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The current versus voltage (IN) characteristics of undoped and gold doped 

W03 thin film sensors were studied both experimentally and theoretically. A 

simplified equivalent circuit was formulated for the W03 sensor. It includes forward 

and reverse biased Schottky diodes which represent the contact region between the 

electrodes and the film and a resistor which represent the sum of crystallite resistance 

and the intercrystallite resistance between the individual crystallites. According to the 

electron transport mechanisms through the Metal Semiconductor (MIS) boundaries 

and intercrystallite boundaries, two kinds of yV and corresponding 

ResistanceNoltage(RN)characteristics are possible, one based on thermionic 

emission theory and the other based on tunneling theory. 



A one channel gas delivery system was built to experimentally determine the 

IN characteristics. The experimental results were obtained for both gold-doped W03 

and undoped W03 sensors. The W03 films were R-F sputtered onto a sapphire 

substrate and annealed in compressed air at 400°C for 24 hours. The voltage range for 

the tests was fiom -20V to 20V and the temperature range was fiom room 

temperature to 400°C. The experimental results for the IN characteristics were taken 

in compressed air, 30 PPM H2S and in ethylene. The IN experimental results are 

approximately linear except in the lower voltage region where they are nonlinear. The 

RN results are more sensitive and nonlinear. Besides, the sensor performance was 

also examined in the AC case. The preliminary results on real and imaginary 

components of the impedance were also presented as a function of frequency and 

voltage. 

Comparing the experimental results of the IN characteristics and the 

corresponding R N  characteristics taken in compressed air or target gases such as H2S 

with the theoretical curve predicted by themionic emission and tunneling theories, it 

is obvious that the tunneling effect is the dominant electron transport mechanism in 

the W03 thin film sensor. The depletion width is the key parameter which determines 

the appropriate electron transport mechanism associated with MIS and intercrystallite 

boundaries. Since the depletion width is related to the argon oxygen ratio in the R-F 

magnetron sputtering system one can apriori design a sensor which will exhibit either 

themionic emission or tunneling at the MIS and intercrystallite boundaries. 
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1 .I Backgroygd 

The need for sensors for a wide range of applications has been recognized for 

many centuries. People in the early times used animals and birds as sensors to detect 

dangerous gases such as methane (CH4) and hydrogen sulfide (H2S). In recent years 

the detection of toxic gases has become more important since environmentally 

harmful gases such as nitrogen oxide (NO,), sulfur oxide (SO,) and warfare agents 

pose a serious problem to the military, general public and the environment. Toxic 

gases such as NOx and SO, are produced as by products of the mining and refining of 

fossil fuels, the burning of these fuels for energy and the manufacturing process itself. 

In large quantities, these gases have a devastating effect on the nation's environment 

and the health of its population in the form of ozone, acid rain, ground water 

contamination and smog. More recently, chemical and biological warfare agents have 

become potential threats not only to soldiers in the battlefield but also to people in 

congested areas such as airports or sports arena which maybe the target of terrorists. 

The need for in situ gas sensors which can respond sensitively, selectively and 

quickly to a target gas has accelerated research on a variety of gas sensors. In the 

early 2oth century rapid advances in technology prompted the development of various 

types of sensors. Table 1 shows the history of the development of some important 

chemical sensors. 



11923 katalvtic combustion-be sensor 1 
1930 
1938 

11961 kolid electrolvte-tvpe sensor I 

Glass electrode for pH measurement 
Humiditv sensor using LiCl Film 

i952 
196 1' 

~alvanic  cell-type gas sensor 
Ion electrode sensor 

1962 
1964 

Metal-Oxide semiconductor gas sensor(Taguchi sensor) 
Piezoelectric auartz crvstal sensor 

1966 
1970 

Glucose sensor 
ISFET 

1970 
1975 
1976 

Optical fiber gas sensor 
Pd gate FET hydrogen sensor 
A/F sensor for the automobile 

1977 
198 1 

Table 1 : History of the development of some important chemical sensors 

Enzyme FET 
Surface Acoustic wave gas sensor 

1989 
1991 

One of the most interesting and sensitive gas sensors studied is the 

semiconducting metal oxide semiconductor (SMO) gas sensor. The initial work on 

this type of sensor may be traced to the work of Bardeen et al. [I] in 1950. Bardeen et 

al. were working on the development of a novel semiconductor device when they 

discovered that gas sorption onto the semiconductor surface caused significant 

changes in the electrical conductivity. They needed to passify the semiconductor 

surface so as to eliminate the conductivity change due to the sorption of gas. In the 

early 1960's Seiyama [2,3] made the first deliberate effort to use the active surface on 

the semiconductor as a gas sensor. Seiyama monitored the change in the conductivity 

of a host of semiconducting films when they were exposed to gases such as CO, 

Acoustic Plate mode sensor 
Love mode Sensor 



alcohol and oxygen. Since that time, a large amount of research was performed [4] in 

order to realize commercial semiconductor devices for gas detection. The first gas 

sensor and perhaps the most famous did not appear until 1968 and was the result of a 

tremendous amount of work by Naoyoshi Taguchi[S]. When Taguchi started his work 

he had no knowledge of gas absorption or even metal oxide semiconductors. His 

motivation for the development of the gas sensor was triggered by a liquefied 

petroleum gas explosion in Japan which killed ten people. He went fiom the 

beginning to the end of the periodic table before he finally settled on Sn02 as the 

sensing element. After an almost superhuman effort he developed a commercial 

product [5] called the Taguchi sensor resulting in the most widely available 

commercial SMO sensor to date. These sensors operate on the principle that a 

chemical reaction between the gas species to be detected and a semiconductor sensing 

film produces a change in the film resistance. Therefore upon application of a voltage 

or current to the sensing film, the film resistance becomes a direct measurement of 

the gas concentration. These sensors have now grown to be very important devices 

for detecting a wide range of gases. 

1.2 Metal Oxide Semiconductor Sensor 

Metal oxide semiconductors have been used as gas sensing materials because 

of their high sensitivity to the presence of various gases in the ambient atmosphere. In 

order to explain their high sensitivity it is necessary to examine the semiconducting 

properties of the metal oxides. Metal oxides can be classified as being poor 

3 



semiconductors. The electron concentration in these oxides however can change 

dramatically with the introduction of impurities into the metal oxides. In order to 

illustrate the dramatic changes in electrical conductivity that trace impurities can 

cause, consider as an example, silicon. If a silicon wafer is doped with a small amount 

of phosphorus (less than 1 phosphorus atom in lo6 silicon atoms), the conductivity 

will be increase by a factor of lo9 which illustrates the fact that only a very small 

concentration of a dopant can change electron concentration significantly. 

The SMO sensor can be configured in a variety of different ways. Figure 1 

shows two possible structures for the SMO sensor. The early one (Figure la) is the 

Taguchi sensor and the more recent one was made by researchers in the Laboratory of 

Surface Science and Technology (LASST) at the University of Maine. Typically, the 

metal oxide semiconducting films, of which tin oxide (Sn02), tungsten trioxide 

(W03), titanium oxide (Ti02) and zinc oxide (ZnO) are the most popular, are 

deposited onto an insulating substrate using vacuum evaporation or sputtering 

techniques. Metal electrodes are deposited as electrical contacts to the sensing layer. 

Since a significant interaction of a target gas with the metal oxide film occurs over a 

narrow temperature range, it is also necessary to have a heating element capable of 

accurately achieving a desired temperature. The heating element in the Taguchi 

sensor is a coil of wire shown in Figure 1 a while in Figure 1 b the desired temperature 

is achieved with an electrode configuration representing a heater and resistance 

temperature device (RTD). 



he& and RTD/ 

TOP BOTTOM 

Figure 1 : (a) Taguchi Sensor (b) Sensor structure made in LASST 

Once the metal oxide film has been deposited the film is heated to a certain 

temperature for a set period of time. This process is called annealing. Basically the 

annealing process stabilizes the film in terms of the structure and electrical properties. 

In the case when the film was deposited at or near room temperature the film is 

amorphous in structure. The annealing process causes the film to transition fiom an 

amorphous structure to a polycrystalline structure. In this process water is irreversibly 

driven fkom the film. The annealing process also rids the film of surface impurities or 



contaminants which may lead to changes in the film's electrical properties over time. 

Typically the annealing process is performed in dry air at elevated temperatures for a 

set period of time. As an example of the stablization of the electrical properties of the 

film, Figure 2 shows the variation of the conductivity of W03 as a function of 

inverse temperature [6]. At about 3 15°C a discontinuity in the conductivity is 

observed indicating the amorphous to polycrystalline phase transition. Repeated 

heating and cooling will follow the trace from E to D reversibly. This process has 

been shown to not only stabilize the film structure but hasten the chemical kinetics 

resulting in a faster and more sensitive response to a target gas. 

2SOA goH doped W 0 3  fh 
on h i n a  substrate. 

Figure 2 : The electrical conductivity as a function of inverse temperature for W03 

film. Arrow indicates the direction of increasing and decreasing temperature[7]. 

It is also possible to improve critical sensor properties such as selectivity, 

response time and response magnitude by dispersing small metallic particles such as 

gold or platinum on the metal oxide semiconductor surface. The catalysts can not 



only concentrate the reactants by adsorbing the appropriate gas molecules, but also 

provide a reaction path which requires a small amount of activation energy. As a 

consequence the response and recovery times are shortened and the sensitivity is 

increased [8]. 

In conventional chemiresistive sensors, the resistance is monitored while the 

sensor is in the test environment. The target gas interacts chemically with the sensing 

film causing a change in the number of mobile electrical charge carriers. If the 

absorbing gas is a reducing agent, it injects electrons into the semiconductor and 

causes the conductivity to increase and if it is oxidizing agent, it extracts electrons 

fiom the semiconductor and the corresponding conductivity decreases. The film 

resistance is typically monitored by an electrometer, which supplies a DC voltage to 

the test device, measures the resulting current, and uses Ohm's law to calculate the 

resistance. One could also supply current through a test device and measure the 

voltage drop between the electrodes. An equivalent circuit for the DC case is shown 

in Figure 3, where the film resistance, Rs, is an indicator of the gas concentration and 

R represents the contact resistance. If the sensing element is just a resistor, one should 

get a linear current voltage characteristic as shown in Figure 4(a). In reality, 

however, one often obtains a nonlinear behavior as shown in Figure 4(b). This may be 

due to the effect of grain boundaries in the film and the metal semiconductor junction 

formed between the metal contacts and the film [9]. 



Ammeter 

Figure 3 : Equivalent circuit 

current 

(PA)  

for the SMO sensor in the DC case 

Figure 4 : (a) ideal IN curve (b) real IN curve of SnOz sensors[lO] 

The SMO sensor may also be operated in an AC mode. In this case an AC 

voltage is applied and the impedance of the film is measured. This type of sensor has 

the advantage that one can choose the frequency of operation and measure the real 

and imaginary components of the impedance. Therefore when compared to the 

chemiresistive sensor which has only the film resistance as a measure of gas-film 

interaction, the impedance based sensor has four parameters, namely the real , 

imaginary, magnitude and phase components of impedance . This enables one to 

monitor not only the change in electron concentration but also the accumulation or 

depletion of charge at the metal oxide interface region and at the intercrystalite 

boundaries. The resulting current versus voltage characteristic is more complex. 
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Figure 5 shows a possible equivalent circuit in the AC case. One can clearly see that 

the equivalent circuit is a complex arrangement of capacitors and resistors, with Cei, 

Ki ,  Ceo, KO being the circuit elements associated with the input and output 

electrodes, C, and Rs being the circuit elements for the sensing element, Ci and Ri 

being the circuit elements for the interface between sensing element and substrate 

and Cb and Rb being the circuit elements for the substrate. Based on preliminary 

investigations of the impedance of metal oxide films [ l  11, a significant variation in 

the real and imaginary parts of the impedance as a function of frequency occurs. The 

Schottky barrier and capacitive effects at the electrodes and intercrystalite boundaries 

may be responsible in part for these variations. 

R e i  - - - - - - - - 
C e i  C i  C e o  

I- 

Figure 5 : Equivalent circuit for an SMO sensor in the AC case. K i ,  Cei, KO and Ceo- 

circuit elements of the input and output electrodes; C, and R,-circuit elements for the 

sensing element; Ci and Ri-circuit elements for the sensing element/substrate 

interface; Cb and &-circuit elements for the substrate. 



Little or no work has been done on the current voltage characteristics in the 

DC or AC case. In the DC case, one should expect a linear behavior if the sensing 

element is a pure resistor, however preliminary measurements [lo] indicate a 

nonlinear behavior. In the AC case, the behavior is more complex because one must 

take into account the behavior of the capacitor's charging and discharging. 

1.3 Objective 

The transport properties of the mobile carriers in polycrystalline 

semiconductor compounds constitute the basis for understanding the sensing function 

of semiconductor gas sensors. If there is no bias voltage across the film, the carriers 

are in an equilibrium state, however, if one applies a voltage, the applied voltage 

would cause the electrons to move and overcome the potential barriers at the metal 

electrode semiconductor junction and intercrystallite grain boundaries and become 

free. Because the conductivity is directly proportional to the free charge concentration 

and the resistance is proportional to the inverse of the conductivity, a change in 

voltage may change the resistance. There is charge on the depletion region boundaries 

giving rise to capacitive effects. In the DC case, since the frequency is OHz the 

impedance due to the capacitor is infinity which corresponding to an open circuit. 

When frequency is increased the corresponding impedance is not infinity and one 

must taken into account the capacitive effects in the AC case. 

The major objective of this thesis is to perform an experimental and theoretical 



study of the voltage versus current characteristics of an undoped and gold doped W03 

thm film sensor exposed to air and air plus a target gas. In order to determine the 

current voltage characteristics of a W03 film, a one-channel gas delivery system was 

built. In order to examine the effect of temperature, the current versus voltage 

characteristics were taken in synthetic air from room temperature (23°C) to 400°C. 

For the gas effect, two candidate gases were chosen, hydrogen sulfide (H2S) and 

ethylene (CH2), both of which are reducing agents. The voltage current characteristic 

is examined under different gas concentrations. The sensitivity versus voltage and gas 

concentration at different temperatures is discussed in detail. Band structure theory is 

used to explain the metal and n-type semiconductor interface and the interface at the 

crystallite boundaries in the semiconductor. In addition, the sensor performance is 

also examined in the AC case. The preliminary results on real and imaginary 

components of the impedance are also presented as a function of frequency and 

voltage. 

1.4 Organization 

The thesis consists of four major segments, which include the theory of a 

metal semiconductor interface and intercrystallite boundaries, the experimental setup 

for measuring the current versus voltage characteristic, the experiment results and 

comparison with theory, conclusions and future work. 



The thesis is divided into 5 chapters. Chapter one presents the introduction, 

background, objective and organization. The second chapter presents the equivalent 

circuit model for the W 0 3  thin film sensor. A real circuit was built and the current 

versus voltage characteristics were measured. The electron transfer behavior was 

explained using band theory. The third chapter presents a general description of the 

experimental gas delivery system for controlling the temperature and the ambient and 

target gas concentrations. The testing system for measuring the current versus voltage 

relationship and resistance versus time is also presented. The fourth chapter presents 

the experimental results of the W characteristics under ambient and different gas 

exposures. For the ethylene gas, the detailed W relationship under different ethylene 

concentration is presented. The sensitivity versus temperature, voltage and gas 

concentration is discussed in detail. In addition, the real and imaginary components of 

impedance in the AC case are presented as a function of frequency and voltage. In the 

DC case a comparison of the behavior of an equivalent circuit model and the real 

SMO thin film sensor is presented and conclusions are drawn. The fifth chapter 

presents a summary of the present work and discusses future work. 



2. THEORY OF THE IN CHARACTERISTICS OF 

SEMICONDUCTING METAL OXIDE SENSORS 

This chapter presents the structural and equivalent circuit models and the 

theory of electron transport for the W 0 3  thin film sensor. The electron transport 

behavior is explained using band theory. Four different electron transport 

mechanisms are discussed in this chapter. These transport mechanisms are drift and 

diffusion, themionic emission and themionic field emission which is the tunneling 

effect. 

2.1 Structural Model for the Thin Film Sensor 

The W 0 3  films may exist in either an amorphous or polycrystalline state or 

a combination of both. An amorphous film is highly disordered and exhibits no 

periodicity while a polycrystalline film consists of many randomly oriented 

microcrystalline regions, each of which exhibits periodicity. Since the films are 

deposited at elevated temperatures or annealed after deposition, they typically exhibit 

a polycrystalline microstructure. 

The structure of the metal oxide thin film sensor can roughly be modeled 

physically as shown in Figure 6. In this figure, the basic sensor structure consists of a 

polycrystalline film and the contact electrodes. Microscopically each semiconductor 

crystallite is connected with its neighbors by a grain-boundary. Electrons can move 



across the potential barrier at each boundary. The gas film interaction can change the 

barrier height and the number of free carriers which results in a change of the 

electrical resistance of the film. The non-ohmic contact of the metal-semiconductor 

junctions may also lead to potential barriers, the effects of which can be compared to, 

and compete with, those already mentioned for grain boundaries. 

grain boundary 

Figure 6: Structural model for a polycrystalline sensor 

The chemistry and physics associated with the semiconductor gas sensor is 

complex in regard to both the sensor's reactivity towards gases and structure. In order 

to simplify the problem, it is assumed that the film consists of only a single layer of 

crystallites as shown in Figure 7. The energy band diagram along with a possible 

equivalent circuit representation is also presented in Figure 7. 

An examination of the band structure reveals the existence of various potential 

barriers introduced by metal semiconductor junctions and crystallite or grain 

boundaries. The height of the potential barrier is dependent on a variety of 

parameters, which include specific film deposition parameters, temperature, gas 

environment, SMO film type and metal electrodes. These barriers and the bulk 

crystallites can be represented in terms of an equivalent ladder network consisting of 

combinations of resistors and capacitors. 



Figure 7: The physical structure of SMO sensing element which consists of metal 

contact (grey) connected by grains of polycrystalline SMO film (clear) with surface 

catalyst loading(smal1 black dots). An idealized conduction band diagram indicates 

the potential barriers between the microcrystals with partial filling of the conduction 

band in the grains. The one dimensional equivalent circuit of the film and contacts is 

represented as a RC ladder network. 

The equivalent circuit for the sensor includes the crystallite resistance, R,, the 

grain boundary resistance, Rb, grain boundary capacitance Cb, the metal- 

semiconductor junction resistance and capacitance, Rc and Cc and the electrode finger 

resistance R,. One can combine each of the circuit elements to an equivalent 

impedance for the sensing element. When significant interactions occur between the 



sensing element and the measurand, the values of the circuit elements, R, , C ,  , R, , Rb 

and Cb , may change. 

The electrodes used in conductimetric sensors are noble metals such as 

platinum. If one used oxidizing metal such as aluminum as electrodes one must 

consider the contact with the semiconductor as a metal-insulating oxide 

semiconductor contact. This is due to that fact that oxidizing metals are prone to 

oxidize. However if a noble metal such as platinum is used for the electrodes the 

contact is a metal semiconductor contact. 

2.2 Electron Transport in Semiconducting Metal Oxide Films 

Most semiconducting metal oxide films such as W03 are n-type 

semiconductors. The n-type behavior is due to the fact that oxygen vacancies exist in 

the film. Therefore the ratio of oxygen ions to tungsten ions is not exactly three to one 

but slightly less. This gives rise to weakly bound electrons around some of the 

tungsten ions. These weakly bound electrons readily enter the conduction band 

causing the metal oxide to be n-type. The oxygen vacancies are then said to act as 

donors in the film. The geometry of the film is severely interrupted at the surface. 

This can lead to localized allowed energy levels which may occur in the energy gap. 

Since metal oxides are more ionic than covalent in nature, the metal ion is referred to 

as the cation and oxygen is the anion. The surface metal ions have a complete outer 

shell of electrons but capture extra electrons due to their net charge and therefore act 

as acceptors. For a single crystal, Figure 8 shows the band structure of the metal 



oxide semiconductor surface. In this case, there is no net surface charge and it is 

called the flat-band case. The surface states are shown as narrow bands with the 

donor state occupied and the acceptor states unoccupied. 

Ekcbma in n-type metal oxide 
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Figure 8: Band structure for an n-type metal oxide. 

Since the allowed energy levels for the acceptor state is less than the 

conduction band electron energy, the electrons from the donor sites in the n-type 

metal oxide move into the acceptor states creating partially occupied acceptor states. 

A so-called double layer is then formed which has positively charged donor ions in 

the semiconductor and negatively charged surface acceptor states as a sheet of 

charges on the surface. The double layer is shown in Figure 9. The region 0 < x < xo 

is called the space charge layer or depletion layer and is depleted of any mobile 

charges. 

In the previous discussion the majority of the carriers in the metal oxide 

semiconductor were electrons and they migrated to the surface giving rise to a so- 

called double layer. This is a normal case for semiconductor metal oxide gas sensors. 
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There are, however, two other cases. One related to the situation when there is an 

excess of majority carriers on the surface or an accumulation layer. The other case 

has an excess of minority carriers on the surface which is called an inversion layer. 

Occyicl 
surhce donor 
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Figure 9: The double layer near a metal oxide surfaces. 

The accumulation layer is caused by surface donor states that are located near 

the conduction band of the semiconductor as shown in Figurelo. The donor electrons 

are injected into the conduction band and positively ionized donor states appear on 

the surface along with an excess of electrons. 

u Level 

Figure 10: An accumulation layer in an n-type metal oxide whose surface donor states 

are in the conduction band. 
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A surface inversion layer is formed if the surface acceptor states can obtain 

electrons from the valence band as shown in Figure 1 1. The surface has negatively 

charged ionized acceptors, positively charged donors and holes. This is called an 

inversion layer since it has excess holes on the surface while the metal oxide is n- 

type. Although the majority of carriers in the metal oxide semiconductor bulk are 

electrons, the positively charged holes near the surface form a p-type channel. Holes 

then move through this channel and increase the conductivity. This type of channel is 

the dominant transport mechanism in the silicon field effect transistor (FET) based 

sensors. 

Acceptnr - - - -  - -  
States , E f 

(metal ion) 

I f  Hdes 

Figure 1 1 : An inversion layer in an n-type metal oxide which has ionized acceptors, 

ionized donors and holes near the surface region. 

The semiconducting metal oxide film structure is assumed to be 

polycrystalline, and therefore consists of several crystallites combined together as 

shown in Figure 6. Since intergranular boundaries appear in polycrystalline films, it is 

worthwhile to examine these boundaries more closely. In the present work it is 

assumed that the depletion region and the associated double layer as shown in Figure 
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9 occur. The surface of the crystallites are negatively charged with partially occupied 

surface acceptor states due to the surface metal ions. The positively charged donor 

ions in the depletion region are due to the oxygen vacancies. Figure 12 shows the 

charge distribution density in the depletion region. 

Figure 12: Charge distribution density in the depletion region. xo is the depletion 

region width. 

The charge density in this region is given as follows: 

and 

where 

ND = concentration of oxygen vacancies in the metal oxide. 

The separation of charge in the depletion layer causes an electric field and 

hence surface barrier potential to appear. In order to determine the variation of the 

potential, q, across the depletion region one must solve the one-dimensional 

Poisson's Equation given as follows, 



where 

E = the metal oxide dielectric constant. 

It is assumed that the doping is homogeneous and E is homogenous, therefore ND 

does not vary with x. 

It is convenient to define a parameter, V, so as to be able to relate more 

directly to the band structure, as follows, 

where 

a,b = potential in the metal oxide bulk. 

Solving equation (3) for q$x) , substituting into equation (2) and integrating twice 

from x to xo using the two boundary conditions, d V / '  = 0 and V=O at x=xo, one 

obtains, 

The surface potential, Vs , at x=O then becomes 

( 5 )  

The variation of the potential across the depletion region is shown in Figure 13. 

Electrons must overcome the surface potential barrier to become free. 



Figure 13 : Variation of the potential, V(x), across the depletion region. 

Since a separation of charge occurs near the surface of the metal oxide, a 

space charge capacitance exists. The resulting capacitance can be approximated as a 

parallel plate capacitor and represented as follows, 

where E is the dielectric constant and A is the contact area. Solving equation (6) for xa 

and substituting into equation (5) one obtains, 

(7) 

If a bias voltage, V,, is applied across the depletion region equation (7) may be 

written as 



(8) 

It is interesting to note that if one plots I& as a function of V, two important 

parameters can be obtained, namely, the oxygen vacancy concentration, ND, and the 

surface barrier potential, Vs. 

Basically two types of conductivity can exist in a metal oxide semiconductor. 

In a single crystal with no surface states or surface barrier present the conductivity is 

given as follows, 

(9) 

where 

ND = donor density in the metal oxide (number of carriers per unit volume in the 

film) 

And 

p,, = carrier mobility. 

A surface conductivity arises when surface states are located at the semiconductor 

metal oxide surface. These surface states can cause a depletion , accumulation or 

inversion layer to appear at the surface which in turn modify the carrier 

concentrations. The surface conductivity, a,, may be defined as follows, 



(10) 

where 

N = the number of carriers at the surface per unit area of the film. 

Basically the semiconducting metal oxide can be modeled as shown in Figure 14. 

Figure 14: Model of the semiconducting metal oxide with surface and bulk film 

conductivities. The cross-hatched regions are electrodes, the dotted region is the film 

and the remaining area is the substrate. 

Since the two conductances are in parallel, the overall sheet conductance, G, 

of this structure is given as, 

G = G, +G,, 
where 

t = film thickness 

1 = length of the layer between the electrode 



and W = width of the film. 

Between the two crystallite boundaries there forms a potential barrier, it may 

due to an inherent space charge region or due to the lack of periodicity of the 

crystallite. This barrier can be represented schematically for an n-type semiconductor 

in Figure 15. The grain size is L1 and the grain boundary width is Lz. 

Figure 15: The energy band representation of an n-type polycrystalline semiconductor 

thin film with a grain size, LI,  and a grain boundary width, L2. The grain boundary 

barrier potential is q4b. 

In the case of a single grain boundary between two crystallites the total 

resistivity, PT, can be written as 

(12) 

where the PB and pc signify boundary and crystallite resistivities respectively. 

Normally, p~ >PC, since the electron must overcome the double potential barrier 



shown in Figure 15 in order to cross from one grain to another. This is further 

substantiated experimentally in Figure 16, which shows that the resistance, when 

measured across a crystallite or grain (essentially a small single crystal), is much 

lower at all temperature than the resistance across a single grain boundary. 

Simle Boundarr 

6 

Figure 16: Resistance-temperature characteristics of single grains and single grain 

boundaries on a large grained ceramic [12] 



Equilibrium 

Figure 17: Band diagram illustrating band bending at grain boundary (a) two crystals 

have the same orientation in equilibrium (b) two crystals have different orientation in 

equilibrium (c) under applied voltage (the case of same orientation)(fiom Cohen et 

Generally, the different crystallite has different orientation which may result 

different surface band diagrams. In order to keep the continuity of the boundary the 

Fenni level will be tilted and the difference between the two conduction band will 

cause a potential barrier as presented in Figure 17b. But one may end up with a 

situation that all the crystallites have the same orientation which is presented in 

Figure 17a. If a potential is applied to the polycrystalline sample, the barrier height 

will decrease with the increase voltage as presented in Figure 17c. Generally speaking 

there are two ways for electrons to move across the crystallite boundaries. One way is 

for the electrons with sufficient kinetic energy to go over the potential barrier.This 

transport mechanism is also called themionic emission. The other way is that when 

the width of potential barrier is small the electron will tunnel through the barrier. The 
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detailed information regarding different electron transport mechanisms will be 

presented in the metal-semiconductor junction part[Section 2.3.31. If one assumes that 

the electron transport mechanism between the crystallites obeys the themionic 

emission, the current voltage relationship for the barrier can be expressed as [13], 

(13) 

where j is the current density, nl ,the mean majority carrier density in the grains, mb, 
the potential height of the barrier, Iv, I , the absolute voltage drop across the barrier, 

and M is a factor that is barrier height dependent. The derivation of this I/V 

relationship is similar to the themionic emission theory for the metal semiconductor 

junction which is given in Appendix B. 

Since typically the resistivity of the grain boundary is much higher than that 

of the crystallite one could neglect the contribution from the crystallite and assume 

that all the applied voltage will appear across the crystallite boundaries. Considering 

that there are Nl crystallites in series, if one applies a total voltage V across the film 

then the voltage across one crystal boundary, Iv, I , is 

IVbI = VIN, = VlnL, (134 

where n is the number of crystallites per unit length of the film and L is the length of 

the film in the direction of current flow. 

Because of the many crystallite boundaries in the film the voltage drop across 

qlvbl  < 1 and any one crystallite, q (v, I , is small compared to kT, 0 < - 
kT 



X x2  ex^[^^^)-. Since ex =I+-+-+ . , i x ,  2 isverysmall 
l! 2! 

and can be neglected then ex - 1 = x . According to this approximation, equation (13) 

becomes 

Using equation (1 3a) and (1 3b), one obtains the total current: 

I = jwd = Mn, exp 
q Vwd 

where w and d are the width and thickness of the film respectively. 

When a gas sorbs on a semiconductor and chemical kinetics occurs, a change 

in electron concentration takes place causing a change in the height of barrier 

potential. This in turn will effect the electron transport properties across the 

barriers and hence the current versus voltage characteristics(conductivity) of the film. 

2.3 Metal Electrode Semiconductor Junction 

2.3.1 Origins of the Schottky Barrier 

The metal semiconductor junction between Pt and W 0 3  fornls what is 

commonly called a Schottky barrier. The earliest model put forward to explain this 

kind of barrier is due to Schottky and Mott [15,16]. According to this model, the 

barrier results from the difference in the work functions of the two materials. The 

energy band diagrams in Figure 18 represents the situation before the metal and 
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semiconductor are brought together. It is assumed that there are no charges at the 

surface, so the band structure of the surface is the same as that of the bulk. The work 

function of a metal, &, , is defined as the amount of energy required for an electron to 

go fiom the Fenni level to the vacuum level. The vacuum level is the energy level of 

the electron with zero kinetic energy just outside the metal. The work function, @s, of 

the semiconductor is defined similarly and is a variable quantity because the Fermi 

level in the semiconductor changes with the doping. Another important parameter that 

does not depend upon doping in the semiconductor is electron affinity, X, , which is 

defined as the energy difference between vacuum level and the lower edge of 

conduction band. The energy levels are usually expressed in electron volts ( e v .  

METAL SEMICONDUCTOR 

LEVEL 

Figure 18: Electron energy band diagrams of metal contact to n-type semiconductor 

with &,>@, , and the materials separated fiom each other. 

In a contact between two different materials, the electrons fiom the 

conduction band in one material, which have higher energy, flow into the other 

material until the Fermi level on the two sides are brought into coincidence. The 

energy levels in the two materials are rearranged relative to the new common Fermi 

3 0 



level. The electrons in the metal and semiconductor obey Fermi-Dirac statistics. 

Therefore the probability that an electron has an energy E , namely, f(E), is defined as 

follows[l7], 

where k is Boltzman's constant, T is the absolute temperature and Ef is the Fermi 

level of the material. The probability that a state is occupied by a hole isf,(E) = 1- 

f(V. 

There are two classes of metal and n-type semiconductor contacts. One is a 

contact between a metal and a semiconductor where the work function of the metal is 

greater than that of the semiconductor and the other is a contact between a metal and 

a semiconductor where the work function of the semiconductor is greater than that of 

the metal. The q& of W03 is unknown but typically the metal semiconductor junction 

is less than 3eV and the &, of platinum is 5.9eV[18], the contact between platinum 

and W03 may belong to the first class. 

Figure 19 shows the energy band diagram after the contact is made and 

equilibrium has been reached and illustrates the process of barrier formation. 



Figure 19: Electron energy band diagrams of metal contact to n-type semiconductor 

with &>4s in thermal equilibrium after the contact has been made. 

Wo is the width of the depletion region. Because electrons in the conduction band of 

the semiconductor have a higher energy than electrons in the metal, the electrons will 

move from the semiconductor side to the metal. As the electrons move out of the 

semiconductor, the fiee electron concentration in the semiconductor region near the 

Ptkemiconductor interface decreases. Since the separation of Ec (conduction band 

edge) and EF (Fermi level) increases with the decreasing electron concentration, and 

in thermal equilibrium EF remains constant, the conduction band will bend up as 

shown in Figure 19. The conduction band electrons which cross over into the metal 

leave a positive charge of ionized donors or oxygen vacancies behind, so the 

semiconductor region near the metal is depleted of mobile electrons. Thus a positive 

charge is established on the semiconductor side of the interface and the electrons 

which cross over into the metal form a negatively charged surface atomic layer. This 

is due to the fact that the electron concentration of the negative electronic charges 

from the semiconductor is small compare to the concentration of free charge 



electrons in the bulk of the metal. Therefore the negative electronic charges will 

remain at the surface of the metal instead of diffusing into the bulk. As a result an 

electric field is established from the semiconductor to the metal. The width of the 

space charge layer in the semiconductor is appreciable because the donor 

concentration in the semiconductor is several orders of magnitude smaller than the 

free electron concentration in the metal. 

Let us investigate how much the energy bands in the semiconductor will bend 

up. It should be evident that since the band gap of the semiconductor is not changed 

by making contact with the metal, the valence band edge Ev will move up and is 

parallel to the conduction band edge, E,. Also because the electron affinity of the 

semiconductor is assumed to remain unchanged even after the metal contact is made 

the vacuum level in the semiconductor will follow the same variations as E,. Thus, 

for a metal-semiconductor system in thermal equilibrium the important point which 

determines the barrier height is the fact that the vacuum level on the semiconductor 

side must approach the vacuum level on the metal side. The amount of band bending 

is equal to the difference between the two work functions. This difference is given by 

q K, where 6 is known as the contact potential difference or the built-in potential of 

the barrier. Electrons moving from the semiconductor into the metal have to climb 

over this barrier. However, the barrier looking from the metal toward the 

semiconductor is different and is given by 

Since 



solving equation (16) for xs and substituting into equation (1 5) and noting that 

qh = & - 4s, one obtains 

Let us examine the barrier under bias voltage. Figure 20a represents the 

thermal equilibrium energy band diagram of the contact. At equilibrium, there is no 

net current flow because the rate of electrons moving fiom the metal to the 

semiconductor and fiom the semiconductor to the metal are balanced. The applied 

voltage will change the equilibrium band diagram by changing the total curvature of 

the bands and at the same time modifying the potential drop across the depletion 

region. When the forward voltage VF is applied that means the semiconductor is 

negative relative to the metal, the voltage across the depletion region is reduced to 

Vi- VF as shown in Figure 20(b) and the corresponding depletion width is reduced. 

The electrons on the semiconductor side see a reduced barrier and as a result 

the electron flux fiom the semiconductor towards the metal is increased above its 

value under thermal equilibrium. The electron flux from the metal to the 

semiconductor is not changed because 4B is unchanged by the bias voltage. Noting 

that the traditional definition of current flow is opposite to electron flow, a net 

current flows fiom the metal to the semiconductor. 



Figure 20: Electron energy band diagrams of a metal contact on an n-type 

semiconductor (a) thermal equilibrium (b) forward bias (c) reverse bias. 

For the reverse bias contact, the semiconductor is biased positively with 

respect to the metal by a voltage - VR, the potential drop across the depletion region is 

increased to (Vi+ VR) as shown in Figure 20(c) and the corresponding depletion width 

is increased. The electron flow fiom the semiconductor toward the metal is further 

impeded while the flow fiom the metal toward the semiconductor is unaffected. Then 

leads to a current flowing in the opposite direction. Typically the current transport in 

metal-semiconductor barriers is mainly due to the majority carriers. But for large 

barrier heights and low dopant concentrations the injection of minority carriers from 

the semiconductor into metal may become important for reverse bias. [19] 



2.3.2 Electric Field and Potential Distribution in the Depletion Region 

Figure 21 shows the energy band diagram of a reverse biased Schottky barrier 

junction made on an n-type semiconductor. The semiconductor is assumed to be 

uniformly doped and divided into a space charge region and a neutral region devoid 

of any space charge. 

The electric field and potential distribution, Wx), in the depletion region of the 

Schottky barrier junction depends upon the barrier height, the applied voltage, and 

the impurity concentration. The electric field and &) can be obtained by the solution 

of the one-dimensional Poisson's equation, which can be written as follows, 

Metal Semiconductor 

Figure 21: Electric field and potential distributions in the depletion region of a 

Schottky barrier. (a) Energy band diagram; (b) electric field distribution; and (c) 

potential distribution. V is the applied voltage. [20] 



In equation (1 8), E is the semiconductor permittivity, Nd is the donor concentration or 

concentration of oxygen vacancies, and n(x) and p(x) are the electron and the hole 

concentrations at any point x in the semiconductor, respectively. It is assumed that all 

the donor are ionized. Referring to equation (14), if EcEf>>kT, the probability 

hnction that a state is occupied by an electron can be simplified as follows, 

The probability that a state is occupied by a hole can be approximated as, 

The electron concentration, n(x) , in the conduction band may be written as follows, 

g(E) is the density of electronic states [2l]defined as 



where m * is the carrier effective mass and h is the Plank's constant. 

The corresponding hole concentration, p(x), in the valence band may be written as, 

If one subtracts and adds Ec in the exponential term for f(E) and subtracts and adds 

EV in the exponential term forf,(E), one obtains, 

and 

where 

and 

me and m, are the effective masses of the electron and hole respectively. 

In the depletion region Ec and Ev are defined in terms of the potential 

distribution as follows, 



where Eco = conduction band level in the bulk semiconductor 

and Evo = the valence band level in the bulk semiconductor. 

Substituting Ec and Ey  into equation (24) one obtains 

where 

and 

EF - Evo 
Po = Nv ..P( kT 1. 

It is interesting to note that no andpo represent the equilibrium electron and hole 

concentrations in the neutral semiconductor. 



Substituting the values of n(x) andp(x) given in equation(26) into 

equation(l8) one obtains 

A closed form solution of this equation is impossible. An additional simplifying 

assumption made in the analysis is the so-called depletion approximation. In this 

approximation the fiee carrier concentrations are assumed to fall abruptly from their 

equilibrium values, and po in the bulk neutral semiconductor region, to a negligibly 

small value in the space charge region. In reality this transition occurs smoothly over 

a distance in which the bands bend but the calculations made using the depletion 

approximation are sufficiently accurate for our purposes. Thus, equation (27) can be 

approxin~ated as 

where W represent the width of the depletion region. Integrating equation (28) with 

respect to x and using the condition that d@dx = 0 at x= W one obtains the following 

expression for the electric field E(x), in the depletion region, 

where 



Em is the maximum electric field which occurs at x = 0. A second integration with the 

boundary condition 4 = 0 at x = W leads to the following relation, 

The negative sign in the above equation shows that the potential at x=O is negative 

with respect to that at x= W. The variations of E(x) and Nx) into depletion region are 

shown in Figure 2 1.  If one applies a voltage across the potential barrier, the height of 

the potential barrier will either increase or decrease depending upon the voltage bias. 

According to Figure 21, the surface potential barrier and the applied voltage 

relationship can be expressed as - 4(0) = V, = y. - V . Substituting into equation (30) 

one obtains 

Depending upon whether the bias is forward ( V  = VF) or reverse (V = - VR) the 

depletion width will change. Solving equation (31) for the depletion width one 

obtains 



The width of the depletion region at zero bias, Wo, is obtained by setting V = 0. From 

equation (32) it is obvious that W decreases below its equilibrium value of Wo in case 

of a small forward bias(< Vi) and increases above Wo in the case of a reverse bias. 

Since a separation of charge occurs near the metal semiconductor junction a 

space charge capacitance exists. This can be approximated as a parallel plate 

capacitor whose separation between the two plates is equal to the depletion width W. 

The relationship is as follows, 

where S is the contact area of metal and semiconductor junction . 

If one applies a voltage, the width of the depletion region will change 

according to equation (32) resulting in a corresponding change in capacitance. This is 

particularly significant in the AC case. 

2.3.3 Current Voltage Characteristics 

Electrical current in a semiconductor arises fiom the movement of electrons 

and holes upon application of a voltage. The electrical current, in general, can be 

divided into two types, the drift current and the difhsion current. The drift current is 

the hole andlor electron current which arises fiom the application of an external 

electric field or voltage and can be represented as follows, 



and 

p,, and pp are the mobilities of the electrons and holes respectively. The second type 

of current is called the difhsion current. This current results from a large 

concentration of electrons or holes which may have been created by an external 

source such as heat or light. These electrons or holes then difhse through the material 

giving rise to the difhsion current. The diffusion currents are proportional to the 

spatial gradient of the carrier concentration as given below, 

J ,  = eD,Vn 
and 

where the terms D, and Dp are the difhsion constant for electrons and holes 

respectively. 

In general, the current in a semiconductor is the sum of both the drift and 

difhsion currents and may be written as follows, 

J = Jetr, + Jdlwion 3 

where 



and 

It is interesting to point out for the difhsion current the electrons and holes are 

moving in the same direction whereas for the drift current the electrons and holes are 

moving in opposite directions. 

In the case of the PN junction, the acceptor atoms on the p-type material 

introduce holes which are the majority carriers while the donor atoms on the n-type 

material introduce electrons which are the majority carriers. If one applies a voltage, 

there is majority carrier flow (electron flow from n-type material to p-type material 

and hole flow fiom p-type material to n-type material) and minority carrier flow 

(electron flow fiom p-type material to n-type material and hole flow from n-type 

material to p-type material. The carrier difhsion and drift are the dominant 

mechanisms in a PN junction. Assuming that when an external voltage is applied, a 

small change in minority carriers is more noticeable than a corresponding charge in 

majority carriers, it may be shown that the IN relationship in a PN junction based on 

diffusion and drift theory is as follows[22], 

I = I ,  exp - -1 [ KI 
where 



I, is called the saturation current, A , is the diode cross-section area, ni is the intrinsic 

carrier concentration, L, and L, are the depletion widths in the n-type material and p- 

type materials respectively and Nd and N, are the donor and acceptor concentration in 

the n and p type materials respectively. 

In the case of a metal semiconductor junction, the electron concentration in 

the metal is very high and there are no holes in the metal. In the n-type 

semiconductor, the majority carriers are electrons while the minority carriers are the 

holes. The current transport in metal semiconductor barriers is due mainly to majority 

carriers in contrast to PN junction where the minority carriers are responsible. As 

mentioned before, a depletion region is formed between the metal and sen~iconductor 

interface. Referring to equation (32), the depletion width is determined by the 

concentration of donors or oxygen vacancies in the semiconductor. When depositing 

the metal oxide film using R.F magnetron sputtering, the donor concentration can be 

controlled by changing the ArgonIOxygen ratio in the deposition chamber. The 

depletion width varies from zero to infinity depending on the donor concentration. 

The resulting junctions which occur are the metal-insulator junction (stoichiometric 

metal oxide and no oxygen vacancies present), the metal- n-type semiconductor 

junction (substoichiometric metal oxide with oxygen vacancies present )and the 

metal-metal junction (no oxygen present in the deposition process). For the metal- 

insulator junction there will be no current, and for the metal-metal junction the 

contact is ohmic. 



For the metal - n-type semiconductor junction, if the donor concentration is 

not very high, the depletion layer thickness may be large compared to the mean free 

path. The mean free path is defined as average of the distances traveled between two 

successive collisions for a single particle undergoing Brownian motion for scattering 

of the electrons by lattice vibrations. The electrons make many collisions as they 

transverse the depletion region and the electron current through the layer is due to the 

drift velocity. If the donor concentration is high the corresponding barrier layer width 

given by equation(32) decreases and can be comparable with the mean free path of 

the carriers. The electrons which have enough energy will go over the barrier and this 

transport mechanism is called themionic emission. In this theory the collisions of 

carriers with the lattice are neglected and the electrons are treated according to 

Maxwell-Boltzman statistics . Themionic emission is usually the dominant 

mechanism in Schottky barrier junctions and leads to the ideal diode charactersistics 

which has a constant reverse saturation current. If the sen~iconductor is heavily 

doped the corresponding width of barrier is very thin and the carriers can tunnel 

through rather than cross over the potential barrier. This tunneling can occur at the 

beginning of the depletion region or a particular distance into the depletion region. 

This may be seen by refering to Figure 2 1. As the electrons acquire more energy the 

barrier become increasingly thin and tunneling may occur at different barrier heights. 

One concludesthat the depletion width is the critical parameter which will decide 

which electron transport theory is the most appropriate. Since the depletion width can 

be controlled by the argon oxygen ratio in the sputtering system, one can specifically 

deposit a film which will obey a particular electron transport theory. 



In their original work , Schottky and Spenke[l6] assumed that the current was 

limited by the drift and diffusion process. The diffusion theory is derived fiom the 

assumption that (1) the barrier height is much larger than kT; (2) the effect of 

electron collisions within the depletion region is included; (3) the carrier 

concentration at x=O and x=w are unaffected by the current flow. 

Since the current in the depletion region depends on the local field and the 

gradient of carrier concentration, it may be shown [23] that diffusion theory leads to 

the following expression for the diode current, 

D, is the electron diffusion constant, Nc is the effective density of states in the 

conduction band of the semiconductor, and all other symbols have their usual 

meanings. Note that the saturation current , Io, in equation(38) is dependent upon the 

voltage. The details of the derivation of this I/V relationship is given in Appendix A. 

When thermionic emission is the dominate mechanism, the effect of drift and 

diffusion in the depletion region is assumed to be negligible,the barrier height is 

assumed to be large compared to kT and the electron collisons wihin the depletion 

region are neglected. It is obvious that only those electrons whose kinetic energy 

exceed the height of the potential barrier will be able to reach the top of the barrier. 

According to thermionic emission theory, it may be shown [20] that the current 

voltage relationship is as follows, 



where 

A is the Richardson constant for therrnionic emission from the metal into the 

semiconductor defined as 

rn* is the electron effective mass, h , Planck's constant and S , the metal 

semiconductor contact area . The derivation of equation (40) is given in Appendix B. 

In the original treatment of Bethe [24] it was assumed that once the electrons 

reach the top of the barrier they are emitted into the metal and do not return back to 

the semiconductor. Crowell and Sze [25] refined the theory by including the effects of 

optical phonon scattering in the metal and quantum mechanical reflections from the 

barrier. An electron after passing over the barrier into the metal may be scattered back 

to the semiconductor after the emission or absorption of an optical phonon, with a 

subsequent reduction in the diode current. Moreover not all the electrons incident 

over the barrier will cross over into the metal. According to quantum mechanics there 

is a finite probability that an electron with kinetic energy larger than the barrier 

potential energy may be reflected back into the semiconductor. Also an electron with 

energy less than the barrier energy has a finite probability of tunneling through the 

barrier. Crowell and Sze have calculated the probability, fp , of an electron reaching 



the metal without scattering into the semiconductor and also the probability, fq , of 

its transmission through the barrier in the presence of quantum mechanical reflection 

and tunneling. They have concluded that the combined effect of these processes and 

the carrier diffusion effects in the depletion region results in replacing the Richardson 

constant, A, in equation (40) by an effective value A* given by 

where VD is the effective diffusion velocity through the depletion region and VR is 

defined as the recombination velocity. 

Thermionic emission theory predicts the current voltage characteristics in 

equation (39), however, a wide variety of practical metal semiconductor diodes 

follow the following IN relationship, 

I = I. exp - [ ( Z ) - l ] ,  

where n is often called the "ideality factor". In the case of an ideal Schottky barrier 

where the barrier height is independent of the bias and the current flows only due to 

thermionic emission n=l . 

A value for the ideality factor can be obtained as follows. When a bias 

voltage is applied, the barrier height is modified as can be seen in Figure 21. 

Assuming that the barrier height is proportional to bias voltage, @B, can be 

represented as follows, 



where OBO is the zero bias barrier height, P is an unknown parameter and V is taken 

to be positive in the case of forward bias. 

Under the condition of forward bias, assuming a sufficient large forward bias 

so that the unity term in equation (39) can be neglected with respect to the 

exponential term, and making use of equation (40) and (43) and replacing A by A* , 

the forward current I can be written as 

I = SA'T' exp -- exp -(l -P)V ( a ) [ :  I 
If one assumes that I/n =(I#) equation (44) is of the same form as equation (42) 

with I, = SA*T2 exp - - . Taking the derivative of both sides of equation (43) [ ti) 
with respect to V one obtains p = therefore - = [ 1 - - :&). Henceif 

n 

is known as a function of bias the ideality factor n can be calculated. av 

Figure 22 shows the current voltage relationship predicted by equation (42) 

for different values of n .  



Figure 22: Normalized current voltage characteristics for themionic emission 

is predicted by equation 42. I/Io is the normalized current. 

which 

In addition to the diffusion and thermionic emission mechanisms, electrons 

can also be transported across the barrier by quantum mechanical tunneling. There are 

two ways for electrons to tunnel through the Schottky barrier junction :(I) field 

emission(FE), this happened when the depletion region is very thin, the electron with 

energy level close to the Fernli level will tunnel from the semiconductor to the metal 

and (2) when the temperature is high enough a significant number of electrons are 

able to rise high above the Femi level where they can see a thinner and lower 

barrier, these electrons can then tunnel into the metal before reaching the top of the 

barrier. This tunneling of thermally excited electrons is known as the thermionic field 

emission (TFE). 



To calculate the tunneling current, the electrons in the conduction band cannot 

be treated as classical particles but behave as waves. In order to derive the tunneling 

current one must solve the time independent Schrddinger equation, 

where A = xn ( h is Planck's constant), m is mass of particles, V is potential energy, 

E is the electron energy and y is the wave function. 

In order to solve ScMdinger equation one needs to substitute the appropriate 

potential function into equation(45) and solve the equation subject to the various 

boundary conditions. Normally,one can not get an exact solution and must use 

approximation techniques such as the WKB approximation [26] to solve the problem. 

If one uses the WKB method it has been shown by Rideout and Crowell[25] 

and J.L.M011[27] that the IN characteristics for the tunneling effect may be written 

as follows, 

where I,, = I ,  exp[- q(pb - p , ) / n k ~ ]  is the saturation current with pb being the 

metal work function and p, the semiconductor work function. I,,, is the current 

density which is a slowly varying function of temperature [25] and n is the ideality 

factor. The factor, n, is an adjustable parameters which is used to fit the experimental 

data to the theoretical prediction. Figure 23 shows the current voltage relationship 

predicted by equation (46) for different values of n. 



Figure 23: Normalized current voltage characteristics predicted by equation 

the normalized current. 

At this point it is interesting to compare the thermionic emission and tunneling 

effect models. When n is chosen to be 1, equation (46) due to the tunneling reduces 

to equation (39) , which is the ideal case of the Schottky diode. Note that the n=l 

curves in Figures 22 and 23 are identical. If n is greater than 1, the current voltage 

characteristics for both cases deviate. Figure 24 shows the comparison of the W 

characteristics for n=2, n=3 and n= a. 



Thermionic J 

emission i / -5 

25 - 
20 - 
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Figure 24 continues. 

From the shape of the IN characteristics, the major difference between the 

therrnionic emission and tunneling models is the reverse bias part. The shape of the 

forward bias is almost the same. Since there are large difference for the reverse 

voltage, one may distinguish the different transport mechanism by examining the 

reverse bias IN curve. 

2.4 Equivalent Circuit Model 

After examining the electron transport mechanisms between crystallites and 

across the metal electrode semiconductor junctions, a simplified equivalent circuit 

was used to simulate the current voltage characteristics of the SMO sensor. Figure 25 

shows the diagram of the equivalent circuit in the DC case. 

5 5 



forward diode film resistance reverse diode 

Figure 25: Equivalent circuit model for the SMO sensor in the DC case. 

Because a resistance ladder network can be used as an equivalent circuit for 

semiconducting metal oxide film, one can combine the resistance together and call it 

a film resistance. As mentioned before, the IN characteristics of a semiconducting 

metal oxide may not be linear. In addition to the effect of film resistance, one must 

take into account the effect of the metal electrode semiconductor contact which can 

be modeled using two back to back Schottky diodes as shown in Figure 25. 



3. EXPERIMENTAL PROCEDURE FOR THE MEASUREMENT 

OF THE IN CHARACTERISTICS OF WOs THIN FILM SENSORS 

In this chapter the current versus voltage measurement techniques and system 

used to determine the IN characteristics of a W03 thin film sensor is presented. The 

system consists of two parts, a gas delivery system and a data acquisition system. 

3.1 Current versus Voltage Measurement Techniques 

Currently, there are three methods commonly used to measure the current 

versus voltage characteristics in a thin film. These methods are the two-probe current- 

voltage measurement, the four-probe current-voltage measurement and the three- 

probe current-voltage measurement method. According to the name of the 

measurement, the two-probe measurement means two wires actually connected to the 

two electrodes of the physical device. Figure 26 shows the schematic of the two- 

probe configuration. The four-probe measurement uses two independent contact 

pairs, one for applying the calibrated current and the other pair for measuring the 

voltage. Figure 27 shows the configuration and equivalent circuit for the four-probe 

measurement. The three-probe measurement uses an additional microelectrode 

between the two electrodes and is shown schematically in Figure 28. Using the three- 

probe measurement method, Weimar et al. [27] deduced that the metal electrode 

semiconductor contact influence is the origin of the non-ohmic current versus voltage 

behavior of the SnOz sensor. The advantage of the four-point probe measurement is 

that it is possible to eliminate the contact contribution. The two-point probe 



measurement is the most commonly used method and it is easy to setup. In our 

present work, the objective is to study the W characteristics of the entire sensor 

therefore the two-point probe measurement is the most appropriate techniques. 

Figure 26: 
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Two probe measurement of the W03 sensor. 
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Figure 27: (a) Four-probe measurement of an undoped Sn02 sensor. (b) Equivalent 

circuit for Four-probe measurement. [27] 



Figure 28: Three-probe arrangement to measure the contact contribution.[27] 

The SMO film and appropriate contacts can be made in several 

configurations. These configurations are shown in Figure 29. 

Top View 

Side View 

Figure 29: Different configurations used to model the conductimetric sensor. Cross- 

hatch region - electrodes; shaded region - sensing film; White region - substrate. 

The configuration used in the present work is shown in Figure 29(C). This 

kind of configuration protects the electrodes from external contamination. The two 



possible ways to connect the meter to the electrodes for I/V measurements are shown 

in Figure 30. 

Figure 30 : Two possible circuit configurations for conductivity measurement. 
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In the conductivity or resistivity measurement, Figure 30(a) is a constant 

voltage source measurement. The build-in resistances for both voltage source and the 

ammeter are very close to zero ohms. Since the sensor is a high resistance device 

most of the voltage drop is across the sensor. Figure 30(b) is a constant current 

source measurement setup. Ideally the voltage meter has infinite resistance. However, 

in reality the voltage meter has high resistance. Since the resistance of the voltage 

meter may be comparable to the sensor resistance, the resistance one measures using 

this method may not be equal to the sensor resistance. In order to avoid this error the 

constant voltage source is the one that is used in the present work. A constant voltage 

is supplied to the sensor electrodes and the current through the sensor is measured 

fiom which one calculates the sensor resistance according to Ohm's law. The range of 

voltage used is between -20V and 20V, in increments of 10mV. In order to observe 

the hysteresis of the current voltage characteristics, the voltage source goes fiom - 

20V to 20V, and then from 20V to -20V. 

cunent source 



In the AC case, a similar approach can be used to measure the impedance of 

SMO sensors by replacing the DC voltage source and ammeter with the frequency 

generator and the meter to measure the impedance. Figure 3 1 shows the diagram for 

AC measurement. 

frequency 
generator 

sensor 
.. . I 

souzce 

ohmic / Scanning 
resistance multimeter 

Figure 3 1 : Block diagram of the set-up used for measurement of AC impedance. 

Due to the sensing film's high impedance, the current ranges will be in the 

nanoampere to microampere range. While measuring electrical signals this small is 

relatively straightforward in the DC case, it becomes increasingly difficult as the 

frequency is increased. The voltage detector is a phase sensitive lock-in amplifer 

which should provide an accurate measurement of the AC singal. The commercial 

device from Solartron makes use of this kind of technique and the working frequency 

range of 1 mHz to 1 OMHz is used in the present AC measurements. 

3.2 Gas Delivery System 

Figure 32 displays a diagram of the gas delivery system developed for the 

present work. The gas delivery system includes regulation of the flow rate for the 



carrier gas (typically compressed air or inert gas), regulation of the humidity in the 

sample cell and regulation of the flow rate for the target gas. 

This gas delivery system consists of one Hastings model 202D Mass Flow 

Controller (MFC1) with a flow rate of 0 - 3 standard liters per minute (SLPM), two 

Hastings model 202A MFCs (MFC2 and MFC3) with flow rates of 0 -100 standard 

centimeters per minute (SCCM) and 0 - 10 SCCM respectively, a control circuit for 

the three MFCs, a bubbler, a sample cell , % inch Teflon and stainless steel tubing and 

various Swagelock fittings to connect the elements to the system. 

Figure 32: Gas delivery system 

MFCl regulates the flow of the carrier gas. The carrier gas used for present 

work is compressed dry air. MFC2 provides dry air for the bubbler that produces 

water vapor. MFC3 regulates the flow of the target gas. Each MFC has the same 

control circuit, which includes the circuit protection elements, more sensitive 

potentiometers for flow regulation and a digital display that reads the flow rate in 

SCCM. 



The sample cell consists of a '/z inch Swagelock T and a Teflon receptor for 

the sensor. The Teflon receptor occupies one of the three openings in the T and the 

other two openings are connected to the gas delivery system. Figure 33 is a cross 

section of the sample cell. 

Sensing element 

$. 
Figure 33: Schematic diagram of the sensor gas chamber 

3.3 Data Acquisition System 

The data acquisition system consists of a Keithley 2400 source meter, the data 

acquisition board, a computer and a temperature heater controller as shown in Figure 

34. 
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Figure 34: Diagram of data acquisition system 

Since a significant interaction of a target gas with the semiconducting metal 

oxide film occurs over a narrow temperature range, it is also necessary to have a 

heating element capable of accurately achieving a desired temperature. Controlling 

the temperature of the sensor is facilitated by a Watlow series 980 model temperature 

controller and a Kepco model power supply. Setting up the temperature control 

circuit requires connecting the power supply and the platinum RTD via temperature 

controller and simultaneously connecting the power supply to the serpentine heater of 

the sensor. Finishing the setup requires running the Watlow controller Auto-tune 

program to set the proportional band integral derivative (PID) settings. These settings 

determine how the Watlow controls the power supply to achieve the desired 

temperature. Unfortunately, the RTD calibration curve of the sensor platform is 

different than the curve assumed by the Watlow temperature controller so one must 



adjust the reading given by the Watlow controller accordingly. This requires 

converting the temperature reading of the Watlow to a resistance and using this 

resistance to determine the actual temperature fiom the correct RTD calibration 

curve. 

Controlling the Source meter with a computer required installing a computer 

Boards GPIB(Genera1 Purpose Interface Bus) card. This GPIB card has an IEEE- 

488.2 bus, which is common to the testing meter. The language used for controlling 

the source meter is Labview graphical programming language, which can provide a 

friendly user interface. 



4. EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter presents the experimental results of the current versus voltage 

characteristics of the undoped and gold doped W03 thin film sensor, appropriate 

discussion and comparison with theory. Initially, the structure and preparation of the 

W03 thin film sensor are presented. The experimental results presented include (a) 

the DC current versus voltage characteristics under different gas exposures of H2S 

and ethylene at different temperatures, (b) the variation of the electrical resistance at 

different temperatures (c) the sensitivity versus voltage and gas concentration at 

different temperatures, and (d) the real and imaginary components of impedance as a 

function of frequency and voltage. 

4.1 WOs Thin Film Sensor Structure and Preparation 

The thin film W03 sensors were fabricated in the Laboratory of Surface 

Science and Technology (LASST) at the University of Maine and consisted of 500 A 

WO3 films deposited on r-cut sapphire substrates. The 3000 A thick interdigital 

platinum electrodes were patterned by photolithography. The tungsten was RF 

sputtered in 50150 ArgodOxygen mixture while the gold doping was accomplished 

using a low temperature efision cell technique (evaporative process).The rate for the 

gold-doping is 2 A/minute and the thickness of the gold-layer is 15 A.  The 

interdigital platinum electrodes were deposited first onto the sapphire substrate and 



the W03 film was deposited on the platinum electrodes as shown in Figure 27C. 

Figure 35 shows the sensor. 

hea& and RTD Wh 

TOP BOTTOM 

Figure 35: Top view of the W03 thin film sensor. TOP -MOS sensing element with 

IDT and sensing film. BOTTOM-MOS sensing element with heater and RTD. The 

dimensions are given in inches. 

Referring to Figure 35, the backside of the sensor platform includes a 

serpentine heater made of a platinum resistance temperature device(RTD) for 

regulating the temperature of the film during testing. Between the platinum and the 

substrate there is a 200A layer of zirconium which aids in adhering the platinum to 

the sapphire substrate[28]. Photolithography techniques are employed to make the 

platinum heater and RTD patterns. The deposition parameters for platinum and 

zirconium include a room temperature electron beam evaporation. The deposition 



rates for platinum and zirconium were 2-4 A/s and 2 A/s respectively. Before 

depositing W03, the tungsten target was presputtered in argon for 5 minutes in order 

to get a pure tungsten target. The deposition parameters for W03 included a 500°C 

substrate temperature, 50% argon I 50% oxygen gas flow rate leading to a total 

pressure of 3 mTorr, and deposition rate 1 A/s . In addition, the sample was rotated 

during the sputtering process in order to get an evenly sputtered film. After the 

deposition process, the sample was annealed in compessed air at 400°C in an oven 

for 24 hours. 

4.2 Temperature Effect on Current Versus Voltage Characteristics in 

Compressed Air 

The current versus voltage characteristics were measured for different samples 

at different temperatures in an environment of compressed air. The total gas flow rate 

through the sensor was maintained at 300 SCCM. 

4.2.1 I N  characteristics of golddoped WOs sensor as a function of 

temperature 

Prior to performing the IN measurements, the gold-doped W03 sensor was 

annealed in synthetic air at 400°C for more than 24 hours. The range of voltages used 

was -20V to 20V in steps of 1 W .  The temperatures for the IN measurements were 

room temperature (23"C), 100°C, 200°C, 300°C. Using the constant voltage source 

setup shown in Figure 30(a), the IN characteristics were measured and are 

presented in Figure 36. The data is also presented in terms of the SMO film resistance 



versus voltage in Figure 37 by obtaining VA or R as a function of voltage from Figure 

36. 
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Figure 36: W characteristics of gold-doped W03 sensor as a function of temperature. 
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Figure 37: F W  characteristics of gold-doped W03 sensor as a function of 

temperature. 



As mentioned before, the film resistance is a hnction of temperature. The 

current versus voltage relationship is a nonlinear curve. Although it is not apparent 

from the YV curve, one can see more clearly the nonlinear behavior in the RN 

curves. If the YV curves in Figure 36 were perfectly linear, then the corresponding R 

versus V curve would be constant. Clearly this is not the case. The entire RN curve is 

nonlinear with the most pronounced region occurring for low voltages (<5V). 

4.2.2 IN characteristics of an undoped W03 sensor as a function of 

temperature 

The undoped W 0 3  thin film sensor was deposited and annealed under the 

same conditions as the gold-doped sensor and the YV and RN characteristics were 

measured. Figure 38 and 39 displays the variation of the current and resistance as a 

function of voltage respectively for the undoped W 0 3  sensor. 
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Figure 38 : YV characteristics of an undoped W 0 3  sensor as a function of 

Temperature. 
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Figure 39: RN characteristics of an undoped W 0 3  sensor as a function of 

temperature. 

As in the case of gold-doped W 0 3  sensor, the IN characteristic is also 

nonlinear particularly in the low voltage region. The nonlinear variation in the low 

voltage region of the RN characteristics is more pronounced in the undoped film 

than in the gold-doped film. 

4.3 Electrical Resistance of W03 Thin Film Sensor 

From the IN and RN characteristics one can observe that the variation of 

current and resistance is a function of temperature, in order to examine this 

temperature dependence in detail, the variation of resistance versus temperature was 

examined. The electrical resistance measurements were performed using the two- 

point probe technique. Using the data obtained fiom Figure 37 and 39 one can 

observe that the resistance data get fuzzy and unstable when the voltage is very 



small.This is mainly due to the limited resolution of the electrometer. The data which 

was taken in the range very close to zero voltage is not good and doesn't represent the 

real variation of the resistance. The constant voltage source chosen for the resistance 

versus temperature measurement is 2 .W since it is in the nonlinear region and away 

from the fuzzy region. The experimental environment was compressed air. The 

samples (both gold-doped films and undoped films) used for the resistance 

measurements are not the same as those used for the IN measurements. Although the 

fabrication parameters and process are identical for all the samples the characteristics 

of samples may differ from batch to batch. All the sensors used for resistance 

measurement were annealed in compressed air at 400°C for more than 24 hours and 

then used to perfonn the resistance versus temperature measurements. 

4.3.1 Resistance of a golddoped W03 sensor as a function of 

temperature 

The variation of resistance with temperature of a gold-doped W03 sensor is 

presented in Figures 40-43.The range for temperature is room temperature to 400°C. 

The temperature is changed every two hours. The first process is to increase the 

temperature from room temperature to 400°C in steps of 100°C and the following 

process is to decrease the temperature fiom 400°C to room temperature in steps of 

1 00°C. 
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Figure 40: The resistance and temperature relationship of a gold-doped W03 sensor. 

X-axis is time, the temperature is changed in every two hours. The temperature is 

increased fiom room temperature to 400°C in steps of 100°C and then decreased form 

400°C to room temperature in steps of 100°C. The voltage is 2.5Volts. 

From Figure 40, one can clearly see that the resistance of gold-doped W03 

sensor decreases until the temperature reaches around 200°C, and then the resistance 

increases with the temperature increasing fiom 200°C to 400°C. For the decreasing 

temperature process, the resistance first decreases until 200°C and then increases 

again with the temperature decreases fiom 200°C to room temperature. Figure 41 

shows more detailed information in the 200°C to 400°C range. The whole curve is 

divided into two parts. The first part is to increase the temperature from 200°C to 

400°C in steps of 50°C and the second part is to decrease the temperature from 400°C 

to 200°C in steps of 50°C. The temperature is changed every two hours. 
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Figure 41: The variation of a gold-doped W03 sensor's resistance as a function of 

temperature. The range of temperature was from 200°C to 400°C. The temperature 

was increased fiom room temperature to 200°C, and then fiom 200°C increased to 

400°C in steps of 50°C. After the increasing process the temperature was decreased 

fiom 400°C to 200°C in steps of 50°C. The temperature is changed every two hours. 

The voltage is 2.5Volts. 

Let's examine the hysteresis of gold-doped W03 sensor resistance as a 

function of temperature. Figure 42(a) shows the change of resistances in the 

temperature range of 200°C to 400°C. The temperature starts fiom 200°C and 

increases to 400°C in steps of 50°C and then decreases to 200°C in steps of 50°C 

and this process was repeated for three times. After this examination, the 

temperatures were performed over a wider range using the same sample. Figure 42(b) 

shows the change of resistances in the temperature range of room temperature to 



400°C in steps of 100°C and then decreases from 400°C to room temperature in 

steps of 100°C. This process was repeated five times. 
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Figure 42 : The hysteresis of the variation of a gold-doped W 0 3  sensor's resistance 

as a function of temperature.(a)temperatures from 200°C to 400°C.(b) temperatures 



from 23°C to 400 "C. The direction of the arrow is the trace of temperature. '+' means 

the temperature increases,' - 'means the temperature decreases. 

From Figure 42(a), one can observe some hysteresis. The major issue here is 

that when one increases the temperature from 200°C to 400°C the first time, one 

observes hysteresis due possibly to species' adsorption and desorption processes on 

the surface or some other processes. When one increase and decrease temperature 

several times, the increasing curve and decreasing curve tend to be the very close and 

this can be see very clearly from Figure 42(b). 

4.3.2 Resistance of an undoped W03 sensor as a function of 

temperature 

As in the case of samples for resistance measurement of the gold-doped 

sensor, the undoped sensor used for the resistance measurement is fiom a different 

batch as that was used for the IN measurements. The constant voltage source is 2.W. 

The variation of resistance with temperature of an undoped W 0 3  sensor is presented 

in Figure 43 and 44. The range of temperature is room temperature to 400°C.The 

temperature is changed every two hours. 
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Figure 43: The variation of an undoped W03 sensor's resistance with temperature. X- 

axis is time and the temperature is changed every two hours. The temperature is 

decreased from 400°C to room temperature in steps of 100°C and then increased 

room temperature to 400°C in steps of 100°C. The voltage is 2.5Volts. 
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Figure 44: The variation of an undoped W03 sensor's resistance with temperature. 

The range of temperatures used is from 23°C to 400°C in steps of 50°C. 



The data in Figure 43 and 44 were taken after several " heat up" and "cool 

down" cycles in order to eliminate possible species' adsorption and desorption 

processes. In the undoped W 0 3  sensor there is minimal hysteresis. 

4.4 H2S Gas Effect 

The W and RN characteristics when the sensor is exposed to a certain target 

gas was also examined. H2S gas is one of the target gases used. The experiments were 

done both on gold-doped W 0 3  sensors and undoped W03 sensors. Since these 

samples are from different batches as those used to do the previous measurements the 

baseline resistance may be slightly different. After the deposition process, these 

samples were annealed in compressed air for 24 hours at 400°C. The target gas 

concentration used for the W measurement is 30 PPM, no humidity and the total gas 

flow rate is 300 SCCM. 

4.4.1 The resistance of golddoped WOs sensor as a function of voltage 

under H2S gas exposure 

For the W measurement in H2S gas exposure, the range of voltages used was 

-20V to 20V in steps of 10mV which is the same as the W measurement in 

compressed air. The temperature for the W measurements were 23"C, 100°C, 200°C 

and 300 "C. Figures 45 and 46 present the W characteristics and the corresponding 

resistance versus voltage relationship in compressed air and 30PPM H2S gas exposure 

respectively. 
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Figure 45: W characteristics of a gold-doped W03 sensor under compressed air and 

H2S gas exposure. The H2S gas concentration is 30 PPM. The heater temperature is 

(a) 23"C, (b)lOO°C, (c) 200°C and (d) 300°C. 
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Figure 45 continues. 
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Figure 46 : RN characteristics of a gold-doped W 0 3  sensor under compressed air and 

H2S gas exposure. The H2S gas concentration is 30 PPM. The heater temperature is 

(a) 23"C, (b) 100°C, (c) 200°C and (d) 300°C. 
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Figure 46 continues. 

From Figures 45 and 46, one can clearly see that the resistance of gold-doped 

sensor measured under H2S gas exposure is smaller than the resistance measured in 



the compressed air. When the temperature increases, the resistance difference in H2S 

gas exposure and compressed air also increases. 

The hysterisis of W characteristics of gold-doped sensor under H2S gas 

exposure and compressed air at 250°C was also examined. The voltage range is from 

-20V to 20V. The measurement was first made in compressed air. The second step 

was in H2S gas exposure. The third step was in compressed air again. The fourth step 

was in H2S gas exposure. Figure 47 presents the W characteristics and the 

corresponding RN characteristics. 
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Figure 47: The hysteresis behavior of W characteristics and the variation of 

resistance as a function of voltage under H2S and compressed air. The sensor is a gold 

doped W 0 3  sensor. The environment temperature is 250 "C. The curve (1) and (3) 

were taken in compressed air and curve (2) and(4) were taken in H2S gas exposure. 



Figure 47 continues. 

4.4.2 W03 sensor's resistance as a function of voltage under H2S gas 

exposure for the undoped W03 sensor 

The measurement procedure used to examine the W characteristics of the 

undoped W03 sensor was the same as the gold-doped sensor. The undoped sensor 

used for W measurement in synthetic air are fiom different batches. Figures 48 and 

49 present the W characteristics and the corresponding resistance versus voltage 

relationship in compressed air and H2S gas exposures respectively. 
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Figure 48: yV characteristics of an undoped W03 sensor under compressed air and 

H2S gas exposure. The H2S gas concentration is 30 PPM. The heater temperature is 

(a) 23"C, (b)lOO°C, (c) 200°C and (d) 300°C. 
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Figure 48 continues. 
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Figure 49 : The variation of an undoped W 0 3  sensor's resistance with voltage under 

compressed air and H2S exposure. The gas concentration is 30ppm. The heater 

temperature is (a) 23°C' (b) 100°C, (c) 200°C and (d) 300°C. 
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Figure 49 continues. 

As mentioned before, the slope of the IN curve is the inverse of the device 

resistance. Since H2S is a reducing gas, it will cause the device resistance to 

decrease. From Figures 48 and 49, one can clearly see that the resistance measured 

under H2S gas exposure is smaller than the resistance measured in compressed air. 
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When the temperature increases, the difference in resistance measured in the two 

different media also increases. 

Let's examine the hysterisis of W characteristics under H2S gas exposure and 

compressed air at a temperature of 250°C. The voltage starts from -20V to 20V. 

The measurement was first made in the compressed air and the second was in an H2S 

gas exposure. The third step was in compressed air again . The fourth step was in H2S 

gas exposure. Figure 50 presents the W characteristics and the corresponding R N  

characteristics. 

Figure 50: The hysterisis behavior of W characteristics and the variation of 

resistance as a function of voltage under H2S and compressed air. The sensor is an 

undoped W03 sensor. The environment temperature is 250 "C. The curve (1) and (3) 

were taken in compressed air and curve(2) and(4) were taken in H2S gas exposure. 
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Figure 50 continues. 

From the above figures, one can observe some hysteresis for the IN 

characteristics taken in different gas exposures. Compared to the gold-doped sensor, 

the hysteresis behavior is much smaller for the undoped sensor. 

4.5 Sensitivity vs. Voltage 

The sensitivity, S, of a sensor is an extremely critical feature of the sensor 

properties when one is working with precise control systems or the sensing of 

potentially dangerous measurands. Mathematically, it may be defined by the 

following relation, 



(47) 

where 

X, = the sensor response when the measurand is present 

and 

XA = the ambient sensor response in the absensce of the measurand. 

Now if one examines the sensor's response using the sensor's resistance, then 

where X ,  3 R, (sensor resistance measured when sensor exposed to H2S gas) , 

X ,  3 RA (sensor resistance measured in compressed air). 

Then the sensitivity of the sensor can be expressed as 

Figures 5 1 and 52 show the variation of gold doped and undoped W 0 3  sensor's 

sensitivity as a function of voltage respectively. The measurand is 30 PPM H2S and 

the range of voltages used is -20V to 20V in steps of 10mV. The temperatures are 

room temperature (23°C)' 100°C, 200°C and 300°C. 
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(b), (c) and (d) curve represents the sensitivity at room 23"C, 100°C, 200°C and 
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300°C respectively. 
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Figure 5 1 Continues . 
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Figure 52: The variation of sensitivity as a h c t i o n  of voltage, the sensor is undoped 

W03. (1) positive means the voltage starts &om -20V and increases to 20V. (2) 

negative means the voltage starts &om 20V and goes the other way to -20V. (a), (b), 

(c) and (d) curve represents the sensitivity at room 23"C, 100°C, 200°C and 300°C 

respectively. 
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Figure 52 continues. 

It is interesting to point out that the sensitivity of the gold-doped W03 sensor 

is almost double the value of the undoped W03 sensor even though the data was 



taken under the same experimental environment. Figure 53 shows information about 

the hysterisis for undoped and gold-doped W 0 3  sensors respectively. 

(b) 

Figure 53: The hysterisis behavior of sensitivity as a function of voltage. The film is 

undoped W 0 3  film. The environment temperature is 250 "C. The arrow direction is 

the trace of the voltage. (1),(2),(3) and (4) are the order of the measurement. 



One can observe the hysteresis behavior on both gold-doped and undoped 

sensor. From Figure 53, one can also observe these curve are not perfectly symmetric 

and there is a voltage polarity effect. 

4.6 Ethylene Effect 

Ethylene is also a reducing gas which is emitted when the h i t  is in the 

ripening process. Using the W 0 3  thin film sensor to detect ethylene is another 

application in the Laboratory of Surface Science and Technology, which is supported 

by Department of Agriculture. The W characteristics of a gold-doped W03 sensor is 

measured and presented in Figure 54 when exposed to an ethylene concentration of 

5PPM at 400°C. Figure 55 shows the corresponding variation of resistance as a 

hnction of voltage. The sensitivity as a hnction of different temperature is examined 

and presented in Figure 56, which include temperatures at 300°C, 350°C, 375"C, 

400°C, 425"C, 450°C, 500°C. The voltage range is fiom -20V to 20V in steps of 

1OmV. The sensor has the same fabrication parameters as those used to do the W 

measurement in air and H2S, but one needs to keep in mind that it is also from the 

different batches fiom those used before. 



ethykne ccncentration: Sppm 

Figure W characteristics of gold -doped W03 sensor, (1) taken under the 

synthetic air, (2) taken under the ethylene exposure and the concentration is 5 parts 

per million. The examining temperature is 400 "C. 

Figure 55:  F W  characteristics of gold-doped W03 sensor, (1) taken under the 

compressed air, (2) taken under the ethylene exposure and the concentration is 5 parts 

per million. The temperature is 400 "C. 



Figure 56: Variation of the sensitivity of gold-doped W 0 3  as a function of 

temperature, voltage and ethylene concentration. 

4.7 AC Measurement 

The previous IN experiments were done in the DC case. If an AC voltage was 

applied one would have two parameters including frequency and voltage amplitude 

to adjust which is double the parameters(vo1tage amplitude) in the DC case. 

Potentially the AC results should allow one to more accurately to determine critical 

sensing parameters such as selectivity. The frequency range used for the present 

work is from 0 to 10Mhz. The voltages used are 0.5V, lV, 2V and 3V. The undoped 

W03 thin film sensor for the AC measurement used the same formula as those for 

the DC measurements but it came from different batches. After the deposition 

process, the film was annealed at 400°C in an oven for 24 hours just as those used for 

DC measurements. Figures 57 and 58 show the real and imaginary parts of the 

impedance as a function of frequency respectively. The experiment was done in the 

compressed air at 350°C. 
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Figure 57: The real part of the impedance of undoped W03 sensor a s  a function of 

frequency at different voltages. The temperature is 350°C.(a) full scale (b) zoomed 

Part. 
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Figure 58: The imaginary part of the impedance of undoped W03 sensor as a function 

of frequency at different voltages. The temperature is 350°C.(a) full scale ,@) zoomed 

Part. 



One can observe that at higher frequency, there are some changes for both the 

real and the imaginary parts of the impedances at different voltages. 

4.8 Experimental Results Discussion and the Comparison with 

Theory for the I N  Characteristics of WOs Films 

4.8.1 Discussion 

In Chapter 2, a simplified equivalent circuit model of an SMO sensor (see 

Figure 25) is given. But from Figure 35, the actual electrode structure used for the 

present work is interdigital electrodes instead of a simple two-electrode structure. 

According to the actual structure, the equivalent circuit is represented as in Figure 59. 

It actually consists of 6 parallel branches. In order to make some simplification one 

can assume that all the branches are identical. Considering the case of one branch, if 

one applies a total voltage V across it, one obtains a current, I. Since these 6 branches 

are in parallel, if the total voltage applied is still V , one should expect the same 

current I will flow through each of the branches and the total current for the whole 

network should be 61. If the conduction between each electrode pair is the same, one 

can still use the equivalent circuit as in Figure 25. The only differences are the diodes 

represent the parallel combination of 6 diodes and the film resistance between the 

individual IDTs is 116th of the film resistance. 



Figure 59: The equivalent circuit model for the sensor structure shown in Figure 35. 

As mentioned before, there are four major carrier transport mechanisms that 

may occur between the metal and n-type semiconductor, namely, themionic 

emission, drift and diffusion and tunneling. Since the donor concentration(oxygen 

vacancies) in the film is quite high, carrier transport via drift and diffusion does not 

occur( see section 2.3.3). The key factor which determines whether themionic 

emissio~ or tunneling takes place is the depletion width between the metal and 

semiconductor. For high donor concentrations (see equation(32)) tunneling probably 

occurs while for lower donor concentration thennionic emission occurs. Therefore the 

donor concentration of the semiconductor is an important film parameter that will 

determine the electron transport mechamism. 

If one considers a two electrode configuration as shown in Figure 7, the 

current voltage relationship can be expressed as follows, 

V = R,I + f (I) + g(I)  + h(I) (48) 



where the first term, RcI, on the right hand side is the voltage across the crystallites , 

the second term, f(I) , is the voltage across the intercrystallite boundaries , the third 

term, 

g(l) ,is the voltage across the forward biased Schottky contact and the fourth term, 

h(l) ,is the voltage across the reverse biased Schottky contact. 

Electron transport between the IDTs can occur in several different ways. The 

electron transport between the metal semiconductor interfaces (MSI) and crystallite 

boundaries (CB) may be governed by thermionic emission, tunneling or combinations 

thereof. This gives rise to the following 4 possible scenarios: 

(i) Thermionic emission for MSI and CB. 

(ii) Tunneling for MSI and CB. 

(iii) Themionic emission for MSI and tunneling for CB. 

(iv) Thermionic emission for CB and tunneling for MSI. 

Since the respective depletion widths in CB (see equation 5; note x, = 

MSI (see equation 32) are controlled by the donor concentration (oxygen vacancies in 

the film) scenarios (iii) and (iv) probably do not occur. Therefore only scenarios (i) 

and (ii) will be considered. 

In the case of thermionic emission for MSI and CB, according to equation 

(13c), the voltage across the crystallite boundaries can be expressed as follows, 

where Rcs represents the total resistance for the crystallite boundaries. Equation (49) 

implies that the W characteristics of the crystallite boundaries is a linear function. 
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For the Schottky contact part, the reverse resistance is much larger than the forward 

resistance hence most of the voltage across the Schottky contacts will occur across 

the reverse biased contact. That means that one can ignore the g(l) term and only 

consider the h(l) term. According to equation (42) and note that for reverse bias V is 

negative and the resulting current should be negative, then the absolute value of 

reverse biased voltage should be as follows, 

where I is the absolute value of the current and n is the ideality factor discussed in 

section 2.3.3. Noting that Rc<< Rce, h(l)>>g(l) and substituting equations (49) and 

(50) into equation (48) one obtains, 

Since the electrode sensor configuration is symmetric, the W characteristics are 

symmetric with respect to the applied voltage, V, therefore resulting in the W 

characteristics having the general variation as shown in Figure 60. 



Figure 60: W characteristics based on thermionic emission theory. n is the ideality 

factor. 

For the case of a heavily doped semiconductor a thin depletion width [refer to 

equation 321 occurs resulting in the electrons tunneling through the potential barrier. 

The second term in equation (48) is no longer a linear function and tunneling occurs. 

This results in an W characteristics for the crystallite boundaries (see equation 46) 

which can be expressed as follows, 

V 
where lo, is the saturation current and V,, = -,is the voltage across the crystallite 

N, 

boundary and n is the ideality factor, typically greater than one according to the curve 

fitting results fiom Rideout and Crowell [26]. Choosing Vcs to be an absolute value, 



one can ignore the second term since[(: - l ) e ]  < 0 and the second term is much 

smaller than the first term. The voltage across a single crystallite boundary can then 

be expressed as, 

and the total voltage across all the crystallite boundaries becomes, 

For the forward biased Schottky contact, a similar form for the voltage drop across 

the forward voltage, VFB, results, namely, 

where IO2 is the saturation current associated with the Schottky barrier. 

For the reverse bias Schottky contact, the first term in equation (46) is much smaller 

than the second term since - - < 0 (noting that Vm is the absolute value of 
nkT 

reverse biased voltage). Neglecting the first term and solving for the reverse bias 

voltage, VRB ,one obtains, 

where I is the absolute magnitude of the current. 

For the tunneling effect, the contacts between metal semiconductor and crystallite 

boundaries are of low resistance (Rideout and Crowe11[26]) and the term Rc for the 

resistance of the crystallite can not be neglected. Equation (48) then becomes 
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V = RcI+N,VcB +Vm +V,. (58) 

Substituting equation (55)-(57) into equation (58) one obtains, 

In order to obtain the general variation of the I/V characteristics due to tunneling, one 

can assume I,, = I ,  = I ,  resulting in the I/V characteristics shown in Figure 61. 

-ID 1 
Figure 61: I/V characteristics based on the themionic field emission (tunneling) 

theory. 

As a result of the theory presented, two types of I/V characteristics are 

predicted, one based on themionic emission(Figure 60) and one based on 

tunneling(Figure 61). For a similar range of applied voltages the I/V characteristics of 

both models are shown in Figure 62 for the same ideality factor. 



Figure 62: W characteristics of both models, solid line based on tunneling, dotted 

line based on thermionic emission. The ideality factor for both models is n=2. 

Exarning figure 62 one can easily differentiate the W characteristics of the 

two models for high voltages, however, for low voltages the variations are similar. 

v 
However, if one uses ohm's law, R = - , the corresponding resistance versus voltage 

I 

curve can be obtained and is shown in Figures 63 and 64 for the thermionic emission 

and tunneling models respectively. Note the resistance, R, is represented from Figures 

61 and 62 as q v ' k ~ / ~ , ,  ). 



Figure 63: RN characteristics based on the therrnionic emission model.(n=2) 

Figure 64: RN characteristics based on the tunneling model.(n=2) 

The RN characteristics for each model are quite different. In particular from 

Figure 63 and 64, the resistance increases with increasing voltage based on the 

therrnionic emission and the resistance decreases with increasing voltage based on 

tunneling effect. Clearly the RN characteristics offer a sensitive measure as to which 

electron transport model is most appropriate. 



4.8.2 Comparison of Experimental Results with Theory 

The experimental data which was shown in the previous section are taken in 

synthetic air. Since air includes 20% oxygen, one should consider the effects of 

oxygen adsorption. When oxygen adsorbs on the crystallite surface the following 

reactions take place, 

and 

The most predominate interaction is the formation of 0 -on  the surface represented 

by equation( 60b). The 0- on the surface will change the barrier height [29] and 

could also affect the depletion width. That's the typically situation of metal oxide 

semiconductor. The observation that W03 acts as a selective oxidation catalyst [30] 

suggests that the concentration of 0- species on W03 at reactive temperature. 

According to W03's molecular structure, if there is one oxygen vacancy in the 

W03 film, there are two free electrons which will contribute to the conductivity. 

Noting that o = nep , the following relationship between the oxygen vacancy 

concentration, Nd , n and a result, 

The experimental results presented in section 4.2 to 4.6 include the IN 

characteristics of a gold-doped and undoped film exposed to compressed air and two 



target gases. Each set of W curves are approximately close to a linear function 

except in the lower voltage region where it is nonlinear. Examining the experimental 

W characteristics represented in Figures 36,38,45,47a ,48 and 50a it is not clear as to 

whether the therrnionic emission or tunneling effect model is most appropriate. 

However, if one examines the experimental RN characteristics presented in Figures 

37,39,46,47b,49 and 50b it is obvious that the variation of the experimental RN 

characteristics is similar that shown in Figure 64. One then concludes that the 

tunneling model is the most appropriate model for electron transport in the 

semiconducting metal oxide sensor. 

Since the tunneling is the dominant behavior, one can adjust the parameter 

Rc IOJ. IO2. n and Nl according to equation (59) to get the best fit for the W 

characteristics. Figure 65 presents the fitting results of the W characteristics of 

undoped W 0 3  at 200°C.[The experimental data was presented in Figure(48C)l 

Figure 65: Comparison of the experimental and theoretical W curves for the undoped 

W 0 3  sensor at 200°C. 



Since the actual electrode structure is an IDT, one needs to take into consideration 

the parallel effect. The resistance of the crystallites, Rc, is 116 of the whole crystallite 

resistance and the other parameters represent the effect of the 6 parallel diodes. 

Figure 66 shows the curve fitting for the RN characteristics based on Figure 

65. 
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Figure 66: Comparison of the experimental and theoretical RN curves for the 

undoped W03 sensor at 200°C. 

Figure 67 presents the comparison of the IN and RN experimental and theoretical 

results for the gold-doped sensor at 200°C [The experimental data was presented in 

Figure(45C) and (46C)l . Figure 68 shows the comparison of the experimental and 

theoretical IN and F W  results for the undoped sensor exposed to H2S gas at 200°C 

[The experimental data was presented in Figure (48C) and (49C)I while Figure 69 
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shows a similar comparison for the gold-doped sensor exposed to H2S gas at 200°C. 

[The experimental data was presented in Figure(45C) and (46C)l. 

Gdd-dspd 
sewer 

Figure 67: (a) Comparison of the experimental and theoretical W curves for the 

gold-doped sensor at 200°C. (b) the corresponding F W  comparison for the gold- 

doped sensor at 200°C. 
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Figure 68: (a) Comparison of the experimental and theoretical IN curves for the 

undoped sensor exposed to H2S gas at 200°C. (b) the corresponding RN comparison 

for the undoped sensor exposed to H2S at 200°C. 
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Figure 69: (a) Comparison of the experimental and theoretical IN curves for the 

gold-doped sensor exposed to H2S gas at 200°C. (b) the corresponding RN 

comparison for the gold-doped sensor exposed to H2S at 200°C. 

Table 2 shows the fitting parameter for Figure 65 to 69. 
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Table 2: Fitting parameters for Figures 65 to 69. 

The curve fitting wasn't done for the ethylene gas since the experimental 

results were similar in shape to the curves associated with the H2S gas exposures. 

The fitting results were obtained using the build-in curve fitting tools in 

Origin. One defines your own function [equation (59) for the present work] and the 

built-in tool uses the least-square error method to fit the experimental results. For the 

present work, the V>O part of the experimental result is used for curve fitting and 

since the supposed geometry is symmetric, the W and corresponding RN curve 

should be symmetric. Since the actual device may be not exactly symmetric, the 

fitting results may cause some deviation for the V<O part of the experimental results. 

The experimental results clearly confirm that the electron transport model is 

tunneling. The experimental results are not only similar in shape to the theoretical 

results but also the theoretical model can be shown to fit the experimental results 

quite well. In particular for the W characteristics the fit is extremely close while for 

the RN characteristics only minor deviations occur at low voltages. Deviations 

occurring for V<O were due to the fact that the geometry was not exactly symmetric 

due to the resolution of manufacturing process and the curve fitting was done for V>O 

results. Deviations may also be attributed to the fact that the parameters lo,, Io2 and n 
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may be slightly dependent upon voltage, temperature and film parameters such as 

donor concentration and number of crystallites. In the present case these parameters 

are treated as being constant. 



5. SUMMARY, CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

The current versus voltage characteristics of undoped and gold -doped W 0 3  

thin film sensors were studied both experimentally and theoretically. A one channel 

gas delivery system was built to determine the IN characteristics. The voltage range 

for the tests was fiom -20V to 20V and the temperature range was from room 

temperature to 400°C. The experimental results for the W characteristics were taken 

in compressed air and in two different target gases, hydrogen sulfide(H2S) and 

ethylene(CH2). The experimental results show that the IN characteristics are linear at 

high voltages and nonlinear at lower voltages for both the doped and undoped sensors 

under different gas exposures. In addition to the IN characteristics, the corresponding 

F W  characteristics were also examined in both compressed air and the same target 

gases as the IN characteristics. The experimental results show that the resistance is 

higher in the lower voltage region and lower in the high voltage region. The 

resistance versus temperature characteristics were examined using the gold-doped 

film and undoped film. The range of temperature was room temperature to 400°C and 

the examination voltage was 2.5Volts. The experimental result shows that the 

resistance decreases with increasing temperature for the undoped W 0 3  thin film 

sensor while this is not true for the gold-doped sensor. The resistance of the gold- 

doped sensor decreases with increasing temperature until around 200°C, after that it 

increases with increasing temperature. For both of the sensors, there is no hysteresis 

behavior. This is due to species' adsorption and desorption processes on the surface. 
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The sensitivity of the W03 sensor was also examined for H2S and ethylene target 

gases. The sensitivity data of the gold-doped sensor exposed to 5PPM H2S show that 

the sensitivity increases from 4% to around 70% with increasing temperature from 

room temperature to 300°C. Similar sensitivity data taken using undoped sensors 

show that the sensitivity of undoped sensor is lower than the gold-doped sensor. For 

the 5PPM ethylene target gas, the sensitivity data of the gold-doped sensor shows that 

the sensitivity increases from 60% to 90% with increasing temperature from 200°C to 

400°C. When one decreases the ethylene concentration from 5PPM to lPPM, the 

sensitivity decreases and the range is from 35% to 50% with increasing temperature 

from 200°C to 400°C. 

Three theoretical models were presented to describe the carrier transport 

mechanisms between the metal and semiconductor interfaces and intercrystallite 

boundaries. The first one is the drift and diffusion model which is suitable for wide 

depletion widths (>104cm). The second one is the thermionic emission model which 

is appropriate when the depletion region is moderate (compared to the electron mean 

free path). In this case the electrons have enough energy to go over the potential 

barrier. The third one is the thermionic field emission (tunneling effect model )which 

is applicable for very thin depletion widths (less than 100A) . In this case electrons 

are treated as waves and will tunnel through the potential barrier instead of jumping 

over the potential barrier. These transport mechanisms were discussed in detail and 

the W characteristics based on each of the models were presented. 

According to the structure of the W03 sensor, a simplified equivalent circuit 

was formulated. It includes forward and reverse biased Schottky diodes which 



represent the contact region between the electrodes and the film and a resistor which 

represent the sum of crystallite resistance and the intercrystallite resistance between 

the individual crystallites. 

The actual electrode structure used for the present work is interdigital 

electrodes instead of a simple two-electrode structure. It actually consists of 6 

parallel branches. If the conduction between each electrode pair is the same, one can 

still use the simplified equivalent circuit. The only differences are the diodes 

represent the parallel combination of 6 diodes and the film resistance between the 

individual IDTs is 116th of the film resistance. 

In addition to the W measurement in the DC case, preliminary work also was 

done on W characteristics in the AC case. The experimental data shows that there 

are obvious changes for both the real and the imaginary parts of the impedances as 

one varies voltage and frequency. 

According to the electron transport mechanisms through the boundaries (MIS 

and intercrystallite boundaries) and the crystallites, two kinds of W and 

corresponding RN characteristics were predicted, one based on therrnionic emission 

theory and the other based on tunneling theory. The IN experimental results are 

approximately close to a linear function except in the lower voltage region where it is 

nonlinear. The RN results are more sensitive and nonlinear. 

Finally, the theoretical results are carefully compared to the experimental 

results for both the IN and RN characteristics and conclusions were drawn as to 

what model was the most appropriate for electron transport through the 

semiconducting metal oxide sensor. 
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5.2 Conclusions 

Comparing the experimental results of the W characteristics and the 

corresponding RN characteristics taken in synthetic air or target gases such as H2S 

with the theoretical curve predicted by thermionic emission and tunneling theories, it 

is obvious that the tunneling effect is the dominant electron transport mechanism in 

the W03 thin film sensor. Each set of W experimental results are approximately 

close to a linear function except in the lower voltage region where it is nonlinear. The 

corresponding RN results are more sensitive which clearly show the nonlinear 

relationship. According to the structure of the thin film sensor, the crystallite 

resistance is a constant value. The part that causes the nonlinear behavior is the 

boundaries which include the metal sen~iconductor (WS) interfaces and the 

boundaries between the crystallites. 

The depletion width is the key parameter which determines which transport 

mechanism is most applicable between the boundaries. By controlling the argon 

oxygen ratio in the R-F magnetron sputtering process one can change the oxygen 

vacancy concentration and hence the donor concentration. Since the depletion width 

depends upon the donor concentration one can adjust the depletion width of the film 

by precisely controlling the argon oxygen ratio. This will in turn determine the 

behavior of the W and RN characteristics. In principle this will allow one to apriori 

design a semiconducing metal oxide sensor and predict the behavior of the W and 

RN characteristics. 

In the case of target gases, they will interact with the film and change the film 

conductivity, barrier heights between the W S  boundaries and intercrystallite 



boundaries and could also affect the depletion width. In the present work, however 

target gases andfor oxygen does not change the behavior of the IN and FW 

characteristics. The experimental results clearly show that tunneling is the possible 

electron transport mechanism in the metal-semiconductor and crystallite boundaries. 

All the SMO sensors used in the present work were annealed in dry air at 

400°C for 24 hours. The annealing process stabilizes the film in terms of the structure 

and electrical properties. The structure of the film is polycrystalline after the 

annealing process. According to the experimental results of resistance versus 

temperature and the IN curves taken at different temperatures one can conclude that 

the temperature will change the donor concentration and carrier mobility in the film. 

Since the crystallite resistance directly depends upon the donor concentration and 

carrier mobility, the temperature will definitely change the crystallite resistance. For 

the crystallite boundaries and the interface between metal and semiconductor (MIS) 

the temperature will also change the depletion width due to the fact that the donor 

concentration of the film is temperature dependent. The different temperature used in 

the present work however did not affect the IN and FW characteristics significantly. 

The Sensitivity is another interesting parameter to examine. According to the 

IN and the corresponding FW characteristics examined in H2S and ethylene one can 

see clearly that the reducing target gases will interact with the film and cause the 

resistance to decrease. In addition one can also observe that the variation of the 

resistance in the lower voltage region is much bigger than that in the higher voltage 

region. According to the definition of sensitivity one could conclude that the lower 



voltage region is the most sensitive region for both H2S and ethylene gas detection 

using the W03 thin film sensor. 

5.3 Future Work 

Although the present work represents significant research on the IN and RN 

characteristics of undoped and gold-doped W03 under different temperatures and gas 

exposures, many questions still remain unanswered. These questions are related to 

both theory and experiments. 

(i)Amorphous film studies. 

Since polycrystalline films were used for the present work, one can not 

neglect the effect of crystallite boundaries. However if the amorphous films were 

used the effect of the crystallite boundaries will be eliminated. The equivalent circuit 

will be simpler and the only nonlinear component to be considered is the M/S 

contacts. As a result one would obtain a simple sensor structure one may use for 

applications. Also one could explore in more depth the M/S junction behavior. 

(ii) Schottky device study 

More research should be done on the electron transport mechanisms at the 

metal semiconductor junction which includes both the forward and reversed biased 

junctions. In particular Schottky devices designed specifically for sensing should be 

fabricated. Doping levels in the metal oxide should be varied in order to obtain 

Schottky device in which thennionic or tunneling occurs. The advantage and 

disadvantages of these prototype sensors should be studied in detail. The effect of 



contacts should also be considered and both amorphous and polycrystalline films 

should be deposited. An example of a contact variation would be a single electrode 

for one contact and a point contact for the other. This would ensure that only one 

significant MIS junction would occur. Positive results on this type of sensor could 

result in a entirely novel sensor configuration which would be distinctly different than 

the Schottky sensors and variations introduced by Lundstrom et a1.[30] 

(iii)Studies using different Arlo2 ratio and annealing process. 

If one precisely changes the Arlo2 ratio in the film deposition process, one 

can get different donor concentration levels. Since the width of the depletion region 

depends upon the donor concentration one can change the depletion width by 

changing the Arlo2 ratio. Since the depletion width is a key factor to determine the 

W characteristics one can actually get the desired W characteristics by changing the 

Arlo2 ratio. Extensive studies should be presented for different Ado2 ratio of a 

prototype sensor which have two point contacts and a polycrystalline film. In this 

case the dominant nonlinearity would be introduced by the crystallite boundaries. 

Prototype sensors should be made in which carefbl control of electron transport by 

doping and crystallite size by annealing are studied. Possible novel sensors may result 

fiom these studies. 

(iV) Equivalent circuit model and electrode configuration 

The electrodes configuration used for the present work is interdigital 

electrodes. The equivalent circuit model one used in the present work is correct if one 

assumes that all the interdigital fingers are exactly the same. In reality, it is not easy 

to get all the interdigital fingers exactly the same. More fingers result in more 
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asymmetry. In order to simplify the problem, one should consider a two-electrodes 

case. The two electrode configuration is simpler and one can get a better 

understanding and the curve fitting using the equivalent circuit will be more realistic. 

Another issue is the separation between the electrodes, one can change the separation 

of the electrodes and see the difference of IN characteristics. 

(V) AC studies 

The present work barely scratches the surface relative to AC studies. In the 

present work significant research has been performed on the W and RN 

characteristics at DC (zero frequency). Extensive studies at different frequencies are 

needed. It was shown that both the magnitude and phase of impedance varies as a 

h c t i o n  of both temperature and frequency. Extensive studies relating to the 

dependence of impedance on not only temperature and frequency but also voltage 

amplitude should be performed. In the AC case capacitive effects at MIS junctions 

and crystallite boundaries will appear. These effects may be more significant in 

different frequency ranges. This work, although extensive,may result in a novel class 

of impedance based sensor which would have sensor properties far superior to any 

presently known sensor. For example, one may envision a single sensor in which a 

frequency range may be tuned to be selective to a particular gas. 

Finally, some general comments will be made relative to the possible future 

sensors. The present work points to the following future sensors, 

(9  Apriori design of a DC semiconducting metal oxide sensor in which 

W and RN characteristics can be predicted. 



(ii) Development of a novel class of Schottky sensors. 

(iii) Development of a novel class of impedance based sensors. 

The number of specific problems and research topics in each of these three types of 

sensors is numerous and involves both theoretical and /or experimental work. 
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APPENDIX A: Deviation of Diffusion Theory (Equation 38) 

The diffbsion theory is derived from the assumptions that (1) the barrier 

height is much larger than kT;(2) the effect of electron collisions within the depletion 

region is included and (3) the carrier concentration at x=O and x= W are unaffected by 

the current flow. 

Since the current in the depletion region depends on the local field and the 

concentration gradient, the current density equation is follows, 

Since the mobility can be expressed in terms of the diffusion coefficient, D,, using the 

Einstein relation, p= qDAT and E = - aV(x)/ax , equation(A-1) can be transformed 

into 

Under the steady-state condition, the current density is independent of x, and (A-2) 

can be integrated using exp[-q V(x)hT] as an integrating factor. One can obtain 



Referring to equation (30) and (3 l), one can get 

qV(W = 0, 
4 v (0) = -q(K - V). 

Referring to equation (26) and figure 19, one can get 

where x=O is in the metal and n-type semiconductor boundary and x= W is in the bulk 

of semiconductor. 

Substitution of equation (17), (A-4) and (A-5) into equation (A-3) yields 

(A-6) 

According to equation (30), the potential distribution can be expressed as , 

(A-7) 

Substituting (A-7) into equation (A-6) and expressing Win terms of V,-V (equation 

32) one obtains, 



qNcD, -exp -- +1 exp -- 

J ,  = 
[ ( 3 ] ( 

kT& 

4Nd eXP[= w'] r exp[- g (wx - x x y .  

For the denominator, the second term can be dropped since the linear term is 

dominant because x<< W, then Jn can be approximated as, 



Since q(K- V)>>kT is one of the conditions on which the present theory is based, the 

exponential term in the demoninator can be neglected for all reverse reverse voltage 

and for all small forward voltages, equation (A-9) reduces to 

(A- 10) 

where 

(A-1 1) 
The absolute value of electric field at the metal semiconductor interface, Em, can be 

obtained from equation (29) or expressed a s  

(A- 12) 

yielding 

(A- 13) 



APPENDIX B: Deviation of Equation (39) 

The themionic emission theory is derived from the assumption that (1) the 

barrier height is larger compared to KT, (2)electron collisions within the depletion 

region are neglected. 

Assuming that the electrons inside the semiconductor have a Maxwell-Boltzmann 

distribution function 

Since E = m*(vX2 + vY2 + v") I 2  one can obtain the velocity distribution function 

from (B-1), 

The normalization constant , Ay, is found from the condition 

Substitute (B-2) into (B-3) and using the following relation (which can be found in 

any table of integrals) 

one obtains 

One can also rewrite this expression as 



f v  = f v x f v y f v z  (B-6) 

where fv,, fv, and fvz are the distribution functions for velocity components V,, Vy and 

Vz respectively. 

The average velocity (v,) of electrons moving in the x direction which is 

perpendicular to the interface is, 

Using the same procedure, one can calculate the average electron velocity, 

(B- 10) 

According to Figure 20, the minimum energy for electrons to exceed the height of the 

potential barrier is: 94 = d ~ ,  - v), (B- 12) 

where 6 is the built-in potential of the junction and V is the applied voltage which 

can be VF in the case of forward bias and VR in the case of reverse bias. According to 

equation (26) the number of electrons, n* per unit area which have sufficient energy 

to move over the barrier from the semiconductor into the metal is as follows, 



(B- 13) 

where no repesents the electron concentration in the neutral semiconductor outside the 

depletion region. According to equation (26), 

no = Nc exp - - . [ :;I 
and since (bB=qVi+(bn frOm equation (B-13) one can obtain 

(B- 14) 

Supposing that all the incident electrons cross over into the metal and none is 

reflected back the current ISM due to passing of electrons from the semiconductor to 

the metal is given by 

For unbiased junction under thermal equilibrium no net current can flow. 

Consequently the current given by (B-4) must be balanced by an opposite current IMs 

due to crossing of electrons from the metal into the semiconductor making 

I=IsM+IMs=O and 

(B- 16) 

In the presence of applied bias V, the barrier for electron flow from the metal to 

semiconductor remains practically unchanged at 4B and so is the current IMS=-IO. The 

current hM, however, is given by equation (C-15) and combining this equation with 

equation(C- 1 6) one obtains 



(B- 17) 

substituting (v) and ~,=2(2mn*kT/h~~'* (referring to equation(24)) the current lo 

can be written as 

where 

(B- 18) 
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