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(in Computer Engineering) 
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The objective of this thesis is to present a methodology for fine-tuning the parameters of radial 

basis function (RBF) neural networks, thus improving their performance.  Three main parameters affect the 

performance of an RBF network.  They are the centers and widths of the RBF nodes and the weights 

associated with each node.  A gridded center and orthogonal search algorithm have been used to initially 

determine the parameters of the RBF network.  A parameter tuning algorithm has been developed to 

optimize these parameters and improve the performance of the RBF network.  When necessary, the 

recursive least square solution may be used to include new nodes to the network architecture.   

To study the behavior of the proposed network, six months of real data at fifteen-minute intervals 

has been collected from a North American pulp and paper company.  The data has been used to evaluate 

the performance of the proposed network in the approximation of the relationship between the optical 

properties of base sheet paper and the process variables.  The experiments have been very successful and 

Pearson correlation coefficients of up to 0.98 have been obtained for the approximation.  
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1. INTRODUCTION 

1.1 Background 

The radial basis function (RBF network) offers a viable alternative to the multi-layer feedforward 

neural network in many applications of signal processing. The original RBF [1,2,3,4] method requires that 

there be as many RBF centers as data points, which is rarely practical in signal processing applications, as 

the number of data points is usually very large.  While a large number of centers will be computationally 

difficult and make the neural network sensitive to noise, a low number of centers will make the network 

local approximation properties poor. Therefore, it is critical to provide a good set of nodes for the 

approximation of any function using RBF networks.  In an industrial application, the available data is 

usually redundant and contains some noise, and the data distribution is not readily available.  It is therefore 

necessary to approximate the distribution of the input data and specify some good points as the network 

training data.  To address these issues, several suggestions have been proposed.  Chen et al. [5] have 

proposed the use of gridded centers in which the centers are found according to a predetermined grid in the 

input space.  Others have used a clustering algorithm [6, 7].  More recently, several authors have applied 

the multi-resolution analysis to a gridded approach [5] or a clustering approach [7] to provide a good set of 

training data to be used as the RBF centers.   

The problem of identifying appropriate centers is tied to the selection of training data.  There are 

several suggestions that are based primarily on the closest neighbor criteria.  A good discussion of width 

selection has been presented in [7].  

The last parameter is the calculation of weights.  While a matrix inversion process is the straightforward 

solution, it suffers from the singularity issue as well as the time consuming process of inverting large 

matrices.  Another solution is the use of a simple delta rule and gradient descent.  A more elegant approach 

is the use of an orthogonal search (OS)  [8] or fast orthogonal search (FOS) [9] technique.  Note that both 

OS and FOS will not only provide an efficient way of finding the weights, but they also reduce the initial 

number of nodes to meet an error or number of node criteria. 
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1.2 Objective 

The objective of the thesis is to create an RBF network model with fine-tuning and optimization 

abilities.  In this research, the RBF network is initialized with a good set of initial parameters and then 

based on the minimization of an error function, the parameters are tuned to achieve the best network 

performance.  The network tuning is based on updating the network parameters on an iterative basis.   A 

gradient method has been used to derive the update equations for the RBF network.  In our experiments, the 

orthogonal search algorithm has been used for the initial node selection. When necessary, a recursive least 

squares solution may be used to add or remove certain nodes while avoiding extra computation.  

To study the behavior of the proposed network, six months of real data at fifteen-minute intervals 

has been collected from a North American pulp and paper company.  The data has been used to evaluate 

the performance of the proposed network for the approximation of the relationship between the optical 

properties of the base sheet paper and the process variables.  

1.3 Thesis Organization 

This thesis is comprised of six chapters.  Chapter 2 provides an overview of RBF neural networks, 

the orthogonal least square solution, the recursive least squares solution, and the gradient descent method.  

Chapter 3 provides the proposed methodology for tuning RBF neural networks.  This includes the network 

construction methods, training processes, and parameter tuning algorithms, along with some discussions of 

popular neural network training methods.  Chapter 4 details the paper making process under investigation 

and Chapter 5 shows the effect of the proposed tuning algorithm compared with FOS and provides the 

results of the proposed RBF neural network as applied to the optical property data.  Chapter 6 offers 

concluding remarks and provides suggestions for future work. 
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2. RBF NEURAL NETWORKS 

 

This chapter provides background information on the RBF formulation, the orthogonal least 

square (OLS) solution, the recursive least square solution, and the gradient descent method.  

 

2.1 RBF Network Model 

Radial basis function (RBF) networks can be described as 

)(w)f(
M

1i
i

=

−ϕ= icxx      (2-1) 

where { },...M,icx i 21)( =−ϕ  is a set of M arbitrary (generally nonlinear) local functions, known as 

radial basis functions and also called nodes.  The function is normally based on a norm, or Euclidean 

distance, of a point x from a center c.  Usually the function is defined as a Gaussian function as given 

below. 

  
T

iiiei
)()(

2
1 1

)( cxΣcxcx −−−
−

=−ϕ      (2-2) 

where ci is the center, x is the input vector, and i is the covariance matrix. For the following 

discussion, we assume that the covariance matrix, i, is diagonal. 

i = diag[σ2
i1, σ2

i2, . . ., σ2
ij, . . .,  σ2

iN], where N is the number of input variables, i.e., the 

dimension of vector of x, σσσσi = [σi1, σi2, . . ., σiN ] is the width vector for the ith RBF node. 

As we can see, the RBF network is a linear combination of nonlinear basis functions, which map 

the input to the output.  Once the basis functions are identified, the radial basis function performs a fixed 

nonlinear transformation with no adjustable parameters and it maps the input space onto a new space.  Then 

by implementing a linear combiner on this new space we can get the output of the network.  The only 

adjustable parameters are the weights of the linear combiner, once we fix the set of radial basis functions.  

These weights can be determined using a linear least square (LS) solution, which is an important advantage 

of using fixed centers.  Actually, the nonlinear feature within an RBF network can be chosen from a few 
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typical nonlinear functions.  A general consensus is that the choice of the nonlinear function for the hidden 

layer is not crucial for performance, and this opinion can also be justified using the results of a theoretical 

investigation [4].  However the performance of an RBF network critically depends upon the chosen nodes.  

In practice the centers of the nodes are often chosen to be a subset of the data.  Although researchers are 

well aware that the fixed centers should suitably sample the input domain, most published results simply 

assume that the centers are arbitrarily selected from data points.  Such a mechanism usually turns out 

unsatisfactory for building RBF networks.  The resulting RBF networks often either perform poorly or have 

a large size.  Alternatively the orthogonal least squares (OLS) method [8] can be employed as a forward 

regression procedure to select a suitable set of centers from a large set of candidates. 
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2.2 Orthogonal Least Square(OLS) Learning Algorithm 

We can view the RBF network as a special case of the linear regression model 

=
+=

M

1i
ii )t(e)t(p)t(d θ      (2-3) 

where d(t) is the desired output, the θi are the parameters, and the pi (t) are known as the regressors, e.g., 

nodes, which are some fixed functions of x(t):    

))(()( tptp ii x=       (2-4) 

The error signal e(t) is assumed to be uncorrelated with the regressors pi(t).  A constant term can be 

included in Equation (2-3) by setting assuming p0(t) = 1 and changing the summation to start from 0.  For 

the sake of simplicity, this constant term has been omitted from the following formulation.  We can arrange 

Equation (2-3) in the following matrix form: 

  d = Pθθθθ + e         (2-5) 

where 

d= [d(1) ⋅⋅⋅ d(N)]T  

P=[p1 ⋅⋅⋅ pM ],  

pi  = [pi (1) ⋅⋅⋅ pi (N)]T ,       1 ≤ i ≤ M 

θθθθ = [θi ⋅⋅⋅ θM ]T  

e= [e(1) ⋅⋅⋅ e(N)]T  

and N is the number of input samples, e.g.  x(1), x(2), ... x(N) 

 

The regressor vectors pi form a set of basis vectors, and the LS solution θθθθ satisfies the condition that Pθθθθ is 

the projection of d onto the space spanned by these basis vectors.  Because different regressors are 

generally correlated, it is not clear how much each individual regressor contributes to the output.  We can 

use the OLS method to transform the set of pi into a set of orthogonal basis vectors.  This makes it possible 

to calculate the individual contribution to the desired output from each basis vector.  The classical Gram-

Schmidt can be used to solve for θθθθ.  The Gram-Schmidt method computes orthogonal basis vectors as 
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follows.  At the kth stage make the kth column orthogonal to each of the  k-1 previously orthogonalized 

columns and repeat the operation for k=2, … , M.  The computational procedure can be represented as 

(2-6) 

 

We can use the OLS method for subset selection of all the candidate regressors.  Each time we select only 

one regressor to maximize the normalized projection over the same desired vector d.  Because wi and wj are 

orthogonal for i ≠ j, the sum of squares of d(t) is  

eewwgdd T
M

i
i

T
ii

T +=
=1

2      (2-7) 

where gi is the coefficient for ith regressor. 

Using the classical Gram-Schmidt scheme, the regressor selection procedure is summarized as follows: 

Step1.  At the first step, for 1 ≤ i ≤ M, compute 

)]dd)(w)w[((

d)w(corr

pw

T)i(
1

T)i(
1

T)i(
1)i(

1

i
)i(

1

=

=     (2-8) 

Find i1 such that  

 corr(i1) = max(corr(i) ), where 1 ≤ i ≤ M 

and select w1 = w1
(i1)=pi1 

Step 2.  At the kth step where k ≥ 2, for 1 ≤ i ≤ M, i ≠ i1 , ⋅⋅⋅ , i ≠ ik-1 , compute 

ki1

.M,2kwpw

)ww(
pw

pw

1k

1i
iikkk

i
T

i

k
T

i
ik

11

<≤

⋅⋅⋅=−=

=

=

−

=

α
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)]dd)(w)w[((

d)w(
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T)i(
k

T)i(
k

T)i(
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1k
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Find ik such that  

 corr(i
k
) = max(corr(i) ), where 1 ≤ i ≤ M, i ≠ i1 , ⋅⋅⋅ , i ≠ ik-1 

and select  

−

=

−==
1

1

)()(
k

j
j

i
jki

i
kk wpww k α      (2-10) 

  The coefficient for each regressor is 

   
)ww(

dwg
k

T
k

T
k

k =      (2-11) 

In fact, those coefficients gk are the optimal weights associated with each regressor. 

Step 3.   The selection procedure can be terminated when the error has been reduced to an 

acceptable level.  

 

It’s not difficult to see the maximum of step is M, which is the number of candidate regressors.  

Usually M is quite large.  The use of OLS can reduce the number of regressors significantly according to 

the behavior the network while avoiding an ill-conditioned matrix computation.  A similar Fast Orthogonal 

Search (FOS) algorithm, which has a fast computational nature, has been developed at University of Maine 

[9]. 

We can see from the above analysis that OLS uses a set of vectors to approximate the features of 

each regressor, which is nonlinear.  And then, uses a linear analysis method to evaluate the correlation 

between these vectors and their respective contributions to the output.  One important point worth 

mentioning is that each nonlinear regressor should be sufficiently represented by the vectors, otherwise the 
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linear relation derived from a set of vectors won’t be valid over the whole input space.  This can be partly 

solved by selecting enough data to sample the functional input space sufficiently. 

 

2.3 Recursive Least Squares Solution 

A real system can evolve over time.  Fixing a system model based on limited data samples is not 

always reliable.  Incorporating certain adaptive mechanisms can be very helpful to accurately track the 

changes in the system behavior while avoiding the need for complete retraining of the network. 

Assume a system can be described as: 

 y(t) = X(t) θθθθ(t)  + e(t)      (2-12) 

where   X(t)=[x(1), x(2), …, x(t)]T 

 xT(t)= [x1(t), x2(t), ..., xn(t)] 

 y(t)=[y(1), y(2), …, y(t)]T 

  e(t)=[e(1), e(2), …, e(t)]T 

  θθθθ(t)=[ θθθθ1(t), θθθθ2(t), ..., θθθθn(t)]T 

The least squares solution for the parameter vector is, 

θθθθ(t) = [XT(t) X(t)]-1 XT(t)y(t)     (2-13)   

Using recursive least squares, when a new sample comes in, θθθθ will be updated based on the new sample 

only, instead of storing all previous data and repeating the pseudo-inverse Equation (2-13).  This allows 

significant saving in computation [10].  

 

At time step t,  

X(t)= [xT(1), xT(2), …, xT(t)]T 

y(t)= [y(1), y(2), …, y(t)]T 

θθθθ(t) = [XT(t) X(t)]-1 XT(t)y(t) 

 

At time step t+1, new data becomes available.  So the input and output data matrices are updated as in (2-

14) and (2-15). 
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+
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)1(
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)1(
ty

t
t

y
y       (2-15) 

 

Using (2-13) and the update vectors, the estimate for θθθθ at step t+1 is then given by 

  θθθθ(t+1) = [XT(t+1) X(t+1)]-1 XT(t+1)y(t+1)   (2-16) 

Now  

  XT(t+1) X(t+1)= XT(t) X(t) + x(t+1)xT(t+1)    (2-17) 

Thus given x(t+1) we can easily update the old correlation matrix, XT(t) X(t), to obtain new matrix, XT(t+1) 

X(t+1).  Next we try to update the inverse of XT(t) X(t) directly without requiring a matrix inversion at each 

time step.  In addition, we also need to update the term XT(t+1)y(t+1).  

  XT(t+1)y(t+1) = XT(t)y(t) + x(t+1)y(t+1)   (2-18) 

Introducing the following notations 

  P(t) =  [XT(t) X(t)]-1  

  B(t) = XT(t)y(t) 

we get 

   θθθθ(t+1) = P(t+1) B(t+1)     (2-19)  

  θθθθ(t) = P(t) B(t)      (2-20) 

also 

   P-1 (t+1) = P-1 (t) + x(t+1)xT(t+1) 

  B(t+1) = B(t) + x(t+1)y(t+1)     (2-21)  
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by applying the Matrix Inversion Lemma: 

  (A + BCD)-1 = A-1 – A-1B(C-1 + DA-1B)-1DA-1  

and assigning 

   A = P-1 (t), C = 1, B = x(t+1), D = xT(t+1) 

we get 

 P(t+1) = P(t)[Im – x(t+1) ( 1+ xT(t+1)P(t)x(t+1) ) –1 xT(t+1)P(t)]   

   (2-22) 

Equation (2-22) gives us the means to update P(t) to P(t+1) without inverting a matrix. The only inversion 

is the scalar term ( 1+ xT(t+1)P(t)x(t+1) ).  Using Equation (2-21) and Equation (2-22), we can get θθθθ(t+1).  

In summary, the full recursive least squares (RLS) algorithm for updating θθθθ(t) is as follows: 

 At time step t+1: 

1. Form x(t+1) using the new data 

2. Update B(t) using 

B(t+1) = B(t) + x(t+1)y(t+1)  

3.  Form P(t+1) using 

P(t+1) = P(t)[Im – x(t+1) ( 1+ xT(t+1)P(t)x(t+1) ) –1 xT(t+1)P(t)] 

4.  Update θθθθ(t) 

θθθθ(t+1) =  P(t+1) B(t+1) 

5. Go back to (1) when new data come in. 

Of course, we also need to initialize parameters θθθθ, and P(0), with prior knowledge or initial 

estimation by using a few samples at the beginning.  There could be some trial and error processes, 

especially for P(0), and its updates.  To ensure that P is not ill-conditioned during the recursive process, it 

is important to start with good initial conditions.    

In summary, RLS is a linear regression method that has advantages over traditional linear 

regression methods.  It can be implemented on-line for its adaptive updating of the whole set of parameters, 

provided the linear model is suitable for the intended system. 
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2.4 The Gradient Method  

 Gradient method has been shown to suitably parameterize nonlinear dynamical systems [11].  The 

method commonly needs to evaluate the gradient of a performance function V with respect to variable θθθθ.  

  

2.4.1 The Gradient of a Function 

Let V(θθθθ)=V(θ1, ⋅⋅⋅ , θn) be a scalar function of n variables θ1, ⋅⋅⋅ , θn , where θi (i=1, ..., n) are the 

elements of the vector θθθθ.  The gradient of V(θθθθ) with respect to vector θθθθ is defined as the row vector, 

�
�
�

�

∂
∂⋅⋅⋅

∂
∂=

n1

V,,VV
θθθ       (2-23) 

The value of the gradient depends upon the point θθθθnom ∈  Rn (denoting the nominal value of θθθθ) at which fθ is 

evaluated.  If the operating point is changed from θθθθnom to θθθθnom + ∆∆∆∆θθθθ, where ∆∆∆∆θθθθ = -η Vθθθθ 
T , η<<1 is a positive 

constant, it follows that V(θθθθnom + ∆∆∆∆θθθθ) ≤ V(θθθθnom ), since V(θθθθnom + ∆∆∆∆θθθθ)  ≈ V(θθθθnom ) - η Vθθθθ Vθθθθ 
T .  It is this 

concept that is used in all gradient methods for the optimization of static and dynamical systems. 

 

2.4.2 Optimization Using the Gradient Method 

Let V(θθθθ), a performance index which has to be optimized with respect to a parameter vector θθθθ, be 

defined as 
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in the continuous case and as 
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in the discrete case.  The error e in Equation (2-24) and Equation (2-25) is assumed to be a function of time 

as well as the parameter θθθθ.  L is some function to calculate the overall error. If the gradient method is used 

to minimize the performance index, θ∂∂V is determined, by the chain rule, as  

 

τ
θ

τθ
τθ
τθ

θ
d),(e

),(e
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    (2-26) 

 

or in the discrete case 
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    (2-27) 

 

In both cases, θθθθ is adjusted as θθθθ = θθθθnom - η⋅ θ∂∂V and the process is repeated. 

In practice, however, the parameter θθθθ in a dynamical system is adjusted on-line and the system 

cannot be reinitialized. The performance index is then defined over a finite interval [t-T, t] for continuous-

time systems or a finite interval [k-T+1, k] for discrete-time systems. Further, a commonly used function 

L[e(θθθθ,τ)] has the form             || e(θθθθ,τ)||2 , where  e(θθθθ,τ) is an output error vector. For the discrete case, J(θθθθ) 

has the form 
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and the gradient is computed over the interval [k-T+1, k] as 
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Then the parameter θθθθ is adjusted as  
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where η<<1, i.e. the step size, is a suitably chosen constant.  As we see from the above, θθθθ is no longer a 

constant parameter but a function of time, so that the concept of a partial derivative described earlier has to 

be replaced by the concept of a functional derivative. However, if η is sufficiently small, we shall assume 

that the concept of a partial derivative (or gradient in parameter space) can still be applied.  

 There is a more general form for the gradient method, which is called Descent Algorithms [12]. 

 

2.4.3 Descent Algorithms 

Definition: Descent Algorithm. Assume V: Rd  →→→→ R has continuous second partial derivatives on 

Rd . Let g: Rd  →→→→ Rd be the gradient of V. Assume there exists a sequence of d-dimensional real vectors θθθθ 

(0), θθθθ (1), … such that for t=0, 1, 2, …  

θθθθ (t+1) =θθθθ (t) +ηt f(t)      (2-31) 

where step size ηt  ∈  (0, ∞) and the descent direction f(t) ∈  Rd satisfies either  

(1) g(θθθθ (t))T f(t)<0 

or 

(2) | g(θθθθ (t))| = |  f(t) | = 0.  

The difference equation (2-31) is a descent algorithm defined with respect to the objective function V 

generating the sequence θθθθ (0), θθθθ (1), …. 

Proposition: Descent Algorithm Proposition. Assume V: Rd  →→→→ R has: (i) continuous second 

partial derivatives on Rd . Let g: Rd  →→→→ Rd be the gradient of V. Assume there exists a sequence of d-

dimensional real vectors θθθθ (0), θθθθ (1), … such that for t=0, 1, 2, … 

θθθθ (t+1) =θθθθ (t) +ηt f(t)     

where ηt  ∈  (0, ∞) and  f(t) ∈  Rd are defined such that either 

(1) g(θθθθ (t))T f(t)<0 
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or 

(2) | g(θθθθ (t))| = |  f(t) | = 0.  

Then for each t=0, 1, 2, …, there exists a ηt such that if θθθθ (t+1) ≠ θθθθ (t): 

  V(θθθθ (t+1) ) < V(θθθθ (t)). 

Proof: Expand V in a Taylor expansion about the point θθθθ (t) and evaluate at θθθθ (t+1) to obtain for some 

sufficiently small strictly positive real number ηt : 

  V(θθθθ (t+1) ) = V(θθθθ (t)) + g(θθθθ (t))T (θθθθ (t+1) - θθθθ (t)) + O(ηt 
2), 

where g(θθθθ (t)) is the gradient of V evaluated at θθθθ (t). For the case θθθθ (t+1) ≠ θθθθ (t), it is possible to choose a ηt 

such that 

  V(θθθθ (t+1) ) < V(θθθθ (t)) 

since 

  g(θθθθ (t))T (θθθθ (t+1) - θθθθ (t)) = ηt g(θθθθ (t))T f(t) < 0. 
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2.4.4 Step Size Selection Strategies 

Equation (2-31) may be viewed as a heuristic search algorithm designed to update θθθθ(t) such that 

the revised estimate θθθθ(t+1) is closer to a global minimum, where the distance to the global minimum at 

point θθθθ(t) is given by V(θθθθ(t)).  There are some problems, however, with this heuristic search algorithm.  

These problems arise because the restrictions on the step size sequence η1 , η2 , … are relatively weak and 

must be at least slightly strengthened.  If ηt is chosen to be too large for some iteration t, then V(θθθθ) may 

increase in value. On the other hand, if η1 , η2 , … are too small, then the algorithm may take a long time to 

converge, and it may not even converge to a critical point of the function V(θθθθ). Let’s take a look at the 

definition for properly chosen step size first. 

Definition: Properly chosen step size. Assume V: Rd  →→→→ R has continuous second partial 

derivatives on Rd . Let g: Rd  →→→→ Rd be the gradient of V.  Assume there exists a sequence of d-dimensional 

real vector θθθθ(0), θθθθ(1), … with the property that for t=0, 1, 2, … 

θθθθ(t+1) = θθθθ(t) + ηt f(t)      

where ηt ∈  (0, ∞). and f(t) ∈  Rd is defined such that g(θθθθ(t))T f(t) ≤ 0. The step size ηt is properly chosen at 

iteration t for t ∈  {0, 1, …} if given θθθθ(t) and f(t) : 

  V(θ(t) + ηt f(t)) ≤ V(θ(t)) + αη t g(θ(t))T f(t)   (2-32) 

and  

   g(θθθθ(t) + ηt f(t))T f(t) ≥ β g(θθθθ(t))T f(t)    (2-33) 

are satisfied, where α, β are real numbers that satisfy 

  0<α<β<1 

A properly chosen step size ηt satisfies both of the constraints in Equation (2-32) and  Equation (2-33).  It 

has been shown that these constraints are sufficient to permit a fairly detailed convergence analysis of a 

very large class of gradient algorithms.  An important advantage of the concept of a properly chosen step 

size is that it gives us considerable flexibility in the choice of the step size at each step of the algorithm 

[12].  

 A Properly Chosen Step Size Existence Theorem is given in [9]. 



 16

Assume V: Rd  →→→→ R has: (i) continuous second partial derivatives on Rd , and (ii) a lower bound on 

Rd .  Let g: Rd  →→→→ Rd be the gradient of V, and let t ∈  {0, 1, …}. Let θθθθ(t) ∈  Rd and θθθθ(t+1) ∈  Rd . Let θθθθ(t+1) = 

θθθθ(t) + ηt f(t) where ηt ∈  (0, ∞) and f(t) ∈  Rd is defined such that g(θθθθ(t))T f(t) ≤ 0.  Let α, β be positive 

numbers defined as in Equation (2-32) and  Equation (2-33) so that 0<α<β<1.  Then there exists strictly 

positive real numbers ηmin and ηmax  such that every ηt ∈  (ηmin , ηmax ) satisfies Equation (2-32) and  

Equation(2-33). 

It has been shown that the gradient method converges based on the same assumption for Properly 

Chosen Step Size Existence Theorem [9]. 

 

2.4.5 Summary 

From the above analysis, the convergence and stability of the gradient method are highly 

dependent on how the step size or learning rate is chosen and how it is adjusted during the global 

optimization process.  Especially for the global minimum problem of an unknown function, it is a process 

of trial and error to identify the fitness of a critical point as close as possible to the global minimum.  It is 

very important to avoid being trapped in a local minimum that is far away from the global minimum.  

Therefore construction of an appropriate optimization process using proper step size can improve the 

solution.  
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3. NETWORK CONSTRUCTION METHOD AND TUNING 

ALGORITHM  

 

The important issues in the implementation of RBF neural networks are the selection of important 

variables to be used in the network, the selection of a good set of training data, and the selection of initial 

network parameters such as the centers, widths and weights.  In addition to presenting the RBF network 

formulation, the following sections provide our methodologies for dealing with these issues.  

 

3.1 Network Model 

The RBF network equation can be formulated as: 
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Equation (3-1) contains both linear and nonlinear terms.  For the following derivation, it can be written in a 

more expressive way.  
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where i is the index of the centers, and j is the index of the input variables. 

3.2 Sensitivity Analysis 

For a real system, there are usually a number of measured variables available.  The importance of 

these variables to the final output is often not known in advance.  Analyzing the significance of each 

variable in a statistical sense can help shed some light on important variables.  Neural networks often have 
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difficulty mapping a high number of inputs to an output [16].  The problem is sometimes referred to the 

“curse of dimensionality” in neural networks. In addition to potentially poor mapping, the network 

computational time for large input spaces can become enormous.  A method is therefore called for to 

determine which subset of inputs, out of many, are most significant for functional mapping.  Such a process 

is commonly referred to as a sensitivity analysis. 

 A sensitivity analysis is a means of ranking all input variables relative to their importance in 

determining the functional mapping.  The result of such an analysis is a knowledgeable premise of how to 

appropriately reduce input space to only the most relevant variables.  There are known linear statistical 

methods to evaluate the relative correlation of one variable with respect to another.  While the actual 

mapping between each input variable and the output may be nonlinear, the use of linear statistical 

techniques can still be useful in estimating the significance of each variable.  Some researchers have in fact 

a neural network, trained on all variables, to find a nonlinear mapping and then use it for identifying the 

most important variables.  However, this approach might be misleading because the mapping function 

might not represent the actual nonlinear relationship between the input and output.     

In this thesis, the Pearson correlation coefficient [13] has been applied to initially find the 

significance of each variable to the output.  Each coefficient, usually ranging from +1 to –1, expresses the 

extent of correlation between the two variables.  The Pearson correlation coefficient between two 

quantitative variables, X and Y, assuming that their averages are X  and Y , is defined as:  
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The coefficient, rp, shows the strength of linear association between input vector X and output vector Y.  

The interpretation of the correlation coefficient must be done appropriately.  A variable with a higher 

correlation coefficient does not necessarily mean that it has higher significance than other variables.  

Looking at the nature of each variable and eliminating as much noise as possible is an essential step in 

getting a good set of correlation coefficients.  Because of the highly nonlinear nature of a complex system, 

the correlation analysis only gives us partial information.  Any other helpful information, such as the input 
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from plant engineers, should be combined to analyze the significance of each variable.  Using the RBF 

network model may partly verify the results of sensitivity analysis through a trial and error procedure.  

 

3.3 Initial Center Selection And Training Data Selection 

There are basically two phases of artificial neural network construction.  One is the training 

process and the other is the testing process.  The training process parameterizes the network in an optimal 

fashion, the testing process uses samples not used during the training process to compare the network 

output with the desired output and then evaluate the applicability of the network.   

To successfully train any neural network means that the main characteristics of the underlying 

system are captured despite the limited training samples for the system, and that the network provides good 

generalization over the entire system input domain.  There are two questions that need to be answered.  One 

is the selection of a subset of the entire data for the training process. The idea is to select as small a subset 

as possible such that the subset spreads “uniformly” over the input space and the network can yield a 

satisfactory performance over all other data samples.  The other question is to assign centers for the 

network nodes.  This question is closely related to the selection of training data.  Researchers have found 

out that it’s not feasible to have as many centers as data points available because of the computation 

difficulty and over-redundant nature.  In order to reduce the computation while maintaining the 

representative features of the data, random training data selection, clustering algorithms and gridded center 

methods are commonly used.  However, the random selection procedures don’t guarantee that the selected 

data is a good representative subset of the whole data pool. Also, because of its random nature, the process 

is usually not repeatable.  Clustering algorithms use distance measures to adjust the center distribution such 

that the centers will represent the input space to a certain degree.  However cluster analysis is highly 

empirical.  Different methods can lead to different groupings, both in number and in content.  Furthermore, 

since the groups are not known a priori, it is usually difficult to judge whether the results make sense in the 

context of the problem being studied [14].  Gridded center methods look at the range of all inputs then 

divides the range into a grid with a reasonable number of cells [15]. A node is then assigned to each cell.  
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However, not all grid cells contain data samples, which makes the center assignment over-redundant.  More 

importantly, the characteristics of the input domain are not represented well. 

Multi-resolution analysis (MRA) can be combined with a clustering approach or gridded approach 

to create a multi-resolution clustering or multi-resolution gridded approach [15].  The multi-resolution 

approaches assign centers at more than one level to account for low frequency (smooth) and high frequency 

(sharp) components of the mapping function.  They have been shown to be quite attractive in terms of 

reducing error in the training process by adding more and more centers.  However the computation cost 

may become a problem as the number of centers increases.  It should be noted that better performance on 

the training data doesn’t necessarily mean improved generalization of the network.  In fact, network over-

fitting may make the generalization worse.  So the solution to over-fitting problem is to use a limited 

number of centers to achieve good generalization.   

Given a set of data describing a system, there is usually some distribution characteristics for most 

data samples.  Investigating the distributions of the data samples at different ranges and selecting a good 

subset of the data according to the homogeneity of the data has been found to be worthwhile.  Here 

homogeneity means defining certain criteria to evaluate the association between data samples.  More 

promising centers can then be created to map the nonlinearity of the system under investigation. 

Our approach here is similar to the gridded approach in that it divides the input space into a certain 

number of regions.  We then consider how many samples fall in each region and pick those regions with a 

sufficient number of samples present.  To each selected region, we assign one node at the center of the 

region.  There is no reason to assign a center for a region to which virtually no samples belong.  Here we 

implicitly use the region area to stand for the homogeneity of the data samples.  Figure 1 gives an example 

of our initial center selection technique.  There are two points worth mentioning.  First, that the entire data 

set is used in this process.  Second, if the data is normalized, the spacing along each dimension is the same, 

i.e. the cells are square; otherwise, the cells are rectangular. 
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Figure 1: An example for initial center selection  

 

After selecting the centers, the width for each center should be initialized.  This is done according 

to a predefined overlapping between neighbor centers in the grid.  Here, the predefined overlapping is the 

response of the Gaussian function at its neighbor’s center, denoted by neighborhood. Also from the center 

selection procedure, we know the distance between two neighboring Gaussian functions denoted by 

distance. Here we only need to consider the one dimensional Gaussian function 
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where c is the center, σ is the width, and y is the response of the Gaussian function.  Based on the known 

parameters and given the overlapping value, we can derive the initial widths for the Gaussian function  
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Figure 2 shows four Gaussian functions on one axis with neighborhood = 0.3.   An initial set of 

centers with initial widths is selected according to the above procedure.  Then for each selected region, a 

certain percentage of the data is selected such that the distribution is fairly uniformly over the region.  The 

selected data is used for training the network, and the rest in the region is used for testing.   
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Figure 2: Initial width determination 

 

After selecting the initial centers and widths, the OLS or FOS algorithms can be used to 

simultaneously reduce the number of initial centers and to find a set of corresponding weights.  In reducing 
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the number of centers, attention should be paid to the fact that there should be enough data samples for the 

evaluation of fitness for each center such that the features of the function associated with that center can be 

characterized.  Ideally we should be able to completely determine the behavior of a continuous function by 

sampling theory, given enough discrete points from that function.   

After the initial parameters, centers, widths and weights are found, the gradient method, described 

below, is used to optimize them according to the performance of the network.  This is different from the 

traditional approaches in which the centers are kept fixed once they are selected.  Haykin [10] discussed the 

supervised selection of centers in his book “Neural Networks-A Comprehensive Foundation”.  The work 

done by Lowe (1989) on speech recognition using RBF networks indicates that nonlinear optimization of 

the parameters that define the activation functions of the hidden layer is beneficial when a minimal network 

configuration is required [16].  However, the issue of how the optimization procedure should be initialized 

was not addressed.  Based on the center selection procedure, we can have a set of good parameters for the 

global optimization of the RBF network.  These values are a set of good starting points for the gradient 

algorithm.  Therefore the difficulty of finding a good set of starting points is greatly reduced, and the 

stability and convergent nature of the following tuning algorithm is ensured to some extent.  

 

3.4 Tuning Algorithms 

The parameter tuning in the training process can be divided into two distinct approaches: 

instantaneous and batch training modes.  The instantaneous training mode uses only the information 

provided by a single training sample {x(t), y(t)}, when the parameter vector is updated, whereas the batch 

training mode generally uses all the training data to adapt the parameters.   
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3.4.1 Instantaneous Mode Parameter Tuning 

We define the performance function as, 

 e(xk) = ( f(xk) – yk )2       (3-6) 

where f(xk) is the network output for input xk, and y is the desired output for input xk.  Using the chain rule, 

the derivative of the performance function with respect to different parameters can be given as: 
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where,  

 

∂e/∂f = 2(f- y)       (3-11) 

 

The update of the parameters is as follows, 

ij
cij c

ec
ij ∂

∂−=∆ η        (3-12) 



 25

ij
ij

e
ij σ

ησ σ ∂
∂−=∆        (3-13) 

i
wi w

ew
i ∂

∂−= η∆       (3-14) 

j
wj w

ew
j ∂

∂−=∆ η
      (3-15) 

 

where η is the learning rate assigned during the parameter updating process. Each learning rate can be 

adjusted in its own way according to its influence on the performance function.  

 

3.4.2 Batch Mode Parameter Tuning 

In batch mode, we define the performance function as  
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where  

  ek = e(xk) = ( f(xk) – yk )2 

and f(xk)  is the network output and yk is the desired output, given the input xk, M is the number of training 

samples.  Then find derivatives of the performance function with respect to all parameters: 
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So, for batch mode the parameter update is as follows: 
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Like the instantaneous mode, each learning rate can be adjusted according to its influence on the 

performance function.  

 It is worth mentioning that the updating of wj has to be very careful to make sure the tuning 

process is stable, otherwise the performance of the network could be easily degraded inappropriately.  This 

is because that wj corresponds to the linear term. Theoretically, all parameters can be updated appropriately 

if using proper learning rate or step size each time.  Therefore there is a problem of proper step size 

selection (see section 2.4). 
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4. THE PAPERMAKING PROCESS 

4.1 Background 

Papermaking is a very complex process.  Many parameters affect the product quality.  The paper 

machine is a very important part of the pulp and paper manufacturing process.  The most important 

properties of the paper emerging from a paper machine are brightness and opacity.  A major goal of the 

paper making process control is the reduction of variability of these two  properties.  Improved paper 

quality control would not only increase the efficiency of the paper making process, but it would also reduce 

chemical usage and increase the yield and decrease the downtime of the paper machines, resulting in 

reduced waste and increased capital savings.  Due to the complexity of the process operation and 

requirements of high quality product, it’s very important to control the process variables such as material 

feeding flow, temperature, moisture, etc.  The knowledge concerning the operation includes complex 

technologies from different areas.  Traditionally the engineers in the paper mill either use their past 

experiences or follow some simple models to control the paper machine.  However, this type of operation 

doesn’t provide optimal performance, especially for the fast running paper machine.  Furthermore, on-line 

measurement of many important variables is either unreliable or impossible due to sensor technology 

limitations.  In many cases, control is dependent on unreliable, noisy or manually gathered data.  Under 

these conditions, even experienced operators find it difficult to deal with operations such as quality control 

and operation optimization.  

This thesis shows some of the potential of applying the artificial neural networks to the pulp and 

paper process.  In addition to our work in applying the RBF network in the pulp and paper industry, Chen 

et al [17] have also used RBF networks to overcome the problems of noisy data and modeling of the 

nonlinear processes in the industry.   

 

4.2 Paper Making Process Description 

Paper is a structure formed mainly from wood fibers with or without various additives.  By 

selecting the types of fibers, additives and their treatment in the process, a very wide range of pulp and 
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paper products is made.  A typical papermaking process flowchart is shown in Figure 3.  As shown, certain 

additives are mixed with the refined pulp according to the type of paper being made.  The mixture is then 

passed through forming and drying sections and then the coating sections for the addition of more additives 

to ensure the desired paper quality [18].  Note that measurements are taken at different stages to check the 

paper quality.  Some measurements are on-line and some off-line and in laboratories.  For example, the 

final optical properties, such as brightness and opacity, are measured on-line and are used by operators for 

quality control, whereas the softwood and hardwood brightness is measured in laboratories.  Any on-line 

modeling of these properties would be very helpful for automatic control.     
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Figure 3: Optical properties process flow chart 

 

4.3 Data Collection 

The optical property data was collected in averaged 15-minute intervals from March through 

September 1996.  The averaged 15-minute data is the average of the data over 15 samples because the data 

is measured every one minute.  Sixty-six variables were collected and are listed in Table 1. The first and 

fifth columns are the variable number, the second and sixth columns are the corresponding variable name, 

and the third and seventh columns indicate the valid range for the variable.  Different variables are 
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measured at different stages along the overall papermaking process, therefore, there are time delays 

between input process variables at different stages and the outputs of the process, namely brightness and 

opacity. The time delay means how long it will take for the measured input variable to have an effect in the 

output variable.  Time delays for the process under investigation are also included in the fourth and eighth 

column of Table 1.  The process operators have provided these values. 
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Table 1: Optical property variables 

 

No. Variable Valid 
Range 

Delay No. Variable Valid 
Range 

Delay 

1 Brightness 78-100 0 34 Basesheet brightness 75-100 0 

2 Opacity 88-100 0 35 Basesheet opacity 80-100 0 

3 L-value 90-98 0 36 Basesheet L-value 84-95 0 

4 A-value -0.7-0.6 0 37 Basesheet A-value -.7-.1 0 

5 B-value -2.25-3 0 38 Basesheet B-value -.5-3 0 

6 Tobias Mottle 10-80 0 39 Basesheet formation value 5-20 0 

7 Filler 1 0-85 40 sec 40 Basesheet fluorescence 0-85 0 

8 Filler 2 40-300 40 sec 41 Basis weight (target) 50-80 0 

9 Total ash % 5-20 0 42 Basis weight (measured) 0-100 0 

10 Dye 1 0-2.6 40 sec 43 Retention aid 0-5 0 

11 Dye 2 0-4 40 sec 44 Starch 0-60 0 

12 Dye 3 0-6 40 sec 45 Silica 0-4 0 
13 Dye 4 0-4 40 sec 46 Refining Horse Power (hw) 0-8 0 

14 Softwood % 0-40 40 min 47 Hardwood Freeness 100-600 0 

15 Hardwood % 0-60 40 min 48 Refining Horse Power (sw) 0-10 0 

16 Coated broke % 0-60 40 min 49 Softwood Freeness 400-700 0 

17 Recycle % 0-10 40 min 50 Softwood Dirt 0-1 0 

18 Uncoated broke % 0-36 40 min 51 Softwood Fines 3-6 0 

19 Hardwood brightness 85-90 0 52 Softwood Drylap 0-62 0 

20 Softwood brightness 86-90 0 53 Softwood Purchased 0-52 0 

21 Coating clay1 0-810 4 hours 54 Softwood Slush 0-100 0 

22 Coating clay2 0-800 4 hours 55 Softwood Welap 0-60 0 

23 Coating pigment 1 200-400 4 hours 56 Softwood Fiberlength 1.5-2.5 0 

24 Coating pigment 2 0-55 4 hours 57 Softwood pH 5.5-7 0 

25 Coating pigment 3 0-100 4 hours 58 Hardwood Dirt 0-1 0 

26 Coating dye 5 0-.4 4 hours 59 Hardwood Fines 4.5-7.5 0 

27 Coating dye 6 0-40 4 hours 60 Hardwood Drylap 0-30 0 

28 Coating dye 7 0-.4 4 hours 61 Hardwood Purchased 0-80 0 

29 Coating weight top 0-10 4 hours 62 Hardwood Slush 40-100 0 

30 Coating weight bottom 0-10 4 hours 63 Hardwood Welap 0-60 0 

31 Reel fluorescence 0-6.2 4 hours 64 Hardwood Fiberlength .5-1 0 
32 Reel moisture 0-6 0 65 Hardwood pH 5-7 0 

33 Basesheet dry wt. 0-70 0 66 Paper grade N/A 0 
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4.4 Data Filtering 

 Once data is obtained it is important to understand when it can be considered valid.  If invalid data 

is found, it must be removed.  The goal is to obtain a valid database that can be used as a foundation for 

experiments to follow.  

The data collection system at the company with whom we are cooperating on this project has an 

internal filter for identifying obvious invalid data.  This filter fills a column of the data file and provides 

numbers ranging from 0 to 100.  A value of the filter variable less than 99 indicates that all the values in 

that row are invalid.  Therefore, rows within the database having a filter value less than 99 were deleted. 

There are other times during plant operation when erroneous data is collected.  A few examples are when 

the plant is in a shutdown, when the reel of paper is being unloaded, or when the stream of paper has 

broken.  The plant’s data collection system collects all variables during these invalid times of operation.   

Fortunately, such regions of data result is database elements that are text strings briefly explaining the type 

of malfunction that occurred and are therefore easily recognizable.  The approach taken was to replace such 

database elements with a negative integer that represents the error.  This is useful because it avoids simply 

deleting the whole row of data, which could contain some valid data, and yet allows the data to be entered 

into Matlab (text strings are not allowed), which has been used for building prototype of our models.  

Therefore, the continuity of the data can be kept. 

 In addition to the above-mentioned filtering, other cleaning techniques were investigated in 

attempt to remove noise from the data.  These techniques are described below. 

 

4.4.1 Discrete Fourier Transform (DFT) Method 

 The Fourier transform technique allows analysis of the data frequency spectrum.   Applying a low 

pass filter to the Discrete Fourier Transform (DFT) removes high frequency components, which can be 

attributed to noise.  Then, by applying the discrete inverse Fourier Transform, cleaned data is obtained.  For 

the data of this process, network response degraded after applying this technique.  Therefore, it is not 

appropriate to use DFT as the filtering for the data.  This could be partly because we don’t know exactly 

what part of frequency should be kept, and because of discontinuity of the data at hand. 
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4.4.2 Moving Average Method 

The moving average method is based on the idea that the value of a variable measured at time t 

should be similar to the value of the variable measured at t-1 and t+1.  To be simple, we just take the 

average of the three values as the value at time t, and repeat the calculation for all data samples.  This 

method also did not work because the neural network performance was degraded after applying this 

technique. 

 

4.4.3 Adjacent Sample Method 

 The adjacent sample technique is based on the idea that variables should change, on a sample by 

sample basis, in a relatively consistent manner.  That is to say there are limits to what can be considered valid 

step sizes.  For instance, dye 1 has been stated as ranging from zero to about two and a half in Table 1.  It is 

therefore reasonable to assume that any adjacent samples of dye 1 with a step size greater than two and half are 

invalid.  Further, any variable data that exceeds its valid range is also erroneous.  Such data makes no physical 

sense, and should not be considered by the network; removing this type of data is the result of the adjacent 

sample method.  

  This technique is most suitable for the data of this project, because it keeps the original data as intact 

as possible, further data corruption resulting from many unknown factors is avoided.  A list of each variable’s 

valid range, as given by plant engineers, is listed in Table 1.   

 

4.5 Data Processing 

4.5.1 Paper Grade 

There are twenty-seven different grades of paper in the collected data.  It is informative to conduct 

the analysis with two types of data, namely data for one particular grade of paper and data for all grades of 

paper combined.  The data for one grade of paper has the advantage of considering only one state of 

operation, and the disadvantage of having discontinuities. Because all twenty-seven grades of paper are 
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produced in a continuous manner, there are many switches between different grades during the continuous 

papermaking process. The data for all grades of paper has the advantage of being continuous, and the 

disadvantage of considering many states of operation.   

The database for all grades of paper is the foundational database.  The database for each grade of 

paper is constructed from the foundational database, where variable number 66 allows regions of different 

grades of paper to be recognized and divided.  The exclusion of a ±4 hour time span, at each grade 

transition, aids in avoiding non-static effects caused from the transition from one grade of paper to another. 

 

4.5.2 Data Normalizing 

 Since different input variables use different measurement units, it was decided that they be 

normalized.  For our experiment, we normalized the data during the calculation for the network, mainly 

between 0 and 1.  Each value of a variable will be normalized as follows: 

 
imumminvalidimummaxvalid

imumminvalidvalueoriginalvaluenormalized
−

−=  (4-1)  

 Figure 4 shows the six variables chosen for the work in this thesis.  These six variables were 

chosen via a sensitivity analysis as well as input from plant engineers.  
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Figure 4: The nature of different variables used in the RBF network modeling 
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4.6 Pearson Correlation Coefficient Analysis 

Table 2 lists the results of the Pearson correlation coefficients (see section 3.2) for the top twenty 

ranking optical property variables with respect to brightness and opacity.  A coefficient of ±1 represents a 

high positive and negative correlation respectively, whereas a coefficient of 0 represents a total lack of 

correlation. 

 For the following experiments, basesheet opacity and brightness have been used as the network 

outputs.  According to the experience from the plant engineer, analysis for one grade and all grades of 

paper given in the data set, and by trial and error, the 7th, 8th, 11th, 12th, 42th, 35th variables were selected for 

the modeling of the next chapter.  Note that these don’t correspond to the ranking of the following table 

because the ranking of the table is based on linear analysis and that other factors, as mentioned above, have 

been taken into consideration.   

Final Final Basesheet Basesheet
Brightness Opac ity Brightness Opac ity

variable #         r variable #         r variable #         r variable #         r
31 0.74184 35 0.919576 12 -0.67631 2 0.919576
22 0.512674 33 0.833837 6 0.637531 33 0.919474
27 0.496226 41 0.828846 38 0.54687 42 0.919319
21 -0.40079 42 0.827267 11 -0.52915 41 0.91739
4 0.393296 43 -0.6946 52 -0.48727 43 -0.75101
8 0.322349 9 0.504938 53 0.437898 45 0.586874

16 -0.3114 45 0.482691 23 -0.42135 9 0.494397
46 0.286874 8 0.430896 55 0.416882 8 0.473309
45 0.278748 38 -0.39144 60 -0.41285 46 0.348353
49 -0.26303 6 -0.36977 28 0.397375 38 -0.32167
9 0.256427 40 0.341049 40 -0.37911 39 0.310457

47 -0.24081 39 0.328072 62 0.339241 40 0.301756
11 -0.2344 55 -0.31161 4 0.334677 44 0.277703
53 0.233842 28 -0.28652 25 0.327019 24 -0.27271
34 0.225217 46 0.278851 51 -0.30771 55 -0.26544
5 -0.22109 52 0.275016 31 0.289057 28 -0.26459

30 0.214442 11 0.274023 48 -0.26985 6 -0.25745
3 0.203481 24 -0.24507 26 -0.25742 48 0.252381

12 -0.19461 18 -0.24015 30 -0.25684 18 -0.25143
60 -0.18938 22 -0.23044 15 -0.24387 52 0.205011   

Table 2: Ranking of optical properties variables according to Pearson sensitivity analysis (top 20) 
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5. EXPERIMENTS 

 

This chapter provides the results of the proposed tuning algorithms on two different sets of data.   

The first one is a one-dimensional mathematically generated data to show the effectiveness of the proposed 

algorithm.  The second set is multi-dimensional data from the papermaking process.  

 

5.1 Effect of Parameter Tuning Algorithm  

To show the effectiveness of the proposed parameter tuning algorithm, one needs to compare it 

with the current RBF techniques.  A multi-resolution radial basis function (RBF) network trained with FOS 

[15] has provided very promising results.  Therefore, it has been used here to provide the initial conditions 

for the parameter tuning algorithm.   

The intention is to see if the proposed algorithm can improve upon RBF/FOS.  Consider the 

following function 

 

 f=5*sin(x2)+sin(x)+x,             x∈ [0, 2π]. 

 

The objective is to use a fixed number of nodes and approximate this function once using RBF/FOS alone 

without any tuning and once with the proposed tuning algorithm.  For this example the final number of 

RBF nodes was set to be 10.   Starting with 100 training samples and using a 5-level multi-resolution grid, 

the FOS algorithm was first used to find the 10 most important RBF nodes, then the parameter tuning 

algorithm proceeded to tune the network parameters.  Using 900 testing samples, the results for both FOS 

and parameter tuning algorithm are shown in Figures 5 through 10.  Figure 5 provides network training, 

testing and testing error after FOS.  The network output and the real value were overlaid in this figure.  

Figure 6 provides the scatter plot for the network output and actual values.  Figures 7 through 10 provide 

the network performance after applying the parameter tuning algorithm.  Figure 7 provides network 

training, testing and testing error.  Figure 8 provides the scatter plot for the network output and actual 
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values.  Figure 9 shows how the network error is reduced during the parameter tuning process; the dashed 

line is for network training error and the solid line is for network testing error.  Figure 10 provides the 

Pearson correlation coefficient for the parameter tuning iterations. The dashed line is for network training 

data and the solid line is for network testing data.  Note that the application of the proposed training 

algorithm has improved the performance of the RBF/FOS network.   

In this experiment the learning rate was set at 0.005.  Note that the iterative tuning process is very 

stable due to 1) the dimensionality of the problem and 2) small step size.   In our experiments with high 

dimensional data, some oscillations have been observed.  However, if the initial conditions are good and 

the step size is appropriate then the procedure has usually converged to a solution.  Table 3 is a comparison 

of errors and Pearson correlation coefficients for the RBF/FOS network before and after the parameter 

tuning process.  Note that the error mentioned above is the Mean Square Error (MSE).  The linear 

regression for the same data set was also conducted for comparison.  The results have also been provided in 

Table 3.    
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Figure 5: Network training, testing and error (using FOS) 
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Figure 6: Scatter plot for the actual value and network output (using FOS) 
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Figure 7: Network training, testing and error (after tuning algorithm) 
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Figure 8: Scatter plot for the actual value and network output (after tuning algorithm) 
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Figure 9: Error for parameter tuning iterations 
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Figure 10: Pearson correlation coefficient for parameter tuning iterations 

 

Before the tuning process After the tuning process Linear 
regression

Training error 2.3026 0.4062 N/A
Testing error 2.435 0.5029 11.34
Pearson correlation 
coefficient (training)

0.8947 0.9852 N/A

Pearson correlation 
coefficient (testing)

0.8906 0.9817 0.19
 

Table 3: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning 
using FOS 

 

5.2 Training Data Selection 

  Now the network is used for the optical properties modeling problem.  For the experiments 

described in this section, the opacity data set for all grades of paper was used.  The total number of samples 

used for training and testing the network is 3079.   The sampling period is 15 minutes and each sample is 

the average over the minute data.  In the instantaneous mode of the tuning process, 302 training samples 
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(approximately 10% of the data set) and 2777 testing samples were used.  For the batch mode tuning 

process, 457 samples (approximately 15% of the data set) were selected for training and 2622 samples were 

used for testing.   

In order to see the effect of the training data selection, histograms of the training data set and the 

whole data set for each of the selected 6 variables are shown in figures 11 through 16.  In each figure, the 

left Y-axis denotes the histogram for the whole data set and the right Y-axis denotes the histogram for the 

selected training data set.  As can be seen that the distribution features of each variable have been 

represented well by the training set.  The X-axis consists of ranges for the variable, from the valid 

minimum to the valid maximum. 
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Figure 11: Histogram for variable 1 
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igure 12: Histogram for variable 2 
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Figure 13: Histogram for variable 3 
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Figure 14: Histogram for variable 4 
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Figure 15: Histogram for variable 5 
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Figure 16: Histogram for variable 6 
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5.3 Network Training And Testing 

5.3.1 Selecting The Training Data From The Entire Data Set 

Starting with the training points, as described in section 5.1, we used the initial center assignment 

procedure and the OLS algorithm to find a set of centers and their associated weights.  The instantaneous 

mode (section 3.5.2) and batch mode (section 3.5.3) parameter tuning algorithms were used to further 

optimize the network.  

 

5.3.1.1 Instantaneous Mode For Parameter Tuning 

For instantaneous mode parameter tuning, 10 centers were selected.  The instantaneous tuning 

process then modified the network parameters (centers, widths and weights).  The results are shown in 

figures 17 through 20.   Figure 17 provides network training, testing and testing error.  The network output 

and the actual value were overlaid in this figure.  Figure 18 provides the scatter plot for the network output 

and actual values.  Figure 19 provides the network error for the parameter tuning iterations, the dashed line 

is for network training error and the solid line is for network testing error. Figure 20 provides the Pearson 

correlation coefficient for the parameter tuning iterations. The dashed line is for network training data and 

the solid line is for network testing data.  For Figure 17 through Figure 20, the learning rate is set to 0.2 for 

the first 300 iterations, then changed to 0.1 for the rest.  Table 4 is a comparison of errors and Pearson 

correlation coefficients for the network before and after the parameter tuning process. Note that the dotted 

line is the network output and the solid line is the actual values in the following network training and 

testing figures. 
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Figure 17: Network training, testing and error 
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Figure 18: Scatter plot for the actual value and network output 
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Figure 19: Error for parameter tuning iterations 
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Figure 20: Pearson correlation coefficient for parameter tuning iterations 
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Before the tuning process After the tuning process
Training error 0.0958 0.1009
Testing error 0.1542 0.1324
Pearson correlation 
coefficient (training) 0.9896 0.9883
Pearson correlation 
coefficient (testing) 0.9835 0.9845  

Table 4: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning 

 

As we noted, before the tuning process began, the training error was 0.0958, the testing error was 

0.1542, the Pearson correlation coefficient for the training data set was 0.9896 and for the testing data set 

was 0.9835.  After the 600 iterations of the parameter tuning process, the training error was 0.1009, the 

testing error was 0.1324, the Pearson correlation coefficient for the training data was 0.9883, and the 

Pearson correlation coefficient for the testing data was 0.9845. 

As we can see, both the network testing error and Pearson correlation coefficient for the testing 

data set have been improved, but the network training error and the Pearson correlation coefficient for the 

training data set have been degraded a little, after the parameter tuning process.  The important point here is 

the fact that the testing or the network generalization has improved.  The training degradation could be due 

to the step size or the learning rate of the process, and only the error for one sample was considered for the 

parameter.  Because of the extensive computational effort of this mode, only 302 samples were selected for 

this mode and the process ended at 600 iterations.  

 

5.3.1.2 Batch Mode for Parameter Tuning 

For the first experiment of batch mode parameter tuning, 10 centers were selected.  The results are 

shown in Figure 21 through Figure 24.   Figure 21 provides network training, testing, and testing error.  The 

network output and the real value were overlaid in this figure.  Figure 22 provides the scatter plot for the 

network output and actual values.  Figure 23 provides the network error for the parameter tuning iterations; 

the dashed line is for network training error and the solid line is for network testing error.  Figure 24 

provides the Pearson correlation coefficient for the parameter tuning iterations; the dashed line is for 

network training data and the solid line is for network testing data.  For figures 21 through 24, the learning 
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rate was selected to be 0.15 for the first 220 iterations, then changed to 0.05 for iterations 221 to 1134, and 

to 0.02 for the rest.  Table 5 is a comparison of errors and Pearson correlation coefficients for the network 

before and after the parameter tuning process. 

 

Before the tuning process After the tuning process
Training error 0.0801 0.0454
Testing error 0.1359 0.1253
Pearson correlation 
coefficient (training) 0.9897 0.9942
Pearson correlation 
coefficient (testing) 0.9844 0.9862  

Table 5: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning 

 

It can been seen that from the above table, before the tuning process began the training error was 

0.0801, the testing error was 0.1359, the Pearson correlation coefficient for the training data set was 

0.9897, and the Pearson correlation coefficient for the testing data set was 0.9844.  After the 2134 

parameter tuning iterations, the training error was 0.0454, the testing error was 0.1253, the Pearson 

correlation coefficient for the training data was 0.9942, and the Pearson correlation coefficient for the 

testing data was 0.9862. 

As we can see, both the network training and testing error and Pearson correlation coefficient for 

the training data set and testing data set have been improved.  We can also see the testing error and Pearson 

correlation coefficient follow closely with the training process, which indicates the effectiveness of the 

tuning algorithm in improving the network generalization ability. 
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Figure 21: Network training, testing and error 
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Figure 22: Scatter plot for the actual value and network output 
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Figure 23: Error for parameter tuning iterations 
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Figure 24: Pearson correlation coefficient for parameter tuning iterations 

 

For the second experiment of batch mode parameter tuning, 20 centers were selected.  The results 

are shown by Figure 25 through Figure 28.  Figure 25 provides network training, testing and testing error, 

the network output and the real value were overlaid in this figure.  Figure 26 provides the scatter plot for 

the network output and actual values.  Figure 27 provides the network error for the parameter tuning 

iterations, the dashed line is for network training error and the solid line is for network testing error. Figure 

28 provides the Pearson correlation coefficient for the parameter tuning iterations, the dashed line is for 

network training data and the solid line is for network testing data.  For figures 25 through 28, the learning 

rate is set to 0.15 for the first 300 iterations, then changed to 0.09 for the rest.  Table 6 is a comparison of 

errors and Pearson correlation coefficients for the network before and after the parameter tuning process. 

 

Before the tuning process After the tuning process
Training error 0.065 0.0281
Testing error 0.1483 0.1319
Pearson correlation 
coefficient (training) 0.9915 0.9964
Pearson correlation 
coefficient (testing) 0.9827 0.9846  

 

 Table 6: Comparison of errors and Pearson correlation coefficients before and after the parameter tuning 

 

We can see from the above table that before the tuning process began, the training error was 

0.0650, the testing error was 0.1483, the Pearson correlation coefficient for the training data set was 

0.9915, and the Pearson correlation coefficient for the testing data set was 0.9827.  After the 1900 

parameter tuning iterations, the training error was 0.0281, the testing error was 0.1319, the Pearson 

correlation coefficient for the training data was 0.9964, and the Pearson correlation coefficient for the 

testing data was 0.9846. 
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As we can also see, both the network training and testing error and the Pearson correlation 

coefficient for the training data set and testing data set has been improved.  We can also see the testing 

error and Pearson correlation coefficient follow closely with the training process. 
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Figure 25: Network training, testing and error 
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Figure 26: Scatter plot for the actual value and network output 
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Figure 27: Error for parameter tuning iterations 
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Figure 28: Pearson correlation coefficient for parameter tuning iterations 

 

5.3.2  Selecting The Training Data From 50% of The Data Set 

In this experiment the first 50% of the data set was used for selection of the training data.  Then, 

the remaining 50% were used to test the network performance.  Note that the same methodology that was 

used to select the training data in the previous experiment was applied here.  The batch mode parameter 

tuning was used.  Figure 29 provides network training, testing and testing error.  The network output and 

the real value were overlaid in this figure.  Note that the testing is for the data that hasn’t been used for 

training data selection.  Figure 30 shows the scatter plot for the network output and actual values for the 

testing data set.  Figure 31 shows the network error for the parameter tuning iterations, the dashed line is 

for network training error and the solid line is for network testing error.  Figure 32 provides the Pearson 

correlation coefficients for the parameter tuning iterations, the dashed line is for network training data and 

the solid line is for network testing data.  For figures 29 through 32, the learning rate is set to 0.1 for the 

parameter tuning iterations.  The error is 0.20, and the Pearson correlation coefficient is 0.984 for the 

network testing. 
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Figure 29: Network training, testing and error 

 

 



 58

88 89 90 91 92 93 94 95 96
86

88

90

92

94

96

98
scatterplot

Actual value

Ne
tw

or
k o

utp
ut

 

Figure 30: Scatter plot for the actual value and network output 
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Figure 31: Error for parameter tuning iterations 
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Figure 32: Pearson correlation coefficient for parameter tuning iterations 

 

As can be seen, the network approximation is good over the totally unseen data.  This is because 

the training data selected from the first 50% data contains representative information for the whole data set, 

which makes the network have good generalization ability.  

 

5.4 Summary of The Results 

From the above experiments, we can conclude that the overall performance of the network has 

improved due to the tuning process.  Furthermore, batch mode parameter tuning outperforms instantaneous 

mode.  The change of testing error roughly follows the change of the training error, indicating that the 

generalization ability provided by the training process is good.  It was noted that the batch mode needs 

much less computation and hence it is faster than the instantaneous mode.  The experiments also showed 

that increasing the number of nodes beyond certain level only slightly improves the network performance.  

From the above results we can also conclude that the training data selection and RBF node selection 

schemes work well. 
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6. CONCLUSION AND POSSIBLE FUTURE WORK 

6.1 Conclusion 

An RBF neural network model with parameter fine-tuning has been proposed.  It has been shown 

that the proposed technique can improve upon the performance of the conventional RBF techniques.  This 

improvement can especially be observed when the conventional techniques fail to provide a good 

generalization.  For the fine-tuning process, it has been shown that the batch mode is better than the 

instantaneous mode for the experiments reported in this thesis.  The parameter tuning algorithm showed a 

good stability when the learning rate (step size) was selected appropriately.  

For the network model, a sensitivity analysis method using linear correlation was used here to 

select the important variables.  A scheme, which is based on the distribution characteristics of the data, was 

developed for automatically selecting representative training data. An initial center assignment procedure is 

applied based on the distribution characteristic analysis.  In order to select RBF nodes appropriately, 

enough data samples should be available to characterize each RBF node.  The OLS or FOS algorithm can 

be used to initialize the network with a set of good values for the parameters of all selected nodes, so that 

the fine-tuning process using the gradient method will have a good starting point.  It was also concluded 

that the behavior of the RBF network highly depends on how the parameters are chosen and not so much on 

the number of nodes, when the number of nodes reaches certain level.  

 

 

6.2 Possible Future Work  

This thesis dealt with the qualitative nature of the training data.  It would be beneficial to use 

information theory to define a quantitative measure for expressing how representative the training data is.  

When using the OLS or FOS algorithm to evaluate the contribution of a node, it’s important to make sure 

that the functional input space is sufficiently sampled.  This is worth further investigation.  Due to the 

number of parameters to be updated, the tuning process could take long time to achieve a good solution if 

too many nodes are used for the network or the learning rate is not appropriately selected and updated.  



 61

Therefore it is very important to appropriately adjust the learning rate in terms of efficiency, stability and 

convergence.  Some momentum and dynamic adjustment of step size could improve the behavior of the 

gradient method [16].  Note that for the RBF network model discussed in this thesis, the covariance matrix 

 is diagonal.  This greatly simplifies the mathematical derivation and notation, especially for high 

dimensional input spaces.  Nevertheless, it may be helpful to investigate the effect of a full covariance 

matrix. 

The proposed algorithm was applied to a mathematical example for validation of the technique.  It 

was also applied to an industrial process.  Further test and evaluation with other industrial processes are 

needed to fully realize the advantage and disadvantages of the proposed technique.   
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