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Abstract 

 
Owing to the abundance of heat and moisture, the tropics is a fundamental 

component of the global climate system. Yet the role of the tropics in climate remains 

poorly understood. The Andes are home to ~95% of all tropical glaciers, making this the 

ideal region for studying relationships between tropical glaciers and climate. I conducted 

a Beryllium-10 surface exposure dating experiment using ten quartz-bearing rock 

samples from a series of last glacial maximum (LGM) moraines in the Minas Tira 

glaciofluvial valley system, Cordillera Carabaya, Peru. The AMS measured sample dates 

(excluding outliers) range from 24.3 ± 0.5 ka to 19.4 ± 0.5 ka, and give an average of 

22.3 ± 1.5 ka. On a first order basis, this average fits within the global LGM timescale of 

23–19 ka, supporting the view of contemporaneous glaciation between the hemispheres 

and a globally uniform ice age. My data also align broadly with the global CO2 record, 

supporting – though not confirming – the hypothesis that atmospheric CO2 levels are 

closely linked to temperature changes during deglaciation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv   
 

Acknowledgements 

 

 I am very grateful for the people and organizations that helped fund this project. I 

would first like to thank Mr. Scott Golden and the Center for Undergraduate Research for 

making the analysis of the project possible. I also am grateful to the National Science 

Foundation for their support. I would like to extend my gratitude to the field crew that 

collected the samples in Peru. I owe a great amount of thanks to Gordon Bromley and 

Brenda Hall for being fantastic mentors and advisors for this project. I would also like to 

offer thanks to my committee members, Aaron Putnam, Amanda Olsen, and Mark 

Haggerty, for their support and contributions. Additionally, I want to thank Marty Yates 

and Christoper Gerbi for their assistance with the more obscure rock and mineral 

identifications. Furthermore, I would like to thank the professors, students, and friends in 

the Earth and Climate Sciences department for their general support and unwavering 

sense of community. Finally, I would like to thank my family for their ongoing support 

during all of my endeavors.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v   
 

Table of Contents 

 

Acknowledgements……………………………………………………………………….iv 

Table of Contents.…………………………………………………………………………v 

List of Tables..…………………………………………………………………………....vi 

List of Figures……………………………………………………………………………vii 

Chapter 1 Introduction………………………………………………………………....….1 

Chapter 2 Background…………………………………………………………………….4 

 2.1 Geographic and Climatic Setting……………………………………………...4 

 2.2 Geologic Setting……………………………………………………………….6 

 2.3 Previous Work in the Tropical Andes…………………………………………7 

Chapter 3 Methods……………………………………………………………………….10 

Chapter 4 Results………………………………………………………………………...13 

Chapter 5 Discussion…………………………………………………………………….17 

Chapter 6 Conclusion…………………………………………………………………….24 

References………………………………………………………………………………..26 

Appendix A………………………………………………………………………………30 

Appendix B………………………………………………………………………………35 

 

 

 

 



 vi   
 

List of Tables 

 

Table 1 - Sample data and attributes……………………………………………………..16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 vii   
 

List of Figures 

 

Figure 1 – Graphical display of CO2, temperature, and glaciation event records………...3 

Figure 2 – Map of South America highlighting climate and glaciation…………….…….5 

Figure 3 – Previous moraine-dating site locations in the tropical Andes…………………8  

Figure 4 – Sample site in Minas Tira with locations and respective ages…………...…..14 

Figure 5 – Probability density function plot of sampled Minas Tira moraine complex…18 

Figure 6 – Probability density function plot of outermost moraine in Minas Tira.……...19 

 



 

1 
 

 

1. Introduction 

 

 Why should we study glaciers and the history of their past behavior? On a first-

order basis, glaciers serve as physical thermometers, advancing and retreating primarily 

in response to changes in atmospheric temperature. For example, during the last glacial 

maximum (LGM), defined as the peak of the last ice age, glaciers worldwide were more 

extensive than today due to lower temperatures. Determining the timing of the LGM is 

vital to understanding paleoclimate on both local and global scales, as well to 

understanding the mechanisms influencing glacier behavior. The global LGM, during 

which ice volume was greatest and sea level was at its lowest, occurred 23,000–19,000 

years ago (23–19 ka) (Mix et al., 2001), yet there are important local departures from this 

global average that allow us to begin to assess the mechanisms by which the earth goes 

into and comes out of an ice age.  

What drives ice ages? Astronomical, or "Milankovitch", forcing is regarded as the 

fundamental “pacemaker” for ice ages (Milankovitch, 1941; Hays et al., 1976; Broecker 

and Denton, 1990). Specifically, the eccentricity of Earth’s orbit, combined with the tilt 

and precession of its spin axis, fuels cyclical ice ages through variations in the amount of 

solar radiation received in each polar hemisphere. Thus, one might expect there to be an 

alternation between Northern and Southern Hemisphere glaciation, as the effect of 

precession is antiphased between the hemispheres. Yet, as Mercer (1984) pointed out, the 

pattern of LGM glaciation appears to have been broadly synchronous between the 

hemispheres. A primary example is the North American Laurentide Ice Sheet where, in 

the Great Lakes Region (~42o N), the LGM was dated with radiocarbon to 23–20 14C ka 

(27 – 24 calendar ka) (Dyke et al., 2002). In the southern mid latitudes, the LGM in New 
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Zealand (~42.2o S) occurred over a longer period, between 27 ka and 18 ka (Putnam et 

al., 2013; Kelley et al., 2014). Nonetheless, the considerable overlap in timing of the 

LGM between the hemispheres contrasts with any model of antiphased glaciation. 

Therefore, while it is generally understood that orbital variability paces the ice age cycle, 

the apparent interhemispheric glacial synchrony remains a persistent problem in Earth 

science and has been termed the “fly in the ointment” of the Milankovitch theory 

(Mercer, 1984).  

This problem has resulted in different mechanisms being proposed to explain the 

globally synchronous LGM and glacial termination, including atmospheric carbon 

dioxide (CO2) and changes in heat transfer from ocean currents (Broecker and Denton, 

1990). Currently, CO2 is widely considered to be a fundamental mechanism unifying 

global glaciation (e.g., Saltzmann and Maasch, 1991; Broecker, 2013; Clark et al., 2012; 

Shakun et al., 2015). As a greenhouse gas, CO2 insulates the Earth’s surface by trapping 

outgoing infrared radiation in the lower atmosphere, resulting in a relationship between 

CO2 concentration and temperature. This effect is of critical importance today, as much 

of the current warming is seen as a consequence of greenhouse emissions (Yue et al., 

2015). Thus, if CO2 truly is the fundamental driver of the ice ages, past glacier behavior, 

which reflects temperature change, should follow changes in carbon dioxide closely.  

 Over the last 22 ka, global temperatures have fluctuated broadly in concert with 

atmospheric CO2 concentrations (Fig. 1) (Petit et al., 1999; Monnin et al., 2001; Shakun 

et al., 2015). For example, ice age events such as the LGM, occurred during periods with 

lower atmospheric CO2 concentrations and global temperatures (Fig. 1). Nonetheless, in 

order to establish any causal relationship between CO2 changes and glacial maxima, this 
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correlation needs to be inspected more closely using glacier records as temperature 

proxies.     

 

 

Figure 1: Comparison of changes in carbon dioxide (CO2), global temperature, and global glaciation events 
since the LGM. The blue curve indicates global proxy temperature deviations from the early Holocene 
(11.5 – 6.5 ka) mean, the red curve shows the Antarctic ice-core composite temperature record, while 
atmospheric CO2 concentrations are displayed as yellow dots. Glaciation event intervals are labeled as the 
Holocene, Younger Dryas (YD), Bølling-Allerød (B-A), Oldest Dryas (OD), and Last Glacial Maximum 
(LGM). [Figure from Shakun et al., 2012] 

 

Owing to the strong relationship between glaciers and temperature, reconstructing 

past glacier behavior permits us to ascertain the timing of past climate change and how it 

relates (or not) to atmospheric CO2 variations. The tropics provide us with a particularly 

valuable opportunity to assess this link as the tropical troposphere is characterized by 

thermal homogeneity and minimal seasonality (Kaser, 1999). Moreover, the tropics are 

located far from the potentially complicating effects of large mid-latitude ice sheets and 

steep ocean boundaries, thus resulting in glacier-temperature records that are more 

representative of global conditions. As the primary source of heat and water vapor, the 

tropics also exert a strong influence on global climate (Cane, 1998), emphasizing the 

importance of resolving the relationship between tropical temperature and CO2.  
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To resolve better the potential role of carbon dioxide in the ice ages, my work 

provides a record of glacier behavior during the LGM from a site located in the tropical 

Andes of southeastern Peru. The tropical Andes contain ~2650 km2 of glacier ice, 

approximately 95% of all tropical glaciers (Kaser and Osmaston, 2002).  Crucially, 

glaciers in this region have been shown to be sensitive indicators of temperature (Rodbell 

et al., 2009), thereby enabling a direct reconstruction of past temperature variability that 

can then be compared to possible forcing mechanisms, such as atmospheric CO2.  

 

2. Background 

2.1 Geographic and Climatic Setting 

The Andes mountains span 68o of latitude, from northern Colombia (12oN) to 

southern Chile and Argentina (56oS) (Rodbell et al., 2009). The tropical Andes stretch 

from Colombia in the north, south into Ecuador and Peru, and into Bolivia. Moisture 

carried by tropical easterlies travels over the Amazon Basin to the eastern side of the 

tropical Andes, leaving a drier western side from a rain shadow effect (Fig. 2) The 

Humboldt Current (Peru Current) is a cold, low-salinity ocean current flowing along the 

western side South America from Chile to northern Peru (Thiel et al., 2007) (Fig. 2). 

These wind circulation patterns and cold ocean currents combine to make the western 

side of the Peruvian Andes considerably drier than the eastern section. Correspondingly, 

glaciation is more extensive on the wetter eastern flanks than on the drier western side.  
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Figure 2: Map displaying South America with the many glaciated ranges of the Andes mountains. Wind 
patterns are shown in black arrows, while ocean currents are shown in dark gray arrows. [From Rodbell et 
al., 2009, which is a modified version of Clapperton, 1983] 
 

The Peruvian Andes hold the largest proportion of all tropical glaciers (~70%), 

making it a primary location to research the timing of the tropical LGM (Vuille et al., 

2008). Glaciation in Peru is extensive, currently about 2600 km2 of ice on 20 distinct 

cordilleras, owing to ongoing tectonic uplift events where orogenic masses are being 

moved into the cryosphere (Morales-Arnao and Hastenrath 1998; Smith et al., 2008). 

The most heavily glaciated ranges include the Cordillera Blanca of central Peru, where 
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numerous peaks exceed 6000 m elevation (including Nevado Huascarán Sur, Peru’s 

highest peak at 6768 m a.s.l.), and the Cordillera Vilcanota, Nevado Ausangate (6372 m), 

and the Quelccaya Ice Cap (Smith et al., 2008) in southern Peru. The Central Andean 

Plateau, known as the Altiplano, comprises a low-relief plain with a constant elevation of 

3500–4000 m (Smith et al., 2008). Current glacial limits in the tropical Andes are about 

5000 m, yet terminus elevations are somewhat lower in the Cordillera Blanca, Cordillera 

Huayhuash, and Cordillera Vilcanota of Peru (Frenierre et al., 2011). In addition, Peru’s 

Quelccaya Ice Cap is the only remaining ice cap in the entire tropical latitudes (Frenierre 

et al., 2011). 

 My study area is located in the Cordillera de Carabaya, a southeastern portion of 

the Cordillera Oriental. This mountain range occurs between 14°00'S and 14°22'S latitude 

and 69°38'W and 70°19'W longitude. In 1999, the Cordillera de Carabaya was measured 

to contain more than 100 km2 of glacier ice (USGS, 1999). My site, Minas Tira, lies at an 

elevation of 4500 m with a location at 14°16'16''S latitude 70°26'42''W (Fig. 4).  

 

2.2 Geologic Setting 

 The Peruvian Andes were formed by Cenozoic tectonic shortening of the South 

American plate margin overriding the subduction of the Nazca plate (Sobolev and 

Babeyko, 2005). This orogenic and cratonic development influenced the formation of the 

Cordillera de Carabaya, which is underlain by a thick succession of Phanerozoic 

sedimentary and volcano-sedimentary strata, as well as by a variety of intrusive units 

(Sandeman and Clark, 2004). A relatively thick (15-20 km) sequence of Ordovician to 

Lower Carboniferous arenites and shales is overlain by limestones, cherty sandstones, 
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and shales of the Middle Carboniferous to Lower Permian Tarma and Copacabana 

Groups (Sandeman and Clark, 2004). Lower Permian strata of the Mitu Group, 

unconformably overlie the sequences written above and are dominated by cobble 

conglomerates and sandstones, with less common alkaline volcanic rocks and associated 

intrusive units (Sandeman and Clark, 2004; Clark et al., 1990). 

 Topographically, Minas Tira comprises two adjoining valley systems Quebrada 

Tirataña and Quebrada Jotini (Fig. 4) that, ultimately, drain into Lake Titicaca. The 

valley bottoms contain wetland and alluvial deposits incised by fluvial processes. 

Surficial deposits at Minas Tira include lateral and terminal moraine ridges marking the 

former extent of glaciers, the distribution of which indicates the former presence of two 

separate ice tongues. Moraines are absent for several kilometers up-valley of Minas Tira.  

 

2.3 Previous Work in the Tropical Andes 

 Here, I discuss some of the previous LGM research that has been conducted in the 

tropical Andes, primarily in Ecuador, Peru, and Bolivia. It is important to note that there 

has been an abundance of published research regarding the timing of the LGM in this 

region, along with a variety of dating techniques including radiocarbon and surface 

exposure-age dating (Fig. 3). Therefore I shall focus on a representative body of prior 

research in order to maintain brevity.  
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Figure 3: Map displaying a compilation (pre-2011) of collected radiocarbon and surface exposure-age 
dating data of glacial moraines throughout the tropical Andean region in Ecuador, Peru, and Bolivia. [From 
Frenierre et al., 2011] 
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 In Ecuador, Heine and Heine (1996) dated seven distinct moraine groups near 

Rucu Pinchinca (Fig. 3) and Papallacta Pass and labeled them from oldest (M1) (Middle 

Pleistocene) to youngest  (M7) (Early–Middle Holocene), with M4 interpreted as the 

LGM moraine. M4 moraines were found at around 3800 to 3900 m elevation (Heine and 

Heine 1996).  Heine (2000) suggested that the M4 moraines represent relatively restricted 

LGM glaciers. The radiocarbon dates along with geomorphological and paleopedologic 

evidence, together with dated tephras erupted from Pichincha volcano, provided moraine 

ages younger than 30 14C ka, culminating sometime around 28 14C ka (approximately 40 

– 33 ka calendar years). These results suggest an early local last glacial maximum 

(LLGM) in Ecuador.   

 In Peru, Bromley et al. (2009) applied cosmogenic 3He surface exposure-age 

dating to samples from LGM moraines on Nevado Coropuna (Fig. 3). Their results have 

produced a timing range of about 25 – 15 ka with a mean age of around 20.7 ± 3.7 ka 

(Bromley et al., 2009). Smith et al. (2005) claimed a possible early LLGM in the 

Peruvian Andes, with data from central Peru. Their 10Be surface exposure-age data from 

LGM moraines in the Junin valleys (Fig. 3) suggested maximum ice extent at between 34 

– 22 ka (Smith et al., 2005). Seltzer et al. (1990, 2000) used paleoclimate proxies, such as 

magnetic susceptibility and radiocarbon dating from stratigraphic records from the Junin 

Lake and Lake Titicaca, to bracket the LLGM to between 30 – 21 ka. 

 In Bolivia, Zech et al. (2007) used 10Be surface exposure-age dating on 28 

boulders from the LGM moraines in Cordillera Real and the Cordillera Cochabamba 

(Fig. 3). These dates range from 25 to 22 ka, suggesting a near-synchronous LLGM in 

Bolivia to the global average of 23 – 19 ka. Similarly, extensive surface exposure dating 



 

 10   
 

in the Bolivian Andes conducted by Smith et al. (2005) also claimed an early LLGM 

there, with 10Be data from LGM moraines in the Cordillera Real (Fig. 3) and the Miluni 

Valley ranging from 34 to 23 ka (Smith et al., 2005).   

 At face value, this wealth of data from previous studies suggests the timing of the 

LGM in the tropical Andes is already well understood. However, there are several key 

limitations to consider when approaching the existing data set. Although radiocarbon 

dating can be implemented to bracket age constraint, moraine elevations in the tropical 

Andes are typically too high for vegetation to grow. The relative dearth of organic 

material for dating ultimately produces low-resolution 14C records. In contrast, surface-

exposure dating, which does not rely on organic material, has greatly improved 

opportunities for constraining moraine age. However, the majority of the cosmogenic 

studies described above were conducted when the technique was still in its infancy and 

thus of relatively low resolution. For example, only recently has the 10Be production rate 

been calibrated for low-latitude, high-altitude sites, such as the Peruvian Andes (Kelly et 

al., 2015). Previous studies had to rely on estimates of production rate. Additionally, 

there have been improvements in sampling procedures and in the handling of data, which 

implies that current data in the tropical Andes must be observed through a lens of greater 

uncertainty. Consequently, my work aims to add clarity to our understanding of the 

timing of the LGM in this region.  

 

3. Methods 

 I used cosmogenic 10Be surface-exposure dating to constrain the ages of ten 

quartz-bearing boulder samples (n = 10) from Minas Tira to achieve ages of moraines, in 
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order to bracket the timing of the LGM in the tropical Peruvian Andes. This area was 

selected as a part of a project funded initially by the Natural Science Foundation (NSF) to 

help establish the role of the tropics in global climate. In 2011, a team led by Gordon 

Bromley conducted field mapping and sampling (I did not participate in this section of 

the project). They identified relict lateral and terminal moraines, along with erosional 

glacial landforms throughout both the Tirataña and Jotini drainages, and grouped deposits 

on the basis of position, weathering, and elevation. Bromley used this information 

subsequently to produce a glacial geomorphic map showing former ice-age extents of 

glaciers at Minas Tira (Fig. 4). This map forms the basis for establishing my glacial 

chronology.  

 Samples for cosmogenic 10Be surface-exposure dating were collected from 

suitable erratics on moraine crests based on the quality of each boulder’s positioning, 

stability, and quartz concentration. Boulders were also observed for striations or other 

evidence of glacial erosion, and were preferentially selected on minimal evidence of post-

depositional erosion and weathering. Bromley sampled only boulders greater than 1 m in 

relief to lessen the possibility of shielding effects from snow or vegetation and each 

erratic was described in context, photographed, and their GPS locations documented. 

Rock samples of the upper few centimeters (1-2 cm) from chosen boulders were gathered 

with hammer and chisel. Additionally, the group measured the horizon with a clinometer 

to calculate the cosmic ray flux, accounting for any topographic factors that affected 

shielding. Subsequently, samples were taken back to the Climate Change Institute at the 

University of Maine to be prepared for 10Be extraction.  
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 Here, I discuss a brief summary of my part in preparing samples in the laboratory 

for 10Be extraction, following the methods described by Schaefer et al. (2009) (Steps in 

Appendix A). I initially selected ten, high-quality samples, using criteria similar to those 

for the selection of boulders written above, from the moraine belts in the Quebrada 

Tirataña that would provide a spread of time in bracketing the LGM. I then documented 

each sample’s rock type and quartz content and measured their masses on a digital scale. 

To reduce grain size of each sample, I crushed and pulverized the rocks. I used a set of 

sieves to sort out the samples by grain sizes, and used a fraction of 250 µm to 500 µm 

range for further processing. This fraction for each sample was washed with water in 

order to remove dust, and then were boiled in a 6 molar hydrochloric acid solution to 

remove adhering clays and oxides. Samples were dried. In order to separate quartz from 

the other minerals present (e.g., feldspar), I first tried a froth floatation method designed 

to float feldspars so that quartz could collected (Science.purdue.edu, 2016). However, 

this success of this method can be highly variable, depending on lithology and in this case 

it was unsuccessful, so I instead separated the quartz based on density differences using 

heavy liquids. Any magnetic minerals left with the quartz were removed using the Frantz 

machine. By this point my samples consisted of nearly pure quartz. Visual examination 

under the microscope revealed trace amounts of crystalline feldspar, which were removed 

by hand. Samples were then etched in 2% hydrofluoric acid for a week for final quartz 

clean up. Samples were then taken to a clean laboratory for Be extraction. Each sample 

was weighed, and a 9Be carrier was added, including to a blank, before the quartz was 

dissolved in concentrated hydrofluoric (HF) acid. I put each sample (including the blank) 

through cation and anion exchange columns in order to remove contaminating elements, 



 

 13   
 

such as Fe, Ca, and Ti (Ditchburn et al., 1994; Ditchburn et al., 2000). I then precipitated 

the beryllium as a hydroxide, which I combusted to convert to beryllium oxide. I packed 

all of the samples into cathodes, which were then sent to the Lawrence-Livermore CAMS 

facility for 10Be to 9Be ratio measurements. Beryllium ratios in samples and blanks were 

measured relative to the 07KNSTD standard, where 10Be/9Be = 2.85 × 10−12 (Nishiizumi 

et al., 2007). 

 I calculated the surface-exposure ages using the CRONUS-Earth online 

calculator, version 2.2 (Balco et al., 2008), after receiving the 10Be to 9Be ratio 

measurements from Lawrence-Livermore National Laboratory. These calculations were 

completed using the most recent local 10Be production rate provided by Kelly et al. 

(2015) and the time-independent ‘St’ scaling (Lal, 1991; Stone, 2000). This scaling 

method allows the production rate taken from the nearby Quelccaya Ice Cap (Kelly et al., 

2015) to be used at our site at Minas Tira, by adjusting it for physical differences between 

localities (i.e. altitude, position, pressure, etc.). The ‘St’ scaling protocol is also 

considered the most accurate for the tropics (Kelly et al., 2015). 

 

4. Results 

 Retreat of the Tirataña glacier since the LGM, left three prominent parallel lateral 

moraines on the western valley wall of the Quebrada Tirataña. The moraines diverge 

southwards towards the terminus, into several terminal ridges within three well-defined 

belts. The belts contain ridges with about 2-5 m in relief and are separated by valleys that 

are approximately 10 m wide. The ridges of this complex show identifiable moraine 
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features consisting of strong crest shapes along with prominent ice-contact slopes, which 

are scattered with granitoid, sandstone, conglomerate, and ignimbrite boulders.  

 

 

  
Figure 4: Map display of Minas Tira within the Cordillera de Carabaya, Peru. The two valley systems, 
Quebrada Tirataña and Quebrada Jotini, are shown along with their corresponding lateral and terminal 
moraines. Samples (n=10) come from the Quebrada Tirataña valley terminal moraine belts, and are marked 
with accompanying sample names and calculated 10Be surface-exposure ages. Both samples NT-11-01 and 
NT-11-14 have their ages italicized, as they are regarded as outliers.    
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We sampled ten boulders from the terminal moraine complex in the Quebrada 

Tirataña. Our sampled boulders showed minor amounts of weathering in the form of 

discoloration and shallow weathering pits only measuring a few millimeters deep, along 

with visible glacial erosion evident from minor striations and polish. Samples NT-11-01, 

02, and 03 were collected in the outermost southeastern portion of the LGM terminal 

moraine belts, and they achieved ages in the range of 28.1 ± 0.6 ka to 23.0 ± 0.4 ka (Fig. 

4). NT-11-06 was collected on western section of the outermost ridge in the Tirataña 

valley, with samples NT-11-10 and NT-11-11 gathered nearby (Fig. 4). This group has 

ages ranging from 22.7 ± 0.4 ka to 19.4 ± 0.5 ka. Samples NT-11-12 and NT-11-15, from 

a more proximal position, produced ages of 20.9 ± 0.4 ka and 21.8 ± 0.9 ka, respectively 

(Fig. 4). NT-11-14 was sampled from the same moraine as NT-11-15.  However, NT-11-

14 is regarded as an outlier as the sample had a considerably older age of 71.5 ± 0.8 ka. 

The innermost, up-valley sample (NT-11-19) produced an age of 23.3 ± 0.3 ka.   
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5. Discussion 

 

Collectively, my ages from the Minas Tira moraine complex range from 71.5 ± 

0.8 ka to 19.4 ± 0.5 ka. However, given that sample NT-11-14 gives an age (71.5 ± 0.8 

ka) that is well over two standard deviations from the mean (Fig. 5), I reject it as an old 

outlier. It likely has experienced previous exposure to cosmic rays. Similarly, the age 

distribution curve for the four samples from the outermost terminal moraine (samples 

NT-11-01, 02, 03, and 06) distinguishes sample NT-11-01 (28.1 ± 0.6 ka) as a probable 

outlier (Fig. 6). Thus, with NT-11-14 and NT-11-01 both removed from the data set, the 

mean age for all remaining samples is 22.3 ± 1.5 ka, whereas that of the outermost 

terminal moraine is 23.3 ± 0.9 ka.  
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Figure 5: Probability density function (i.e., ‘camelplots’) for the moraine complex in Minas Tira. Center 
blue line is the arithmetic mean. The black, red, and green vertical lines represent uncertainties in the 1σ, 
2σ, 3σ ranges respectively. Thin-lined curves are Gaussian curves representing each sample, while the 
thick-lined curve is the probability distribution summation of the data. Sample NT-11-14 is not shown as it 
falls well beyond 2σ of the distribution, and it is distinguished as an outlier.  
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Figure 6: Probability density function (i.e., ‘camelplots’) for the outermost moraine in the sampled Minas 
Tira complex, including four samples (NT-11-01, 02, 03, and 06). Center blue line is the arithmetic mean. 
The black, red, and green vertical lines represent uncertainties in the 1σ, 2σ, 3σ ranges respectively. Thin-
lined curves are Gaussian curves representing each sample, while the thick-lined curve is the probability 
distribution summation of the data. The oldest curve shown is sample NT-11-01, which is recognized as an 
outlier.   

 

Due to the relatively low number of samples from each of the inner moraine 

ridges, it is not feasible to assess their ages statistically as I have for the outer moraine. 

Nonetheless, it is important to assess the quality of the dates as a single unit and as a 

sequence in time. Stratigraphically, the outer moraine ridge should be the oldest, 

representing the most extensive position of the glacier during the LGM, whereas 
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subsequent moraines should be progressively younger with distance up-valley. On a first-

order basis, this pattern is somewhat evident in my data set. For example, samples NT-

11-10, 11, 12 and 15 all give ages younger than the average of the outermost moraine and 

are located inboard of that limit (Fig. 4). However, upon closer inspection, the 

distribution of these four samples does not entirely fit the chronologic sequence 

anticipated from moraine stratigraphy.  This may be due to the relatively small number of 

samples from each moraine, which precludes an examination of the distribution of 

boulder ages within a single ridge. Furthermore, the close agreement among these four 

recessional ages may indicate that the Minas Tira moraine complex was deposited over a 

short period of time that cannot be distinguished within the resolution of this dating 

method.  

The variability among my surface-exposure ages potentially reflects a number of 

external factors, including inheritance of 10Be due to prior exposure and perturbed 

exposure due to factors such as boulder exhumation, rolling, or shielding by snow. 

Variability might also be attributed to internal factors, such as uncertainties associated 

with sample preparation and accelerator mass spectrometry. However, the standard 

uncertainties of my ages are relatively low, indicating that any variability is unlikely to 

reflect errors during sample preparation. 

 NT-11-19 (23.3 ± 0.3 ka), collected from a position proximal to the inner 

moraine, is older than I would expect given its stratigraphic position. Although NT-11-19 

is not a statistical outlier, I suspect that if one collected more samples at the same 

location, it would be older than its neighbors. It is noteworthy that both sample 19 and 

14, which has already been excluded as an outlier, are composed of the same rock type. I 
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determined that they were quartz-bearing, sandy, carbonate conglomerates, and that this 

lithology is extremely resistant to mechanical erosion (as indicated by the preservation of 

striations and glacial polish). Thus, a potential explanation for their relatively old ages is 

that samples 14 and 19 were exposed previously to cosmic rays and underwent 

insufficient glacial erosion to reset their 10Be concentrations. Consequently, this inherited 

beryllium produced exposure ages greater than their deposition ages. While I cannot test 

this hypothesis within the present study, it leaves us with a plausible model for why these 

two ages are older than expected. 

 Does the measured sample age bracket from Minas Tira fit within the timeline of 

the global LGM? Excluding proposed outliers, the range of dates is 24.3 ± 0.5 ka to 19.4 

± 0.5 ka, which fits within Marine Isotope Stage 2 (MIS2; 26–19 ka), supporting the view 

that maximum ice extent occurred during the Late Pleistocene (Bromley et al., 2009; 

Clark et al., 2009). My exposure ages also align with the global LGM, which occurred 

between 23 and 19 ka (Mix et al., 2001), and thus broadly support the paradigm of 

globally-synchronous glaciation.  

 My Minas Tira data set also agrees with many existing tropical records. For 

example, 10Be surface exposure-age data from the Cordillera Real and Cordillera 

Cochabamba, Bolivia, indicate the LGM occurred there 25–22 ka (Zech et al., 2007). 

Similarly, Bromley et al. (2009) used cosmogenic 3He surface exposure-age dating to 

constrain LGM moraines at Nevado Coropuna, SW Peru, to between 25 and 21 ka 

(recalculated using appropriate scaling; G. Bromley, personal communication, 2016). 

This range is broadly consistent with my Minas Tira results. More recently, a new 10Be 
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moraine chronology for the SE Peruvian Andes suggests the LGM there occurred 28–19 

ka (Bromley et al., in review), a timeframe that also aligns well with my data set. 

 Conversely, there are several bracketed LGM chronologies from tropical Andean 

sites that do not coincide closely with my data. For example, Smith et al. (2005) 

conducted an extensive 10Be surface exposure-age study of Late Pleistocene moraines in 

the Junin valleys of Peru and concluded that maximum ice extent occurred there as early 

as 30 ka (using recalculated ages from Bromley et al., in review), prior to the global 

LGM. Similarly, Seltzer et al. (1990, 2000) used magnetic susceptibility and radiocarbon 

dating of lacustrine sediments in nearby Lake Titicaca to constrain the age of maximum 

glacier extent to between 30 and 21 ka. The studies above (Smith et al., 2005; Seltzer et 

al., 1990, 2000) show that glaciers possibly reached maximum volume in the tropical 

Andes either in the early part of the MIS2, or pre-MIS2. My data do not fit this view. 

Potential reasons for the difference in chronology between data sets may include the large 

uncertainties associated with those earlier studies, as well as improvements in sampling 

protocol.  

Comparison of my record with similar glacial studies from the northern and 

southern hemispheres yields information on the global phasing of the LGM. For instance, 

in Chile, Denton et al. (1999) used radiocarbon methods to produce a chronology of the 

LGM moraines in the region of the southern Lake District, Seno Reloncaví, and Isla 

Grande de Chiloé. They found several advances between the time period of 33.5 ka and 

18 ka. In the Southern Alps of New Zealand, Putnam et al. (2013) obtained 10Be ages 

within the range of 32.5 ka and 18.2 ka for moraine belts near Lake Ohau. Additionally, 

Doughty et al. (2015) pieced together a 10Be exposure-age chronology for LGM moraines 
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in the adjacent Pukaki Basin, where regional glacial maxima were achieved at various 

times between 41.8 ka and 18.3 ka. My exposure ages from Minas Tira do not show 

evidence of an earlier maximum as found in the Chilean data set, as well as in both of the 

data sets from New Zealand. However, the Minas Tira ages do overlap with the younger 

portions of the chronologies developed in these other Southern Hemisphere sites.  

 There are few, well-dated Northern Hemisphere records from mountain glaciers, 

with which to compare my data. Pendelton et al. (2015) did 10Be exposure dating on 

LGM terminal moraines in the central Brooks Range of Alaska, and found a culmination 

period that lasted from 21 ka to somewhere in between 16 ka and 15 ka. The ages from 

this study mostly coincide with the Minas Tira ages. Overall, the lack of well-dated 

Northern Hemisphere mountain glacier records dating to the LGM is a limiting factor in 

making global comparisons of moraines. 

 Within the limitations of the record, the relative synchronicity of the LGM 

chronology between both hemispheres urges us to find a viable explanation for globally 

contemporaneous glaciation. Because insolation variations due to precession are 

antiphased between the hemispheres, glaciation should be asynchronous. Yet, data appear 

to suggest generally synchronous glaciation. This observation has become known as the 

“fly in the ointment” in Milankovitch’s theory (Mercer, 1984). Therefore, the next step in 

my research is to investigate potential factors that would lead to synchronizing glaciation 

between the hemispheres. Atmospheric greenhouse gas concentrations (e.g. CO2) are 

commonly cited as potential unifiers (Saltzmann and Maasch, 1991; Broecker, 2013; 

Clark et al., 2012; Shakun et al., 2015). Global temperatures, correlating strongly with 

glacier advance and retreat, have fluctuated broadly in concert with atmospheric CO2 
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concentrations since the LGM (Fig. 1) (Petit et al., 1999; Monnin et al., 2001; Shakun et 

al., 2015). Thus, atmospheric CO2 concentrations could very well be the factor in 

globally synchronous glaciation. However, the results from Minas Tira do not offer any 

conclusive information on this hypothesis because of the relatively low resolution of data. 

In order to test whether atmospheric CO2 plays an important role in global glaciation, 

much higher resolution data on the timing and structure of the LGM is needed in both 

hemispheres.  

 

6. Conclusion 

 My 10Be exposure ages (excluding outliers) from samples collected on a terminal 

moraine complex in Minas Tira, within the Cordillera Carabaya of Peru, range from 24.3 

± 0.5 ka to 19.4 ± 0.5 ka, and give an average of 22.3 ± 1.5 ka. This bracket and average 

fit within the Marine Isotope Stage 2 (MIS2; 26–19 ka), and overlap the accepted global 

LGM of 23 – 19 ka (Mix et al., 2001). This chronology from Minas Tira also roughly 

agrees with ages from nearby studies, as well as ages from studies completed in both the 

Southern and Northern Hemispheres.  

 On a first-order basis, my results support the view of a globally synchronous 

LGM. This increases existing evidence for global synchrony of glaciation and supports 

Mercer's (1984) “fly in the ointment” of Milankovitch theory. There must be some 

fundamental component in the global climate system that unifies glaciation among both 

hemispheres. Atmospheric CO2 concentration levels are broadly in concert with 

fluctuations of global temperatures and have been proposed to be a unifying component 

in global glaciation (Saltzmann and Maasch, 1991; Broecker, 2013; Clark et al., 2012; 
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Shakun et al., 2015). My data from Minas Tira are consistent with this view, however 

much more high-resolution data are needed from both hemispheres to confirm this 

relationship.    
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Appendix A  

Extraction of Be from Quartz for Isotopic Analysis  

Version: 
This is Perry Spector’s version as of November 2013 modified by Brenda Hall in 
September 2014, and eventually stripped down by Gordon Bromley in 2016.  This 
version is based on instructions created by John Stone and Greg Balco. 

References: 
The cation exchange procedure is based on one developed by Bob Ditchburn of IGNS 
Inc., New Zealand. 
Ditchburn, R. G. and N. E. Whitehead (1994) The separation of 10Be from silicates.  3d 

Workshop of the South Pacific Environmental Radioactivity Association, 4-7. 
Ditchburn, R. G., I. J. Graham, and A. Zondervan (2000) Analytical methods for 

measuring Be and U-Th isotopes in loess.  Institute of Geological and Nuclear 
Sciences science report 2000/09.  Lower Hutt: Institute of Geological and Nuclear 
Sciences.  10p. 

 
Steps: 

1. Aluminum check for quartz purity 
a. Check trace-element content of quartz before dissolving it for 10Be 

analysis with ICP optical emission spectroscopy (ICP-OES) 
b. Al-check preparation 

i. Use clean spatula to transfer 0.05-0.35 g into Teflon beaker 
ii. Add small amount of 1% HNO3 to wet grains, place on hotplate in 

fume hood 
iii. Get clean 100ml reagent beaker, pour 2-3 mL of full-strength HF 

into reagent beaker 
iv. Add 2-3 mL of HF to each sample 
v. Add 1 ml of 8% H2SO4 to each beaker, set hotplate to 200 oF 

vi. After one hour, set hotplate to 275 oF for overnight drying into 
H2SO4 droplets, cool samples after drying 

vii. If sample forms an insoluble and solid cake precipitate, discard 
sample 

viii. Add 5 mL of 1% HNO3 to each beaker, cap, and weigh for ICP 
analysis 

c. Provide HF treatment to clean quartz of high concentrations of impurities 
i. Re-clean and reprocess problematic samples 

2. Beryllium chemistry 
a. Sample weighing 

i. Estimate the necessary sample amount to predict 10Be/9Be ratios 
(aim for ratios > 10-13) 

ii. Weigh 125 mL or 250 mL Teflon bottle without sample, then again 
with sample 

iii. Use 1% HNO3 from wash bottle to wash grains from bottle mouth 
and sides, fully wet the grains 
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b. Carrier addition 
i. Record concentration of Be bottle, invert to homogenize, and 

weigh for initial weight 
ii. Load the 0 - 1 mL pipette with a clean tip, adjust it to deliver 

carrier containing ~250 μg Be. Don’t contaminate the carrier 
iii. Open sample bottle, pipette carrier into sample without leaving a 

drop in the tip, and avoid contact with sample bottle 
iv. Recap carrier, re-weigh, record weights, and repeat process 

c. Dissolution 
i. With protective gear on, add 5 mL of AR grade HF in each sample 

bottle for each gram of quartz, never shake bottle 
ii. Recap each bottle securely with vented caps, place on hotplate  

iii. After reaction is completed, set hotplate to “warm” and gradually 
increase temperature to 95 oC over 24 hours until samples dissolve 

d. Dry-down, cation removal, and chloride conversion of main sample 
i. Dry vessels on hotplate and evaporate at ~140°C with the hotplate 

tilted slightly 
ii. Re-dissolve samples in ~2-3 mL 6M HCl, wet and dry down again 

iii. Repeat HCl addition and dry down with 2 mL HCl 
iv. Take back up in ~3 mL 6M HCl 

e. Fe, Ti clean-up (anion exchange columns) 
i. Load a column rack with a set of large anion exchange columns 

ii. Place waste beaker under each column 
iii. Run a few mL of MQ water smoothly down the wall of the 

column, and before it drains, pipette in a loose slurry of anion 
exchange resin 

iv. Build the resin beds up to 2 mL 
v. Wash the resin bed with 5 times its volume of 0.3 M HCl, let it 

drain 
vi. Condition the resin with 3 bed volumes of 6M HCl carefully 

vii. Remove waste beakers and replace with labelled 28 mL Teflon 
vials 

viii. Using a separate disposable pipette for each sample, load the 
sample solutions onto the columns 

ix. Add 1 mL 6M HCl to each beaker as rinse, allow solutions to fully 
drain 

x. Elute Be from the columns by adding 3 times the bed volume of 
6M HCl 

xi. Remove vials containing Be and set aside 
xii. Discard resin, wash columns, rinse and discard sample and 

pipettes, wash sample transfer containers 
f. Conversion to sulfate 

i. Add 1 mL of 0.5 M H2SO4 to each vial and dry on the hotplate at 
~135°C 

ii. Once dried down, cool the beakers and add 2 drops of ~2% H2O2 
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iii. Add 2-3 mL of MQ water with disposable pipette, reheat the vials 
and dry 

iv. Cool, repeat the H2O2 /H20 addition, and dry the samples  
v. Take the samples up in 3-4 mL of MQ water, containing a couple 

drops of 30% H2O2 or trace of 2% H2O2, warm them to get them 
back in solution 

g. Be separation (cation exchange columns) 
i. Load a column rack with small (~11 mL total volume) Bio-Rad 

columns, with waste beakers under columns 
ii. Using a disposable pipette, add 2 mL of DOWEX-50 X8 200-400# 

cation exchange resin (can use AGI 50Wx8) to each column 
iii. Clean resin by filling each column headspace with 3 M HCl, let it 

drain 
iv. Make up a beaker of ~ 0.2 M H2SO4 containing a few drops of 

30% peroxide, mix well 
v. Condition the columns by filling the headspace with this solution, 

allow it to drain through 
vi. Discard any leftover conditioning acid in the waste container, and 

replace it with 0.5 M H2SO4 containing a dash of 2% H2O2 
vii. Load each sample with clean disposable pipette 

viii. While the sample solutions run in, add 1 mL of 0.5 M H2SO4/trace 
of 2% H2O2 to each beaker as a rinse, let drain 

ix. Gradually add 10 mL (5 bed volumes) of 0.5 M H2SO4/trace H2O2 
to each column 

x. Remove the waste beakers and replace them with labelled 28 mL 
Teflon vials 

xi. Elute Be from the columns with 10 mL (5 bed volumes) of 1.2 M 
HCl 

xii. Let columns drain, remove vials and add 5 drops of 8 M HNO3 to 
each vial, then dry them on a hotplate at  ~135°C 

h. Be recovery and storage 
i. For each sample, label a clean 15 mL screw cap centrifuge tube 

ii. Cool dried samples and pipette 2 mL of 1% HNO3 into each vial 
iii. Carefully tip each solution into its correct centrifuge tube 
iv. Pipette a second 2 mL aliquot of 1% HNO3 into each vial as a 

rinse 
v. Warm it, run it around the beaker and add it to the correct 

centrifuge tube 
vi. Cap the centrifuge tubes and store for hydroxide precipitation 

3. Be recovery and cathode preparation for AMS analysis 
Note: Precipitate, ignite, and pack Be samples shortly before the 

accelerator run in which they will be measured. Cathodes packed in 

advance of a run (or cathodes which have to be stored after a cancelled 

run) should be stored in the desiccator 

a. Beryllium Hydroxide Precipitation 
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i. Mix a solution of 1-part ammonium hydroxide with 2 parts MQ 
water and mix well 

ii. Add ~6 drops to a sample, close the centrifuge tube, and use the 
vortex mixer to homogenize 

iii. Continue to add ~5 drops at a time and spin with the vortex mixer 
until a white, almost translucent precipitate forms 

iv. The pH should be ~7-8 (though it can be a bit higher) for Be(OH)2 
to precipitate 

v. After all samples have precipitated Be(OH)2, wait 10-20 minutes 
for the precipitate to flocculate 

vi. Centrifuge at 2,600 RPM for 5 minutes 
vii. Pour the supernatant into the sink, retaining the white hydroxide 

gel 
viii. Fill to 5 mL with MQ water, spin again on the vortex mixer, wait 

for the precipitate to flocculate, centrifuge again, and pour off the 
liquid 

ix. Label centrifuge-tube caps, place the centrifuge tubes in a rack laid 
on its side (though prop up one side of the rack with the centrifuge 
caps so that the tubes are at a shallow angle) in the oven set to the 
normal temperature (70°C) – Takes overnight 

b. Conversion to beryllium oxide 
i. Cut 4x4 in. weighing paper into four (2x2 in.) pieces until there is 

at least one for each sample 
ii. Place a piece of paper down in the laminar flow hood with a 

chemwipe on top of that 
iii. Fold the weighing paper in order to make a small scoop, place on 

chemwipe to catch dried hydroxide precipitate – Don a mask 
iv. Wave the test tube in front of the ionizer to reduce static before 

tipping it onto folded weighing paper 
v. Transfer it to one of the clean pre-labelled nitric-etched glass vials, 

cover with parafilm, repeat process for each sample 
vi. Place crucibles in block heater, taking care to put the first sample 

in spot A, record position of samples 
vii. Fetch a propane torch, stand and crucible tongs and set them up in 

the hood well away from the walls - Light the torch 
viii. After removing the parafilm from the vial, grasp the vial with the 

tongs about halfway up 
ix. Wave the crucible through the flame cautiously at first 
x. Once the sample begins to glow, hold it in the flame for 30 to 40 

seconds more 
xi. Remove it from the heat and place it back in the same spot in the 

heating block in the hood to cool 
c. Niobium addition 

i. Clean the niobium scoop (#1 curette) with a chemwipe and alcohol 
ii. Set up a large chemwipe in the downflow hood, along with the 

sample vials and the niobium with scoop 
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iii. Make sure samples are cool 
iv. For each sample - Add 1 rounded scoop of niobium powder 
v. Add a clean drill bit to the tube, and then label a cathode and 

cathode container with the sample name 
vi. Record cathode number, place the vial in the cathode and the 

cathode in the cathode container 
vii. Discard test tube and chemwipe in Be waste bag 

d. Beryllium cathode packing 
i. First, prepare the glove box, wipe out the floor of the box with DI 

water, which you should leave in the box - Make sure the Be waste 
container has a bag with enough room for chemwipes and vials 

ii. Place chemwipes, ionizer, hammer, and the rack of cathodes inside 
of the box 

iii. Put on sleeves and close the sample door from the inside 
iv. Lay down a chemwipe on the bottom of the box and place a 

cathode onto it 
v. Remove the vial and begin crushing the BeO pellet with the drill 

bit and mixing it with the niobium powder, gather all the powder in 
the very bottom 

vi. Gently tap any remaining sample onto the cathode GENTLY using 
the side of the hammer 

vii. Place the empty vial on the chemwipe - Continue to tap around the 
sides of the cathode until all the powder has made it into the hole 

viii. Place the business end of the drill bit into the cathode hole and 
press down until it slides in 

ix. Firmly tap the bit until it you hear a solid, sturdy sound and are 
certain that it has been sufficiently packed down - Remove the drill 
bit 

x. Gently upend cathode on the chemwipe to remove any loose 
powder 

xi. Put the cathode into the cathode container and close the cap 
xii. Place the drill bit into the small beaker of alcohol with the business 

end in the liquid 
xiii. Between each sample be sure to wipe down the central floor of the 

box to prevent cross-contamination 
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Appendix B 
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