
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

1999

A Dynamic Parameter Tuning Algorithm For Rbf
Neural Networks
Junxu Li

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Electrical and Computer Engineering Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Li, Junxu, "A Dynamic Parameter Tuning Algorithm For Rbf Neural Networks" (1999). Electronic Theses and Dissertations. 370.
http://digitalcommons.library.umaine.edu/etd/370

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/370?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages

A DYNAMIC PARAMETER TUNING

ALGORITHM FOR RBF NEURAL NETWORKS

By

Junxu Li

B.S. Zhejiang University, China, 1996

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Computer Engineering)

The Graduate School

University of Maine

May, 1999

Advisory Committee:

Mohamad T. Musavi, Professor of Electrical & Computer Engineering, Advisor

Richard O. Eason, Associate Professor of Electrical & Computer Engineering

Bruce E. Segee, Associate Professor of Electrical & Computer Engineering

 iv

A DYNAMIC PARAMETER TUNING

ALGORITHM FOR RBF NEURAL NETWORKS

By Junxu Li

Thesis Advisor: Dr. Mohamad T. Musavi

An Abstract of the Thesis Presented

 in Partial Fulfillment of the Requirements for the

Degree of Master of Science

(in Computer Engineering)

May, 1999

The objective of this thesis is to present a methodology for fine-tuning the parameters of radial

basis function (RBF) neural networks, thus improving their performance. Three main parameters affect the

performance of an RBF network. They are the centers and widths of the RBF nodes and the weights

associated with each node. A gridded center and orthogonal search algorithm have been used to initially

determine the parameters of the RBF network. A parameter tuning algorithm has been developed to

optimize these parameters and improve the performance of the RBF network. When necessary, the

recursive least square solution may be used to include new nodes to the network architecture.

To study the behavior of the proposed network, six months of real data at fifteen-minute intervals

has been collected from a North American pulp and paper company. The data has been used to evaluate

the performance of the proposed network in the approximation of the relationship between the optical

properties of base sheet paper and the process variables. The experiments have been very successful and

Pearson correlation coefficients of up to 0.98 have been obtained for the approximation.

 ii

ACKNOWLEDGEMENTS

I am grateful to my advisor, Dr. Mohamad Musavi, for providing me with the opportunity to

pursue my Master’s degree at UMaine. I would like to thank him for all his time, encouragement and

guidance during my two-year graduate study. I would also like to thank Dr. John Vetelino for his

assistance in my application for the graduate study at the University of Maine. I wish to thank my thesis

committee members, Dr. Richard Eason, Dr. Bruce Segee, and also graduate coordinator Dr. Donald

Hummels, and Dr. Duane Hanselman for all of their time and assistance with this thesis and the various

courses I have taken. I would also thank Dr. Ron Bryant and his family for their kindness and help.

Thanks also go to Ms. Padma Natarajan for her care and encouragement. I want to thank all the other

faculty members in the department and other lab members in the Intelligent Systems Laboratory who have

given me help during my graduate study at UMaine. Finally, I would like to thank my family for their

support and care, without which this thesis couldn’t have been done. I also extend my thanks to all my

friends for their encouragement and assistance.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES.. v

LIST OF FIGURES... vi

1. INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 OBJECTIVE.. 2

1.3 THESIS ORGANIZATION... 2

2. RBF NEURAL NETWORKS .. 3

2.1 RBF NETWORK MODEL.. 3

2.2 ORTHOGONAL LEAST SQUARE(OLS) LEARNING ALGORITHM ... 5

2.3 RECURSIVE LEAST SQUARES SOLUTION ... 8

2.4 THE GRADIENT METHOD .. 11

2.4.1 The Gradient of a Function .. 11

2.4.2 Optimization Using the Gradient Method .. 11

2.4.3 Descent Algorithms.. 13

2.4.4 Step Size Selection Strategies .. 15

2.4.5 Summary .. 16

3. NETWORK CONSTRUCTION METHOD AND TUNING ALGORITHM 17

3.1 NETWORK MODEL .. 17

3.2 SENSITIVITY ANALYSIS .. 17

3.3 INITIAL CENTER SELECTION AND TRAINING DATA SELECTION.. 19

3.4 TUNING ALGORITHMS... 23

3.4.1 Instantaneous Mode Parameter Tuning .. 24

3.4.2 Batch Mode Parameter Tuning... 25

 iv

4. THE PAPERMAKING PROCESS ... 27

4.1 BACKGROUND .. 27

4.2 PAPER MAKING PROCESS DESCRIPTION ... 27

4.3 DATA COLLECTION... 29

4.4 DATA FILTERING .. 32

4.4.1 Discrete Fourier Transform (DFT) Method.. 32

4.4.2 Moving Average Method ... 33

4.4.3 Adjacent Sample Method ... 33

4.5 DATA PROCESSING ... 33

4.5.1 Paper Grade.. 33

4.5.2 Data Normalizing ... 34

4.6 PEARSON CORRELATION COEFFICIENT ANALYSIS .. 36

5. EXPERIMENTS... 37

5.1 EFFECT OF PARAMETER TUNING ALGORITHM .. 37

5.2 TRAINING DATA SELECTION... 41

5.3 NETWORK TRAINING AND TESTING.. 46

5.3.1 Selecting The Training Data From The Entire Data Set... 46

5.3.2 Selecting The Training Data From 50% of The Data Set... 56

5.4 SUMMARY OF THE RESULTS ... 59

6. CONCLUSION AND POSSIBLE FUTURE WORK.. 60

6.1 CONCLUSION .. 60

6.2 POSSIBLE FUTURE WORK ... 60

REFERENCES ... 62

BIOGRAPHY OF THE AUTHOR ... 64

 v

LIST OF TABLES

Table 1: Optical property variables... 31

Table 2: Ranking of optical properties variables according to Pearson

 sensitivity analysis (top 20) .. 36

Table 3: Comparison of errors and Pearson correlation coefficients

 before and after the parameter tuning using FOS ... 41

Table 4: Comparison of errors and Pearson correlation coefficients

 before and after the parameter tuning ... 49

Table 5: Comparison of errors and Pearson correlation coefficients

 before and after the parameter tuning ... 50

Table 6: Comparison of errors and Pearson correlation coefficients

 before and after the parameter tuning ... 53

 vi

LIST OF FIGURES

Figure 1: An example for initial center selection.. 21

Figure 2: Initial width determination .. 22

Figure 3: Optical properties process flow chart .. 29

Figure 4: The nature of different variables used in the RBF network

 modeling.. 35

Figure 5: Network training, testing and error (using FOS)... 38

Figure 6: Scatter plot for the actual value and network output (using FOS)... 39

Figure 7: Network training, testing and error (after tuning algorithm) ... 39

Figure 8: Scatter plot for the actual value and network output (after

 tuning algorithm) ... 40

Figure 9: Error for parameter tuning iterations... 40

Figure 10: Pearson correlation coefficient for parameter tuning iterations... 41

Figure 11: Histogram for variable 1.. 43

Figure 12: Histogram for variable 243

Figure 13: Histogram for variable 3.. 43

Figure 14: Histogram for variable 4.. 44

Figure 15: Histogram for variable 5.. 45

Figure 16: Histogram for variable 6.. 45

Figure 17: Network training, testing and error ... 47

Figure 18: Scatter plot for the actual value and network output ... 47

Figure 19: Error for parameter tuning iterations... 48

Figure 20: Pearson correlation coefficient for parameter tuning iterations... 48

Figure 21: Network training, testing and error ... 51

Figure 22: Scatter plot for the actual value and network output ... 52

Figure 23: Error for parameter tuning iterations... 52

Figure 24: Pearson correlation coefficient for parameter tuning iterations... 53

 vii

Figure 25: Network training, testing and error ... 54

Figure 26: Scatter plot for the actual value and network output ... 55

Figure 27: Error for parameter tuning iterations... 55

Figure 28: Pearson correlation coefficient for parameter tuning iterations... 56

Figure 29: Network training, testing and error ... 57

Figure 30: Scatter plot for the actual value and network output ... 58

Figure 31: Error for parameter tuning iterations... 58

Figure 32: Pearson correlation coefficient for parameter tuning iterations... 59

 1

1. INTRODUCTION

1.1 Background

The radial basis function (RBF network) offers a viable alternative to the multi-layer feedforward

neural network in many applications of signal processing. The original RBF [1,2,3,4] method requires that

there be as many RBF centers as data points, which is rarely practical in signal processing applications, as

the number of data points is usually very large. While a large number of centers will be computationally

difficult and make the neural network sensitive to noise, a low number of centers will make the network

local approximation properties poor. Therefore, it is critical to provide a good set of nodes for the

approximation of any function using RBF networks. In an industrial application, the available data is

usually redundant and contains some noise, and the data distribution is not readily available. It is therefore

necessary to approximate the distribution of the input data and specify some good points as the network

training data. To address these issues, several suggestions have been proposed. Chen et al. [5] have

proposed the use of gridded centers in which the centers are found according to a predetermined grid in the

input space. Others have used a clustering algorithm [6, 7]. More recently, several authors have applied

the multi-resolution analysis to a gridded approach [5] or a clustering approach [7] to provide a good set of

training data to be used as the RBF centers.

The problem of identifying appropriate centers is tied to the selection of training data. There are

several suggestions that are based primarily on the closest neighbor criteria. A good discussion of width

selection has been presented in [7].

The last parameter is the calculation of weights. While a matrix inversion process is the straightforward

solution, it suffers from the singularity issue as well as the time consuming process of inverting large

matrices. Another solution is the use of a simple delta rule and gradient descent. A more elegant approach

is the use of an orthogonal search (OS) [8] or fast orthogonal search (FOS) [9] technique. Note that both

OS and FOS will not only provide an efficient way of finding the weights, but they also reduce the initial

number of nodes to meet an error or number of node criteria.

 2

1.2 Objective

The objective of the thesis is to create an RBF network model with fine-tuning and optimization

abilities. In this research, the RBF network is initialized with a good set of initial parameters and then

based on the minimization of an error function, the parameters are tuned to achieve the best network

performance. The network tuning is based on updating the network parameters on an iterative basis. A

gradient method has been used to derive the update equations for the RBF network. In our experiments, the

orthogonal search algorithm has been used for the initial node selection. When necessary, a recursive least

squares solution may be used to add or remove certain nodes while avoiding extra computation.

To study the behavior of the proposed network, six months of real data at fifteen-minute intervals

has been collected from a North American pulp and paper company. The data has been used to evaluate

the performance of the proposed network for the approximation of the relationship between the optical

properties of the base sheet paper and the process variables.

1.3 Thesis Organization

This thesis is comprised of six chapters. Chapter 2 provides an overview of RBF neural networks,

the orthogonal least square solution, the recursive least squares solution, and the gradient descent method.

Chapter 3 provides the proposed methodology for tuning RBF neural networks. This includes the network

construction methods, training processes, and parameter tuning algorithms, along with some discussions of

popular neural network training methods. Chapter 4 details the paper making process under investigation

and Chapter 5 shows the effect of the proposed tuning algorithm compared with FOS and provides the

results of the proposed RBF neural network as applied to the optical property data. Chapter 6 offers

concluding remarks and provides suggestions for future work.

 3

2. RBF NEURAL NETWORKS

This chapter provides background information on the RBF formulation, the orthogonal least

square (OLS) solution, the recursive least square solution, and the gradient descent method.

2.1 RBF Network Model

Radial basis function (RBF) networks can be described as

)(w)f(
M

1i
i

=

−ϕ= icxx (2-1)

where { },...M,icx i 21)(=−ϕ is a set of M arbitrary (generally nonlinear) local functions, known as

radial basis functions and also called nodes. The function is normally based on a norm, or Euclidean

distance, of a point x from a center c. Usually the function is defined as a Gaussian function as given

below.

T

iiiei
)()(

2
1 1

)(cxΣcxcx −−−
−

=−ϕ (2-2)

where ci is the center, x is the input vector, and i is the covariance matrix. For the following

discussion, we assume that the covariance matrix, i, is diagonal.

i = diag[σ2
i1, σ2

i2, . . ., σ2
ij, . . ., σ2

iN], where N is the number of input variables, i.e., the

dimension of vector of x, σσσσi = [σi1, σi2, . . ., σiN] is the width vector for the ith RBF node.

As we can see, the RBF network is a linear combination of nonlinear basis functions, which map

the input to the output. Once the basis functions are identified, the radial basis function performs a fixed

nonlinear transformation with no adjustable parameters and it maps the input space onto a new space. Then

by implementing a linear combiner on this new space we can get the output of the network. The only

adjustable parameters are the weights of the linear combiner, once we fix the set of radial basis functions.

These weights can be determined using a linear least square (LS) solution, which is an important advantage

of using fixed centers. Actually, the nonlinear feature within an RBF network can be chosen from a few

 4

typical nonlinear functions. A general consensus is that the choice of the nonlinear function for the hidden

layer is not crucial for performance, and this opinion can also be justified using the results of a theoretical

investigation [4]. However the performance of an RBF network critically depends upon the chosen nodes.

In practice the centers of the nodes are often chosen to be a subset of the data. Although researchers are

well aware that the fixed centers should suitably sample the input domain, most published results simply

assume that the centers are arbitrarily selected from data points. Such a mechanism usually turns out

unsatisfactory for building RBF networks. The resulting RBF networks often either perform poorly or have

a large size. Alternatively the orthogonal least squares (OLS) method [8] can be employed as a forward

regression procedure to select a suitable set of centers from a large set of candidates.

 5

2.2 Orthogonal Least Square(OLS) Learning Algorithm

We can view the RBF network as a special case of the linear regression model

=
+=

M

1i
ii)t(e)t(p)t(d θ (2-3)

where d(t) is the desired output, the θi are the parameters, and the pi (t) are known as the regressors, e.g.,

nodes, which are some fixed functions of x(t):

))(()(tptp ii x= (2-4)

The error signal e(t) is assumed to be uncorrelated with the regressors pi(t). A constant term can be

included in Equation (2-3) by setting assuming p0(t) = 1 and changing the summation to start from 0. For

the sake of simplicity, this constant term has been omitted from the following formulation. We can arrange

Equation (2-3) in the following matrix form:

 d = Pθθθθ + e (2-5)

where

d= [d(1) ⋅⋅⋅ d(N)]T

P=[p1 ⋅⋅⋅ pM],

pi = [pi (1) ⋅⋅⋅ pi (N)]T , 1 ≤ i ≤ M

θθθθ = [θi ⋅⋅⋅ θM]T

e= [e(1) ⋅⋅⋅ e(N)]T

and N is the number of input samples, e.g. x(1), x(2), ... x(N)

The regressor vectors pi form a set of basis vectors, and the LS solution θθθθ satisfies the condition that Pθθθθ is

the projection of d onto the space spanned by these basis vectors. Because different regressors are

generally correlated, it is not clear how much each individual regressor contributes to the output. We can

use the OLS method to transform the set of pi into a set of orthogonal basis vectors. This makes it possible

to calculate the individual contribution to the desired output from each basis vector. The classical Gram-

Schmidt can be used to solve for θθθθ. The Gram-Schmidt method computes orthogonal basis vectors as

 6

follows. At the kth stage make the kth column orthogonal to each of the k-1 previously orthogonalized

columns and repeat the operation for k=2, … , M. The computational procedure can be represented as

(2-6)

We can use the OLS method for subset selection of all the candidate regressors. Each time we select only

one regressor to maximize the normalized projection over the same desired vector d. Because wi and wj are

orthogonal for i ≠ j, the sum of squares of d(t) is

eewwgdd T
M

i
i

T
ii

T +=
=1

2 (2-7)

where gi is the coefficient for ith regressor.

Using the classical Gram-Schmidt scheme, the regressor selection procedure is summarized as follows:

Step1. At the first step, for 1 ≤ i ≤ M, compute

)]dd)(w)w[((

d)w(corr

pw

T)i(
1

T)i(
1

T)i(
1)i(

1

i
)i(

1

=

= (2-8)

Find i1 such that

 corr(i1) = max(corr(i)), where 1 ≤ i ≤ M

and select w1 = w1
(i1)=pi1

Step 2. At the kth step where k ≥ 2, for 1 ≤ i ≤ M, i ≠ i1 , ⋅⋅⋅ , i ≠ ik-1 , compute

ki1

.M,2kwpw

)ww(
pw

pw

1k

1i
iikkk

i
T

i

k
T

i
ik

11

<≤

⋅⋅⋅=−=

=

=

−

=

α

α

 7

)]dd)(w)w[((

d)w(
corr

wpw

kj1,
)ww(

pw

T)i(
k

T)i(
k

T)i(
k)i(

k

1k

1j
j

)i(
jkik

j
T

j

i
T

j)i(
jk

=

−=

<≤=

−

=
α

α

 (2-9)

Find ik such that

 corr(i
k
) = max(corr(i)), where 1 ≤ i ≤ M, i ≠ i1 , ⋅⋅⋅ , i ≠ ik-1

and select

−

=

−==
1

1

)()(
k

j
j

i
jki

i
kk wpww k α (2-10)

 The coefficient for each regressor is

)ww(

dwg
k

T
k

T
k

k = (2-11)

In fact, those coefficients gk are the optimal weights associated with each regressor.

Step 3. The selection procedure can be terminated when the error has been reduced to an

acceptable level.

It’s not difficult to see the maximum of step is M, which is the number of candidate regressors.

Usually M is quite large. The use of OLS can reduce the number of regressors significantly according to

the behavior the network while avoiding an ill-conditioned matrix computation. A similar Fast Orthogonal

Search (FOS) algorithm, which has a fast computational nature, has been developed at University of Maine

[9].

We can see from the above analysis that OLS uses a set of vectors to approximate the features of

each regressor, which is nonlinear. And then, uses a linear analysis method to evaluate the correlation

between these vectors and their respective contributions to the output. One important point worth

mentioning is that each nonlinear regressor should be sufficiently represented by the vectors, otherwise the

 8

linear relation derived from a set of vectors won’t be valid over the whole input space. This can be partly

solved by selecting enough data to sample the functional input space sufficiently.

2.3 Recursive Least Squares Solution

A real system can evolve over time. Fixing a system model based on limited data samples is not

always reliable. Incorporating certain adaptive mechanisms can be very helpful to accurately track the

changes in the system behavior while avoiding the need for complete retraining of the network.

Assume a system can be described as:

 y(t) = X(t) θθθθ(t) + e(t) (2-12)

where X(t)=[x(1), x(2), …, x(t)]T

 xT(t)= [x1(t), x2(t), ..., xn(t)]

 y(t)=[y(1), y(2), …, y(t)]T

 e(t)=[e(1), e(2), …, e(t)]T

 θθθθ(t)=[θθθθ1(t), θθθθ2(t), ..., θθθθn(t)]T

The least squares solution for the parameter vector is,

θθθθ(t) = [XT(t) X(t)]-1 XT(t)y(t) (2-13)

Using recursive least squares, when a new sample comes in, θθθθ will be updated based on the new sample

only, instead of storing all previous data and repeating the pseudo-inverse Equation (2-13). This allows

significant saving in computation [10].

At time step t,

X(t)= [xT(1), xT(2), …, xT(t)]T

y(t)= [y(1), y(2), …, y(t)]T

θθθθ(t) = [XT(t) X(t)]-1 XT(t)y(t)

At time step t+1, new data becomes available. So the input and output data matrices are updated as in (2-

14) and (2-15).

 9

�
�
�

�

+
=+

)1(
)(

)1(
tx

t
t T

X
X (2-14)

�
�
�

�

+
=+

)1(
)(

)1(
ty

t
t

y
y (2-15)

Using (2-13) and the update vectors, the estimate for θθθθ at step t+1 is then given by

 θθθθ(t+1) = [XT(t+1) X(t+1)]-1 XT(t+1)y(t+1) (2-16)

Now

 XT(t+1) X(t+1)= XT(t) X(t) + x(t+1)xT(t+1) (2-17)

Thus given x(t+1) we can easily update the old correlation matrix, XT(t) X(t), to obtain new matrix, XT(t+1)

X(t+1). Next we try to update the inverse of XT(t) X(t) directly without requiring a matrix inversion at each

time step. In addition, we also need to update the term XT(t+1)y(t+1).

 XT(t+1)y(t+1) = XT(t)y(t) + x(t+1)y(t+1) (2-18)

Introducing the following notations

 P(t) = [XT(t) X(t)]-1

 B(t) = XT(t)y(t)

we get

 θθθθ(t+1) = P(t+1) B(t+1) (2-19)

 θθθθ(t) = P(t) B(t) (2-20)

also

 P-1 (t+1) = P-1 (t) + x(t+1)xT(t+1)

 B(t+1) = B(t) + x(t+1)y(t+1) (2-21)

 10

by applying the Matrix Inversion Lemma:

 (A + BCD)-1 = A-1 – A-1B(C-1 + DA-1B)-1DA-1

and assigning

 A = P-1 (t), C = 1, B = x(t+1), D = xT(t+1)

we get

 P(t+1) = P(t)[Im – x(t+1) (1+ xT(t+1)P(t)x(t+1)) –1 xT(t+1)P(t)]

 (2-22)

Equation (2-22) gives us the means to update P(t) to P(t+1) without inverting a matrix. The only inversion

is the scalar term (1+ xT(t+1)P(t)x(t+1)). Using Equation (2-21) and Equation (2-22), we can get θθθθ(t+1).

In summary, the full recursive least squares (RLS) algorithm for updating θθθθ(t) is as follows:

 At time step t+1:

1. Form x(t+1) using the new data

2. Update B(t) using

B(t+1) = B(t) + x(t+1)y(t+1)

3. Form P(t+1) using

P(t+1) = P(t)[Im – x(t+1) (1+ xT(t+1)P(t)x(t+1)) –1 xT(t+1)P(t)]

4. Update θθθθ(t)

θθθθ(t+1) = P(t+1) B(t+1)

5. Go back to (1) when new data come in.

Of course, we also need to initialize parameters θθθθ, and P(0), with prior knowledge or initial

estimation by using a few samples at the beginning. There could be some trial and error processes,

especially for P(0), and its updates. To ensure that P is not ill-conditioned during the recursive process, it

is important to start with good initial conditions.

In summary, RLS is a linear regression method that has advantages over traditional linear

regression methods. It can be implemented on-line for its adaptive updating of the whole set of parameters,

provided the linear model is suitable for the intended system.

 11

2.4 The Gradient Method

 Gradient method has been shown to suitably parameterize nonlinear dynamical systems [11]. The

method commonly needs to evaluate the gradient of a performance function V with respect to variable θθθθ.

2.4.1 The Gradient of a Function

Let V(θθθθ)=V(θ1, ⋅⋅⋅ , θn) be a scalar function of n variables θ1, ⋅⋅⋅ , θn , where θi (i=1, ..., n) are the

elements of the vector θθθθ. The gradient of V(θθθθ) with respect to vector θθθθ is defined as the row vector,

�
�
�

�

∂
∂⋅⋅⋅

∂
∂=

n1

V,,VV
θθθ (2-23)

The value of the gradient depends upon the point θθθθnom ∈ Rn (denoting the nominal value of θθθθ) at which fθ is

evaluated. If the operating point is changed from θθθθnom to θθθθnom + ∆∆∆∆θθθθ, where ∆∆∆∆θθθθ = -η Vθθθθ
T , η<<1 is a positive

constant, it follows that V(θθθθnom + ∆∆∆∆θθθθ) ≤ V(θθθθnom), since V(θθθθnom + ∆∆∆∆θθθθ) ≈ V(θθθθnom) - η Vθθθθ Vθθθθ
T . It is this

concept that is used in all gradient methods for the optimization of static and dynamical systems.

2.4.2 Optimization Using the Gradient Method

Let V(θθθθ), a performance index which has to be optimized with respect to a parameter vector θθθθ, be

defined as

 =
T

0
d)],(e[L

T
1)(V ττθθ (2-24)

in the continuous case and as

=
=

N

1i
)]i,(e[L

N
1)(V θθ (2-25)

 12

in the discrete case. The error e in Equation (2-24) and Equation (2-25) is assumed to be a function of time

as well as the parameter θθθθ. L is some function to calculate the overall error. If the gradient method is used

to minimize the performance index, θ∂∂V is determined, by the chain rule, as

τ
θ

τθ
τθ
τθ

θ
d),(e

),(e
)],(e[L

T
1V T

0 ∂
∂⋅

∂
∂=

∂
∂

 (2-26)

or in the discrete case

=
�
�

�
�

�

∂
∂⋅

∂
∂N

1i

)i,(e
)i,(e
)]i,(e[L

N
1

θ
θ

θ
θ

 (2-27)

In both cases, θθθθ is adjusted as θθθθ = θθθθnom - η⋅ θ∂∂V and the process is repeated.

In practice, however, the parameter θθθθ in a dynamical system is adjusted on-line and the system

cannot be reinitialized. The performance index is then defined over a finite interval [t-T, t] for continuous-

time systems or a finite interval [k-T+1, k] for discrete-time systems. Further, a commonly used function

L[e(θθθθ,τ)] has the form || e(θθθθ,τ)||2 , where e(θθθθ,τ) is an output error vector. For the discrete case, J(θθθθ)

has the form

+−=
=

k

1Tki

T ee
T
1)(V θ (2-28)

and the gradient is computed over the interval [k-T+1, k] as

+−=

�
��

�

∂
∂=

∂
∂ k

1Tki

T

ee
T
2V

θθ
 (2-29)

Then the parameter θθθθ is adjusted as

 13

ee
T

Tkk
Tk

Tki +−=

�
��

�

∂
∂⋅⋅−+−=+

1

2)1()1(
θ

ηθθ (2-30)

where η<<1, i.e. the step size, is a suitably chosen constant. As we see from the above, θθθθ is no longer a

constant parameter but a function of time, so that the concept of a partial derivative described earlier has to

be replaced by the concept of a functional derivative. However, if η is sufficiently small, we shall assume

that the concept of a partial derivative (or gradient in parameter space) can still be applied.

 There is a more general form for the gradient method, which is called Descent Algorithms [12].

2.4.3 Descent Algorithms

Definition: Descent Algorithm. Assume V: Rd →→→→ R has continuous second partial derivatives on

Rd . Let g: Rd →→→→ Rd be the gradient of V. Assume there exists a sequence of d-dimensional real vectors θθθθ

(0), θθθθ (1), … such that for t=0, 1, 2, …

θθθθ (t+1) =θθθθ (t) +ηt f(t) (2-31)

where step size ηt ∈ (0, ∞) and the descent direction f(t) ∈ Rd satisfies either

(1) g(θθθθ (t))T f(t)<0

or

(2) | g(θθθθ (t))| = | f(t) | = 0.

The difference equation (2-31) is a descent algorithm defined with respect to the objective function V

generating the sequence θθθθ (0), θθθθ (1), ….

Proposition: Descent Algorithm Proposition. Assume V: Rd →→→→ R has: (i) continuous second

partial derivatives on Rd . Let g: Rd →→→→ Rd be the gradient of V. Assume there exists a sequence of d-

dimensional real vectors θθθθ (0), θθθθ (1), … such that for t=0, 1, 2, …

θθθθ (t+1) =θθθθ (t) +ηt f(t)

where ηt ∈ (0, ∞) and f(t) ∈ Rd are defined such that either

(1) g(θθθθ (t))T f(t)<0

 14

or

(2) | g(θθθθ (t))| = | f(t) | = 0.

Then for each t=0, 1, 2, …, there exists a ηt such that if θθθθ (t+1) ≠ θθθθ (t):

 V(θθθθ (t+1)) < V(θθθθ (t)).

Proof: Expand V in a Taylor expansion about the point θθθθ (t) and evaluate at θθθθ (t+1) to obtain for some

sufficiently small strictly positive real number ηt :

 V(θθθθ (t+1)) = V(θθθθ (t)) + g(θθθθ (t))T (θθθθ (t+1) - θθθθ (t)) + O(ηt
2),

where g(θθθθ (t)) is the gradient of V evaluated at θθθθ (t). For the case θθθθ (t+1) ≠ θθθθ (t), it is possible to choose a ηt

such that

 V(θθθθ (t+1)) < V(θθθθ (t))

since

 g(θθθθ (t))T (θθθθ (t+1) - θθθθ (t)) = ηt g(θθθθ (t))T f(t) < 0.

 15

2.4.4 Step Size Selection Strategies

Equation (2-31) may be viewed as a heuristic search algorithm designed to update θθθθ(t) such that

the revised estimate θθθθ(t+1) is closer to a global minimum, where the distance to the global minimum at

point θθθθ(t) is given by V(θθθθ(t)). There are some problems, however, with this heuristic search algorithm.

These problems arise because the restrictions on the step size sequence η1 , η2 , … are relatively weak and

must be at least slightly strengthened. If ηt is chosen to be too large for some iteration t, then V(θθθθ) may

increase in value. On the other hand, if η1 , η2 , … are too small, then the algorithm may take a long time to

converge, and it may not even converge to a critical point of the function V(θθθθ). Let’s take a look at the

definition for properly chosen step size first.

Definition: Properly chosen step size. Assume V: Rd →→→→ R has continuous second partial

derivatives on Rd . Let g: Rd →→→→ Rd be the gradient of V. Assume there exists a sequence of d-dimensional

real vector θθθθ(0), θθθθ(1), … with the property that for t=0, 1, 2, …

θθθθ(t+1) = θθθθ(t) + ηt f(t)

where ηt ∈ (0, ∞). and f(t) ∈ Rd is defined such that g(θθθθ(t))T f(t) ≤ 0. The step size ηt is properly chosen at

iteration t for t ∈ {0, 1, …} if given θθθθ(t) and f(t) :

 V(θ(t) + ηt f(t)) ≤ V(θ(t)) + αη t g(θ(t))T f(t) (2-32)

and

 g(θθθθ(t) + ηt f(t))T f(t) ≥ β g(θθθθ(t))T f(t) (2-33)

are satisfied, where α, β are real numbers that satisfy

 0<α<β<1

A properly chosen step size ηt satisfies both of the constraints in Equation (2-32) and Equation (2-33). It

has been shown that these constraints are sufficient to permit a fairly detailed convergence analysis of a

very large class of gradient algorithms. An important advantage of the concept of a properly chosen step

size is that it gives us considerable flexibility in the choice of the step size at each step of the algorithm

[12].

 A Properly Chosen Step Size Existence Theorem is given in [9].

 16

Assume V: Rd →→→→ R has: (i) continuous second partial derivatives on Rd , and (ii) a lower bound on

Rd . Let g: Rd →→→→ Rd be the gradient of V, and let t ∈ {0, 1, …}. Let θθθθ(t) ∈ Rd and θθθθ(t+1) ∈ Rd . Let θθθθ(t+1) =

θθθθ(t) + ηt f(t) where ηt ∈ (0, ∞) and f(t) ∈ Rd is defined such that g(θθθθ(t))T f(t) ≤ 0. Let α, β be positive

numbers defined as in Equation (2-32) and Equation (2-33) so that 0<α<β<1. Then there exists strictly

positive real numbers ηmin and ηmax such that every ηt ∈ (ηmin , ηmax) satisfies Equation (2-32) and

Equation(2-33).

It has been shown that the gradient method converges based on the same assumption for Properly

Chosen Step Size Existence Theorem [9].

2.4.5 Summary

From the above analysis, the convergence and stability of the gradient method are highly

dependent on how the step size or learning rate is chosen and how it is adjusted during the global

optimization process. Especially for the global minimum problem of an unknown function, it is a process

of trial and error to identify the fitness of a critical point as close as possible to the global minimum. It is

very important to avoid being trapped in a local minimum that is far away from the global minimum.

Therefore construction of an appropriate optimization process using proper step size can improve the

solution.

 17

3. NETWORK CONSTRUCTION METHOD AND TUNING

ALGORITHM

The important issues in the implementation of RBF neural networks are the selection of important

variables to be used in the network, the selection of a good set of training data, and the selection of initial

network parameters such as the centers, widths and weights. In addition to presenting the RBF network

formulation, the following sections provide our methodologies for dealing with these issues.

3.1 Network Model

The RBF network equation can be formulated as:

cxw)x(fw)(f
j

jj
i

ii ++= ��x (3-1)

Equation (3-1) contains both linear and nonlinear terms. For the following derivation, it can be written in a

more expressive way.

cxwew)(f
j

jj
i

/)cx(
2
1

i
j

2
ij

2
ijj

++= ��
−− σ

x (3-2)

where i is the index of the centers, and j is the index of the input variables.

3.2 Sensitivity Analysis

For a real system, there are usually a number of measured variables available. The importance of

these variables to the final output is often not known in advance. Analyzing the significance of each

variable in a statistical sense can help shed some light on important variables. Neural networks often have

 18

difficulty mapping a high number of inputs to an output [16]. The problem is sometimes referred to the

“curse of dimensionality” in neural networks. In addition to potentially poor mapping, the network

computational time for large input spaces can become enormous. A method is therefore called for to

determine which subset of inputs, out of many, are most significant for functional mapping. Such a process

is commonly referred to as a sensitivity analysis.

 A sensitivity analysis is a means of ranking all input variables relative to their importance in

determining the functional mapping. The result of such an analysis is a knowledgeable premise of how to

appropriately reduce input space to only the most relevant variables. There are known linear statistical

methods to evaluate the relative correlation of one variable with respect to another. While the actual

mapping between each input variable and the output may be nonlinear, the use of linear statistical

techniques can still be useful in estimating the significance of each variable. Some researchers have in fact

a neural network, trained on all variables, to find a nonlinear mapping and then use it for identifying the

most important variables. However, this approach might be misleading because the mapping function

might not represent the actual nonlinear relationship between the input and output.

In this thesis, the Pearson correlation coefficient [13] has been applied to initially find the

significance of each variable to the output. Each coefficient, usually ranging from +1 to –1, expresses the

extent of correlation between the two variables. The Pearson correlation coefficient between two

quantitative variables, X and Y, assuming that their averages are X and Y , is defined as:

−−

−−
=

2
i

2
i

ii
p

)YY()XX(

)YY)(XX(
r (3-3)

The coefficient, rp, shows the strength of linear association between input vector X and output vector Y.

The interpretation of the correlation coefficient must be done appropriately. A variable with a higher

correlation coefficient does not necessarily mean that it has higher significance than other variables.

Looking at the nature of each variable and eliminating as much noise as possible is an essential step in

getting a good set of correlation coefficients. Because of the highly nonlinear nature of a complex system,

the correlation analysis only gives us partial information. Any other helpful information, such as the input

 19

from plant engineers, should be combined to analyze the significance of each variable. Using the RBF

network model may partly verify the results of sensitivity analysis through a trial and error procedure.

3.3 Initial Center Selection And Training Data Selection

There are basically two phases of artificial neural network construction. One is the training

process and the other is the testing process. The training process parameterizes the network in an optimal

fashion, the testing process uses samples not used during the training process to compare the network

output with the desired output and then evaluate the applicability of the network.

To successfully train any neural network means that the main characteristics of the underlying

system are captured despite the limited training samples for the system, and that the network provides good

generalization over the entire system input domain. There are two questions that need to be answered. One

is the selection of a subset of the entire data for the training process. The idea is to select as small a subset

as possible such that the subset spreads “uniformly” over the input space and the network can yield a

satisfactory performance over all other data samples. The other question is to assign centers for the

network nodes. This question is closely related to the selection of training data. Researchers have found

out that it’s not feasible to have as many centers as data points available because of the computation

difficulty and over-redundant nature. In order to reduce the computation while maintaining the

representative features of the data, random training data selection, clustering algorithms and gridded center

methods are commonly used. However, the random selection procedures don’t guarantee that the selected

data is a good representative subset of the whole data pool. Also, because of its random nature, the process

is usually not repeatable. Clustering algorithms use distance measures to adjust the center distribution such

that the centers will represent the input space to a certain degree. However cluster analysis is highly

empirical. Different methods can lead to different groupings, both in number and in content. Furthermore,

since the groups are not known a priori, it is usually difficult to judge whether the results make sense in the

context of the problem being studied [14]. Gridded center methods look at the range of all inputs then

divides the range into a grid with a reasonable number of cells [15]. A node is then assigned to each cell.

 20

However, not all grid cells contain data samples, which makes the center assignment over-redundant. More

importantly, the characteristics of the input domain are not represented well.

Multi-resolution analysis (MRA) can be combined with a clustering approach or gridded approach

to create a multi-resolution clustering or multi-resolution gridded approach [15]. The multi-resolution

approaches assign centers at more than one level to account for low frequency (smooth) and high frequency

(sharp) components of the mapping function. They have been shown to be quite attractive in terms of

reducing error in the training process by adding more and more centers. However the computation cost

may become a problem as the number of centers increases. It should be noted that better performance on

the training data doesn’t necessarily mean improved generalization of the network. In fact, network over-

fitting may make the generalization worse. So the solution to over-fitting problem is to use a limited

number of centers to achieve good generalization.

Given a set of data describing a system, there is usually some distribution characteristics for most

data samples. Investigating the distributions of the data samples at different ranges and selecting a good

subset of the data according to the homogeneity of the data has been found to be worthwhile. Here

homogeneity means defining certain criteria to evaluate the association between data samples. More

promising centers can then be created to map the nonlinearity of the system under investigation.

Our approach here is similar to the gridded approach in that it divides the input space into a certain

number of regions. We then consider how many samples fall in each region and pick those regions with a

sufficient number of samples present. To each selected region, we assign one node at the center of the

region. There is no reason to assign a center for a region to which virtually no samples belong. Here we

implicitly use the region area to stand for the homogeneity of the data samples. Figure 1 gives an example

of our initial center selection technique. There are two points worth mentioning. First, that the entire data

set is used in this process. Second, if the data is normalized, the spacing along each dimension is the same,

i.e. the cells are square; otherwise, the cells are rectangular.

 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

variable 1

va
ria

bl
e

2

Figure 1: An example for initial center selection

After selecting the centers, the width for each center should be initialized. This is done according

to a predefined overlapping between neighbor centers in the grid. Here, the predefined overlapping is the

response of the Gaussian function at its neighbor’s center, denoted by neighborhood. Also from the center

selection procedure, we know the distance between two neighboring Gaussian functions denoted by

distance. Here we only need to consider the one dimensional Gaussian function

2

2

2
)cx(

ey σ
−

−
= (3-4)

where c is the center, σ is the width, and y is the response of the Gaussian function. Based on the known

parameters and given the overlapping value, we can derive the initial widths for the Gaussian function

 22

)odneighborho(log2

1cetandis
e

initial −
⋅=σ (3-5)

Figure 2 shows four Gaussian functions on one axis with neighborhood = 0.3. An initial set of

centers with initial widths is selected according to the above procedure. Then for each selected region, a

certain percentage of the data is selected such that the distribution is fairly uniformly over the region. The

selected data is used for training the network, and the rest in the region is used for testing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Initial width determination

After selecting the initial centers and widths, the OLS or FOS algorithms can be used to

simultaneously reduce the number of initial centers and to find a set of corresponding weights. In reducing

 23

the number of centers, attention should be paid to the fact that there should be enough data samples for the

evaluation of fitness for each center such that the features of the function associated with that center can be

characterized. Ideally we should be able to completely determine the behavior of a continuous function by

sampling theory, given enough discrete points from that function.

After the initial parameters, centers, widths and weights are found, the gradient method, described

below, is used to optimize them according to the performance of the network. This is different from the

traditional approaches in which the centers are kept fixed once they are selected. Haykin [10] discussed the

supervised selection of centers in his book “Neural Networks-A Comprehensive Foundation”. The work

done by Lowe (1989) on speech recognition using RBF networks indicates that nonlinear optimization of

the parameters that define the activation functions of the hidden layer is beneficial when a minimal network

configuration is required [16]. However, the issue of how the optimization procedure should be initialized

was not addressed. Based on the center selection procedure, we can have a set of good parameters for the

global optimization of the RBF network. These values are a set of good starting points for the gradient

algorithm. Therefore the difficulty of finding a good set of starting points is greatly reduced, and the

stability and convergent nature of the following tuning algorithm is ensured to some extent.

3.4 Tuning Algorithms

The parameter tuning in the training process can be divided into two distinct approaches:

instantaneous and batch training modes. The instantaneous training mode uses only the information

provided by a single training sample {x(t), y(t)}, when the parameter vector is updated, whereas the batch

training mode generally uses all the training data to adapt the parameters.

 24

3.4.1 Instantaneous Mode Parameter Tuning

We define the performance function as,

 e(xk) = (f(xk) – yk)2 (3-6)

where f(xk) is the network output for input xk, and y is the desired output for input xk. Using the chain rule,

the derivative of the performance function with respect to different parameters can be given as:

2
ij

ij
k

j

)cx(
2
1

i
ijij

)cx(
ew

f
e

c
f

f
e

c
e j 2

ij

2
ij

k
j

σ
σ −

∂
∂=

∂
∂

∂
∂=

∂
∂

−
−

 (3-7)

3
ij

2
ij

k
j

)cx(
2
1

i
ijij

)cx(
ew

f
ef

f
ee j 2

ij

2
ij

k
j

σσσ
σ −

∂
∂=

∂
∂

∂
∂=

∂
∂

−
−

 (3-8)

−
−

∂
∂=

∂
∂

∂
∂=

∂
∂ j 2

ij

2
ij

k
j)cx(

2
1

ii

e
f
e

w
f

f
e

w
e σ

 (3-9)

k
j

j

x
f
e

w
e

∂
∂=

∂
∂

 (3-10)

where,

∂e/∂f = 2(f- y) (3-11)

The update of the parameters is as follows,

ij
cij c

ec
ij ∂

∂−=∆ η (3-12)

 25

ij
ij

e
ij σ

ησ σ ∂
∂−=∆ (3-13)

i
wi w

ew
i ∂

∂−= η∆ (3-14)

j
wj w

ew
j ∂

∂−=∆ η
 (3-15)

where η is the learning rate assigned during the parameter updating process. Each learning rate can be

adjusted in its own way according to its influence on the performance function.

3.4.2 Batch Mode Parameter Tuning

In batch mode, we define the performance function as

=
=

M

1k
ke

M
1E , (3-16)

where

 ek = e(xk) = (f(xk) – yk)2

and f(xk) is the network output and yk is the desired output, given the input xk, M is the number of training

samples. Then find derivatives of the performance function with respect to all parameters:

= ∂
∂

=
∂
∂ M

1i ij

i

ij c
e

M
2

c
E

 (3-17)

= ∂
∂

=
∂
∂ M

1i ij

i

ij

e
M
2E

σσ
 (3-18)

= ∂
∂

=
∂
∂ M

1i i

i

i w
e

M
2

w
E

 (3-19)

 26

= ∂
∂

=
∂
∂ M

1i j

i

j w
e

M
2

w
E

 (3-20)

where
j

i

i

i

ij

i

ij

i

w
e

,
w
e

,
e

,
c
e

∂
∂

∂
∂

∂
∂

∂
∂

σ
 are given by Equation (3-7), Equation (3-8), Equation (3-9), Equation (3-

10), respectively.

So, for batch mode the parameter update is as follows:

ij
cij c

Ec
ij ∂

∂−=∆ η (3-21)

ij
ij

E
ij σ

ησ σ ∂
∂−=∆ (3-22)

i
wi w

Ew
i ∂

∂−= η∆ (3-23)

j
wj w

Ew
j ∂

∂−=∆ η (3-24)

Like the instantaneous mode, each learning rate can be adjusted according to its influence on the

performance function.

 It is worth mentioning that the updating of wj has to be very careful to make sure the tuning

process is stable, otherwise the performance of the network could be easily degraded inappropriately. This

is because that wj corresponds to the linear term. Theoretically, all parameters can be updated appropriately

if using proper learning rate or step size each time. Therefore there is a problem of proper step size

selection (see section 2.4).

 27

4. THE PAPERMAKING PROCESS

4.1 Background

Papermaking is a very complex process. Many parameters affect the product quality. The paper

machine is a very important part of the pulp and paper manufacturing process. The most important

properties of the paper emerging from a paper machine are brightness and opacity. A major goal of the

paper making process control is the reduction of variability of these two properties. Improved paper

quality control would not only increase the efficiency of the paper making process, but it would also reduce

chemical usage and increase the yield and decrease the downtime of the paper machines, resulting in

reduced waste and increased capital savings. Due to the complexity of the process operation and

requirements of high quality product, it’s very important to control the process variables such as material

feeding flow, temperature, moisture, etc. The knowledge concerning the operation includes complex

technologies from different areas. Traditionally the engineers in the paper mill either use their past

experiences or follow some simple models to control the paper machine. However, this type of operation

doesn’t provide optimal performance, especially for the fast running paper machine. Furthermore, on-line

measurement of many important variables is either unreliable or impossible due to sensor technology

limitations. In many cases, control is dependent on unreliable, noisy or manually gathered data. Under

these conditions, even experienced operators find it difficult to deal with operations such as quality control

and operation optimization.

This thesis shows some of the potential of applying the artificial neural networks to the pulp and

paper process. In addition to our work in applying the RBF network in the pulp and paper industry, Chen

et al [17] have also used RBF networks to overcome the problems of noisy data and modeling of the

nonlinear processes in the industry.

4.2 Paper Making Process Description

Paper is a structure formed mainly from wood fibers with or without various additives. By

selecting the types of fibers, additives and their treatment in the process, a very wide range of pulp and

 28

paper products is made. A typical papermaking process flowchart is shown in Figure 3. As shown, certain

additives are mixed with the refined pulp according to the type of paper being made. The mixture is then

passed through forming and drying sections and then the coating sections for the addition of more additives

to ensure the desired paper quality [18]. Note that measurements are taken at different stages to check the

paper quality. Some measurements are on-line and some off-line and in laboratories. For example, the

final optical properties, such as brightness and opacity, are measured on-line and are used by operators for

quality control, whereas the softwood and hardwood brightness is measured in laboratories. Any on-line

modeling of these properties would be very helpful for automatic control.

 29

 Online Measurement:

 - Reel Moisture

 - Reel Fluorescence

 - Bsh. Formation Value

 - Bsh. Dry Weight

 Online Measurement:

 - Brightness

 - Opacity

 - Shade Values

 - Coat Weights

- Basis Weight

Figure 3: Optical properties process flow chart

4.3 Data Collection

The optical property data was collected in averaged 15-minute intervals from March through

September 1996. The averaged 15-minute data is the average of the data over 15 samples because the data

is measured every one minute. Sixty-six variables were collected and are listed in Table 1. The first and

fifth columns are the variable number, the second and sixth columns are the corresponding variable name,

and the third and seventh columns indicate the valid range for the variable. Different variables are

Hardwood

Softwood Refining

Retention Aid

Starch, Silica

Filler 1, 2

Dyes

Stock system

Forming Section

Drying

1st Coater

2nd Coater

Winding

Shipping

Filler 1, Filler 2, Dyes,

Pigment 3

Uncoated
broke Coated

broke

 30

measured at different stages along the overall papermaking process, therefore, there are time delays

between input process variables at different stages and the outputs of the process, namely brightness and

opacity. The time delay means how long it will take for the measured input variable to have an effect in the

output variable. Time delays for the process under investigation are also included in the fourth and eighth

column of Table 1. The process operators have provided these values.

 31

Table 1: Optical property variables

No. Variable Valid
Range

Delay No. Variable Valid
Range

Delay

1 Brightness 78-100 0 34 Basesheet brightness 75-100 0

2 Opacity 88-100 0 35 Basesheet opacity 80-100 0

3 L-value 90-98 0 36 Basesheet L-value 84-95 0

4 A-value -0.7-0.6 0 37 Basesheet A-value -.7-.1 0

5 B-value -2.25-3 0 38 Basesheet B-value -.5-3 0

6 Tobias Mottle 10-80 0 39 Basesheet formation value 5-20 0

7 Filler 1 0-85 40 sec 40 Basesheet fluorescence 0-85 0

8 Filler 2 40-300 40 sec 41 Basis weight (target) 50-80 0

9 Total ash % 5-20 0 42 Basis weight (measured) 0-100 0

10 Dye 1 0-2.6 40 sec 43 Retention aid 0-5 0

11 Dye 2 0-4 40 sec 44 Starch 0-60 0

12 Dye 3 0-6 40 sec 45 Silica 0-4 0
13 Dye 4 0-4 40 sec 46 Refining Horse Power (hw) 0-8 0

14 Softwood % 0-40 40 min 47 Hardwood Freeness 100-600 0

15 Hardwood % 0-60 40 min 48 Refining Horse Power (sw) 0-10 0

16 Coated broke % 0-60 40 min 49 Softwood Freeness 400-700 0

17 Recycle % 0-10 40 min 50 Softwood Dirt 0-1 0

18 Uncoated broke % 0-36 40 min 51 Softwood Fines 3-6 0

19 Hardwood brightness 85-90 0 52 Softwood Drylap 0-62 0

20 Softwood brightness 86-90 0 53 Softwood Purchased 0-52 0

21 Coating clay1 0-810 4 hours 54 Softwood Slush 0-100 0

22 Coating clay2 0-800 4 hours 55 Softwood Welap 0-60 0

23 Coating pigment 1 200-400 4 hours 56 Softwood Fiberlength 1.5-2.5 0

24 Coating pigment 2 0-55 4 hours 57 Softwood pH 5.5-7 0

25 Coating pigment 3 0-100 4 hours 58 Hardwood Dirt 0-1 0

26 Coating dye 5 0-.4 4 hours 59 Hardwood Fines 4.5-7.5 0

27 Coating dye 6 0-40 4 hours 60 Hardwood Drylap 0-30 0

28 Coating dye 7 0-.4 4 hours 61 Hardwood Purchased 0-80 0

29 Coating weight top 0-10 4 hours 62 Hardwood Slush 40-100 0

30 Coating weight bottom 0-10 4 hours 63 Hardwood Welap 0-60 0

31 Reel fluorescence 0-6.2 4 hours 64 Hardwood Fiberlength .5-1 0
32 Reel moisture 0-6 0 65 Hardwood pH 5-7 0

33 Basesheet dry wt. 0-70 0 66 Paper grade N/A 0

 32

4.4 Data Filtering

 Once data is obtained it is important to understand when it can be considered valid. If invalid data

is found, it must be removed. The goal is to obtain a valid database that can be used as a foundation for

experiments to follow.

The data collection system at the company with whom we are cooperating on this project has an

internal filter for identifying obvious invalid data. This filter fills a column of the data file and provides

numbers ranging from 0 to 100. A value of the filter variable less than 99 indicates that all the values in

that row are invalid. Therefore, rows within the database having a filter value less than 99 were deleted.

There are other times during plant operation when erroneous data is collected. A few examples are when

the plant is in a shutdown, when the reel of paper is being unloaded, or when the stream of paper has

broken. The plant’s data collection system collects all variables during these invalid times of operation.

Fortunately, such regions of data result is database elements that are text strings briefly explaining the type

of malfunction that occurred and are therefore easily recognizable. The approach taken was to replace such

database elements with a negative integer that represents the error. This is useful because it avoids simply

deleting the whole row of data, which could contain some valid data, and yet allows the data to be entered

into Matlab (text strings are not allowed), which has been used for building prototype of our models.

Therefore, the continuity of the data can be kept.

 In addition to the above-mentioned filtering, other cleaning techniques were investigated in

attempt to remove noise from the data. These techniques are described below.

4.4.1 Discrete Fourier Transform (DFT) Method

 The Fourier transform technique allows analysis of the data frequency spectrum. Applying a low

pass filter to the Discrete Fourier Transform (DFT) removes high frequency components, which can be

attributed to noise. Then, by applying the discrete inverse Fourier Transform, cleaned data is obtained. For

the data of this process, network response degraded after applying this technique. Therefore, it is not

appropriate to use DFT as the filtering for the data. This could be partly because we don’t know exactly

what part of frequency should be kept, and because of discontinuity of the data at hand.

 33

4.4.2 Moving Average Method

The moving average method is based on the idea that the value of a variable measured at time t

should be similar to the value of the variable measured at t-1 and t+1. To be simple, we just take the

average of the three values as the value at time t, and repeat the calculation for all data samples. This

method also did not work because the neural network performance was degraded after applying this

technique.

4.4.3 Adjacent Sample Method

 The adjacent sample technique is based on the idea that variables should change, on a sample by

sample basis, in a relatively consistent manner. That is to say there are limits to what can be considered valid

step sizes. For instance, dye 1 has been stated as ranging from zero to about two and a half in Table 1. It is

therefore reasonable to assume that any adjacent samples of dye 1 with a step size greater than two and half are

invalid. Further, any variable data that exceeds its valid range is also erroneous. Such data makes no physical

sense, and should not be considered by the network; removing this type of data is the result of the adjacent

sample method.

 This technique is most suitable for the data of this project, because it keeps the original data as intact

as possible, further data corruption resulting from many unknown factors is avoided. A list of each variable’s

valid range, as given by plant engineers, is listed in Table 1.

4.5 Data Processing

4.5.1 Paper Grade

There are twenty-seven different grades of paper in the collected data. It is informative to conduct

the analysis with two types of data, namely data for one particular grade of paper and data for all grades of

paper combined. The data for one grade of paper has the advantage of considering only one state of

operation, and the disadvantage of having discontinuities. Because all twenty-seven grades of paper are

 34

produced in a continuous manner, there are many switches between different grades during the continuous

papermaking process. The data for all grades of paper has the advantage of being continuous, and the

disadvantage of considering many states of operation.

The database for all grades of paper is the foundational database. The database for each grade of

paper is constructed from the foundational database, where variable number 66 allows regions of different

grades of paper to be recognized and divided. The exclusion of a ±4 hour time span, at each grade

transition, aids in avoiding non-static effects caused from the transition from one grade of paper to another.

4.5.2 Data Normalizing

 Since different input variables use different measurement units, it was decided that they be

normalized. For our experiment, we normalized the data during the calculation for the network, mainly

between 0 and 1. Each value of a variable will be normalized as follows:

imumminvalidimummaxvalid

imumminvalidvalueoriginalvaluenormalized
−

−= (4-1)

 Figure 4 shows the six variables chosen for the work in this thesis. These six variables were

chosen via a sensitivity analysis as well as input from plant engineers.

 35

500 1000 1500 2000 2500 3000

20

40

60

F
il
le

r
1

500 1000 1500 2000 2500 3000

100

200

F
il
le

r
2

500 1000 1500 2000 2500 3000

1
2
3

D
y
e

 2

500 1000 1500 2000 2500 3000

0.5
1

1.5
2

D
y
e

 3

500 1000 1500 2000 2500 3000

60

70

80

B
a

s
is

W
t

500 1000 1500 2000 2500 3000

90

95

B
s
O

p
a

c
it
y

samples

Figure 4: The nature of different variables used in the RBF network modeling

 36

4.6 Pearson Correlation Coefficient Analysis

Table 2 lists the results of the Pearson correlation coefficients (see section 3.2) for the top twenty

ranking optical property variables with respect to brightness and opacity. A coefficient of ±1 represents a

high positive and negative correlation respectively, whereas a coefficient of 0 represents a total lack of

correlation.

 For the following experiments, basesheet opacity and brightness have been used as the network

outputs. According to the experience from the plant engineer, analysis for one grade and all grades of

paper given in the data set, and by trial and error, the 7th, 8th, 11th, 12th, 42th, 35th variables were selected for

the modeling of the next chapter. Note that these don’t correspond to the ranking of the following table

because the ranking of the table is based on linear analysis and that other factors, as mentioned above, have

been taken into consideration.

Final Final Basesheet Basesheet
Brightness Opac ity Brightness Opac ity

variable # r variable # r variable # r variable # r
31 0.74184 35 0.919576 12 -0.67631 2 0.919576
22 0.512674 33 0.833837 6 0.637531 33 0.919474
27 0.496226 41 0.828846 38 0.54687 42 0.919319
21 -0.40079 42 0.827267 11 -0.52915 41 0.91739
4 0.393296 43 -0.6946 52 -0.48727 43 -0.75101
8 0.322349 9 0.504938 53 0.437898 45 0.586874

16 -0.3114 45 0.482691 23 -0.42135 9 0.494397
46 0.286874 8 0.430896 55 0.416882 8 0.473309
45 0.278748 38 -0.39144 60 -0.41285 46 0.348353
49 -0.26303 6 -0.36977 28 0.397375 38 -0.32167
9 0.256427 40 0.341049 40 -0.37911 39 0.310457

47 -0.24081 39 0.328072 62 0.339241 40 0.301756
11 -0.2344 55 -0.31161 4 0.334677 44 0.277703
53 0.233842 28 -0.28652 25 0.327019 24 -0.27271
34 0.225217 46 0.278851 51 -0.30771 55 -0.26544
5 -0.22109 52 0.275016 31 0.289057 28 -0.26459

30 0.214442 11 0.274023 48 -0.26985 6 -0.25745
3 0.203481 24 -0.24507 26 -0.25742 48 0.252381

12 -0.19461 18 -0.24015 30 -0.25684 18 -0.25143
60 -0.18938 22 -0.23044 15 -0.24387 52 0.205011

Table 2: Ranking of optical properties variables according to Pearson sensitivity analysis (top 20)

 37

5. EXPERIMENTS

This chapter provides the results of the proposed tuning algorithms on two different sets of data.

The first one is a one-dimensional mathematically generated data to show the effectiveness of the proposed

algorithm. The second set is multi-dimensional data from the papermaking process.

5.1 Effect of Parameter Tuning Algorithm

To show the effectiveness of the proposed parameter tuning algorithm, one needs to compare it

with the current RBF techniques. A multi-resolution radial basis function (RBF) network trained with FOS

[15] has provided very promising results. Therefore, it has been used here to provide the initial conditions

for the parameter tuning algorithm.

The intention is to see if the proposed algorithm can improve upon RBF/FOS. Consider the

following function

 f=5*sin(x2)+sin(x)+x, x∈ [0, 2π].

The objective is to use a fixed number of nodes and approximate this function once using RBF/FOS alone

without any tuning and once with the proposed tuning algorithm. For this example the final number of

RBF nodes was set to be 10. Starting with 100 training samples and using a 5-level multi-resolution grid,

the FOS algorithm was first used to find the 10 most important RBF nodes, then the parameter tuning

algorithm proceeded to tune the network parameters. Using 900 testing samples, the results for both FOS

and parameter tuning algorithm are shown in Figures 5 through 10. Figure 5 provides network training,

testing and testing error after FOS. The network output and the real value were overlaid in this figure.

Figure 6 provides the scatter plot for the network output and actual values. Figures 7 through 10 provide

the network performance after applying the parameter tuning algorithm. Figure 7 provides network

training, testing and testing error. Figure 8 provides the scatter plot for the network output and actual

 38

values. Figure 9 shows how the network error is reduced during the parameter tuning process; the dashed

line is for network training error and the solid line is for network testing error. Figure 10 provides the

Pearson correlation coefficient for the parameter tuning iterations. The dashed line is for network training

data and the solid line is for network testing data. Note that the application of the proposed training

algorithm has improved the performance of the RBF/FOS network.

In this experiment the learning rate was set at 0.005. Note that the iterative tuning process is very

stable due to 1) the dimensionality of the problem and 2) small step size. In our experiments with high

dimensional data, some oscillations have been observed. However, if the initial conditions are good and

the step size is appropriate then the procedure has usually converged to a solution. Table 3 is a comparison

of errors and Pearson correlation coefficients for the RBF/FOS network before and after the parameter

tuning process. Note that the error mentioned above is the Mean Square Error (MSE). The linear

regression for the same data set was also conducted for comparison. The results have also been provided in

Table 3.

10 20 30 40 50 60 70 80 90 100

0

5

10

tra
in

in
g

100 200 300 400 500 600 700 800 900

0

5

10

te
st

in
g

100 200 300 400 500 600 700 800 900

−5

0

5

er
ro

r

Figure 5: Network training, testing and error (using FOS)

 39

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

12
scatterplot

Actual value

Ne
tw

or
k o

ut
pu

t

Figure 6: Scatter plot for the actual value and network output (using FOS)

10 20 30 40 50 60 70 80 90 100

0

5

10

tra
ini

ng

100 200 300 400 500 600 700 800 900

0

5

10

te
sti

ng

100 200 300 400 500 600 700 800 900

−5

0

5

er
ro

r

Figure 7: Network training, testing and error (after tuning algorithm)

 40

−4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14
scatterplot

Actual value

Ne
tw

or
k o

ut
pu

t

Figure 8: Scatter plot for the actual value and network output (after tuning algorithm)

0 2 4 6 8 10 12 14 16 18 20
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Training error: solid, Testing error: dashed

Figure 9: Error for parameter tuning iterations

 41

0 2 4 6 8 10 12 14 16 18 20
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Training Coefficient: solid, Testing Coefficient: dashed

Figure 10: Pearson correlation coefficient for parameter tuning iterations

Before the tuning process After the tuning process Linear
regression

Training error 2.3026 0.4062 N/A
Testing error 2.435 0.5029 11.34
Pearson correlation
coefficient (training)

0.8947 0.9852 N/A

Pearson correlation
coefficient (testing)

0.8906 0.9817 0.19

Table 3: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning
using FOS

5.2 Training Data Selection

 Now the network is used for the optical properties modeling problem. For the experiments

described in this section, the opacity data set for all grades of paper was used. The total number of samples

used for training and testing the network is 3079. The sampling period is 15 minutes and each sample is

the average over the minute data. In the instantaneous mode of the tuning process, 302 training samples

 42

(approximately 10% of the data set) and 2777 testing samples were used. For the batch mode tuning

process, 457 samples (approximately 15% of the data set) were selected for training and 2622 samples were

used for testing.

In order to see the effect of the training data selection, histograms of the training data set and the

whole data set for each of the selected 6 variables are shown in figures 11 through 16. In each figure, the

left Y-axis denotes the histogram for the whole data set and the right Y-axis denotes the histogram for the

selected training data set. As can be seen that the distribution features of each variable have been

represented well by the training set. The X-axis consists of ranges for the variable, from the valid

minimum to the valid maximum.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Histogram for variable 1

w
ho

le
 d

at
a

se
t

0

50

100

150

200

250

se
le

ct
ed

 tr
ai

ni
ng

 d
at

a
se

t

W hole data set Selected training data set

 43

Figure 11: Histogram for variable 1

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Histogram for variable 2

w
ho

le
 d

at
a

se
t

0

10

20

30

40

50

60

se
le

ct
ed

 tr
ai

ni
ng

 d
at

a
se

t

W hole data set Selected training data set

\F

igure 12: Histogram for variable 2

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Histogra m for varia ble 3

w
ho

le
 d

at
a

se
t

0

10

20

30

40

50

60

70

se
le

ct
ed

 tr
ai

ni
ng

 d
at

a
se

t

W hole data set Selec ted training data set

Figure 13: Histogram for variable 3

 44

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Histogram for variable 4

w
ho

le
 d

at
a

se
t

0

20

40

60

80

100

120

se
le

ct
ed

 tr
ai

ni
ng

 d
at

a
se

t

W hole data set Selected training data set

Figure 14: Histogram for variable 4

 45

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Histogram for variable 5

W
ho

le
 d

at
a

se
t

0

20

40

60

80

100

120

140

160

180

se
le

ct
ed

 tr
ai

ni
ng

 d
at

a
se

t

whole data set selected training data set

Figure 15: Histogram for variable 5

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Histogram for variable 6

w
ho

le
 d

at
a

se
t

0

10

20

30

40

50

60

se
le

ct
ed

 tr
ai

ni
ng

 d
at

a
se

t

Whole data set Selected training data set

Figure 16: Histogram for variable 6

 46

5.3 Network Training And Testing

5.3.1 Selecting The Training Data From The Entire Data Set

Starting with the training points, as described in section 5.1, we used the initial center assignment

procedure and the OLS algorithm to find a set of centers and their associated weights. The instantaneous

mode (section 3.5.2) and batch mode (section 3.5.3) parameter tuning algorithms were used to further

optimize the network.

5.3.1.1 Instantaneous Mode For Parameter Tuning

For instantaneous mode parameter tuning, 10 centers were selected. The instantaneous tuning

process then modified the network parameters (centers, widths and weights). The results are shown in

figures 17 through 20. Figure 17 provides network training, testing and testing error. The network output

and the actual value were overlaid in this figure. Figure 18 provides the scatter plot for the network output

and actual values. Figure 19 provides the network error for the parameter tuning iterations, the dashed line

is for network training error and the solid line is for network testing error. Figure 20 provides the Pearson

correlation coefficient for the parameter tuning iterations. The dashed line is for network training data and

the solid line is for network testing data. For Figure 17 through Figure 20, the learning rate is set to 0.2 for

the first 300 iterations, then changed to 0.1 for the rest. Table 4 is a comparison of errors and Pearson

correlation coefficients for the network before and after the parameter tuning process. Note that the dotted

line is the network output and the solid line is the actual values in the following network training and

testing figures.

 47

50 100 150 200 250 300

90

92

94

Opacity

tra
in

in
g

500 1000 1500 2000 2500

90

92

94

te
st

in
g

500 1000 1500 2000 2500

−2

0

2

er
ro

r

Figure 17: Network training, testing and error

88 89 90 91 92 93 94 95 96
87

88

89

90

91

92

93

94

95

96

97
scatterplot

Actual value

Ne
two

rk
ou

tpu
t

Figure 18: Scatter plot for the actual value and network output

 48

0 100 200 300 400 500 600
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
Training error: solid, Testing error: dashed

Figure 19: Error for parameter tuning iterations

0 100 200 300 400 500 600
0.98

0.982

0.984

0.986

0.988

0.99

0.992
Training Coefficient: solid, Testing Coefficient: dashed

Figure 20: Pearson correlation coefficient for parameter tuning iterations

 49

Before the tuning process After the tuning process
Training error 0.0958 0.1009
Testing error 0.1542 0.1324
Pearson correlation
coefficient (training) 0.9896 0.9883
Pearson correlation
coefficient (testing) 0.9835 0.9845

Table 4: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning

As we noted, before the tuning process began, the training error was 0.0958, the testing error was

0.1542, the Pearson correlation coefficient for the training data set was 0.9896 and for the testing data set

was 0.9835. After the 600 iterations of the parameter tuning process, the training error was 0.1009, the

testing error was 0.1324, the Pearson correlation coefficient for the training data was 0.9883, and the

Pearson correlation coefficient for the testing data was 0.9845.

As we can see, both the network testing error and Pearson correlation coefficient for the testing

data set have been improved, but the network training error and the Pearson correlation coefficient for the

training data set have been degraded a little, after the parameter tuning process. The important point here is

the fact that the testing or the network generalization has improved. The training degradation could be due

to the step size or the learning rate of the process, and only the error for one sample was considered for the

parameter. Because of the extensive computational effort of this mode, only 302 samples were selected for

this mode and the process ended at 600 iterations.

5.3.1.2 Batch Mode for Parameter Tuning

For the first experiment of batch mode parameter tuning, 10 centers were selected. The results are

shown in Figure 21 through Figure 24. Figure 21 provides network training, testing, and testing error. The

network output and the real value were overlaid in this figure. Figure 22 provides the scatter plot for the

network output and actual values. Figure 23 provides the network error for the parameter tuning iterations;

the dashed line is for network training error and the solid line is for network testing error. Figure 24

provides the Pearson correlation coefficient for the parameter tuning iterations; the dashed line is for

network training data and the solid line is for network testing data. For figures 21 through 24, the learning

 50

rate was selected to be 0.15 for the first 220 iterations, then changed to 0.05 for iterations 221 to 1134, and

to 0.02 for the rest. Table 5 is a comparison of errors and Pearson correlation coefficients for the network

before and after the parameter tuning process.

Before the tuning process After the tuning process
Training error 0.0801 0.0454
Testing error 0.1359 0.1253
Pearson correlation
coefficient (training) 0.9897 0.9942
Pearson correlation
coefficient (testing) 0.9844 0.9862

Table 5: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning

It can been seen that from the above table, before the tuning process began the training error was

0.0801, the testing error was 0.1359, the Pearson correlation coefficient for the training data set was

0.9897, and the Pearson correlation coefficient for the testing data set was 0.9844. After the 2134

parameter tuning iterations, the training error was 0.0454, the testing error was 0.1253, the Pearson

correlation coefficient for the training data was 0.9942, and the Pearson correlation coefficient for the

testing data was 0.9862.

As we can see, both the network training and testing error and Pearson correlation coefficient for

the training data set and testing data set have been improved. We can also see the testing error and Pearson

correlation coefficient follow closely with the training process, which indicates the effectiveness of the

tuning algorithm in improving the network generalization ability.

 51

50 100 150 200 250 300 350 400 450

90

92

94

Opacity

tra
in

in
g

500 1000 1500 2000 2500

90

92

94

te
st

in
g

500 1000 1500 2000 2500

−2

0

2

er
ro

r

Figure 21: Network training, testing and error

88 89 90 91 92 93 94 95 96
88

89

90

91

92

93

94

95

96
scatterplot

Actual value

Ne
tw

or
k o

utp
ut

 52

Figure 22: Scatter plot for the actual value and network output

0 500 1000 1500 2000 2500
0.04

0.06

0.08

0.1

0.12

0.14

0.16
Training error: solid, Testing error: dashed

Figure 23: Error for parameter tuning iterations

0 500 1000 1500 2000 2500
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998
Training Coefficient: solid, Testing Coefficient: dashed

 53

Figure 24: Pearson correlation coefficient for parameter tuning iterations

For the second experiment of batch mode parameter tuning, 20 centers were selected. The results

are shown by Figure 25 through Figure 28. Figure 25 provides network training, testing and testing error,

the network output and the real value were overlaid in this figure. Figure 26 provides the scatter plot for

the network output and actual values. Figure 27 provides the network error for the parameter tuning

iterations, the dashed line is for network training error and the solid line is for network testing error. Figure

28 provides the Pearson correlation coefficient for the parameter tuning iterations, the dashed line is for

network training data and the solid line is for network testing data. For figures 25 through 28, the learning

rate is set to 0.15 for the first 300 iterations, then changed to 0.09 for the rest. Table 6 is a comparison of

errors and Pearson correlation coefficients for the network before and after the parameter tuning process.

Before the tuning process After the tuning process
Training error 0.065 0.0281
Testing error 0.1483 0.1319
Pearson correlation
coefficient (training) 0.9915 0.9964
Pearson correlation
coefficient (testing) 0.9827 0.9846

 Table 6: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning

We can see from the above table that before the tuning process began, the training error was

0.0650, the testing error was 0.1483, the Pearson correlation coefficient for the training data set was

0.9915, and the Pearson correlation coefficient for the testing data set was 0.9827. After the 1900

parameter tuning iterations, the training error was 0.0281, the testing error was 0.1319, the Pearson

correlation coefficient for the training data was 0.9964, and the Pearson correlation coefficient for the

testing data was 0.9846.

 54

As we can also see, both the network training and testing error and the Pearson correlation

coefficient for the training data set and testing data set has been improved. We can also see the testing

error and Pearson correlation coefficient follow closely with the training process.

50 100 150 200 250 300 350 400 450

90

92

94

Opacity

tra
in

in
g

500 1000 1500 2000 2500

90

92

94

te
st

in
g

500 1000 1500 2000 2500

−2

0

2

er
ro

r

Figure 25: Network training, testing and error

 55

88 89 90 91 92 93 94 95 96
87

88

89

90

91

92

93

94

95

96
scatterplot

Actual value

Ne
tw

or
k o

ut
pu

t

Figure 26: Scatter plot for the actual value and network output

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Training error: solid, Testing error: dashed

Figure 27: Error for parameter tuning iterations

 56

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1
Training Coefficient: solid, Testing Coefficient: dashed

Figure 28: Pearson correlation coefficient for parameter tuning iterations

5.3.2 Selecting The Training Data From 50% of The Data Set

In this experiment the first 50% of the data set was used for selection of the training data. Then,

the remaining 50% were used to test the network performance. Note that the same methodology that was

used to select the training data in the previous experiment was applied here. The batch mode parameter

tuning was used. Figure 29 provides network training, testing and testing error. The network output and

the real value were overlaid in this figure. Note that the testing is for the data that hasn’t been used for

training data selection. Figure 30 shows the scatter plot for the network output and actual values for the

testing data set. Figure 31 shows the network error for the parameter tuning iterations, the dashed line is

for network training error and the solid line is for network testing error. Figure 32 provides the Pearson

correlation coefficients for the parameter tuning iterations, the dashed line is for network training data and

the solid line is for network testing data. For figures 29 through 32, the learning rate is set to 0.1 for the

parameter tuning iterations. The error is 0.20, and the Pearson correlation coefficient is 0.984 for the

network testing.

 57

50 100 150 200 250 300 350 400

90

92

94

Opacity

tra
ini

ng

200 400 600 800 1000 1200 1400

90

92

94

te
sti

ng

200 400 600 800 1000 1200 1400

−2

0

2

er
ro

r

Figure 29: Network training, testing and error

 58

88 89 90 91 92 93 94 95 96
86

88

90

92

94

96

98
scatterplot

Actual value

Ne
tw

or
k o

utp
ut

Figure 30: Scatter plot for the actual value and network output

0 20 40 60 80 100 120 140 160 180 200
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Training error: solid, Testing error: dashed

Figure 31: Error for parameter tuning iterations

 59

0 20 40 60 80 100 120 140 160 180 200

0.98

0.985

0.99

0.995

Training Coefficient: solid, Testing Coefficient: dashed

Figure 32: Pearson correlation coefficient for parameter tuning iterations

As can be seen, the network approximation is good over the totally unseen data. This is because

the training data selected from the first 50% data contains representative information for the whole data set,

which makes the network have good generalization ability.

5.4 Summary of The Results

From the above experiments, we can conclude that the overall performance of the network has

improved due to the tuning process. Furthermore, batch mode parameter tuning outperforms instantaneous

mode. The change of testing error roughly follows the change of the training error, indicating that the

generalization ability provided by the training process is good. It was noted that the batch mode needs

much less computation and hence it is faster than the instantaneous mode. The experiments also showed

that increasing the number of nodes beyond certain level only slightly improves the network performance.

From the above results we can also conclude that the training data selection and RBF node selection

schemes work well.

 60

6. CONCLUSION AND POSSIBLE FUTURE WORK

6.1 Conclusion

An RBF neural network model with parameter fine-tuning has been proposed. It has been shown

that the proposed technique can improve upon the performance of the conventional RBF techniques. This

improvement can especially be observed when the conventional techniques fail to provide a good

generalization. For the fine-tuning process, it has been shown that the batch mode is better than the

instantaneous mode for the experiments reported in this thesis. The parameter tuning algorithm showed a

good stability when the learning rate (step size) was selected appropriately.

For the network model, a sensitivity analysis method using linear correlation was used here to

select the important variables. A scheme, which is based on the distribution characteristics of the data, was

developed for automatically selecting representative training data. An initial center assignment procedure is

applied based on the distribution characteristic analysis. In order to select RBF nodes appropriately,

enough data samples should be available to characterize each RBF node. The OLS or FOS algorithm can

be used to initialize the network with a set of good values for the parameters of all selected nodes, so that

the fine-tuning process using the gradient method will have a good starting point. It was also concluded

that the behavior of the RBF network highly depends on how the parameters are chosen and not so much on

the number of nodes, when the number of nodes reaches certain level.

6.2 Possible Future Work

This thesis dealt with the qualitative nature of the training data. It would be beneficial to use

information theory to define a quantitative measure for expressing how representative the training data is.

When using the OLS or FOS algorithm to evaluate the contribution of a node, it’s important to make sure

that the functional input space is sufficiently sampled. This is worth further investigation. Due to the

number of parameters to be updated, the tuning process could take long time to achieve a good solution if

too many nodes are used for the network or the learning rate is not appropriately selected and updated.

 61

Therefore it is very important to appropriately adjust the learning rate in terms of efficiency, stability and

convergence. Some momentum and dynamic adjustment of step size could improve the behavior of the

gradient method [16]. Note that for the RBF network model discussed in this thesis, the covariance matrix

 is diagonal. This greatly simplifies the mathematical derivation and notation, especially for high

dimensional input spaces. Nevertheless, it may be helpful to investigate the effect of a full covariance

matrix.

The proposed algorithm was applied to a mathematical example for validation of the technique. It

was also applied to an industrial process. Further test and evaluation with other industrial processes are

needed to fully realize the advantage and disadvantages of the proposed technique.

 62

REFERENCES

[1] Broomhead, D. S., and D. Lowe, 1988. “Multivariable functional interpolation and adaptive networks.”

Complex Systems 2, pp. 321-355

[2] Poggio, T. and F. Girosi, 1990b. “Networks for approximation and learning.” Proceedings of the IEEE

78, pp. 1481-1497

[3] Renals, S., 1989. “Radial basis function network for speech pattern classification.” Electronics Letters

25, pp. 437-439

[4] Powell, M. J. D., “Radial Basis Functions Approximations to polynomials,” in Proc. 12th Biennial

Numerical Analysis Conf. (Dundee), 1987, pp. 223-241

[5] Chen, J. and D. Bruns. “WaveARX neural network development for system identification using a

systematic design synthesis, Ind. Eng. Chem. Res., vol. 34, vol. 55, no. 5, pp. 1051-1070, 1992

[6] Moody, J. and C. J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural

Computation, vol. 1, pp. 281-294, 1989

[7] Musavi, M. T., W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels, “On the training of radial

basis function classifiers”, Neural Networks, vol. 5, pp. 595-603, 1992

[8] Chen, S., S. A. Billings, and W. Luo, “Orthogonal Least Squares methods and their application to non-

linear system identification,” Int. J. Contr., vol. 50, no. 5, pp.1873-1896, 1989

[9] Ahmed, W., Fast orthogonal search for training radial basis function neural networks, M.S. Thesis,

Department of Electrical and Computer Engineering, University of Maine, 1994

[10] Wellstead, P. E., M. B. Zarrop, “Self-Tuning Systems, Control and Signal Processing”, John Wiley &

Sons Ltd. 1991, pp. 85-89

[11] Narendra, K. S., K. Parthasarathy, “Gradient Methods for the Optimization of Dynamical Systems

Containing Neural Networks”, IEEE Trans. On Neural Networks, March 1991, pp. 252-262

[12] Golden, R. M., “Mathematical Methods for Neural Network Analysis and Design”, MIT 1996, pp.198-

206

 63

[13] Jobson, J. D., “Applied Multivariate Data Analysis Volume I,” Springer-Verlag, 1991

[14] Afifi, A. A. and V. Clark, “Computer-Aided Multivariate Analysis”, Chapman & Hall, 1996, pp.382

[15] Miranda, Jon, Prediction of Wood Pulp Digester Level Using Artificial Neural Networks, M.S. Thesis,

Department of Electrical and Computer Engineering, University of Maine, 1997

[16] Haykin, Simon, Neural Networks, Prentice-Hall, Inc. 1994

[17] Chen, S., Billings, S. A., and P. M. Grant. Recursive hybrid algorithm for nonlinear system

identification using radial basis function networks, Int. J. Control, vol. 55, no. 5, pp. 1051-1070, 1992

[18] Rao, Ming, Qijun Xia and Yiqun Ying, Modeling and advanced control for process industries,

applications to paper making processes, Springer-Verlag London Limited 1994

 64

BIOGRAPHY OF THE AUTHOR

 Junxu Li was born in YongKang, Zhejiang Province, the People’s Republic of China, on

September 22, 1973. After graduation from YongKang 1st High School in 1991, he enrolled at the

Zhejiang University, Hangzhou, China, and graduated in 1996 with a Bachelor’s degree. He began his

graduate study at the University of Maine in January, 1997.

Junxu is a candidate for the Master of Science degree in Computer Engineering from the

University of Maine in May, 1999.

	The University of Maine
	DigitalCommons@UMaine
	1999

	A Dynamic Parameter Tuning Algorithm For Rbf Neural Networks
	Junxu Li
	Recommended Citation

	tmp.1321634098.pdf.uQBnN

