and habitat-specific invertebrate 

richness , biomass (mg AFDM/m2), and density (individualslm2). Values in 

parentheses are confidence intervals. 

............................................................. ............................................................. 
Reach Habitat Richness Biomass Density 

No. of taxa mg A F D M / ~ ~  ind./m2 

EU Habitat-weighted 40 427 (31) 3570 (221 ) 
Bedrock 24 88 (23) 1324 (654) 
Rifflelrun 3 1 680 (167) 31 91 (809) 
Pool 32 467 (1 54) 2240 (902) 
Debris dams 36 573 (72) 7082 (2 1 82) 

WU Habitat-weighted 41 382 (25) 31 89 (449) 
Bedrock 25 183 (53) 3339 (1 192) 
Rifflelrun 38 330 (102) 3209 (1 582) 
Pool 37 341 (29) 2 1 86 (824) 
Debris dams 36 717 (57) 4040 (1 91 2 

ED Habitat-weighted 4 1 538 (1 37) 5870 (1 873) 
Rifflehun 39 421 (1 62) 3338 (851 ) 
Pool 29 841 (306) 1 041 8 (5684) 
Debris dams 33 868 (363) 7921 (241 4) 

WD Habitat-weighted 39 467 (70) 3482 (556) 
Rifflelrun 36 732 (242) 31 75 (607) 
Pool 30 377 (9 1 ) 2671 (773) 
Debris dams 37 1244 (246) 8074 (1 987) 

............................................................................................................ 
BB Habitat-weighted 46 456 (1 00) 2834 (675) 

Rifflehun 38 436 (149) 2702 (852) 
Pool 42 454 (135) 2462 (920) 
Debris dams 42 999 (245) 4677 (1 598) 

SWP Habitat-weighted 49 651 (122) 6135 (1390) 
Rifflelrun 46 688 (1 31) 6301 (1 746) 
Pool 42 626 (1 56) 6020 (1 922) 

............................................................. ............................................................. 
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Figure 5.4. Invertebrate secondary production for (A) habitat-weighted (reach- 

specific), and (B) habitat-specific values for each reach. Error bars are 90% 

confidence intervals. 
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Figure 5.5. The distribution of invertebrate secondary production among 

functional feeding groups for (A) habitat-weighted (reach-specific), and (B) 

habitat-specific values. CG = collectors, FL = filter feeders, PR = predators, SC 

= scrappers, SH = shredders 



In the reaches with the lowest production (WU and EU), shredders accounted for 

50% of production, followed by predators (-25%), filter feeders (-1 5%), 

collectors (-13%), and scrapers (<lO/~; Fig. 5.5A). In ED, WD, and BB, 

proportions of collectors and shredders decreased, while predators and filter 

feeders increased (Fig. 5.5A). SWP was dominated by collectors (-31 'lo) and 

predators (32%; Fig 5.5A). 

Habitat-specific annual production ranged from -0.5 g A F D M I ~ ~  in EU 

bedrock to 5.0 g A F D M / ~ ~  in WD debris dams (Fig 5.48). Productivity tended to 

track organic matter standing crop with debris dams > pool > rifflelruns > 

bedrock. Further, the highest production occurred in reaches with high stream 

permanence (WD and BB and SWP). Productivity in debris dams was 

dominated by shredders (-50°/~), and was similar among reaches (Fig 5.5B). 

Pools had fewer filter feeders than any other habitat (Fig. 5.65). For rifflelruns 

and bedrock, shredder production decreases while the other functional feeding 

groups increased with increased stream permanence (Fig. 5.5B). 

Community structure 

Canonical axes 1 and 2 accounted for 29% of the variance in the taxa- 

environment ordination (total inertia=1.7; Fig. 5.6). Axis 1 (eigenvalue=0.30). 



Figure 5.6. The taxa-environment ordination from the canonical correspondence 

analysis. The upper figure shows the locations of habitat assemblages. Lines in 

the graph show the relationship of the environmental variables in the ordination. 

The lower figure shows the locations of taxa within the ordination. 
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explained 18% of the variance and separated taxa along a longitudinal gradient 

(upstream to downstream) that also corresponds to stream drying. Axis 2 

(eigenvalue=O. 19) explained 1 1 O h  of the variance and separated taxa based on 

benthic organic matter standing crop and reach habitat-specific patterns in 

drying. Based the first 2 axes, drying appears more important than habitat in 

structuring macroinvertebrate production in this stream system 

Discussion 

Invertebrate communitv structure 

A number of studies have shown that stream channel drying can influence 

invertebrate community structure (e.g., Delucchi 1988, Feminella 1996, Rincon 

and Cressa 2000, Shivoga 2001). 1 found similar results using taxon-specific 

production rather than biomass or abundance. In this intermittent stream system, 

community structure varied with channel drying, position in the watershed, and 

organic matter standing crop. Reach-specific drying and position in the 

watershed explain similar patterns of invertebrate community structure (Fig. 5.6). 

This is not surprising because these parameters are tightly linked (i.e., reaches 

lower in the system had higher degrees of permanence). Habitat-weighted 

drying and organic matter contributed less to explaining community structure, 

and both are probably related to debris dams (Fig. 5.6). Increases in the amount 

of debris dam habitat within a reach certainly elevate organic matter and may 

provide refuges from drying. Both organic matter and refuge from drying are 



important factors that regulate invertebrate populations and community structure 

(Williams 1 996, Wallace et al. 1999) 

Ordination of taxon-based habitat- and reach-specific production showed 

that invertebrate communities were more similar within reaches than habitats 

(Fig. 5.6). This suggests that similarities of habitat-specific production within 

reaches act to "filter" invertebrate populations and subsequently regulate 

community structure in this intermittent stream system (sensu Poff 1997). 

Comparable degrees of drying within a reach are plausibly responsible for similar 

invertebrate communities that occur among habitats within any given reach. The 

differences in drying that occur among the 6 reaches could thus be the primary 

factor that regulates community structure in this intermittent streams system. 

l nvertebrate production 

Production estimates from each reach in this intermittent stream system 

are among the lowest ever recorded (Benke 1993, Huryn and Wallace 2000). 

For headwater streams, secondary production tends to vary from 1-1 0 g DM m-2 

2 -1 y-' and few are <3 g DM m- y (Benke 1993, Huryn and Wallace 2000). Low 

productivity in streams can be due to reduced macroinvertebrate biomass and/or 

growth rates (Huryn and Wallace 2000). In this intermittent stream system, low 

secondary production is likely because of low biomass driven by stream-drying 

which excludes taxa that require perennial flow (Table 5.2 and Chapter 4). 

Reach productivity varied with habitat heterogeneity. Secondary 

production for reaches has been shown to be a function the distribution of habitat 



within reaches (Huryn and Wallace 1987), and these results concur. The most 

productive habitats for all reaches were debris dams (Fig. 5.4) which had the 

highest stream permanence and organic matter standing crop (Table 5.1, Fig. 

5.2). Production was similar for the other habitats (rifflelruns, pools, and 

bedrock; Fig. 5.4) which is likely because of similarities in drying and organic 

matter. 

Other studies have not reported such similar levels of secondary 

production among different habitats. In this study rifflelruns and pools had 

2 -1 production estimates of -1.5-3.0 g AFDM m' y . For comparison, 2 headwater 

reaches in North Carolina had secondary production estimates from 5.7-7.5 g 

AFDM m-2 y" in all habitats (Wohl et al. 1995). In another study of a headwater 

stream in North Carolina, Huryn and Wallace (1987) found that production was 

5.7 g AFDM m-2 y-' in bedrock habitats, 7.2 g AFDM m-2 y-' in riffles, and 9.3 g 

2 -1 AFDM m- y in pools. Also, riffle habitats in a 2nd-order stream in New 

Hampshire yielded production of -4.0 g A F D M I ~ ~  y-l (Fisher and Likens 1973, 

Hall et al. 2001). These production estimates from similar streams located in the 

Appalachian Mountains provide evidence that stream-drying reduces secondary 

production in this stream system. 

Debris dams may have provided a refuge from drying because moisture 

was retained for long periods within the organic matter when stream flow ceased. 

Because of their ability to retain water, debris dam invertebrate assemblages had 

a pronounced response to the drying gradient. The clearest example from this 

study is the high productivity for debris dams in WD and BB (i.e., less intermittent 



reaches) when compared to other reaches (Fig 5.4B). The potential for stream 

drying to be the principal factor driving the differences in secondary production is 

strengthened given that WD and BB have low and intermediate levels of benthic 

organic matter (Fig. 5.3, 5.4). 

While drying reduced differences that were expected for habitat-specific 

estimates of production, levels of organic matter standing crop still influenced 

overall patterns of invertebrate productivity (Fig. 5.7). Productivity among 

bedrock, rifflelrun, and pool habitats was positively associated with benthic 

organic matter (Fig. 5.7). This relationship between organic matter and 

invertebrate productivity has been shown for perennial stream ecosystems 

(Wallace et al. 1999, Hall et al. 2001), and these results further support the 

relationship. Within debris dam habitats, however, secondary production did not 

increase with organic matter. This lack of relationship may be because debris 

dams are composed of organic matter which provides both food and space for 

organisms. Much of the organic matter biomass associated with debris dams is 

not palatable (e.g., wood), so increasing standing crop in these habitats may not 

result in the same increases in secondary production observed in other habitats. 

The goal of this study was to assess how stream channel drying affects 

invertebrate productivity and community structure. Drying appears to act as an 

ecosystem filter for taxa along gradients of stream permanence. Because of this, 

invertebrate community structure was more sensitive to drying effects than 

production. Drying also reduced invertebrate production differences among 

habitats that have been found in other studies (Huryn and Wallace 1987). 



Production was, however, positively associated with organic matter, as seen in 

other headwater streams (Wallace et al 1999, Hall et al. 2001). Overall, I found 

that both drying regimes and organic matter standing crop are important for 

regulating habitat heterogeneity in intermittent streams. Differing degrees of 

habitat heterogeneity can thus regulate both invertebrate community structure 

and productivity. 
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Figure 5.7. The exponential rise to max relationship between invertebrate 

secondary production and organic matter for habitat-specific values. B = 

bedrock, D = debris dam, R = rifflelrun. P = pool. 



Chapter 6: 

GENERAL CONCLUSIONS 

The Bear Brook Watershed in Maine (BBWM) is a paired catchment study 

investigating ecosystem effects of N and S deposition. Due to the long-term 

addition of ammonium sulfate, the treatment catchment has higher stream nitrate 

and enriched foliar N concentrations. The treatment stream also has a higher 

degree of permanence. Below the established study catchments, an intermittent 

stream system, that includes four more stream reaches, has differing degrees of 

flow permanence. The objective of this work was to investigate how N deposition 

and stream drying affect organic matter dynamics. Specifically, I examined leaf- 

litter processing, organic matter input, storage and exports, and invertebrate 

production and community structure. 

Litter Processing 

I investigated how both stream N and foliar N affect stream detritus. 

Differences in litter processing were assessed by measuring mass loss, tissue 

softness, and shredder biomass. To examine both "stream effects" and "leaf 

source effects", N-enriched and reference litter bags were prepared for three leaf 

species and placed in the treatment and reference streams. Red maple leaves 

were examined in 1997, 1998, and 1999. Sugar maple and American beech 

were examined in 1999. In all years, the only stream effects were increased 

mass loss for sugar maple and higher shredder biomass for red maple in 1998, 

both occurring only in the treatment stream. Several leaf source effects were 



observed. N-enriched leaves of sugar maple, American beech, and red maple in 

1998 had significantly higher microbial activity, as indicated by softer tissue, and 

had higher total mass loss. Further, shredder biomass tended to be highest in N- 

enriched litter bags. Although significant effects were detected, these results 

suggest that elevated dissolved N concentrations due to N deposition play a 

minimal role in regulating stream detritus processing at BBWM. Increased foliar 

N, however, did influence rates of stream detritus processing by increasing 

microbial activity, and possibly increasing shredder biomass. This study showed 

how N deposited on entire watersheds can affect the stream ecosystem function 

of litter processing. 

Organic Matter Dynamics 

I predicted that the increased N loading to the treatment catchment would 

elevate inputs of organic matter, result in higher levels of stream coarse organic 

matter biomass, and increase litter processing rates relative to the reference 

catchment. This study found that the streams draining BBWM did not have 

statistically different inputs or coarse organic matter biomass, and only modest 

differences in export potential. System-level processing rates for maple (Acer 

spp.) litter were similar to rates previously quantified from litterbags. However, 

system-level processing rates for American beech (Fagus grandifolia) litter were 

faster than litterbag rates. This difference was likely due to movement of these 

leaves from rifflelruns and pools into debris dams, rather than changes in leaf 

tissue processing. Further, organic matter dynamics of the intermittent streams 



at BBWM were similar to other headwater, forested streams. These results 

suggest that the ongoing N manipulation at BBWM is not altering inputs, storage 

or processing of stream coarse organic matter and consequently physical 

characteristics of these stream ecosystems regulate organic matter dynamics. 

Stream Invertebrates and the N Deposition Experiment 

Invertebrate secondary production was the same in both streams, but 

varied between years (1 99811 999: 1.66k0.11 and l.68kO.18 g AFDM m-2y-'; 

199912000: 2.28k0.14 and 2.27k0.25 [mean& 90% C.I., treatment and reference 

streams, respectively]). In both years, Leuctra had the highest production in the 

treatment stream. In the reference stream, Paranemoura had the highest 

production in the first year, but Rhyacophila and Leuctra had the highest 

production in the second year. Overall, shredders accounted for roughly half and 

predators a quarter of total production. The increase in production in the second 

year was attributed to both increased stream permanence and higher levels of 

organic matter. These results suggest that N deposition at BBWM has little effect 

on stream invertebrate production. However, differences in drying regimes for 

these intermittent streams did affect both the level of production and the 

distribution of production among taxa. Further, these findings suggest that 

although invertebrate production is limited in intermittent streams, it is still 

positively correlated with organic matter biomass. 



The Role of Habitat along an Intermittent Stream Continuum 

I examined macroinvertebrate secondary production and community 

structure in an intermittent stream system that drains Lead Mountain. The 

intermittent stream system includes 2 first-order streams and their second-order 

confluence. Six reaches were defined within the system: 2 high-and 2 moderate- 

gradient, first-order reaches, a moderate to low gradient, second-order reach and 

a pond inlet. Each of the reaches had unique combinations of habitats (bedrock, 

rifflelruns, debris dams, and pools). In general, the percent rifflelruns increased 

and debris dams decreased while pools were similar from upstream to 

downstream. The upper reaches lost surface flow before the second-order reach 

and the pond inlet. Among all reaches, pools and debris dams retained water 

longer than fast flow habitats (rifflelruns and bedrock). Further, debris dams 

retained moisture after surface flow ceased. Reach-specific organic matter 

ranged from -200 to 600 g A F D M / ~ ~  and decreased with increasing stream 

permanence. Habitat-specific organic matter was highest in debris dams and 

lowest for bedrock, but did not have as distinct longitudinal patterns as the reach- 

specific measurements. Reach-specific macroinvertebrate production ranged 

from -1.7 to 2.9 g AFDM m-2 y-' among all reaches, while habitat-specific 

macroinvertebrate production ranged from -0.5 to 5.0 g AFDM m-2 y-' (bedrock 

and debris dams, respectively). Flow permanence and detritus biomass appear 

to control invertebrate production within habitats, whereas differing distributions 

of habitats have strong control on reach-specific invertebrate production. 



Synthesis 

A main result from this work is clear; the ongoing ecosystem manipulation 

at BBWM has yet to affect organic matter dynamics of these streams. This 

finding was unexpected due to the amount of prior research that has suggested 

that elevated N should cause a system-wide response. Continued additions of 

ammonium sulfate and further development of N-saturation conditions, however, 

should eventually alter the WBB+N stream ecosystem because of the changes 

expected in the surrounding forest. Throughout this dissertation I have offered 

several possible explanations for the lack of a measurable effect including: P 

limitation, pre-existing acidic conditions, and stream channel drying. Each of 

these plausible explanations, however, is without refutable proof. 

The other main result from this work is also clear; stream channel drying 

can reduce macroinvertebrate secondary production and alter community 

structure. The timing of channel drying in this stream system filters taxa that lack 

appropriate life histories or traits to deal with prolonged dry periods. This filtering 

structures the macroinvertebrate community and regulates productivity. 
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