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Abstract 
 Plants, being sessile, address environmental changes and resource constraints by 
means of developmental plasticity. For example, plants maximize photosynthesis driven 
carbohydrate production by undergoing physiological and structural changes in response 
to their environmental conditions. This plasticity to light environment has several 
potential regulatory pathways that may include light intensity and light spectral quality. 
Hypotheses advanced to associate foliar plasticity to light intensity include sensing 
products of photosynthesis and regulation by the phytohormone cytokinin.  In this study, 
we examined the interacting roles of the cytokinin 6-Benzylaminopurine (BAP) and light 
intensity in the regulation foliar plasticity. Exogenous application of BAP was used on 
plants grown in both high and low light environments. Digital image analysis and 
spectrophotometric data showed a downregulation of specific leaf area (cm2 g-1), 
chlorophyll A, and chlorophyll B by cytokinin activity. Hormone-induced 
downregulation of these qualities was amplified to varying degrees by light environment, 
suggesting an interaction between these two factors. 
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           Figure 1. Map of experimental layout showing treatments and block labels.  
 Gray blocks indicate shaded condition. White blocks indicate unshaded condition. 
  + Indicates application of BAP solution. – Indicates application of control solution. 

 
Figure 2. Effect of light treatment on specific 
leaf area. 

 
 
 
 
 
 
 
 
 
 
Figure 3. Effect of light treatment on total 
foliar chlorophyll content 
 
 
 
 
 
 
 
 
 
Figure 4. Effect of light treatment on foliar 
chlorophyll A density. 
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Figure 5. Effect of light treatment on foliar 
chlorophyll B density  

 
 
 
 
 
 
 
 
 
 
Figure 6. Effect of light treatment on 
chlorophyll A to B ratio. 
 
 
 
 
 
 
 

 
 
Figure 7. Effect of BAP application on specific 
leaf area 

 
 
 
 
 
 
 
 
 
Figure 8. Effect of BAP treatment on foliar 
chlorophyll content.  
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Figure 9. Effect of BAP treatment on foliar 
chlorophyll A density. 
 
 
 
 
 
 
 
 
 
 
Figure 10. Effect of BAP treatment on foliar 
chlorophyll B density 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Effect of BAP treatment on 
chlorophyll A to B ratio. 
 

 
 
 
 
 
 
 
 
Figure 12. Composite effects of light level and 
BAP application on specific leaf area. 
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Figure 13. Composite effects of light level and 
BAP application on foliar chlorophyll content. 

 
 
 
 
 
 
 
 
 
 
Figure 14. Composite effects of light level and 
BAP application on foliar chlorophyll A 
density. 

 
 
 
 
 
 
 
 
 
 
Figure 15. Composite effects of light level and 
BAP application on foliar chlorophyll B 
density. 
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Figure 16. Composite effects of light level 
and BAP application on chlorophyll A to B 
ratio 

 

 

 

 

 

 

 Block 1 
Sun 

Block 1 
Shade 

Block 2 
Sun 

Block 2 
Shade 

Block 3 
Sun 

Block 3 
Shade 

Light 
Intensity 

Reduction 

Full Sun 510 
680 

60 
60 

490  
610 

90 
150 

550 
790 

60 
60 

87% 

Partial Sun 330 
330 

60  
40 

350 
390 

60 
70 

360 
380 

60 
50 

84% 

Full 
Overcast 

33 
31 

6 
7 

37 
34 

5 
7 

34 
31 

5 
6 

82% 

      Table 1. Values for light intensity (µm m-2 s-1) in shaded and unshaded experimental groups. 

  Table 2. Experimental values for foliar qualities of all plants in different treatment groups. 

 

 

 SLA (cm2/g) Total chl (µg/g) Chl A (µg/g) Chl B (µg/g) Chl A:B 

Sun + Cyt + 219 ± 7 1.27 ± 0.15 0.88 ± 0.11 0.39 ± 0.05 2.33 ± 0.07 
Sun – Cyt + 402 ± 35  3.70 ± 0.29 2.60 ± 0.22 1.10 ± 0.08 2.38 ± 0.09 
Sun + Cyt – 278 ± 9 2.27 ± 0.18 1.57 ± 0.12 0.71 ± 0.06 2.23 ± 0.02 
Sun – Cyt –  692 ± 35 6.90 ± 0.26 4.58 ± 0.19 2.33 ± 0.08 1.97 ±0.05 
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Introduction 

 Sun-shade adaptation is one of the major processes that allow individual plants to 

undergo changes in morphology to better suit an environment. This process dictates the 

resource allocation necessary to suit a plant to the quantity of light available to it. In sun-

shade adaptation, ambient light intensity and cytokinin phytohormones control leaf 

structure and chloroplast development. Foliage optimized for high light levels is thicker 

and has less light-gathering area than foliage suited to low light levels. These features 

limit photon absorption in order to mitigate heat stress and water stress (Givnish 1988). 

Sun-optimized foliage is characterized by a lower specific leaf area (SLA—unit area per 

unit foliar biomass) than that of shade-optimized foliage (Pons et al. 2001). Shade-

adapted foliage maximizes light interception with higher SLA, has denser chloroplasts 

and a higher ratio of chlorophyll B to chlorophyll A.  

 Chlorophylls are the pigments that allow plants to capture energy from sunlight; 

therefore form the basis of the photosynthetic process. Chlorophyll A and B are the 

primary pigments utilized for light harvesting (Gitelson et al. 2003), although several 

other forms of chlorophyll have been identified. These two chlorophylls have similar 

absorbance patterns, with maxima at the high (red to red-orange) and low (blue to violet) 

extremes of the visible light spectrum and relatively low absorbance throughout the 

midrange (Sims and Gamon 2002). Chlorophyll A absorption is greatest at 665 nm and 

430 nm. Chlorophyll B absorption is greatest at 649 nm and 470 nm (Chappelle et. al. 

1992). However, the maximum low-wavelength absorption for chlorophyll B is 

significantly greater than that of chlorophyll A, and chlorophyll A absorbs significantly 

more at high wavelengths than does chlorophyll B. In addition, chlorophyll B is located 
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only in the light harvesting complexes (LHC) of the photosystem. Chlorophyll A is 

located in both LHC and the reaction centers, where light energy is converted to chemical 

energy. As a result, chlorophyll B is more prevalent in shaded environments, where light 

capture is limiting to plant growth, and it can better capture the high-energy low-

wavelength light that is more apt to penetrate the shade-generating canopy of competing 

plants (Henry and Aarssen 1997).    

 Cytokinins are a family of phytohormones that primarily stimulate cell division, 

and also contribute to regulation of cell differentiation, seed germination, and foliar 

senescence. These hormones are enzymatically synthesized from adenine, mainly in the 

roots (Xiaotao et al. 2013). Cytokinin transport is achieved by transpiration-dependent 

movement through the xylem (Aloni et al. 2005) and the resulting hormonal 

accumulation has been shown to down-regulate genes associated with chlorophyll 

synthesis (Pons et al. 2001). An environment with more ambient light increases xylem 

flow by both increasing the leaf temperature and by increasing stomatal conductance 

correlated with greater photosynthetic rates. Increased temperature within the leaf is 

compensated for by evaporative cooling, leading to increased water loss through the 

stomata. Heightened photosynthetic rates increase consumption of water. These factors 

lower foliar water concentration, thus increasing xylem flow by increasing the magnitude 

of the concentration gradient between the leaves and roots.  

  A positive-feedback mechanism linking sugar production to sun-shade adaptation 

has been linked to foliar growth and development, thereby optimizing individual leaves 

to their respective light levels (Raines and Paul 2006). Leaves exposed to higher light 

levels exhibit a higher transpiration rate, in turn accelerating the rate of xylem flow and 
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cytokinin import. Lower light incidence decreases transpiration rate; also decreasing 

cytokinin import (Boonman et al. 2007). It has also been shown that cytokinin activity 

promotes the survival of foliage exposed to high irradiance; low concentrations of 

cytokinins found in shaded foliage lead to reduced photosynthetic capacity, leaf 

senescence, and downregulation of chlorophyll B. These effects were not observed in 

unshaded foliage (Boonman and Pons 2007).  

 However, in previous studies shade environments were established by densely 

growing plant populations with shade-adapted foliage occurring lower on stems. This 

results in a shade environment that not only has lower light intensity, but also has a shift 

in light wavelength composition. Incident light wavelengths are selectively absorbed in 

upper stem foliage, resulting in a spectral shift in red (700 nm) to far-red (720+ nm) in 

transmitted light. It is well established that this shift is detected by plants through the 

pigment phytochrome and results in greater shade adaptation of developing foliage 

(Franklin and Whitlam 2005).  Therefore, the effects of light intensity itself, and 

especially its interaction with cytokinin are less well understood. This study used neutral 

density shade cloth to minimize spectral shifts and sampled upper stem foliage to limit 

exposure to transmitted light to overcome these limitations and more directly test the 

hypotheses that: 

(1) light intensity itself (independent of wavelength) is a regulator of sun-shade 

morphology and physiology, and (2) cytokinins independently and interactively with 

light intensity regulate sun-shade adaptation. 
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Materials & Methods 

 This study used bush type common beans, Phaseolus vulgaris Golden Wax (Chas. 

C. Hart Seed Co.), to examine the effects of exogenous application of 6-

Benzylaminopurine (BAP) and its interaction with shading. Seeds were sown 3 per 9 cm 

diameter pot in Fafard 3B RSi peat/bark-based growth medium (SunGro Horticulture) 

and grown in a greenhouse until the emergence of the first node and first true leaves. At 

this time, seedlings were distributed into one of four treatment groups in one of three 

blocks. Each block contained the same four treatment groups, randomly assorted within 

the block in a randomized block design (Figure 1). Treatment groups consisted of five 

pots; each group was grown under one of four combinations of two variable conditions: 

light level and application of BAP solution. 

 Each experimental variable was limited to one of two categories rather than 

continuously varied. Two light levels were used, natural light with no shade, or natural 

light with 85% shade (Table 1). Shade was provided by a double layer of 25% shade 

cloth stretched over a 30 cm steel wire cube frame, resulting in an 85% light intensity 

reduction. Shade provided artificially by shade cloth does not alter the composition of 

wavelengths in sunlight, unlike shade provided by competing plants. However, plants are 

able to sense variations in light intensity through sugars and enzymes associated with 

sugar metabolism (Raines and Paul 2006). Light incidence was measured with a LI-COR 

Li-185B photometer (LI-COR, Inc.). 

 All plants were subject to routine exogenous application of one of two solutions, a 

treatment solution with 100 mg L-1BAP, or a control solution with all components except 

BAP. Plants were sprayed until excess runoff was observed, once per 7 days for a 21 day 
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growth period beginning at the emergence of the first node. Before the second 

application, all pots were culled down to a single plant per pot to minimize mutual 

shading and stress from resource competition. Stock solution was formulated by 

suspending 2.5g BAP in 50 ml dimethyl sulfoxide (DMSO), diluted with 450 ml 95% 

ethyl alcohol. A diluted exogenous spray was derived from 20 ml of stock solution, 20 ml 

Polysorbate 20 surfactant, and 960 ml ddH2O. The control solution described previously 

was formulated identically with BAP omitted.  

 After 21 days, all leaves above the first node was harvested from each plant. 

Leaves were scanned immediately upon harvest and leaf area was determined with 

WinSEEDLE (Regent Instruments, Inc., Quebec). Samples were dried at 65°C for 48 

hours, and weighed for dry mass. A portion of each sample, (0.1g-0.15g) was then 

crushed, suspended in 7 ml DMSO, and incubated at 65°C for 24 hours to extract 

chlorophylls. Crushed leaf matter was washed with an additional 3 ml DMSO to 

thoroughly extract chlorophylls. Leaf sample extract was centrifuged at 2,500 rpm for 5 

minutes; a spectrophotometer was used to determine light absorbance of the supernatant 

at 480, 649, and 655 nm wavelengths. Specific leaf area, chlorophyll A content, 

chlorophyll B content, chlorophyll A to B ratio, and total chlorophyll content were 

calculated with the equations of Wellburn (1994). The model used for this study was VD 

= light+cyt+block+light×cyt+light×cyt×block+ε, where VD = effect of interactions 

between independent variables on dependent variables, light = full light intensity or 85% 

reduced intensity, cyt = 100mg l-1 BAP or control, block = spatial variation, and ε = 

analytical error. Data were analyzed with ANOVA using SYSTAT v. 12 (Systat, Inc.) 
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with light environment and cytokinin treatment as main effects. Assumptions of ANOVA 

were tested with Levene’s Test and the Wilk-Shapiro statistic.  

Results 

 ANOVA demonstrated that main effects of both light environment and cytokinin 

treatments were significant, block effects were non-significant, and light environment by 

cytokinin interactions were significant for all dependent variables. Light intensity was 

measured under three different atmospheric conditions, full sun, partial sun, and full 

overcast. During full sun, unshaded blocks experienced an average of 605 micromoles of 

photons per square meter per second (µm m-2 s-1). Shaded blocks experienced an average 

of 80 µm m-2 s-1. In partial sun, unshaded blocks experienced 357 µm m-2 s-1, and shaded 

blocks experienced 57 µm m-2 s-1. On a fully overcast day, unshaded blocks experienced 

33 µm m-2 s-1, and shaded blocks experienced 6 µm m-2 s-1 (Table 1).  

Effects of Shade  

 The first set of results is data taken from two subsets of all experimental groups, 

the first group consisting of all plants grown in full sunlight; the second group consisting 

of all plants grown in shade. Plants grown in sun showed a specific leaf area 56.3% lower 

than that of plants grown in shade (Figure 2). Sun grown plants showed a decrease in 

total chlorophyll content per unit leaf area, 68.1% less than shade grown plants (Figure 

3). Sun grown plants had 67.3% less chlorophyll A per unit leaf mass (Figure 4), and 

69.7% less chlorophyll B per unit leaf mass (Figure 5) than shade grown plants. Shade 

grown plants showed a lower chlorophyll A to B ratio, 6.2% lower than that of sun grown 

plants (Figure 6). Structurally, plants subjected to shade were more elongate and featured 

narrower stems. Plants grown in full sun were shorter and had thicker stems. These plants 
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were lighter and yellow-green in color, while shade-grown plants were a deep green. No 

significant variation in node quantity was observed, all plants featured three to four nodes 

at harvest; all node quantities were represented equally and evenly distributed across all 

experimental groups. 

Effects of Hormone Application 

 The second set of results is data taken from two subsets of all experimental 

groups: all plants treated with BAP solution, and all plants not treated with BAP. Plants 

exposed to BAP showed a 38.9% decrease in specific leaf area relative to plants not 

exposed to BAP (Figure 7). BAP-treated plants had 50.0% less total chlorophyll per unit 

leaf mass than untreated plants (Figure 8), as well as 47.6% less chlorophyll A per unit 

leaf mass (Figure 9), and 54.8% less chlorophyll B per unit leaf mass than untreated 

plants (Figure 10). Plants treated with BAP showed a chlorophyll A to B ratio 11.8% 

greater than that of untreated plants (Figure 11). 

Composite Effects of Hormone Application and Shade 

 Sun grown plants showed a significantly lower specific leaf area relative to shade 

grown plants whether treated with BAP or not [p < 0.001]. SLA of BAP-treated shade 

grown plants was significantly lower than that of untreated shade grown plants, but SLA 

of BAP-treated sun grown plants was not significantly lower than in untreated sun grown 

plants (Figure 12). Sun growth and BAP application both decreased total chlorophyll per 

unit leaf mass [p < 0.001]. Plants grown in sun treated with BAP showed the lowest total 

chlorophyll per unit leaf mass, followed by sun grown untreated plants. BAP treated 

plants grown in shade showed more total chlorophyll per unit leaf mass than sun grown 

untreated plants, but significantly less than untreated shade grown plants (Figure 13). 
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BAP treatment and sun growth also decreased chlorophyll A content per unit leaf mass [p 

< 0.001]. BAP treated plants grown in shade showed the lowest content of chlorophyll A 

per unit area, followed by untreated sun grown plants, and then by BAP-treated shade 

grown plants. Untreated shade grown plants showed a significantly higher chlorophyll A 

per unit leaf mass than any other group (Figure 14). BAP treatment and sun growth 

likewise decreased chlorophyll B content per leaf unit mass [p < 0.001]. The pattern 

observed in chlorophyll A density by treatment was also observed in total chlorophyll 

density by treatment (Figure 15). Minimal difference was observed between the 

chlorophyll A to B ratio of BAP-treated sun grown plants and BAP-treated shade grown 

plants. Untreated sun grown plants had a lower A to B ratio than these two groups, 

untreated shade grown plants had a lower A to B ratio than the preceding three groups 

(Figure 16). Variation in light level may have had a significant effect on chlorophyll A to 

B ratio [p=0.107]; BAP treatment was shown to significantly increase chlorophyll A to B 

ratio [p < 0.001]. The combination of BAP treatment and unshaded growth condition 

were also shown to significantly increase chlorophyll A to B ratio [p=0.019]. 

Discussion 

 Plants face a unique set of challenges in survival due to their sessile nature. Since 

they are unable to move to a more favorable environment in times of stress, plants must 

adapt to cope with varying stresses and to better capitalize on available resources. This 

study demonstrates that both light levels and cytokinins play important roles in the 

process of adaptation to variations in light availability. High and low light levels place 

different demands on a plant’s photosynthetic machinery, and so elicit responses on 

somatic down to subcellular levels.  
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 The first set of results (Figs. 2-6) was used as a test for the consistency of the 

experiment with established information. The plants used in this study performed 

consistently with expectations, plants adapted appropriately to their respective light 

levels. Those grown in low light conditions had a greater specific leaf area, lower 

chlorophyll density, and a lower chlorophyll A to B ratio. This is the characteristic 

response of a plant grown in low light—the leaves have a broader light-intercepting 

surface relative to their biomass to maximize light capture where it is a limiting resource. 

The photosynthetic machinery is likewise adapted; more chlorophyll is present to 

maximize energy acquisition from incident radiation, and there is a greater proportion of 

chlorophyll B in order to better absorb energy from available light wavelengths. 

 The second set of results (Figs. 7-11) was used to examine the independent effects 

of BAP. All of the physical and molecular adaptations seen in the previous set of results 

are also observed here, but to varying degrees. Exogenous application of BAP did not 

depress SLA as significantly as high light level (-56.3% vs -38.9%), nor did it lower 

chlorophyll density as dramatically as high light level (-68.1% vs -50.0%). However, the 

differential in effect on chlorophyll A and B density was much greater due to BAP 

application than to high light level. Chlorophyll A and B were depressed about equally (-

67.3% and -68.1%) in sun-grown plants, but were depressed less equally (-47.6%, -

54.8%) under BAP application. A greater difference in the A to B ratio in BAP-treated 

plants as observed as a result of this differential. This information suggests that BAP and 

related cytokinins are more important in regulation of the photosynthetic systems rather 

than regulation of foliar growth and development. Nonetheless, cytokinin activity is a 

major component of the sun-shade adaptation mechanism. 
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 The final set of results (Figs. 12-16) was used to examine the composite effects of 

light levels and BAP application. In this set of data, SLA was depressed significantly by 

BAP application in low light conditions (-41.9%), but not as significantly depressed by 

the same treatment in high light conditions (-21.5%). These disproportionate levels of 

SLA reduction further suggest that cytokinins are not solely responsible for the regulation 

of leaf structure and growth; instead they are likely an auxiliary component in this 

regulatory system. Total chlorophyll density was decreased approximately equally by 

BAP in both high (-44.2%) and low (-46.4%) light conditions. Chlorophyll A density was 

also decreased equally by BAP application in high (-43.6%) and low (-43.1%) light 

situations. Chlorophyll B density was depressed less by BAP in sun (-45.6%) than it was 

in shade (-52.9%). Due to this difference in effect, BAP application marginally increased 

the ratio of chlorophyll A to B in high light conditions (+4.4%), but significantly 

decreased this ratio in low light conditions (-20.4%). These findings suggest that 

cytokinins are the sole or major regulatory factor in chlorophyll A density, but are likely 

a major component of chlorophyll B density regulation that shares responsibility with 

auxiliary factors. Alternately, the effects of cytokinins may be dampened by a factor 

presented by high light conditions or amplified by a factor present in low light conditions.  

  This study was conducted to examine the role of cytokinins in the developmental 

plasticity of leaves, and how this plasticity is regulated. Previous literature suggests that 

cytokinins are indirectly regulated by light incidence, which passively regulates cytokinin 

levels by affecting the transpiration stream. It cannot be ruled out that light levels may 

cue other factors which also control the development of leaves, but the findings here 

strongly suggest that cytokinins are the predominant phytohormones that regulate leaf 
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development. This study provides evidence that light and cytokinins both cue plants to 

adapt to higher light intensity. This adaptation is achieved by depressing SLA, depressing 

total chlorophyll density, and depressing chlorophyll B more than chlorophyll A. Most 

likely, light and cytokinins have a dependent interaction where cytokinin activity is a 

direct-relationship function of light intensity.  
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