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Chapter |
The History of Non-Euclidean Geometry

The Birth of Geometry

We know that the study of geometry goes back at least four thousand years, as far
back as the Babylonians (2000 to 1600 BC). Their geometry was empirical, and limited
to those properties physically observable. Through their measurements they approxi-
mated the ratio of the circumference of acircle to its diameter to be 3, an error of less
than five percent. They had knowledge of the Pythagorean Theorem, perhaps the most
widely known of all geometric relationships, a full millennium prior to the birth of
Pythagoras.

The Egyptians (about 1800 BC) had accurately determined the volume of the
frustum of a square pyramid. It isnot surprising that a formula relating to such an object
should be discovered by their society.

Axiomatic geometry made its debut with the Greeks in the sixth century BC, who
insisted that statements be derived by logic and reasoning rather than trial and error. We
have the Greeks to thank for the axiomatic proof. (Though thanks would likely be dow in
coming from most high school geometry students.)

This systematization manifested itself in the creation of several texts attempting to
encompass the entire body of known geometry, culminating in the thirteen volume
Elements by Euclid (300 BC). Though not the first geometry text, Euclid’s Elements
were sufficiently comprehensive to render superfluous al that came before it, earning
Euclid the historical role of the father of all geometers. Today, the lay-person is familiar
with only two, if any, names in geometry, Pythagoras, due the accessibility and utility of
the theorem bearing his name, and Euclid, because the geometry studied by every high
school student has been labeled “ Euclidean Geometry”.



The Elementsis not a perfect text, but it succeeded in ditilling the foundation of
thirteen volumes worth of mathematics into a handful of common notions and five
“obvious’ truths, the so-called postulates.

The common notions are undefineable things, the nature of which we must agree
on before any discussion of geometry is possible, such as what are points and lines, and
what it means for a point to lieon aline. The ideas are accessible, even ‘obvious' to
children.

The five obvious truths from which all of Euclid’s geometry is derived are:

The Euclidean Postulates

Postulate |: To draw a straight line from any point to any point. (That through any two
distinct points there exists a unique line)

Postulate I1: To produce a finite line continuously in a straight line. (That any segment
may be extended without limit)

Postulate I11: To describe a circle with any center and distance. (Meaning of course,
radius)

Postulate I'V: All right angles are equal to one another. (Where two angles that are
congruent and supplementary are said to be right angles)

Postulate V: If a straight line falling upon two straight lines makes the interior angles
on the same side less than two right angles (in sum) then the two straight lines, if
produced indefinitely, meet on that side on which are the two angles less than the

two right angles.

Thefirst four of these postulates are, smply stated, basic assumptions. The fifth
is something altogether different. It isnot unlikely that Euclid himself thought so, as he
put off using the fifth postulate until after he had proven the first twenty eight theorems
of the Elements. It has been suggested that Euclid had tried in vain to prove the fifth




postulate as a theorem following from the first four postulates, and reluctantly included it
as a postulate when he was unable to do so. His attempts were followed by the attempts
of scores, probably hundreds, of mathematicians who tried in vain to prove the fifth
postulate redundant. So many, in fact, that in 1763, G.S.Klugel was able to submit his
doctoral thesis finding the flaws in twenty eight “proofs’ of the paralel postulate. We

will discuss, here, afew of the ‘highlights' from this two thousand year period.

The Search for a Proof of Euclid’s Fifth

Proclus (410-485 A.D.) said of the fifth postulate, “..ought even to be struck out
of the Postulates altogether; for it is a theorem involving many difficulties,...., The
statement that since the two lines converge more and more as they are produced, they will
sometime meet is plausible but not necessary.” John Wallis (1616-1703) replaced the
wordy and cumbersome parallel postulate with the following. Given any triangle ABC
and given any segment DE, there exists atriangle DEF that is similar to triangle ABC.
He then proved Euclid’ s parallel postulate from his new postulate. It turns out that his
postulate and Euclid’s are logically equivalent.

The Italian Jesuit priest Saccheri (1667-1733) studied a particular quadrilateral,
one with both base angles right, and both sides congruent. He knew that both summit
angles were congruent, and that if he could, using only the first four postulates, prove
them to be right angles, then he would have proven the fifth postulate. He was able to
derive a contradiction if he assumed they were obtuse, but not in the case that they were
acute. He argued instead that, “The hypothesis of the acute angle is absolutely false,
because it is repugnant to the nature of the straight line!” His sentiment was echoed
much later in 1781 by Immanuel Kant. Kant’s position was that Euclidean space is,
“inherent in the structure of our mind....(and) the concept of Euclidean spaceis...an

inevitable necessity of thought.” The Swiss mathematician Lambert (1728-1777) aso



studied a particular quadrilateral that now bears his name, one having three right angles.
The remaining angle must be acute, right or obtuse. Like Saccheri, Lambert was able to
prove that the remaining angle can not be obtuse, but he aso was unable to derive a
contradiction in the case that it is acute. We will explore some of the characteristics of
Saccheri and Lambert quadrilateral in Chapter 11.

Adrien Legendre (French 1752-1833) continued the work of Saccheri and
Lambert, but was still unable to derive a contradiction in the acute case. 1n 1823, just
about the time that it was shown that no proof was possible, Legendre published the
following “proof”. (Figure 1.1)

Given P not on linel, drop perpendicular PQ fromPto |l a Q. Let mbetheline
through P perpendicular to PQ. Then mis parallel to |, since | and m have the common
perpendicular PQ. Let n be any line through P distinct from m and PQ. We must show
that n meets|. Let PR be aray of n between PQ and aray of m emanating from P. There
isapoint R' on the opposite side of PQ from R such that angles QPR' and QPR are
congruent. Then Q liesin the interior of RPR'. Since line | passes through the point Q
interior to angle RPR, | must intersect one of the sides of thisangle. If | meets side PR,
then certainly | meetsn. Suppose | meets side PR’ at apoint A. Let B be the unique point
on side PR such that segment PA is congruent to PB. Then triangles PQA and PQB are
congruent by SAS, and PQB isaright angle so B lieson | and n. QED (Quite

Erroneously Done?)

E E B

O
A Q 1

Figure 1.1 Legendre's ‘proof’ of the parallel postulate



The flaw isin the assumption that any line through a point interior to an angle
must intersect one of the sides of the angle. We will show thisto be false in Chapter 1.

The Hungarian mathematician Wolfgang Bolyai also tried his hand at proving the
parallel postulate. We include his “proof” here because it includes a false assumption of
adifferent nature.

Given P not on |, PQ perpendicular to | a Q, and m perpendicular to PQ at P. Let
n be any line through P distinct from m and PQ. We must show that n meets|. Let A be
any point between P and Q, and B the unique point on line PQ such that Q is the midpoint
of segment AB. (Figure 1.2) Let R be the foot of the perpendicular from A to n, and C be
the unique point such that R is the midpoint of segment AC. Then A, B and C are not
collinear, and there is a unique circle through A, B and C. Since |l and n are the
perpendicular bisectors of chords AB and AC of the circle, then | and n meet at the center

of circle. QED (again, erroneoudly)

/.:;/
L] m
A 1
rrQ 1
B

Figure 1.2 Bolya's ‘proof’ of the parallel postulate

The problem with this proof is that the existence of acircle through A, B and C
may not exist, as we cannot show that lines| and nintersect. We will show, in Chapter ||
that this cannot be shown, and we will find a condition for the existence of the circle in

Chapter VIII.



The End of the Search

Frustrated in his efforts to settle the issue of the parallel postulate, in 1823 Bolyai
cautioned his son Janos to avoid the “science of parallels’, as he himself had gone further
than others and felt that there would never be a satisfactory resolution to the situation,
saying, “ No man can reach the bottom of the night.”

Heedless of his fathers warning, Janos proceeded, that same year, to explore the
“science of parallels’. Hewroteto his father that, “ Out of nothing | have created a
strange new universe.” (hyperbolic geometry) The elder Bolyal agreed to include his
son’swork at the end of his own book, and did so in 1832. Before publishing, however,
he sent his son’s discoveries to his friend Carl Friedrich Gauss. Gauss replied that he had
already done essentially the same work, but had not yet bothered to publish his findings.
He declined to comment upon the younger Bolyai’ s accomplishment, as praising his
work would amount to praising himself. Janos was so disheartened by Gauss's response
that he never published in mathematics again.

Nicolai Ivanovitch Lobachevsky (1793-1856) had published his resultsin
geometry without the parallel postulate in 1829-30, two or three years before the work of
Janos Bolyai saw print, but Lobachevsky’s work had not reached Bolyai. Though he did
not live to see his work acknowledged, hyperbolic geometry today is often referred to as
L obachevskian geometry.

Henri Poincaré and Felix Klein set about creating models within Euclidean
geometry consistent with the first four postulates, but that allowed more than one paralél.
They succeeded, proving that if there is an inconsistency in the Non-Euclidean geometry,
then Euclidean geometry is aso inconsistent, and that no proof of the parallel postulate

was possible. We will explore their models in Chapter 111.



In 1854 Riemann (1836-1866) developed a geometry based on the hypothesis that
the non-right angles of the Saccheri quadrilateral are obtuse. To do so, he needed to
modify some of the postulates, such as replacing the “infinitude” of the line with
“unbounded ness’. The reader may be familiar with the popular model of geometry on
the sphere. In this paper, we will deal only with the geometries derived from the first
four postulates as stated by Euclid, and will not discuss the geometry of Riemann.

In 1871 Felix Klein gave the names Hyperbolic, Euclidean, and Elliptic to the
geometries associated with acute, right, and obtuse angles in the Saccheri quadrilateral.
The distinctions between these geometries may be illustrated as follows. Given any linel
and any point P not on |, there exist(s) ___linesthrough P parallel to |. Parabolic
(Euclidean) geometry guarantees a unique paralel, in Hyperbolic geometry there are an

infinite number, and in Elliptic geometry there are none.

A More Complete Axiom System

Over the course of the two millennia following the work of Euclid,
mathematicians determined that Euclid’s system of five postulates were not sufficient to
serve as a foundation of Euclidean geometry. For example, the first postulate of Euclid
guarantees that if we have two points, then we may draw aline, but none of the postulates
guarantees the existence of any points, nor lines. Also, when we discuss the measure of a
line segment or of an angle, we are assuming that measurement is possible and
meaningful, but Euclid’s postulates are silent on this issue.

The following system of axioms is complete, (where Euclid’s postulate system is
not) that is, it is a sufficient system from which to derive geometry. The geometry and its
development are identical using both systems, but the problem in using Euclid’s system is

that one must make many unstated assumptions, which is unacceptable.



Axiom |: Thereexist at least two lines

Axiom |1: Each lineisa set of points having at least two elements(This guarantees at
least two points)

Axiom I11: To each pair of points P and Q, distinct or not, there correspondsa non-

negative real number PQ which satisfies the following properties:

(@ PQ=0iff P=Q and
(b) PQ = QP (Thisallows usto discuss measure)

Axiom 1V: Each pair of distinct points P and Q lie on at least one line, and if PQ < a,
that lineisunique (If a isinfinite we get Euclidean and/or hyperbolic geometry.
If a isfinite we get elliptic geometry)

Axiom V: If lisanylineand P and Q are any two pointson |, there exists a one to one
correspondence between the points of | and the real number system such that P
corresponds to zero and Q corresponds to a positive number, and for any two
pointsRand Sonl, RS=|r-s|, wherer and sare the real numbers
corresponding to R and Srespectively (This allows usto impose a convenient
coordinate system upon any line)

Axiom VI: To each angle pq (the intersection of lines p and q), degenerate or not, there
corresponds a non-negative real number pg which satisfies the following
properties:

(@ pg=0iff p=q and
(b) pg=ap
(This does for angles what Axiom 111 did for lines)

Axiom VII: b isthe measure of any straight angle (We get the degree system by letting

b be 180, p gives radians)




Axiom VIII: If Oisthe common origin of a pencil of rays and p and g are any two rays
in the pencil, then there exists a coordinate system g for pencil O whose
coordinate setistheset { x: -b < x[ b, xT A} and satisfying the properties:

(@ g(P) =0 and g(a)>0  and

(b) For any two raysr and sin that pencil, if g(r) = x and g(x) =y then
rs=|x-ylinthecase|x-y|[b,andrs=2b-|x-y|inthecase| x-y|> 2b
(This does for angles what Axiom V did for lines)

Axiom I X (Plane separation principle): There correspondsto each linel in the plane
two regionsH_and H_, with the properties:

(@ Each point in the plane belongs to exactly oneof |, H and H,
(b) H and H, areeach convex sets and

(© IfAT H andBT H_ and AB < a then| intersectsline AB

(This makes the discussion of the “sides’ of aline possible)

Axiom X: If the concurrent raysp, g, and r meet linel at respective points P, Q, and R
and | does not pass through the origin of p, g and r, then Q is between P and R iff
gisbetween pandr. (Thisguarantees, essentially, that if aray ‘enters atriangle
at one vertex, then it must ‘exit’ somewhere on the opposite side. A dightly
different wording of thisis sometimes called the Crossbar Principle)

Axiom XI (SAS congruence criterion for triangles). If in any two triangles there exists
a correspondence in which two sides and the included angle of one are
congruent, respectively, to the corresponding two sides and included angle of the
other, the triangles are congruent.

Axiom XII: If apoint and a line not passing through it be given, thereexist(s)
line(s) which pass through the given point parallel to the given line. (* One’ gives

Euclidean geometry, “ No” lines gives Elliptic, and “Twao” gives Hyperbolic)




Note that axioms four and twelve are worded in such a way that different choices
will lead to different geometries. Euclid’s postulates lead to Euclidean geometry only,
but this system gives us, with rather minor modifications, Euclidean, hyperbolic, and
elliptic geometries.

We will begin our discussion of hyperbolic geometry by developing the geometry
derived from the first four of Euclid’s postulates, or more accurately, the first eleven
axioms. During our discussion, we will refer to the postulates rather than the axioms
because the geometry we will be discussing was originaly developed using the
postulates. In addition, the average reader is likely more familiar with the postulates than

with the axioms.
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Chapter |1
Neutral and Hyperbolic Geometries

Neutral Geometry

Neutral geometry (sometimes called Absolute geometry) is the geometry derived
from the first four postulates of Euclid, or the first eleven axioms (see Chapter 1). As
Euclid himself put off using his fifth postulate for the first twenty eight theoremsin his
Elements, these theorems might be viewed as the foundation of neutral geometry. We
will see that Euclidean and hyperbolic geometries are contained within neutral geometry,
that is the theorems of neutral geometry are valid in both.

We will develop neutral geometry to a degree sufficient to provide a foundation
for hyperbolic geometry. It should not be surprising, since hyperbolic geometry was born
as aresult of the controversy over the fifth postulate, (the only postulate to address
parallelism) that parallels will be the main focus of our discussion and the topic of our

first few theorems of neutral geometry:

Theorem 2.1: If two linesare cut by a transversal such that a pair of alternate interior
angles are congruent, then the lines are parallel. (Parallel at this point means nothing

mor e than non-intersecting.)

Proof: Suppose lines| and m are cut by transversal t with a pair of aternate
interior angles congruent. Let t cut | and min A and B respectively. Assume that | and m
intersect at point C. (Figure 2.1) Let C' be the point on m such that B is between C and C'
and AC@C, and let D be any point on | such that A is between D and C. Consider
triangles ABC and BAC'. By SAS, they are congruent, so angles BAC' and ABC are
congruent, which means that angles BAC' and BAC are supplementary, so CAC'isa
straight angle and C' lieson |. But then we have | and m intersecting in two distinct

points, which is a contradiction of Postulate I, so | and m do not intersect, and are
11



paralel. QED

Figure 2.1 Congruent aternate interior angles implies paralelism

This theorem has two useful corollaries.

Corollary 2.2 If two lines have a common perpendicular, they are parallel.

Corollary 2.3 Given linel and point P not on |, there exists at least one parallel to |

through P.

The parallel guaranteed here is simple to construct. Draw t, perpendicular to |

through P, and m perpendicular to t through P. By Corollary 2.2, mand | are parallel.

Theorem 2.4: The external angle of any triangle is greater than either remote interior

angle.

Proof: Given triangle ABC with D on ray AB such that B is between A and D,
angle CBD is our external angle. (Figure 2.2) Assume that angle ACB is greater than
angle CBD. Thenthereisaray CE between rays CA and CB such that angles BCE and
CBD are congruent. But these are the alternate interior angles formed by transversal CB
cutting CE and BD, which tells us that CE and BD are parallel, by the preceding theorem.

Since ray CE lies between rays CA and CB, it intersects segment AB and therefore line
12



BD, and we have a contradiction. The case for angle BAC is symmetric. QED

Figure 2.2 The external angle of atriangle is greater than either remote interior angle

Thistheorem isthe key to proving the AAS condition for congruence. SAS and
ASA criterion for triangle congruence are also valid in neutral geometry, but these are

fairly obvious so we omit their proofs. AAS s not so intuitive.

Theorem 2.5 (AAS congruence): Given two triangles ABC and AB'C, if sde AB@\'B,,

angle ABC@\'B'C', and angle BCA@'C'A', then the two triangles are congruent.

Proof: Suppose we have the triangles described. (Figure 2.3) If side BC@'C,
the triangles are congruent by ASA, so assume that side B'C>BC. If o, thereisaunique
point D on segment B'C' such that B'D is congruent to BC. Consider triangles ABC and
A'B'D. By SAS, they are congruent, and angle ADB'@\CB@\'CB', whichisa
contradiction of Theorem 2.4, asangle A’DB’ isthe exterior angle and A'C'B' aremote

interior angle of triangle A'C'D. QED

13



Figure 2.3 Angle-angle-side congruence of triangles

It happens that we have all of the congruence rules for triangles in hyperbolic
geometry that we have in Euclidean; SAS, ASA, AAS, SSS, and HL (The proof of
hypotenuse-leg congruence for right triangles is elementary, and we will not include it
here.). Actualy, we will see in Theorem 2.19 that we have another congruence criterion
in hyperbolic geometry that is not valid in Euclidean.

Before we get to that, we must take look at several elementary properties of

trianglesin neutral geometry, starting with:

Theorem 2.6. In any triangle, the greatest angle and the greatest side are opposite each

other.

Proof: Given any triangle ABC, assume that ABC is the greatest angle, and that
AB isthe greatest side. (Figure 2.4) There isaunique point D on segment AB such that
AD@AC. This meansthat triangle CAD isisosceles, and angle ACD@\DC, but, by
Theorem 2.4, angle ADC>ABC. So angle ACB>ABC, contradicting our assumption.
QED

14



Figure 2.4 The greatest angle is opposite the greatest side

Theorem 2.7: The sum of two angles of a triangle is less than 180°

Proof: Given triangle ABC, assume that the sum of angles ABC and BAC is
greater than 180°. (Figure 2.5) We can construct line AE interior to angle CAB such that
angle BAE=180°- ABC. Thisgivesusangle BAD=ABC, but thisisa pair of aternate
interior angles, so line AE is parallel to BC, an obvious contradiction. In the case where
ABC+BAC=180°, point E lieson line AC, and we have AC parallel to BC, which isalso
absurd, so ABC+BAC<180°.

Figure 2.5 The sum of any two angles of atriangle is less than 180°

15



Up to this point, al of the theorems of neutral geometry are theorems that we
recognize (in their exact form) from Euclidean geometry. Now we have come to a point
where we will see a difference. Theorem 2.8 is dightly weaker than its Euclidean

analogue.

Theorem 2.8 (Saccheri-Legendre): The angle sumof atriangleislessthan or equal to

180°.

Proof (Max Dehn, 1900): Given triangle ABC, let D be the midpoint of segment
BC, and let E be onray AD such that D is between A and E, and AD@DE. (Figure 2.6)
By SAS, triangles ABD and ECD are congruent. Since angle BAC=BAD+EAC, and by
substitution, BAC=AEC+EAC, either AEC or EAC must be less than or equal to ¥2BAC.
Also, triangle AEC has the same angle sum as ABC. Assume now that the angle sum of
any triangle ABC is greater than 180°, or =180°+p where p is positive. We see from
above that we can create a triangle with the same angle sum as ABC, with one angle less
than %2BAC. By repeated application of the construction, we can make one angle
arbitrarily small, smaller than p. By this and the previous theorem, the angle sum of
ABC must be less than 180°+p, a contradiction. So the angle sum of any triangle is

£180°. QED

A &

Figure 2.6 The angle sum of atriangleis less than or equal to 180°
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In Euclidean geometry, the angle sum of atriangle is exactly 180°. To prove this
we must use the Euclidean parallel postulate, or itslogical equivalent. (The statement that
the angle sum is 180° is actually equivalent to the parallel postulate) A common proof is

given below.

Theorem 2.9: In Euclidean Geometry, the angle sum of any triangle is 180°.

Proof: Given triangle ABC, let | be the unique parallel to line BC through A. Let
D beapoint on | such that B and D are on the same side of AC, and E a point on | such
that A is between D and E. (Figure 2.7) Because alternate interior angles formed by a
transversal cutting two parallel lines are congruent, angle EAC@\CB and angle

DAB@\BC. So thethree angles add up to a straight angle, 180°. QED

E A D

Figure 2.7 The angle sum of an Euclidean triangle is 180°

The reader isno doubt acquainted with this proof. It isincluded to illustrate how
it uses the converse of Theorem 2.1, which is not valid in neutral geometry. A corollary
of this theorem in Euclidean geometry is that the sum of any two angles of atriangleis
equal to its remote exterior angle. In neutral geometry, the corollary to the Saccheri-

Legendre theorem is as we might expect:

17



Corollary 2.10 The sum of two angles of a triangle is less than or equal to the remote

exterior angle.

Thisis obvious. angle ABC+BCA+CAB£180°, so angle ABC+BCA£180°-CAB,

which is the measure of the remote exterior angle at vertex A.

Corollary 2.11: The angle sum of a quadrilateral islessthan or equal to 360°.

We can see this by noting that any quadrilateral can be dissected into two
triangles by drawing one diagonal. The angle sum of the quadrilateral is the sum of the
angle sums of the two triangles.

Let uslook, again, at the parallel postulate of Euclid:

Parallel Postulate (Euclid): That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles (in sum), the two straight
lines, if produced indefinitely, meet on that side on which are the angles less than the two

right angles.

or in language more palatable to modern readers:

Parallel Postulate (Euclid): Given two lines| and m cut by a transversal t, if the sum of

the interior angles on one side of t is less than 180°, then | intersects m on that side of t.

The version we are more familiar with is that of John Playfair (1795):

Parallel Postulate (Playfair): Given any linel and point P not on |, there existsa

unique line mthrough P that is parallel to .

These two statements are logically equivalent.

18



Theorem 2.12: Euclid’ s Parallel Postulate implies Playfair’s Parallel Postulate, and

vice versa.

Proof: First suppose Playfair'sistrue. Let lines| and m be cut by atransversal t.
LettcutlinA,andminB, and let C and D lie on | and m respectively on the same side
of t. (Figure 2.8) Further, suppose that angle CAB+DBA<180°. Let n be the unique line
through A such that the aternate interior angles cut by t crossing m and n are congruent.
By Theorem 2.1, thislineis paralel to m, and by Playfair, we know it is the only such
line. By our conditions, nis distinct from m, and meets| in point E. Furthermore, E is
on the same side of AB as C and D, else triangle ABE would have angle sum greater than

180°. So Playfair’simplies Euclid’s.

Figure 2.8 The postulates of Euclid and Playfair are equivalent

Now suppose Euclid's Parallel Postulate istrue. Given line m and point A not on
m, and any linet through A that cutsmin B. Let D be any point on m other than B. We
know thereis a unique ray AF such that angle BAF@DBA, and that line n containing ray
AF will be pardlel to m. (Figure 2.8) Line mand any linel through A other than n, will
not form congruent alternate interior angles when cut by t, so on one side of AB the sum
of the interior angles will be less than 180°, and by Euclid, | and m will meet on that side,
and | will not be paralel to m. So nisthe unique parallel to m through A, proving
Playfair and the postulates of Euclid and Playfair are equivalent. QED
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In Euclidean geometry, the angle sum of atriangle is 180°, and we will show that

in hyperbolic geometry it isless than 180°. Before we do so, we must define:
Definition: The angle defect of a triangle is 180° minus the angle sum.

In Euclidean geometry, the angle defect of every triangle is zero, which is why the
termis never used. In hyperbolic geometry, the angle defect is always positive. We will

explore the significance of the angle defect in Chapter V.

Theorem 2.13: In any triangle ABC, with any point D on side AB, the angle defect of

triangle ABC is equal to the sum of the angle defects of triangles ACD and BCD.

The proof of thisistrivial substitution and simplification, and we omit it.

A
‘ D
B
C

Figure 2.9 Angle defect is additive

Theorem 2.13 tells us that, like the area of triangles, angle defect (and angle sum)

is additive, and gives us a useful corollary:

Corollary 2.14 If the angle sum of any right triangle is 180°, than the angle sum of

every triangleis 180°.

Since any triangle can be divided into two right triangles,(this is shown in the
proof of Theorem 2.15) its angle defect is the sum of the angle defects of the two right

triangles, which are both zero.

20



The angle sum of the triangle is a striking difference between our two geometries.
We have not yet proved that we can not have triangles with positive defect and zero

defect residing within the same geometry. We show now that thisis indeed the case.

Theorem 2.15: If there exists a triangle with angle sum 180° then every triangle has

angle sum 180°

Proof: Suppose we have atriangle ABC with angle sum 180°. We know that any
triangle has at least two acute angles. (If not, its angle sum would exceed 180°.) Let the
angles at A and B be acute. Let D be the foot of the perpendicular from C to line AB.
We claim that D lies between A and B. Suppose it does not, and assume that A lies
between D and B. (Figure 2.10) By Theorem 2.4, angle BAC>BDC=90°. This
contradicts our assumption that angle BAC is acute. By the same argument, B is not

between A and D. It followsthat D lies between A and B.

S . - -3

Figure 2.10 One dtitude of atriangle must intersect the opposite side

So triangle ABC may be divided into two right triangles, both with angle defect of
zero, since angle defect is additive and non-negative.

Consider now the right triangle ACD. From thiswe shall create arectangle. (a
quadrilateral with four right angles) There isa unique ray CE on the opposite side of AC
from D such that angle ACE@CAD, and there is a unique point F on ray CE such that
segment CF@AD. (Figure 2.11) By SAS, triangle ACF@CAD, and by complementary

angles, quadrilateral ADCF is arectangle.
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D A
Figure 2.11 From any right triangle with angle sum 180° we can create a rectangle
Consider now any right triangle ABC with right angle at C. We can create a
rectangle DEFG (by ‘tiling’ with the rectangle above) with EF>BC and FG>AC, and we

can find the unique points H and K on sides EF and FG respectively such that FH@C
and FK@\C. Triangle KFH will be congruent to ABC by SAS. (Figure 2.12)

Figure 2.12 Fitting any right triangle into arectangle

By drawing segments EG and EK, we divide the rectangle into triangles. By the
additivity of angle defect, the angle sum of triangle KHF, and therefore ABC, is 180°. So
the angle sum of any right triangle is 180°, and by Corollary 2.14 the angle sum of any

triangle, is 180°. QED
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Corollary 2.16 If there exists a triangle with positive angle defect, then all triangles

have positive angle defect.

This neatly divides neutral geometry into two separate geometries, Euclidean
where the angle sum is exactly 180°, and hyperbolic, where the angle sum is less than
180°. It isassumed that the reader is familiar with Euclidean geometry. We will now

move on to:

Hyperbolic Geometry

Where the foundation of neutral geometry consists of the first four of Euclid's
postulates, hyperbolic geometry is built upon the same four postulates with the addition

of:

The Hyperbolic Parallel Postulate Given alinel and a point P not on |, then there are

two distinct lines through P that are parallel tol.

While the postulate states the existence of only two parallels, al of the lines
through P between the two parallels will aso be paralel tol. We can make this more
precise. Let Q be the foot of the perpendicular from P to |, and A and B be pointsonm
and n, the two parallels, respectively, such that A and B are on the same side of PQ.
(Figure 2.13) Any line containing a ray PC between PA and PB must also be parallel to .

In the Euclidean plane, given non-collinear rays PA and PB, and a point Q lying
in the interior of angle APB, any line through Q must intersect either PA, PB or both.
Thisis not the case in the hyperbolic plane. In Figure 2.13 line | through Q cuts neither

line n nor m.
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Figure 2.13 Two distinct paralels imply infinitely many parallels

Theorem 2.17 formalizes a couple of the ideas alluded to in Chapter 1.

Theorem 2.17: Every triangle has angle sum less than 180°.

Proof: All we need to show is that there exists a triangle with angle sum less than
180°. It will follow by Corollary 2.16 that all triangles have angle sum less than 180°.
Suppose we have line | and point P not onl. Let Q be the foot of the perpendicular from
Pto |, and line m perpendicular to PQ at P. Let n be any other parallel to | through P
guaranteed by the hyperbolic parallel postulate, and suppose PA isaray of nsuch that A
isbetween mand|. Also let X be apoint on msuch that X and A are on the same side of

PQ. (Figure 2.14)

—l H
0 B’ B" 1

Figure 2.14 Finding atriangle with angle sum less than 180°

Angle XPA has positive measure p, and angle QPA has measure 90°-p. Then the
angle QPB for any point B on | to the right of Q will be lessthan QPA. If we canfind a

point B on | such that the measure of angle QBP is less than p, then the angle sum of
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triangle QBP will be less than 90°+90°-p+p, or less than 180° which iswhat we want. To
do this, we choose point B' on | to the right of Q such that QB'@Q. Triangle QPB' isan
isosceles right triangle, so angle QB'P is a most 45°. If we then choose B" to the right of
B' on| such that B'B"@B', then triangle PB'B" is an isosceles triangle with summit angle
at least 135°, so angle PB"B' is at most 22%2°. By continuing this process, eventually we
will arrive a apoint B such that angle PBQ is less than p, and we have our triangle PBQ
with angle sum less than 180°. QED

So in the hyperbolic plane, all triangles have angle sum less than 180°.

Corollary 2.18 All quadrilaterals have angle sum less than 360°.

In Euclidean geometry triangles may be congruent or similar. (or neither), but in

hyperbolic geometry:

Theorem 2.19: Trianglesthat are similar are congruent.

Proof: Given two similar triangles ABC and A'B'C', assume that they are not
congruent, that isthat corresponding angles are congruent, but corresponding sides are
not. In fact, no corresponding pair of sides may be congruent, or by ASA, the triangles
would be congruent. So one triangle must have two sides that are greater in length than
their counterparts in the other triangle. Suppose that AB>A'B' and AC>A'C'. This means
that we can find points D and E on sides AB and AC respectively such that AD@\'B' and
AE@\'C. (Figure 2.15) By SAS, triangle ADE@\'B'C' and corresponding angles are
congruent, in particular, angle ADE@\'B'C'@\BC and AED@\'CB'@\CB. Thistellsus
that quadrilateral DECB has angle sum 360°. This contradicts Corollary 2.18, and

triangle ABC is congruent to triangle AB'C'. QED
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Figure 2.15 Similarity of triangles implies congruence

Note that this gives us another condition for congruence of triangles, AAA, which
is not valid in Euclidean geometry.

We will explore several properties of trianglesin Chapter V. We will now turn
our attention to the nature of parallel linesin the hyperbolic plane. Before we look at
parallel lines, we will need to learn a few things about some special quadrilaterals we

mentioned in Chapter I.

Saccheri and Lambert quadrilaterals

Definition: A quadrilateral with base angle right and sides congruent iscalled a

Saccheri quadrilateral. The side opposite the base is the summit, and the angles formed

by the sides and the summit are the summit angles

In the Euclidean plane, this would of course be a rectangle, but by Corollary 2.18 there
are no rectangles in the hyperbolic plane.

Note that the summit angles of a Saccheri quadrilateral are congruent and acute,
and the segment joining the midpoints of the base and summit of a Saccheri quadrilateral
is perpendicular to both. These facts are easy to verify by considering the perpendicular
bisector of the base. (MM’ in Figure 2.16) By SAS, trianglesMM'D and MM'C are

congruent, and aso by SAS, triangles AMD and BMC are congruent. This gives us that
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M is the midpoint of, and perpendicular to, side AB, and also that angles DAM and CBM

are congruent.

Figure 2.16 The Saccheri quadrilateral

There is one more fact we need to establish regarding the Saccheri quadrilateral.

To do thiswe consider a more general quadrilateral.

Theorem 2.20: Given quadrilateral ABCD with right anglesat C and D, then side
AD>BC iff angle ABC>BAD.

Figure 2.17 should give the reader the idea of the proof.

A

1) &

Figure 2.17 Thelonger side is opposite the larger angle

A direct consegquence of thisisthat the segment connecting the midpoints of the
summit and base of a Saccheri quadrilateral is shorter than its sides. We also know that
this segment is the only segment perpendicular to the base and summit. (If there were

another, then we would have arectangle). We will state these facts together as:
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Theorem 2.21: The segment connecting the midpoints of the summit and base of a
Saccheri quadrilateral is shorter than the sides, and is the unique segment perpendicular

to both the summit and base.

We now have what we need to examine and classify parallels in the hyperbolic

plane.

Two kinds of hyperbolic parallels

In Euclidean geometry, parallel lines are often described as lines that are
everywhere equidistant, like train tracks. This property is equivalent to the Euclidean
parallel postulate, so as we would expect, this description is untrue in the hyperbolic

plane.

Theorem 2.22: If lines| and I' are distinct parallel lines, then the set of points on | that

are equidistant from1' contains at most two points.

Note that distance P isfrom | is defined in the usual way, as the length of segment
PQ where Q isthe foot of the perpendicular fromPto|.

Proof: Given two parallel lines| and I', assume that distinct points A, B and C lie
on | and are equidistant fromI'. Let A', B' and C' be the feet of the perpendiculars from
the corresponding pointsto I'. (Figure 2.18) ABB'A’, ACC'A' and BCC'B' are all
Saccheri quadrilaterals, and their summit angles are all congruent, so angles ABB' and
CBB' are congruent supplementary angles, and therefore right. But we know they are
acute, so we have a contradiction, and the set of points on | equidistant from|' contains

fewer than three points. QED
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Figure 2.18 Three pointson aline | equidistant from |’ parallel to |

We have no guarantee that any set of points on | equidistant from I' has more than

one element. If it does, there are some things we know about | and I'.

Theorem 2.23: If | and I" are distinct parallel lines for which there are two points A and
B on | equidistant from ', then | and I' have a common perpendicular segment that is the

shortest segment from| to I'.

Proof: Let A and B beon| equidistant fromI', and let A" and B' be the feet of the
perpendiculars from A and B to I'. (Figure 2.19) The existence of the common
perpendicular isimmediate by Theorem 2.21. To show that this common perpendicular
is the shortest distance between | and I', choose any point C on |, and let C' be the foot of
the perpendicular from CtoI'. MM'C'C isaLambert quadrilateral, and by Theorem 2.20,
side CC'is greater than MM'. QED

A M OB C 1
il
0 0O 0O ml !
A N OB &

Figure 2.19 The mutual perpendicular is the shortest segment between two parallels
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Theorem 2.24: If lines| and I' have a common perpendicular segment MM’ with M on |
and M'on ', then | isparallel tol', MM' is the only segment perpendicular to both | and I,
and if A and B lie on | such that M is the midpoint of segment AB, then A and B are

equidistant from 1",

Proof: We know that if | and I' have a common perpendicular MM', then | is
paralel to I' by Theorem 2.1. We aso know MM' is unique because if it were not, we
would have arectangle. It remainsto be shown that A and B, so described above (Figure
2.20) are equidistant fromI'. By SAS, triangles AMM' and BMM' are congruent, and by
AAS, triangles AA'M' and BB'M' are congruent. So segments AA' and BB' are

congruent. QED

A % E 1
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Figure 2.20 Points equidistant from the mutual perpendicular are equidistant from I

We can add one more fact here about lines having a mutual perpendicular.

Theorem 2.25: Given lines| and I' having common perpendicular MM, if points A and

B are on| such that MB>MA, then Aiscloser to I' than B.

Proof: Given the situation stated. If A is between M and B, let A" and B' be the
feet of the perpendiculars from A and B to I', and consider the Sacchieri quadrilateral
ABB'A’ (Figure 2.21) We know that angles MAA' and ABB' are acute, so A'AB is
obtuse, and therefore greater than ABB'. By Theorem 2.22 side BB'>AA', and B is
farther from|' thanis A. If M is between A and B, then there is a unique point C on
segment MB such that M is the midpoint of segment AC. Let C' be the foot of the
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perpendicular from Cto I'. Apply Theorem 2.22 to quadrilateral CBB'C', and the fact that
CC@A', and we have the theorem. QED

it} A E 1
M|
1 [ 1 []

A A B I

Figure 2.21 Points closer to the common perpendicular are closer to I'

So two lines having a mutual perpendicular diverge in both directions. We define

such lines to be:

Definition: Two lines having a common perpendicular are said to be _divergently-

parallel.

It is also common for such lines to be called ultra-parallel or super-parallel. A

more intuitive picture of ultra-parallel linesis shown in Figure 2.22.

\{/
o 1.

Figure 2.22 Divergently-parallel lines

We will state the following theorem, which is dightly different from Theorem

2.1, aswe will be using it in later proofs.

31



Theorem 2.26: If two lines are cut by a transversal such that alternate interior angles

are congruent, then the lines are divergently-parallel.

This differs from Theorem 2.1 because it guarantees not only that the lines do not
intersect, but also that they diverge in both directions. There is another type of
parallelism in hyperbolic geometry, those that diverge in one direction and converge in
the other. We will look at this type now.

In Euclidean geometry, when two lines| and I' have a common perpendicular PQ,
and you rotate | about P through even the smallest of angles, the lines will no longer
paralel. In hyperbolic geometry, thisis not the case, but how far can we rotate | about P?

To answer this question, we first need to lay alittle groundwork.

Theorem 2.27: Givenalinel and a point P not on |, with Q the foot of the perpendicular
fromP to |, then there exist two unique rays PX and PX' on opposite sides of PQ that do
not meet | and have the property that any ray PY meets| iff PY is between PX and PX'.

Also, the angles QPX and QPX' are congruent.

Proof: Givenlinel and P not on I, with Q the foot of the perpendicular from P to
[, let m be the line perpendicular to PQ at P. Line misdivergently paralel tol. Let Sbe
apoint on mto the left of P. Consider segment SQ. (Figure 2.23) Let S be the set of
points T on segment SQ such that ray PT meets|, and S' the complement of S. We can
seethat if T on SQ isan element of S, than al of segment TQ isin S. Obvioudy, Sisan
element of S, so S'isnon-empty. So there must be a unique point X on segment SQ
such that all points on open segment XQ belongto S, and all points on open segment

XS, to S. PX istheray with the property we are after.
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Q 1
Figure 2.23 Raysfrom P parallel to, and intersecting |

It is easy to show that PX itself does not meet |. Suppose PX does meet | in A,
then we can choose any point B on | such that A is between B and Q, and ray PB meets|,
but cuts open segment XS, which contradicts what we know about X. (Figure 2.24) So

PX can not meet |.

Figure 2.24 Raysfrom P intersecting |

We can find X' to the right of PQ in the same fashion, and all that remains to be
shown is that angles QPX and QPX' are congruent. Assume that they are not, and that
angle QPX>QPX'. ChooseY on the same side of PQ as X such that angle QPY @PX'.
(Figure 2.25) PY will cut | in A. Thereisaunique point A’ on | such that Q isthe
midpoint of segment AA'. By SAS, triangle PAQ@PA'Q, and angle A'PQ@\PQ@X'PX’,

and A' lies on PX', a contradiction, so angles QPX and QPX' are congruent. QED
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Figure 2.25 Limiting parallels form congruent angles with the perpendicular

Definition: Given linel and point P not on |, the rays PX and PX' having the property
that ray PY meets| iff PY is between PX and PX' are called the [imiting parallel rays

from P to |, and the lines containing rays PX and PX' are called the limiting parallel

lines, or ssmply the limiting parallels.

These lines are sometimes called asymptotically parallel. We will state afew
fairly intuitive facts here about limiting parallels without proof, for sake of brevity.

First: Limiting paralelismis symmetric, that isif linel islimiting parallel from P
to linem, and point Q ison m, then misthe limiting parallel from Q to | in the same
direction.

Second: Limiting parallelismistrangtive, if points P, Q and R lieon lines|, m
and n respectively, and | is limiting parallel from P to m, and mis limiting parallel from
Q to nin the same direction, then | is the limiting parallel from P to nin that direction.

Third: If linel islimiting parallel from Pto m, and point Q isalso on |, then the |
is the limiting parallel from Q to min the same direction.

Given these properties, it is reasonable to say that lines that are limiting parallels
to one another in one direction intersect in a point at infinity. We call these points ideal

points and denote them, for the moment, by capital Greek letters.



In Theorem 2.27, the angle QPX is not a constant, but changes with the distance
of Pfrom|. Thisangle will prove to be useful in our upcoming investigations and will

require formal notation.

Definition: Given linel, point P not on |, and Q the foot of the perpendicular fromP tol,
the measure of the angle formed by either limiting parallel ray from P to | and the
segment PQ is called the angle of parallelism associated with the length d of segment
PQ, and is denoted P (d). (Figure 2.26)

Figure 2.26 The angle of parallelism associated with a length

Note that P (d) isafunction of d only, so for any point at given distance d from
any line, the angle of paralelismisthe same. Also: P(d) isacute for al d, approaches
90° as d approaches 0, and approaches 0° as d approaches ¥ . These are not obvious
facts, and we will prove them in Chapter V when we derive a formulafor P (d).

It isintuitive (and true) that as a point on | moves along | in the direction of
parallelism, its distance from m becomes smaller, and as it movesin the other direction,
its distance grows. So limiting parallels approach each other in one direction and diverge
in the other. This distinguishes them from divergent paralels. We can show that they
approach each other asymptotically and diverge to infinity.

Suppose, then, that we have lines| and m limiting parallel to each other, to the
right. Select any point A on |, and let Q be the foot of the perpendicular from A to m.
(Figure 2.27) We can choose any point R on segment AQ such that segment QR has any

length lessthan AQ. Let line n be the limiting parallel from R to m, to the left. Since n
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can not meet m, and can not be limiting parallel to mto the right, (or n=m) n will meet |

inpoint S. Let T bethe foot of the perpendicular from S to m, and choose Q' on m such
that T is the midpoint of segment QQ'. By SAS, triangles STQ and STQ' are congruent,
and SQ@Q'. The perpendicular to mat Q' will cut | in R'. By subtraction of angles and

congruent triangles, we see that QR'@R, which was arbitrarily small.

Figure 2.27 Limiting parallels are asymptotic and divergent in opposite directions

A symmetric argument, choosing R on line AQ such that A is between Q and R,
will give us Q'R' arbitrarily large. So Limiting parallels are asymptotic in the direction of
parallelism, and diverge without bound in the other. Also, since R was chosen at an
arbitrary distance from m, there exists a point P on either line such that the distance from

P to the other lineisd. So:

Theorem 2.28: Limiting parallels approach one another asymptotically in the direction
of parallelism, diverge without limit in the other, and the distance from one to the other

takes on all positive values.

We now need one more theorem pertaining to a specia kind of triangle

Definition: A triangle having one or more of its vertices at infinity (an ideal point) isan

asymptotic triangle. Sngly, doubly and trebly asymptotic triangles have one, two and

three vertices at infinity, respectively.
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An example of each type of asymptotic triangle is shown in Figure 2.28. A singly
asymptotic triangle has only one finite side and two non-zero angles. A doubly
asymptotic triangle has one non-zero angle and no finite sides, and is therefore defined
entirely by the one non-zero angle. A trebly asymptotic triangle has no finite sides and
no non-zero angles, (the measure of the asymptotic angle is taken to be zero), so al trebly

asymptotic triangles are congruent. Note that the angle sum of any asymptotic triangle is

(AN

D

less than 180°.

Figure 2.28 Singly, doubly and trebly asymptotic triangles

The following theorem establishes that the AAA criterion for congruence of

singly asymptotic triangles.

Theorem 2.29: Let two asymptotic triangles be given such that their non-zero angles are

pairwise congruent. Then their finite sides are congruent.

Proof: Suppose we are given ABS and PQW, both singly asymptotic triangles
such that pairs of angles ABS and PQW, and BAS and QPW are congruent. (Figure 2.29)
Let A' and P be the feet of the perpendiculars from A and P to BS and QW respectively.
Assume that segment AB>PQ, then AA'>PP. We show this by Letting C be on segment
AB such that BC is congruent to PQ, and letting C' be the foot of the perpendicular from
Cto BS. AAS congruence tellsusthat CC'is congruent to PP, and it is obvioudly less
than AA'".
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Figure 2.29 AAS condition for congruence of singly asymptotic triangles

Since AA>PP, and since AS is asymptotic to BS, we can find the unique point D
on AS such that PP’ is congruent to DD', where D' is the foot of the perpendicular from D
to BS. (Figure 2.29) The angle of parallelism D'DS is congruent to PPW. By choosing
point E on ray DB such that D'E is congruent to PQ, we get triangle DD'E@PPQ, and
angle DED'@QP@\BA'. AB isparallel to DE, by Theorem 2.1, and ADEB isa
guadrilateral with angle sum 360°, a contradiction of Corollary 2.18, so AB@Q. QED

Recall from Chapter | the proof of the parallel postulate given by Legendre. The
assumption was made that any line through a point in the interior of an angle must
intersect at least one side of the angle. The following theorem shows that thisis not the

case.

Theorem 2.30 (The Line of Enclosure): Given any two intersecting lines, there exists a

third line that is the limiting parallel to each of the given lines, in opposite directions.

Proof: Given lines| and m intersecting in point O, consider any one of the four
angles formed by them. Let the ideal points at the ‘ends’ of | and mbe S and W
respectively Choose points A and B on OS and OW respectively such that OA@DB.
Draw segment AB, and the limiting parallels from A to m (AW), and from B to | (BS).

These lines will intersect in point C. Next, draw the angle bisectors n and p of angles
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SAWand SBW. Thesewill cut BS and AW in F and G respectively. Also, let D bea
point on ray AF such that F is between A and D. (Figure 2.30) We can see that angles
OAC and OBC are congruent, and therefore angle SAC@\VBC, and we have
SAFAFAC@BG@=BW. We will show that nand p are ultra-parallel, and therefore have
a common perpendicular, and we will see that this common perpendicular is parallel to
both | and m.

First, assume that rays AF and BG intersect in H. |If so, then angles BAH and
ABG are congruent, by angle subtraction, and AH@H. By afairly trivia congruence
argument, H is equidistant from AW and BW, so if we draw ray HW, then angle
AHW@BHW, which cannot be. So rays AF and BG do not intersect. Since angle
AFS+FAS<180°, by substitution, GBF+BFD<180°, so rays FA and GB can not intersect,

and the lines n and p do not intersect.

Figure 2.30 The line of enclosure of two intersecting lines |
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Now assume that n and p are limiting parallels. Again, since angle
DFB+FBG<180°, we know that n and p must be limiting parallels in the direction of ray
AF, and ‘intersect’ in ideal point G. By applying Theorem 2.31 to the singly asymptotic
triangles FAS and FBG, we see that FA@B, and therefore angle BAF@\BF which is
impossible. So n and p are not limiting parallels, and the only case remaining is that they
are ultra-parallel and have a common perpendicular.

Let this perpendicular cut nin N and p in P. (Figure 2.31) ABPN is a Saccheri
quadrilateral, so AN@BP. Assumethat NP is not limiting parallel to m, and draw NW and
PW. Considering that N and P are equidistant from AW and BW respectively (by
dropping the perpendicularsand using AAS) angles ANW and BPW are congruent, but
thistells us that triangle NPW has one exterior angle congruent to the alternate interior
angle, a contradiction of Theorem 2.4. So ray NP is limiting parallel to m, and by the
symmetric argument, also to |, and line NP is limiting parallel to both intersecting lines|
and m. There are, of course, three other such lines, one for each angle formed by | and m.

QED

Figure 2.31 The line of enclosure of two intersecting lines 1
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Definition: Given angle ABC, the line lying interior to the angle, and limiting parallel to

both rays BA and BC isthe line of enclosure of angle ABC.

This theorem also shows that our angle of paralelism may be as small as we like,
because no matter how small we choose the angle AOB, there is aline of enclosure | such
that the angle of parallelism associated with distance from O to | is one half of AOB.

There is one more topic we will cover before we move on to the next chapter.

Thein-circleand circum-circle of atriangle

In Euclidean geometry, every triangle has an inscribed circle, and the center of
this circle is the intersection of the angle bisectors of the triangle. To prove this, we show
that the three angle bisectors coincide, and that their mutual intersection point is
equidistant from all three sides. The reader is no doubt acquainted with the Euclidean

proof. This proof isalso valid in hyperbolic geometry.

Theorem 2.31: Inside any given triangle can be inscribed a circle tangent to all three

sides.

Every triangle in Euclidean geometry also has a circumscribed circle, whose
center is the intersection point of the perpendicular bisectors of the three sides. In contrast
to the angle bisectors, the perpendicular bisectors of the three sides of atriangle in

hyperbolic geometry will not always intersect.
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"Theorem 2.32: Give any triangle, the perpendicular bisectors of the three sides either;
intersect in the same point, are limiting parallels to each other, or are divergently
parallel and share a common perpendicular.

The circumscribed circle exists only for the case where the three bisectors
intersect. We will examine this condition more closely in Chapter VIII.

Proof: Suppose we have triangle ABC with | and m the perpendicular bisectors of
segments AB and BC.

Casel: Supposel meetsmin O. (Figure 2.32) We need to show that the
perpendicular bisector of AC passes through O. By SAS congruence of the appropriate
triangles, we can see that AO, BO and CO are all congruent, so triangle AOC is isosceles,
so the perpendicular from O to AC will bisect AC, by HL congruence, and the fact that

the perpendicular bisector of AC isunique, it passes through O, and we are done.

Figure 2.32 The circum-center of atriangle

Casell: Supposethat | and m are divergently parallel with common
perpendicular p. (Figure 2.33) We need to show that the perpendicular bisector of AC is
perpendicular to p. Drop perpendiculars AA', BB' and CC' from A, B and C to p, and let
I meet ABandpinL and L', and mmeet BC and p in M and M' respectively. Now, by
SAS, triangles AL'L and BL'L are congruent, so segment AL'@BL ', and angle
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AL'L@BL'L. By angle subtraction, we have angle AL'A'@BL'B', and by AAS, triangle
AL'A'@L'B'. Thisgivesus AA'@B', and by the same argument, BB'@CC'. ACCA'isa
Saccheri quadrilateral, and the segment connecting the midpoints of A'C' and AC are
perpendicular to both, and is therefore the perpendicular bisector of side AC, and

perpendicular to p, and we are done.
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Figure 2.33 The pairwise parallel perpendicular bisectors of the sides of atriangle

Caselll: Thiscasetrivia since, if | and m are limiting parallels, the
perpendicular bisector of AC being anything other than limiting parallel to both would be
contradictory to one of the first two cases, and we have proven the theorem. QED

We will look more at the properties of triangles and circles in hyperbolic
geometry. Before we do so, however, we will introduce some models of the hyperbolic
geometry that we have studied abstractly so far. These models will allow usto visualize

the properties of non-Euclidean geometry much more clearly.
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Chapter 111
TheModels

So far, we have developed hyperbolic geometry axiomatically, that is independent
of the interpretation of the words ‘point’ and ‘line’. To help visualize objects within the
geometry, and to make calculations more convenient we use amodel. We define points
and lines as certain ‘idealized’ physical objectsthat are consistent with the axioms. This
system of lines and points is the model of the geometry. Though the pictures drawn in
the model are consistent with the axiomatic development of the geometry it represents,
they are not the geometry, merely away of picturing objects and operations within the

geometry. Probably the best known model of a geometry is:

The Euclidean M odel

This model is derived by defining a point to be an ordered pair of real numbers
(x,y), alineto be the sets of ordered pairs (points) that solve an equation having the form
ax + by = ¢ where a, b and c are given real numbers, and the plane to be the collection of

al points. Twolines ax+ by =c and dx + ey =f aresaid to intersect if there existsa

point (x,y) that satisfies both equations.

The distance between two points A(Xx,y) and B(z,w) in the plane is given by:

d(AB)=(z- X + (w- X’

And the angle between two lines ax + by =c and dx+ey =1 by:

angle=jtan""¢—=- tan""¢—

1&d0 1%8.
eeg eb

(or by p minus this value.)



This model is consistent with the five postulates of Euclidean geometry, and is
usualy referred to as the Euclidean Plane, the Real Plane, or R2. |t is assumed that the
reader is familiar with the Euclidean Plane Model, and we will move on to the hyperbolic
models. There are three models that dominate the discussion of elementary hyperbolic
geometry; the Klein Disk, the Poincaré Disk and The Poincaré Upper Half-Plane models.
All three are realized with the Euclidean Plane, but all three have entirely different
flavors, especially when constructing objects within them. (These will be explored in the
Appendix) All three also have their advantages and disadvantages. The Upper Half-
Plane is the most convenient for employing the Calculus and analytic geometry to derive
formulae and prove relationships, and we shall use this model for most of our
development of hyperbolic geometry. Before we do, we will look at the two other

models.

TheKlein Disk Model

For the actual definition and construction of the most basic objects such as points
and lines, the Klein Disk model is the easiest of the three. For this reason we introduce it
first. For anything more complicated, such as calculating angle measures, it is
considerably less convenient.

When introducing parallel lines to middle school or high school students, teachers
often say something along the lines of, “Parallel lines never meet no matter how far you
extend them. Linesthat are not parallel will eventually meet if you extend them far
enough.” The Klein Disk Model, (or KDM) removes this distinction by eliminating the
infinitude (in the Euclidean sense) of the line.

The model consists of the interior of the unit circle. The points are Euclidean
points within the unit circle {(x,y) : X2 + y?2< 1} , ideal pointslie on the circle {(x,y) : X2

+y2=1} , and ultra-ideal pointslie without{ (x,y) : X3+ y?2> 1} . Thelinesarethe
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portions of Euclidean lines lying within the unit circle, or the chords of the circle, and
two lines intersect if they intersect in the Euclidean sense and the point of intersection
liesinside the unit circle.

Figure 3.1 illustrates the model. A, B, C, D and O are points;, P, Q, Rand Sare
ideal points; and AB, CD, OC, and CP arelines. Notice that line AB may aso be

referred to as AP, BQ, PQ or any combination of two distinct points or ideal points lying

onit.
E
Q
3
P
Figure 3.1 Pointsand linesin KDM
Note that line AB is limiting parallél to line CP, and divergently parallel to CD

and CO.

A tool that we will be using in the discussions of metric in all three modelsis the
crossratio. For that reason we will introduce it here. Given four pointsin the plane, A,

B, P and Q, we define the crossratio (AB,PQ) by:

(AB,PQ)= (AP)(BQ)

where, e.g., AP isthe length of the Euclidean segment AP.
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The metric of KDM

The distance between any two points A to B in KDM is defined as follows:

1

(A B)__ 2APXBQ

AQ>BP

%-%“n(AB, PQ)

where P and Q are the ideal points associated with line AB.
If A and B coincide, then (AB,PQ)=1, and h(A,B)=0, so h(A,A)=0.
The crossratios (AB,PQ) and (BA,PQ) are merely reciprocals of each other, so
the absolute values of the logs of these expressions will be equal, and h(A,B)=h(B,A).
We will not show the triangle inequality for the metric, but we can confirm easily

that h(A,B) + h(B,C) = h(A,C) if A, B and C are collinear:

1 1 1
h(A, B)+h(B,C):§|In(AB, PQ) +IIn(BC. PQ)|=5 ngAQxBP%+§ ngB@CP%
nZAP>BQOaBP-CQY _ 1| gAPXCQ( =h(AC)
gAQXBP >§BQ>CP AQ>CP;

Notice that as A and B become very close to each other (AB,PQ) approaches 1
and the metric approaches zero. Notice aso that as A (or B) approaches P (or Q) the
cross ratio (AB,PQ) approaches either zero or infinity, and h(A,B) approaches infinity.

So, with this metric, our lines are indeed infinite.

Anglemeasurein KDM

A disadvantage of KDM isthat it does not represent angles ‘accurately’, in fact
the definition of angle measure is rather inconvenient. For lines| and mintersecting in
point A, we define the measure of the angle formed by | and m at A as the angle formed

by I'and m' at A’ where | and m' are the arcs of circles orthogonal to the unit circle at the
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endpoints of | and m, and A' is the intersection of I' and m'.

Thisisillustrated in Figure 3.2.

Figure 3.2 Angle measurein KDM

This angle measure gives us a curious definition for perpendicularity in KDM. In
KDM, each line has associated with it an ultra-ideal point exterior to d (the unit circle)
called the polar point of theline. It isdefined for line | in KDM as the intersection L of
the e-lines tangent to d at the endpoints of |. (Figure 3.3) A line through O will have no

polar point. (We can think of it as having its polar point at infinity)

Figure 3.3 The polar point L of linel in KDM

We define aline m as perpendicular to line | if the extension of line m contains
the polar point L of linel, (I will contain M) (Figure 3.4)
This definition is easier to understand when we consider the definition of angle measure.

Lines| and m are perpendicular if their related Euclidean circles|' and m' are. But if I
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and m' are perpendicular, thenI', m" and d are pairwise orthogonal, and the center of each
lieson the radical axis of the other two. In Euclidean Geometry, given two circles
intersecting in two points P and Q, any circle centered on line PQ that is orthogonal to
one of the circles will be orthogonal to the other, and in fact, to any other circle
containing P and Q. The set of circles containing both P and Q form a pencil of circles,
and the line PQ is the radical axis of the pencil. (A development of pencils and radical
axes can be found in Greenberg pp232-3) The radical axisof I' and d is the extended line
| and the center of m'is M, so the extended line | must contain M, as line m must contain

L. (Figure 3.4)

Figure 3.4 Perpendicular linesin KDM

One nice thing about KDM isthat it has rotational symmetry, so regular polygons
and tessellations have a pleasing and complete appearance that reminds one of, and may
well have inspired, some of the works of M.C. Escher. Figure 3.5 depicts a partial
tessellations of KDM by equilateral triangles.
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Figure 3.5 A partial tessellation of KDM

The Poincaré Disk M odel

The second model we will consider is the Poincaré Disk Model, or PDM. It is
somewhat similar to KDM in appearance. The slightly more complicated definition of
linesin PDM gives it an important advantage over KDM. It is conformal.

PDM also resides in the interior of the unit circle d in the Euclidean plane. Asin
KDM, the points of PDM are the points lying interior to d, ideal pointslie on d, and ultra
ideal points lie exterior to d. The lines of PDM are general Euclidean circles (Euclidean
lines and circles) orthogonal to d. These will either be arcs of Euclidean circles
orthogonal to d (line AB in Figure 3.6), or diameters of d (line OC in Figure 3.6). Note

that Figure 3.6 shows the same situation for PDM as was shown for KDM in Figure 3.1.
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Figure 3.6 Pointsand linesin PDM

The metric of PDM

The metric in PDM isthe same asin KDM:

h(AB) = % |

n i =
AQxBP

2AP xBQ% ‘lln(AB, PQ)1
2
where P and Q are the ideal points at the ‘ends’ of the line AB. All the same properties

of the metric hold.

Anglemeasurein PDM

The measure of the angle formed at point A by lines| and mis defined as the
measure of the angle formed by lines|"and m' at A where|' and m' are the Euclidean
lines tangent to | and m, respectively, at A.

The polar points of our linesin PDM (defined the same way asin KDM) make
calculating angle measure simple. The angle formed by lines| and m at point A is equal
to the measure of angle LAM, or its complement, where L and M are the polar points of |

and m respectively. (Figure 3.7) It isevident that rotation through aright angle about A
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sends the tangents to the Euclidean circles| and mat A to thelines LA and MA, which

are the radii of the Euclidean circles| and m.

B
N

Figure 3.7 Measuring anglesin PDM

While constructions in PDM tend to be more complicated than in KDM, the fact
that PDM is conformal makes the pictures of objects look more like they ‘should’. For
example, Figure 3.8 shows aright triangle in both KDM and PDM. Theright angleat C
looks right in PDM, but not in KDM.

PO

Figure 3.8 Right trianglesin KDM and PDM

Tessdllations are also symmetric and nice in PDM. Figure 3.9 shows a partial

tiling of the plane by equilateral triangles.
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Figure3.9 A partia tessellation of PDM

While both KDM and PDM allow for easy visualization, a magjor disadvantage of
both isthat any calculations are tedious and messy. Our next model, The Upper Half-
Plane Model (UHP) is much more convenient for calculations and we will use it to

investigate many theorems and formulae of hyperbolic geometry.

The Upper Half-Plane M odel

We will now introduce the third of our three models of hyperbolic geometry. The

Upper Half-Plane Model, (or UHP) is defined as follows.

UHP resides within R2. The points of UHP are:

{(xy):x,yl Ry>0}

Which is the half-plane lying above the x-axis (or x) in R2. We will refer to these points
by capital letters from the beginning of the alphabet. (A, B, C, ....) In addition to ordinary
points, it will be useful for usto define the set of ideal-points (or i-points) in UHP as.

{(x0): xT RIE{¥}
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Which are the Euclidean points on the x-axis with the addition of the Euclidean point at
infinity. We will denote i-points by capital letters beginning with P (P, Q, R, ...) and we
will reserve the label *Z’ for the point at infinity. It isnot entirely incorrect to think of
the set of ideal points of UHP as surrounding the model with the point at infinity ‘tying’
the ends of the x-axis together *above’ the plane, much like the i-points of KDM and
PDM surround the ordinary points.

A linein UHP is defined as the set of points satisfying the conditions x = b and
y>0, or (x-c)2+y2=r2 and y>0, whereb, c, and r are real numbers and r is positive.
These are obvioudly of two types. The first type is an open vertical ray emanating from
the x-axis, and the second is the upper half of a circle centered on the x-axis. (Note that
we can consider the vertical ray as acircle of infinite radius). Both types of lines are
orthogonal to the x axis. (y =0) We will denote lines by lower case letters from the
second half of the alphabet. (I, m, n, ...) Note also that each line ‘contains' two i-points,
one at each ‘end’. Lines of the Euclidean circle type ‘contain’ two i-points on x while
lines of the vertical Euclidean ray type ‘contain’ onei-point on x and Z at the other ‘end’.
(Figure 3.10) Notice that this means that all lines of this type are limiting parallel to each
other, asthey all contain the same i-point.

Two lines are said to intersect if there isa point of UHP that satisfies the
equations of both lines (if they intersect in the Euclidean sense)

Figure 3.10 shows threelines|, m, and n. Lines| and mintersect in point A, m
and n are limiting paralels, asthey sharei-point S, and lines| and n are divergently
parallel. Curvesp and g are not lines, asthey are not orthogonal to x, but they do have a

significance we will discuss in Chapter VI.
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Figure 3.10 Lines and Non-linesin UHP

Figure 3.11 shows some trianglesin UHP. Triangle ABC is an ordinary triangle,

while DER is singly-asymptotic, both PEQ and QER are doubly-asymptotic, and PQR is

trebly-asymptotic.
=
/’7—_—‘“\]:]1
B E
A
&
P Q R

Figure 3.11 Trianglesin UHP

We will sometimes need to refer to an object in UHP by itsrole in the Euclidean
Plane. For example, in Figure 3.10, the object labeled | isalinein UHP, but is a half
circlein R2. To avoid confusion, when we are referring to the role an object playsin R?,

we will prefix an e- to the front of the name. So instead of saying, “the radius of the
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Euclidean circle associated with line 1”, we will say, “the radius of e-circle!”. (Since it
does not make sense to refer to the radius of aline.) Similarly, line n might also be called

eray n.

Anglemeasurein UHP

The measurement of anglesin UHP is straightforward. The measure of angle
ABC is defined as the measure of the angle formed by the e-rays tangent to BA and BC at
B in the same direction asrays BA and BC. (Figure 3.12) In other words, the UHP
measure for the angle between lines is the same as the Euclidean measure of the angle
between the half circles. We say that UHP is conformal, (angles are as they appear).

The measure may also be thought of as the measure of e-angle OBP (or its
complement, according as BA and BC are in the same or opposite clockwise directions,
respectively) where O and P are the centers of the e-circles AB and BC respectively. In

Figure 3.12, angle ABC is the complement of e-angle OBP.

Figure 3.12 Measurement of anglesin UHP |

Angles formed by lines of the vertical e-line and e-circle type are measured
similarly, but somewhat more simply. Infigure 3.13, the measure of angle ABC is equal
to the measure of e-angle OPB (or its complement, should C and P lie on opposite sides

of AB), where O and P are the intersection of AB with x and the center of e-circle BC
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respectively. This can be shown by a smple counterclockwise rotation through a right
angle. Thissimpler method of measurement will be invaluable in our development of

trigonometry in Chapter V.

o0 P 5

Figure 3.13 Measurement of anglesin UHP II

The metric of UHP

Using the Euclidean metric in UHP would be problematic, because our model
would fail to adhere to Euclid’s second postulate, essentially that lines are infinite in both
directions. So, we need to adjust our metric. Since, as P approaches the ‘end’ of linel,
its y-coordinate approaches zero, it seems that division by the y-coordinate might be in
order.

We define a metric as:

h(A, B)= mf.d:g?(yzxzz g

where sis any path from A to B, and F isafunction. For ease of notation, we will
shorten dx/dt and dy/dt to x-dot and y-dot. We call the path that yields the minimum
distance (if it exists) the geodesic. In R?, the geodesic is the line segment AB and the

function used to define the metric is:
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Fe(x, y, %, y)= X2 +y?
If we dter this dightly, by division by the y-coordinate, we get:

N ——
Foue (X, Y, %, ¥) = ;x/xz +y?

To find the extremal curve for this function, in this case the curve that yields the minimal

distance, or geodesic, we must satisfy the two differential equations:

I dt Tx - and fy dtfy

The four partia derivatives of F are:

F_-J+y TF_ X i

F _ = w__ vy
w0y Wy g ey
We can reparameterize by letting x =t , giving us.

/ .2 .
F _ 1+y F—; F:L

R0 7y T WY g WY

Substituting these into the first of our differential equations we get:

1 d‘HF_O d 1

T dt % dtyfiey?

or:

yy1+y? =R

y?+(yw) =R
yW=yR*-y
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If we let z = y? and substitute:

1 _ Z
~5=JR?- 1= ——=—
27 o 2R -z
and integrate both sides over x and re-substitute:
§= ¢ z
x x2R-z

X=VR*- z+k=R?- y* +k

which is exactly the equation of acircle of radius R centered at k on the x-axis, and we
have that the lines of UHP are the geodesics. It turns out that the solution to the second
differential equation is the same.

Note that this solution only confirms that lines of the e-circle type are geodesics
and says nothing about lines of the vertical e-ray type. In Chapter 1V we will see that
lines of e-circle type and vertical e-ray type in UHP may be sent to each other by
isometries. Since isometries preserve metric, our vertical lines are also geodesics. Note
also that since the equation isvalid for all values of R and k, any line of the e-circle type
isageodesic, regardless of its position on x, or its radius.

To find a useful expression for our metric, we impose upon UHP the polar
coordinate system with the center of e-circle AB (which has e-radius R) at the origin.

(Figure 3.14)
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Figure 3.14 Line AB in UHP with center at O

This gives us the following parametric representation:

A=Rxcoda) and B=Resin(b)

and if we let (x,y) onthe line, our geodesic, be written in polar coordinates:

x=Rxcodt) and y = Resin(t)

we get:

x=-Rsn(t) and y=Rcodt)

Plugging these into our formulafor F gives us:

F(x, Y, X, y):%,/xz +y?

And integrating along our geodesic we get:
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b

dt

h(A, B) = c\’sT(t)

N ze [sin(t) '.b naesm )1+ cosla))d
§|1+ cos(t) 3. sin(a)X1+cos(b))

Note that the radius of our e-circle has been eliminated from the expression. This
tells usthat the length of segment AB depends only upon the position of A and B on the
e-circlerelative to the positive x-axis, that is the angles formed by e-rays OA OB with x.

If we consider lines of the vertical e-ray type to be e-circles with their centers at
infinity we find an even simpler expression for the metric along these types of lines.
(Figure 3.15) Asthe center O of the e-circle containing segment AB moves to infinity
(Z, not ani-point on x) both anglesa and b go to zero. Theratio of the tangents of these
angles approaches the ratio of the y-coordinates, a and b, of points A and B, and the

interior of our metric approaches:

tan?’/ /2 b
k) "3,

and

hia,b In——
(ab)= Cas
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B(0,b)

A(0,2)

Figure 3.15 Metric for segments of vertical e-linesin UHP

Clearly both expressions for distance will have negative vaue whena > b or
when a>b. Since we want h(A,B) to be non-negative we take the absolute value and

get:

Ran P/, €
h(AB)=|InS— s

étan% 5

h(A B) =

@-
Inc—=
ngaj

according as line AB is of the e-circle or vertical e-ray type.

or

Though thisis the most common, and useful for our purposes, form of the metric,
there is another form that will be important to us when we look at isometriesin UHP. It
turns out that the metric in UHP is equivalent to the metrics of PDM and KDM. To show
this we consider points A and B on aline of the e-circle type centered at point O on X,
and let P and Q be thei-points at the ‘ends’ of the line. We say angle QOA=a, and angle
QOB=b. (Figure 3.16) Using the Law of Cosinesto express the crossratio (AB;PQ) in

terms of a and b give us:
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BOxAP _ +/2r?- 2r2scos(b)x/2r?- 2r xcosp - a)
BPXAQ \/2r?- 2r2scosp - b)x/2r? - 2r2 xcos(a)

_ \/ (L- coslb))4 +cosla)) \/ (1- cos(b))X1- coda))
(1+cos(b ) - cosfa)) \| (@- cos(b)){1- cosa))

:\/(1- cosb))® »sin(a) _ (1- coslb))>sin(a)
sin’(b)(4- cosfa))*  sin(b)(4- cosla))

s

which is exactly the interior portion of our expression for the hyperbolic metric. This

(AB,PQ) =

(AB;PQ) =

gives us an aternative expression for h(A,B):

h(A B)=In(AB, PQ)

Figure 3.16 Metric of UHP as cross-ratio

We note here some basic properties of the metric that follow immediately from
the properties of logs.
h(A,B) 3 Owith equdity iff B=A and h(A,B)=h(B,A).
The fact that we are measuring along geodesics gives us the triangle inequality;
h(A,C) + h(C,B) mh(A,B).
We will now verify that UHP satisfies the first four Euclidean postulates, as well

as the hyperbolic parallel postulate.
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The hyperbolic pogulatesin UHP

Postulate I: Through any two distinct points there exists a unigue line.

Thisis obvious by the definition of the lines of UHP. If two points A and B are
vertically related, there is a unique vertical e-ray through them. If not, then the e-
perpendicular bisector of e-segment AB will intersect X in aunique i-point. The e-circle
containing A and B that is centered at thisi-point gives us the line.

Postulate I1: To produce afinite line continuoudly in a straight line. (lines are infinite)

This can be shown by an examination of our metric. For lines of e-circle type, as
A (or B) approaches either ‘end’ of theline, a (or b) approaches 0 or p, and the interior
expression in our metric formula approaches either O or infinity. Taking the log and the
absolute value, the distance goes to infinity. The same istrue of lines of the vertical e-ray
type. AsA (or B) approaches the x-axis, or the point Z at infinity, the interior of the
metric formula goesto O or infinity, and the distance approaches infinity. Since the
distance formula is continuous for both types of lines, and h(A,B) = 0, we can extend a
segment to any length.

Postulate I11: To describe a circle with any center and distance.

This follows amost directly from the metric. If we consider all of the lines
through a given point C, and all the points on these lines at a given distance r from C, we
get acircle. We will see what this circle looks like in Chapter 6, and examine its
properties in Chapter 7.

Postulate IV: All right angles are equal to one another.

This follows immediately from the fact that our model is conformal.

Postulate V: (the Hyperbolic Parallel Postulate) Given alinel and apoint Pnot onl,
then there are two distinct lines through P that are parallel to .
Thisis evident by the definition of linein UHP. We can seein Figure 3.17 that

there are two distinct lines through A (indeed an infinite number) that are parallel to I.
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ah

Figure 3.17 lllustration of the hyperbolic parallel postulate in UHP

Since all five postulates of hyperbolic geometry hold in UHP, it is a valid model
of hyperbolic geometry. We will use this model to explore many formulae and theorems
relating to triangles and circles in hyperbolic geometry. And we will discuss a couple
objects in hyperbolic geometry that do not exist in Euclidean geometry. Before we do so,

it will be helpful to examine the isometries in UHP.
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Chapter 1V
| sometrieson UHP

Before we explore triangles in Chapter V, we must introduce isometries on UHP,

and before we do that we will discuss:

| sometries on the Euclidean Plane

Plane isometries are functions from the plane onto itself that preserve the metric
and angles. Inthe Euclidean plane there are 4 different isometries; reflection, rotation,
trandation, and glide-reflection. We will discuss the isometries of the Euclidean plane
here as a basis for comparison to the isometries on the hyperbolic plane, specifically in

the Upper Half-plane Model of hyperbolic geometry.

Reflection

Thereflection in agiven line (called the mirror of the reflection) is defined as

follows:

r:RP® R? r,(P)=P

where | is the perpendicular bisector of every segment PP. (Figure 4.1) The points of the

mirror | are fixed under the reflection.

Q P P

/N

E E'

Figure4.1 Reflection in the Euclidean Plane

66



Note that reflection reversesthe ‘sense’ of an object. In Figure 4.1 triangle PQR

is ‘counter-clockwise', but itsimage, triangle PQ'R' is ‘clockwise’. Also notice that
reflectionin line | is self- inversive. That is.

r(r(P)=P

Finding the mirror of areflection given any point P and itsimage P under the
reflection is simple, merely construct the perpendicular bisector of segment PP. Since

any segment of positive length has a unique perpendicular bisector, any point P can be
sent to any point Q, distinct from P, by reflection in exactly one mirror.
Trandation
Trandation through a given vector AB is defined as follows:
t, RZ® R? ro(P)=P
where vector PP’ is of the same length and parallel to, or collinear with, vector AB.

Equivalently for all P not on line AB, quadrilateral ABPP is a parallelogram. (Figure 4.2)
A trandation in anon-zero vector has no fixed points.

Figure 4.2 Trandation in the Euclidean Plane

Note that trandation retains the sense of an object. In Figure 4.2 both triangles
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POR and PQ'R' are counter-clockwise. Also notice that the inverse of the trandation in

vector AB isthe trandation in vector BA, or:

tltealP))=P

The vector of trandation that sends P to P is merely the vector PP, or any vector
having the same length and direction.

We can describe the trandlation in vector AB as the composition of two
successive reflections. Thefirst inlinel, the line through A perpendicular to vector AB,
and then in line m, the perpendicular bisector of segment AB. (Figure 4.2). Note that the
distance between | and mis half the length of vector AB.

Even though a given vector yields a unique trandation, each trandation is defined

by infinitely many vectors, all congruent and in the same direction as each other.

Rotation

The rotation about a point C (called the center of the rotation) through oriented

angle a (called the angle of the rotation) is defined as follows:

R., :R?® R? Re.(P)=P

where segments CP and CP are congruent, and angle PCP' has directed measure a.

(Figure 4.3) Only the center of the rotation is fixed.
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Figure 4.3 Rotation in the Euclidean Plane

Note that rotation, like trandation, preserves the sense of the object, and that the

inverse of rotation about center C by angle a isthe rotation about C by -a, or:

Re.a(Rea(P))=P

Given any two points P and Q and their images P and Q' under the reflection, the
center and angle of reflection can be found as follows. Construct the perpendicular
bisectors| and m of segments PP and QQ'. Since these are not parallel, they will
intersect in point C, the center of the rotation. Directed angle PCP givesusa.

We can describe any rotation with center C and directed angle a, asthe
composition of two successive reflections. Thefirst in |, the line through C and P, and
the second in line m, the angle bisector of angle PCP, where P is any point other than C
and P isitsimage under the rotation. (Figure 4.3) Note that the angle formed by | and m

at Cisone-hdf a.
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Glide-reflection

Glide-reflection in a vector AB is defined as the composition of trandation by

vector AB with reflection in line AB. (Figure 4.4)

GCps ! R*® R’ (E (P) Sropgot ap (P)

The order of the trandation and reflection is unimportant. No points are fixed under

glide-reflection in a vector of positive length.

Figure 4.4 Glide-reflection in the Euclidean Plane

Note that glide-reflection reverses the sense of an object.

Finding the vector AB of a glide-reflection given two points P and Q and their
images P and Q' under the glide-reflection takes a little bit of work. First, find the
midpoints M and N of segments PP and QQ', then drop perpendiculars from each of P
and P to theline MN. The feet of these perpendiculars are A and B respectively. (Figure
4.5) Remember that the vector of atrandation isnot unique. Thisisaso true of the
glide-reflection. Any vector contained within line AB that is congruent to vector AB and

in the same direction will define the same glide-reflection as vector AB.
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Figure 4.5 Finding the vector of a Glide-reflection

The glide-reflection, being the composition of atrandation and a reflection, may
also be described as the composition of three successive reflections in two parallel
mirrors and athird which is mutually perpendicular to them. Specificaly, these are linel,
perpendicular to line AB at A, line m, the perpendicular bisector of segment AB, and line
AB itself.

All isometries on the Euclidean plane are of one of these four types, and all are
completely defined by three non-collinear points and their images. This means that given
any two congruent triangles, we can find a unique isometry that will send oneto the
other. Furthermore, if the two triangles have the same sense, they are related to each
other by elther atrandation or arotation, each of which are the composition of two
reflections. If the triangles have opposite sense they are related to each other by a
reflection or aglide-reflection, either a single reflection or the product of three
reflections. A much more complete treatment of Euclidean plane isometries may be
found in Dodge [1].

Before we discuss our hyperbolic isometries, we need to look at one more

Euclidean transformation:
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Euclidean Inversion

Before we define inversion, we must first extend R? by attaching a point we call

the point at infinity, giving us the Extended Euclidean Plane. Or:
R? = R? E{¥}

We need this infinite point to define the effect of inversion on the center of
inversion. While we defined the isometries as mapping R? to itself, we can easily define
them on the extended plane by merely stating that the point at infinity is fixed under all of
them. It isnot fixed under inversion.

Given any circle gwith center O and radiusr, we define inversion in this circle as.
Ig:R; ® R Ig(P)=P
where O, P and P are collinear, OP - OF = r2, and:

1g(0)=¥ and Ig(¥)=0

In the extended Euclidean plane, inversion preserves neither lines nor the metric,
but we will see that it does preserve angles. Also, inversion reverses the sense of an
object. (Figure 4.6) The only fixed points under inversion are the points lying on the

circle.
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Figure 4.6 Inversion in the Extended Euclidean Plane

We note a few fairly obvious facts about inversion: first, 1gis self-inversive, that
islg(lg(P)) = P, second, Ig maps the interior of gto the exterior, and vice versa. So the
points of g are the only fixed points.

The following two theorems will show that inversion in a circle preserves angles.

Theorem 4.1. Given circle gwith center O and points P and Q such that P, Q and O are
not collinear. Assume P' and Q' are the images of P and Q under inversionin g Then

triangle OPQ issimilar to triangle OQ'P'. (Figure 4.7)

Proof: We know from the definition of inversion that:
OP>OP'=r2 and OQ>OQ'=r?

Wherer isthe radius of g, So:
OP:0OP'=0Q:0Q'

OP _OQ'

0oQ OF
And since angle POQ is equal to angle Q'OP',by SAS triangles OPQ and OQ'P

aresmilar. QED
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Figure 4.7 Similar triangles under inversion

Theorem 4.2 Angles formed by curves are invariant under inversion. We say that

inversion is conformal.

Proof: Leta and b becurvesintersecting in R, and let OP, (where O isthe center of
g, the circle of inversion) be aray different from OR that intersectsa and b in P and
Qrespectively. Leta ', b', R, P, and Q betheimagesof a , b, R, P, and Q under
lg. (Figure 4.8) We need to show that angle QRP = angle QR'P. We know that the
exterior angle of atriangle is equal to the sum of the two remote angles. So by simple
angle subtraction:
PRQ @OPR-PQR and PRQ @ORP - ORQ'
And from Theorem 4.1:
POQR @OR'Q" and OPR @OR'P"
Simple substitution gives us:
PRQ @QPRQ
Now, asray OP approaches OR, the lines RP, RQ, R'P and R'Q" approach continuously
thetangent linestoa , b, a 'and b'. It followsthat the anglesformed by a and b,
anda 'and b'areequa. QED
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Figure 4.8 Preservation of angles under inversion

We can see that inversion does not preserve lines, but if we consider linesto be
circles centered at infinity, and generalized circles to be the set of al circles and all lines,
inversion does preserve generalized circles. We will look at how inversion affects these

generalized circles.

Theorem 4.3: Theimage of a circle not containing the center of inversion is another

such circle. (Figure 4.9)

Proof: Let a beacircle not containing O, the center of inversion. Let the ray OP
through the center of a cut a inPand Q. Let ray OR cut a in any point R not on OP.
Let P, Q and R' be the images of P,Q and R under the inversion with center O and any
radius. Since the angle PQ is adiameter of a, PRQ isaright angle. By the same
argument we used in proving the preceding theorem, PR'Q' is also aright angle, and
therefore R' lies on the circle b having diameter PQ'. So the image of any point Ron a is
the point R on b, and the image of any circle a not through O is another circle which

does not contain O. QED
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Figure 4.9 Circle mapping to circle under inversion

The condition in the preceding theorem prompts usto ask, What happensto a

circle that does contain the center of inversion.

Theorem 4.4: Theimage under inversion of a circlea containing O, the center of
inversion, isa line orthogonal to the line containing O and the center of circlea. Also,
the image of a linel not through O isa circle containing O and centered on the line

through O orthogonal to|. (Figure 4.10)

Proof: Let a be any circle containing O, the center of inversion. Let OP be a
diameter of a, Q beany point of a, save O and P, and P and Q' be the images of P and Q
under the inversion. We know from Theorem 4.1 that triangles OPQ and OQ'FP are
similar and therefore, angles OQP and QP'Q" are both right angles, so the image of Q lies
on the line orthogonal to OP at P'. Also, inversion is bijective, so the image under
inversion with center O of a circle containing O is the line orthogonal to the diameter OP
of the circle at the image of the point P. The converse is an immediate consequence of

the fact that an inversion isits own inverse. QED
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Figure 4.10 Circle mapping to line under inversion

So we know that the image under inversion of acircleis either aline or acircle,
according as it does or does not contain the center of inversion. We also know that the
image under inversion of aline not containing the center O of inversionisacircle
containing O. These theoremstell usthat inversion preserves generalized circles. There
is one rather special situation left to consider: When a circle maps to itself.

Suppose that circle a maps to itself under inversion in circle g, (with center O)
(Figure 4.11). Since each point outside g maps to a point inside g, a must contain a point
outside, and a point inside g, and by the nature of circles, must intersect gin two points
which will be fixed under inversion in g. Choose either of these points and call it Q and
suppose that line OQ intersects a in another point P. If Pisnot on g (Figure 4.11), since
a maps to itself, OQ must also intersect a in P'. This meansthat line OQ intersects a
circle in three points, which cannot be. If line OQ intersectsa in a point P on g (Figure
4.11), then O lies on chord PQ and isin the interior of a. We may choose any ray OR
through any point R ona. Obvioudly R isnot on g, or else a and gwould intersect in
three points, so ray OR aso contains R', and intersects a in two points, something aray
emanating from the interior of a circle cannot do.

So OQ intersects a in just one point, Q, and is therefore tangent to a, but OQ isa

radius of g, so a must be orthogonal to g Thistellsusthat if a circle maps to itself under

77



inversion, it is orthogonal to the circle of inversion.

Figure4.11 Inversion of orthogonal circle|

We demonstrate the converse of this statement as follows.

Suppose circle a isorthogonal to g, the circle of inversion at P and Q. Rays OP
and OQ , where O isthe center of inversion, are tangent to a. Both rays and points P and
Q arefixed by the inversion. Since inversion is conformal, tangency is maintained and
the image of a must also be tangent to OP and OQ at P and Q respectively. But only one
circle fits that condition, and that isa, so a maps to itself under inversion, and we have

the following:

Theorem 4.5: Circles and lines map to themselves under inversion iff they are

orthogonal to the circle of inversion.

It is evident that Theorem 4.5 is true for lines when one considers that aline
orthogonal to the circle of inversion must contain the center of inversion.
We will now show how inversion affects the cross-ratio, (from our discussion of

the metrics of the models in Chapter 111).
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Theorem 4.6. Given four points A, B, P and Q such that none of the pairs AP, AQ, BP
or BQ are collinear with point O, then the crossratio of A, B, P and Q is preserved by

inversion centered at O.

Proof: Given apair of points A and P, and their images A' and P in an inversion
about O, we have that triangle OAP is similar to triangle OPA'. Applying thisto our four

relevant pairs gives us:

AP AP BP _B'P AQ _ AQ BQ _ B'Q

AO PO ' BO PO ' A0 QO ad BO QO
Now simple substitution gives us:

aeAQ>BPO aeAQ>QO><AO><BP><PO><BOO aeAQXBPo (

A'B',P'Q)
( gA'P>BQ AOXAPxP'OxBOXBQ>Q'0 5 &AP xBQ 4

AB, PQ)

and we have the theorem. QED

We now have the tools we need to begin our discussion of:

| sometrieson UHP

We will approach our hyperbolic isometriesin a dightly different way. Since an
isometry preserves metric and angle, it is completely defined by atriangle and its image
under the isometry. We will look at how, given two congruent triangles, we may find the

isometry that will send one to the other. We will begin by looking at:

Reflection

In Euclidean geometry, a line is sometimes viewed as a circle with its center at
infinity, and reflection in the line as inversion in the infinite circle. Since the lines of
UHP are e-circles, it seems natural that reflection in aline of UHP is the Euclidean

inversion in the associated e-circle. Thisturns out to be the case.
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Consider the congruent triangles ABC and A'B'C' with different orientations.
(Figure 4.13) Suppose the perpendicular bisectors of segments AA" and BB' coincide and
call thislinem. We know that the e-circles associated with lines AA' and BB' are
orthogonal to the e-circle associated with line m, and will remain fixed under inversion
in e-circle m. Since our metric is preserved, thisinversion will send A and B to A" and B’
respectively. Also by preservation of angle and metric, and by the fact that inversion is
orientation reversing, C will be sent to C', and we have that the Euclidean inversion in e-

circle m acts as the hyperbolic reflection in line m.

Figure 4.12 Reflection in UHP

Recall that under Euclidean inversion circles orthogonal to the circle of inversion,
as well as lines through the center of inversion, remain fixed. This means that in UHP,
lines perpendicular to the line of reflection remain fixed, and our hyperbolic reflection is
defined entirely by the line (mirror) and is a direct analog of Euclidean reflection.
Reflection in aline of vertical e-ray type is smply the Euclidean reflection in the
associated e-line.

We will deal shortly with the case of an orientation reversing isometry where the

perpendicular bisectors of AA' and BB' do not coincide, but before we do, we will
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examine the orientation preserving isometries.

We saw that in Euclidean geometry that the product of two reflectionsis either a
rotation or atrandation, according as the mirrors of reflection intersect or are parallel. In
hyperbolic geometry two lines either intersect, are limiting parallels or are divergent
parallels, so the product of two reflections in UHP will give us three distinct isometries.

We will begin with the case where the mirrors intersect:

Rotation

Suppose we are given congruent triangles ABC and A'B'C' having the same
orientation, and that the perpendicular bisectors | and m of segments AA" and BB'

intersect in point O. (Figure 4.13)

Figure 4.13 Rotationin UHP

The point O is the center of rotation. We can use line | as one of the mirrors and
the line n through O and A' asthe other. It is evident that reflectionin line | will send A
to A', and that reflection in line n will leave A' fixed. By the preservation of angle and
the fact that point O is equidistant from B and B', that the rotation will send B to B', and

thereforeCto C..
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Since O is equidistant from A and A', and since line | is the perpendicular bisector
of segment AA', linel is an altitude of isosceles triangle AOA' and therefore bisects angle
AOA'. So the successive reflections in the mirrors| and n gives us a rotation about point
O through the twice the angle between the mirrors | and n. Thus the rotation is
completely defined by a point (center) and an angle, and is adirect analog to Euclidean
rotation. Aswith Euclidean rotation, the only fixed objects are the e-circles mutually
orthogonal to the mirrors| and n. We will discuss the role of these objectsin UHP in
Chapter VII.

We will now consider the case where the mirrors are limiting paralels to each

other:

0 -Rotation

Suppose we have the same situation as in Figure 4.13, except that the
perpendicular bisectors | and m are limiting parallels sharing the point O at infinity.
(Figure 4.14) Aswith rotation, thisisometry is achieved by taking successive reflections
inlines| and n (through O and A"). Thisisometry is different from a rotation because
angle AOA' has measure zero. It also differs from Euclidean trandation because
corresponding line segments of the triangles are not always parallel to each other. (Note

that AB and A'B' in Figure 4.14 will probably intersect if extended.)
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Figure 4.14 °-Rotation in UHP

Because the ‘angle’ of rotation has measure zero, we cannot define this rotation
by a center and an angle measure. We must instead define it by the specific angle AOA'
where A and A' are any point and its image under the © -rotation, and O is the point at
infinity at one end of the perpendicular bisector of segment AA'. (Thei-point at the other
end of the perpendicular bisector will yield a different © -rotation.)

The fixed objects under ° -rotation are e-circles that are tangent to x at O. We will
discuss these objects in Chapter VII. This brings usto our last case of the orientation

preserving isometries:

Trandation

Suppose, again, that we have the situation described in Figure 4.13, except that

the perpendicular bisectors | and m are divergently parallel to each other. (Figure 4.15)
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Figure 4.15 Trandationin UHP

Since | and m are divergently parallel, they have a unique mutual perpendicular p.
Consider the perpendicular from point A’ to line p, and call thisline n. Successive
reflection in | and nwill map A to A" and will leave p fixed, as| and n are orthogonal to
p. We can see by the preservation of angles (specifically the angle formed by lines AB
and p) and metric, that B will map to B', and Cto C.

Thistrandation is defined entirely by the vector DE, where D and E are the feet
of the perpendiculars from A and A’ to line p. (line | is the perpendicular bisector of this
vector). This makes thisisometry most closely related to the trandation of the Euclidean
plane, but it is not adirect anaog. In Euclidean geometry, each point is ‘moved’ by the
same distance. Thisis not the case in hyperbolic geometry. Segments AA' and BB' are
not necessarily the same length.

The objects that remain fixed under trandation in UHP are e-circles orthogonal to
both mirrors. These turn out to be the e-circles containing the i-points P and Q at the
‘ends of line p. We will study these objects in Chapter VII.

This takes care of the three types of orientation preserving isometries, or products

of two reflections. We have only one case remaining to consider, that of the orientation
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reversing isometry that is not a simple reflection. Thisis the hyperbolic analog of

Euclidean glide-reflection:

Glide-reflection

Suppose we have congruent triangles ABC and A'B'C' with opposite orientations,
and that the perpendicular bisectors| and m of segments AA' and BB' do not coincide.
Consider the midpoints M and N of the segments AA' and BB', the line | through M and
N, and points D and E, the feet of the perpendicularsfrom A and A' to linel. (Figure
4.16)

Figure 4.16 Glide-reflectionin UHP

The glide-reflection that sends triangle ABC to A'B'C' isthe product of the
trandation through vector DE and the reflection in line | (through D and E), or the
product of three successive reflections. The only fixed object isline | itself.

So in the hyperbolic plane, as in the Euclidean plane, any triangle can be sent to
any congruent triangle using three or fewer reflections. This alows us to place any
object in UHP in a“‘standard’ position, and will greatly facilitate our discussion of

triangles in the next chapter, and of circlesin Chapter VII.
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Chapter V
Trianglesin UHP

To facilitate our study of triangles and trigonometry it will be necessary to place
them in a standard position, or more accurately to examine atriangle in standard position

congruent to the triangle in which we are interested. We showed in Chapter 1V that this

is possible.

Definition: Atrianglein UHP isin standard position if it has vertices A(0,k), B(s,t) and
C(0,1) where k>1, and both sand t positive.

BII

A0

. p(e
B"‘_\—;ﬁ-ﬁ;'
Cl

(0.0) %

Figure 5.1 Triangle in standard position

Triangles ABC, A'B'C', and A"B"C" in Figure 5.1 are congruent to each other and
triangle ABC isin standard position. For our discussion of triangles, we will assume that

all of our triangles are in standard position.
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Angle Sum and Area

We know from Theorem 2.17 that if the hyperbolic parallel postulate holds, which

it doesin UHP, then every triangle has a positive defect. So:
Theorem 5.1: Every triangle has positive angle defect.

We will now examine the relationship between the angle sum of atriangle and its
area. Recall that the angle defect is p minus the angle sum.

In Chapter Il we discussed asymptotic triangles, those having one or more
vertices at ideal points. We will begin our investigation of the area of triangles by
looking at singly asymptotic triangle ABZ, where A and B are ordinary pointsand Z is
ideal. (Figure 5.2) If welet the ‘center’ of line AB lie at the origin, and r be the ‘radius

of line AB, then line AB has the equation:

y= [r2_ 2

and points A and B have x-coordinates.

a=rxosp-a)=-rxoda) and b=rxogb)
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Figure 5.2 Singly asymptotic triangle ABZ

Double integration over x and y, using our UHP metric, gives us:

reos(b) ¥ reos(b)
mea= § o L= 5 b
eosla)fize Y Y o) Y lyase
r>eos(b) dx . jrx:os(b)
= 0 =sn ¢
rx:ocs)(a) re-x er -rxos(a)

= Cc— ~—~+c—-a-=
82 %) 82 %)
=p-a-b

It isashort jump from here to our formula. Refer to Figure 5.3, the picture of a

genera triangle in standard position with angles a, b and g (where b=b'-b").
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Figure5.3 Thetriangle as the difference of two singly asymptotic triangles

By subtracting the area of ABZ from that of CBZ, we find the area ABC to be:
P-9-b)-p-p-a) b7)=p-g-b-p+p-a+b"
=p-a-(b-b")-g
=p-a-b-g

which is exactly the angle defect of triangle ABC, so:
Theorem 5.2: The area of a triangleis equal to its angle defect.

We will move on to triangle trigonometry next, beginning with the trigonometry
of the singly asymptotic right triangle. This has a significance to which we have

previoudly alluded:

Trigonometry of the Singly Asymptotic Right Triangle

Recall that given aline| and apoint A at adistance of d from |, that the angle of
parallelism of d is the angle CAP where AC isthe perpendicular from A to |, and AP is
asymptotically parallel to |. Consider Figure 5.4, the singly asymptotic right triangle
ACP in standard position with right angle at C. Let the length of segment AC be d, and
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angle CAPisa, the angle of parallelism associated with d. We can make the relationship

between a and d precise.

A0k

C(0,1)

Q(-n.0) P10y %
Figure 5.4 Singly asymptotic right triangle in standard position

First of all, we know from our metric that d=In(k), so kzed. Also we have the
following relationships:
n’+k*=r?
(r-2)° +k?=r2

r2-2r+l1+k®=r?

k*+1
r =
2
and
sin(a):E: 2k - 2>€d - 1
(1) r k?+1 e +1 cosh(d)
Similarly we get:
tanfa ) = 1
) sinh(d) and  (3) cosla)=tanh(d)
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These three equations relate distance and its related angle of parallelism. We will

use the third to express the angle of parallelism as a function of distance:

P (d) = cos *(tanh(d))

We assumed in Chapter 11 that this relationship was a function, independent of our
choice of linel and point P. Now that we have transformational geometry on UHP, we
know it is. Given any linel and P not on |, we may place | on the unit circle, P on the y-
axis, and consider them to be one infinite side and the opposite vertex of asingly
asymptotic right triangle in standard position. We aso claimed in Chapter Il that asd
approaches 0, p(d) approaches p/2, and as d approaches®, p(d) approaches0. These
claims are now evident by the formula.

These relationships will form the basis for our development of the trigonometry of
the hyperbolic plane.

Asin Euclidean geometry, it is helpful to begin the investigation of trigonometry
with the study of the simplest (right) triangles first and then apply the results to general
triangles. We just looked at the relationship between the one finite side and the one non-
zero non-right angle of the singly asymptotic right triangle. We will apply those results
to the general singly asymptotic triangle, then the right triangle, and finally the general
triangle. From the angle of paralelism results, the relationships of the singly asymptotic

triangle are amost immediate.

Trigonometry of the General Singly Asymptotic Triangle

Consider singly asymptotic triangle ABZ with finite ssde AB having length d. If
we place side AB on the unit circle, the y-axis will be perpendicular to side AB at E(0,1).

(Think of this‘segment’ EZ as an ‘altitude’ of the triangle) Suppose for the moment that
E is between A and B, and segments AE and BE have lengthsd, and d,, and let angles
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EAZ and EBZ have measures a and b respectively. (Figure 5.5) Notethat a = p(d,) and
b =p(d).

) =
Figure 5.5 Singly asymptotic triangle as sum of two singly asymptotic right triangles

So using relationships (1), (2) and (3) for substitution, we have the following:
cosh(d) = cosh(d, +d, ) = cosh(d, ) > cosh(d, ) + sinh(d, ) >sinh(d,)

= cscfa ) xesc(b ) + cotfa ) xcot(b)

_1+coda):cod(b)
(4) cosh(d) = sin(a )>sin(b)

And similarly:
sinh(d)=sinh(d, +d,)=sin(a )>cosh(b )+ sinh(b ) cosh(a)

= cot(a ) xesc(b ) + cot(b ) xescla )

srh(d) = cosla ) +cosb)
(5) h(a) sin(a )xsin(b)

And combining these:

ah(d) = cosla ) + cogb)
(6) tenn(d) 1+ cos{a ) xcos(b )
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It is not correct to assume that E lies between A and B, but the calculations work
out the same if it does not, as we might expect form our experience with the same type of
calculations in Euclidean space. We now have what we need to begin our investigation

of the trigonometry of the right triangle.

Trigonometry of the Right Triangle

Let ABC be aright triangle in standard position, with right angle at C, sidesa, b

and c opposite A, B and C, and anglesa and b at vertices A and B, respectively. Let AE
and BD be vertical rays forming angles ABD=b L and BAE=p-a. (Figure 5.6)

(s.t)

S+a
P-4, 2 *

Figure 5.6 Theright triangle in standard position

Before we get the relationships we are after, we need severa preliminary results

from simple Euclidean trigonometry:

sin(a)=$ , cos(a):% d tan(a):g
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. t d+s t
Sm(bl):F , COS(bl):T and tan(bl): d+s
. _ _ tan(b +b,) = -
sn(b+b,)=t -+ cosb+b,)=s and <
The angle difference formulag, and b=(b+b l)-b L give us.
. _dst _k*+1 _2xdst _ dot
sm(b)—T cosb)= 5w and tan(b) = 711 org el
Applying our metric to b we get b:ek , SO:
K 1
. Tk _kP-1 _k*+1 _k*-1
sinh(b) " T om cosh(b) = % and tanh(b)——kz 1

Using formulae (1), (2) and (3) with the ordinary trig ratios of a, b and g, we have:

g'nh(a):; :§ Cogq(a):_;:}

tan(b +b,) t - t and tanh(a)=s
Combining formulae (4), (5) and (6) with the ordinary trigonometry and the following
relationships:

K21
d2+k?=r2 and (d+sf+t>=r? whichcombineto giveus de="

we get:

d

+

s d

SY

k »%

sinh(c) = coslp - a)+cos(b,) _ cos(b,)- cosfa)

sin(p - a)xsin(b,) ~ sinfa)>sin(b,)

r
k
r

t
pran
r
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_1+codlp - a)xcos(b,) _1- cosla )xcos(b,)
)= = - a)an(b,) s )wen(,)

1_9 d+S kz_kz'l
_ r r _I'Z-dz-d>G_ 2 _k2+1
k.t k% k%t 2X %
rr
and
tanh(c) = 222"
+1

Now we get to the more significant and meaningful relationships. We can

combine these numerous expressions for our regular and hyperbolic trig functions to get

the following:
. . _sr k:§: .
@ smh(c)xsn(a)—kxth : sinh(a)
sinh(b)xtan(a):kz_lxhzkz-lzs:tanh(a) s =K1
_2xsx d_2xxd _k*-1_
(9) tanh(c)>cosfa) = AL KAl K +1_tanh(b)
cosh(b)>sin(a):kz_le:kz_lzcoib)
(10) 2% r 2%
_d sxd+1_sxd+1_k®+1_
1) cot(a)mot(b)—i‘ T ke —2>«>¢—co§1(c)

and, of course, their counterparts:
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(120 Snh(a)xtan(b)=tanh(b)
(13) sinh(c)ssin(b)=sinh(b)
(14) tanh(c)>cos(b) = tanh(a)

(15 cosh(a)ssin(b)=cosla)

These relationships may be seen as similar to the trig ratios of the right triangle in
the Euclidean plane. Of special note are (13) and (9) which, written differently, look

familiar:

_sinh (a) _sinh (opp) cosfa) = tanh(b) _ tanh(adj)

snfa) snh(c) sinh(hyp) and tenh(c) _ tenh{fyp)

and are almost direct analogues to their Euclidean counterparts.
The Euclidean Pythagorean Theorem also has its hyperbolic counterpart, a smple

and elegant relationship between the three sides of the right triangle.

Theorem 5.3 (The Hyperbolic Pythagorean Theorem): In any right triangle ABC, with

right angle at C, then the lengths of the three sides are related by:

cosh(c)=cosh(a)cosh(b)

2 2
LI +1><}:cosh(a)>cosh(b)
2XKkx  2X t

cosh(c)

Proof: QED
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Trigonometry of the General Triangle

We are now ready to consider the general triangle ABC in the hyperbolic plane.
Assume that the altitude from A intersects the opposite side (we know from the proof of

Theorem 2.15 that this must be true of at least one altitude), and let E be the foot of this

dtitude, such that E dividesside ainto a and a, and ray AE dividesangle a into a, and
a. (Figure 5.7) This decomposes our triangle into two right triangles AEC and AEB.

We may use the information from the preceding section to derive three interesting

relationships within the hyperbolic triangle.

Figure 5.7 The general triangle decomposed into two right triangles

By using the angle sum and difference formulae on cos(a), and making
substitutions using the right triangle relationships from the preceding section, (equations

7-15) we get the following:

97



cosla ) =cosfa, +a,)=cosla, ):cosla,)- sina,):sin(a,)
_tanh(d) tanh(d) sinh(a,) sinh(a,)
tanh(c) tanh(b) sinh(b) sinh(c)
_ cosh(c) xcosh(b) tanh?(d) - sinh(a, )>sinh(a, )
sinh(c)>sinh(b)
_ cosh(c) xcosh(b) {1- sech?(d))- sinh(a,)>sinh(a,)
sinh(c)>sinh(b)

ot T e

- sinh(c)>sinh (b)

_ cosh(c)> cosh(b) - (cosh(a, ):cosh(a, ) +sinh(a, )>sinh(a, ))
sinh(c)>sinh(b)
_ cosh(c) xcosh(b)- cosh(a, * a,)
sinh(c)>sinh(b)
coda) = cosh(c) xcosh(b) - cosh(a)
s@) sinh(c)>sinh(b)

Thisformularelates one angle and the three sides of a general triangle in the

hyperbolic plane, asdoesthe Law of Cosinesin the Euclidean plane.

We now apply the same technique to cosh(a):
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cosh(a) = cosh(a, +a, ) = cosh(a, ) cosh(a, ) + sinh(a, ) >sinh(a, )
_cosfa,) cosfa,) , tanh(d)  tanh(d)
sn(b) sin(g) tan(b) tan(g)
_ cos(al)mos(a2)+(1- %chz(d))mos(b)mos(g)
sin(b)sin(g)
cosfa, ) xcosfa , )+ cos(b ) xcos(g) - c?i?d)) Y;(;i(?d))
sin(b)sin(g)
_ cos(b)>cos(g) + cosfa, ) xcosfa,, ) - sinfa, )>sinfa,)
sin(b)sin(g)
cosh(a) = cos(b ) xcos(g) + coda )

sin(b)sin(g)

Thisformularelates one side and the three angles of atriangle, something that is
not possible in the Euclidean plane. This formulais a consequence of the absence of
similar triangles in hyperbolic geometry.

Finally, we turn our attention to the sine. Using the first cosine relationship for

substitution, we get:
sn®(a) _1- cos’(a) _ sinh?(b)>sinh?(c)- (cosh(b)>cosh(c)- cosh(a))*
snh?(a) sinh?(a) sinh?(a)>sinh 2(b)>sinh ?(c)

_ (1- cosh?(b)){1- cosh?(c))- (cosh(b)xcosh(c)- cosh(a))’
sinh?(a)>sinh 2(b)>sinh ?(c)

_1- cosh’(b)- cosh?(b)- cosh?(c) + 2>cosh(a) xcosh(b) =cosh(c)
sinh?(a)>sinh?(b)>sinh?(c
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Which is symmetric in terms of a, b and ¢, so theratio is the same for all three
pairsof a and a, b and b, and gand c. Also, since all three angles are between 0 and p,

al terms are positive, so we can take the square root and get:

snfa) _sin(b) _ sin(g)
snh(a) sinh(b) sinh(c)

We state these results formally as:

Theorem 5.4 (Hyperbolic Laws of Cosines): Given triangle ABC, labeled in the usual

manner:

_ cosh(b)>cosh(c)- cosh(a) cosh(a) = cos(b )>cos(g) + cosa )
o) = e ad T Gib)sn)

and:

Theorem 5.5 (Hyperbolic Law of Sines): Given triangle ABC, labeled in the usual

manner:

snfa) _ sn(b) _ sin(g)

snh(a) sinh(b) sinh(c)

The similarity between the two laws of cosines leads us to believe that they are
closely related. Since we get one from the other by simply exchanging corresponding
angles and sides, and regular and hyperbolic trig functions, we might consider them to be
duals. We have yet to find any simple direct link between them.

This concludes our discussion of trigonometry, and of triangles for the moment.
We will look at the inscribed and circumscribed circles of atriangle in Chapter V111, but

first we must investigate the roles played by Euclidean circlesin UHP.
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Chapter VI
Euclidean Circlesin UHP

A Euclidean circle in UHP can play several roles, depending on its position
relative to the x axis (x for sake of brevity). We have four casesto consider, the first of
which we have already seen. An e-circle centered on the x, or more accurately the
portion lying above x of an e-circle centered on x, isalinein UHP. We will look now at
the other three cases: intersecting x in two points, tangent to x, and lying entirely above x.
(The case of an e-circle lying entirely below x isirrelevant, asit contains no pointsin
UHP)

Thefirst case, that of a Euclidean circle intersecting x in two points, plays a

curiousrole in UHP, one that is played by aline in Euclidean space:

Hypercycles

Givenalinel in UHP with i-points P and Q, let A be any point at distance d from
|. Consider the e-circle athrough A, P and Q. (Figure 6.1) This obviously intersects x in
the two points P and Q, and is not aline, else it would coincide with |, and A isnot on |
The x-axisisthe radical axis of aand |, and any line (e-circle centered on x) orthogonal
to | isaso orthogonal to a. So the line perpendicular to aat A is perpendicular to | at A’
and h(A,A") isthe distanced from A to I.

Now choose any point B on e-circle adistinct from A and let the mutual
perpendicular to | and athrough B meet | in B'. h(B,B") isthe distance fromB tol. We
can show that h(B,B")=h(A,A")=d by considering the perpendicular bisector m of
segment AB. Since mis perpendicular to both aand I, reflection in m sends A to B.
Since angles are preserved, thisreflection also sendsline AA'to BB'. Sincel is fixed
under the reflection, A' is mapped to B'. Thistellsusthat A and B are equidistant from |,

and since B was chosen at random, every point on ais at distance d from .
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Figure 6.1 An e-circle intersecting X in two points

Thisis not the entire set of points at distance d from |, but the rest are easy to find.
All we need to do isto reflect ain |, and by preservation of distance, we get the other
‘half’ of the curve. (Figure 6.2) This portion of the curve also happens to be the

reflection of the lower portion of e-circle ain the x-axis.

Definition 6.1: The hypercycle of distanced froml is{A: h(A,)=d}. Thisisalso

sometimes called the curve of constant distance.

Though not Euclidean circles, we will at this point discuss the hypercycle of
distance d from aline of vertical e-ray type. Theillustrationissimple. All we need to do
is reflect the objects | and a as defined above in any line centered at P (or Q). Thiswill
send Qto Q', Pto Z (theideal point ‘above’), | to I' of vertical e-ray type, and ato two

straight e-rays (not vertical) a and a, forming the same angleswith I at Q' that a formed

with | a Q. (Figure 6.2)
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Figure 6.2 Curves of constant distance to lines of both types
We state these results as:

Theorem 6.1: Given linel having i-points P and Q, and point A at distance d froml,
both in UHP. The hypercycle at distance d from| is the portion lying above x of the e-
circlesthrough P, Qand A, and P, Q and A , thereflection of A in|. If linel isof

vertical e-ray type having i-points P and Z, the horocycle consists of the e-rays PA and

PA,

As mentioned in Chapter 11, most teachers of elementary geometry describe
parallel lines as a set of train tracks that are everywhere equidistant (an excellent
description). In Hyperbolic space, however, apair of train tracks would not be a pair of
lines, but rather a pair of hypercycles or one hypercycle and one line.

We look now at our second case, that of e-circles lying entirely above x in UHP.

These turn out to be hyperbolic:

Circles

Consider the e-circle c lying entirely above x in UHP, and its reflection -c in x,
lying entirely below x. (Figure 6.3) The x axisisthe radical axis of ¢ and -c, and any e-
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circle centered on x orthogonal to ¢ is also orthogonal to -c. Furthermore, each e-circlein
the intersecting orthogonal pencil defined by ¢ and -c passes through two points we will
call C and -C lying within ¢ and -c respectively. Thistells usthat any line orthogonal to ¢
must pass through a point C in ¢'sinterior, (also that any line through C is orthogonal to

¢) We shdll, without justification for the moment, call C the center of c.

Figure 6.3 The center of acircle

Let A be any point on ¢, and call r = h(C,A) the radius of c. Choose any point B
on c distinct from A and consider lines CA and CB. (Figure 6.4) Take mto be the angle
bisector of ACB. Since m passesthrough C, it is orthogonal to c, and c is fixed under
reflection in m. This reflection sends segment CA to CB, and therefore h(C,A) =r =
h(C,B). Since B on ¢ was chosen at random, this shows that every point on the e-circle c
isat distancer from C, so c is the hyperbolic circle centered at C with radiusr. Note that

the hyperbolic center of circle ¢ does not coincide with the Euclidean center of e-circle c.
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Figure 6.4 The hyperbolic circle

Showing that hyperbolic circles are Euclidean circlesis simple. Given center C
and point A (radiusr = h(C,A)), consider the intersecting pencil of e-circles defined by C
and -C. Thisgives usthe pencil of linesthrough C. The image of A under reflection in
all of these lines will give us the circle ¢, but thisis the unique e-circle through A that is

orthogonal to the pencil of e-circles. And we have:

Theorem 6.2: The set of circlesin UHP is exactly the set of e-circleslying entirely

above Xx.

We now reach our third and final case, that of e-circlesin UHP tangent to x.

These aso play arole played by lines in Euclidean space:

Hor ocycles

Often when discussing circles and lines in Euclidean geometry, we include aline
at infinity, and define all circles and lines as generalized circles, with lines being circles
centered on the line at infinity. Thisis not possible in hyperbolic space, because asthe
center of acircle approaches infinity the circle does not approach aline. We can see this
by considering a circle ¢ containing A centered at C as C approaches i-point P. (Figure
6.5) AsA remains fixed and C approaches P on x, the radius of ¢ approaches infinity.

Since Pisapoint at infinity, the distance from C to P is aways infinite. Circle c
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intersectsray CP in apoint B such that h(C,B) = h(C,A), and as C approaches P on x, B
approaches C and P. (in the Euclidean sense) Since c always lies entirely above x, the

limit of circle c as C approaches P is the e-circle through A and tangent to x at P.
Fiy
1

B3
2

ce B2

Figure 6.5 Thelimit of acircle asits center approaches P on x

If we let C approach Z, the point at infinity “above’, ¢ approaches the horizontal
e-line through A. (Figure 6.6) Though they look like circles, horocycles are not closed
curves and therefore do not define, in the strict sense, an interior and exterior region, as
both regions defined are unbounded. We will consider the interior of the horocycle to be

the interior of the associated e-circle, or the portion above the associated horizontal e-line

2

1

B3

Figure 6.6 Thelimit of acircle as C approaches i-point Z “above’
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The horocycle is an interesting and useful object in the hyperbolic plane, and is
the key to proving, without the use of a model, many of the relationships and theorems
we have discussed here. We will look now at a few facts about horocycles that will prove
useful to usin Chapter VIII.

First, each pair of pointsis contained in two distinct horocycles. Thisis evident
from Figure 6.7. If the points are horizontally related, one of the horocycles isthe
horizontal e-line through the two points. If they are vertically related, then the horocycles

are congruent (in the Euclidean sense). All horocycles are congruent in the hyperbolic

Joioieh

Figure 6.7 Horocycles defined by two points

sense.

Second, any ‘radius’ r (line through center C) of a horocycle his orthogonal to h.
This is obvious by both a smple continuous limit argument and also by noting that any
liner through C is orthogonal to e-circle h at C, and therefore also at the other point of

intersection. Figure 6.8
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Figure 6.8 Any radius of a horocycle is orthogonal to the horocycle

Third, Given C, the ‘center’ of a horocycle defined by points A and B, then angles
CAB and CBA are congruent. To see this, consider the perpendicular bisector of
segment AB. Thiswill contain C, the ‘center’ of the horocycle. Since reflection in this
line sends A and B to each other, leaves C fixed, and preserves angles, angles CAB and

CBA are congruent. Thisisillustrated in Figure 6.9.

Figure 6.9 Non-zero angles of a singly asymptotic triangle inscribed in a horocycle

Also evident from Figure 6.9 is that angles CAB and CBA, are each the angle of
parallelism associated with half the length of AB, or:

CAB =CBA= cos'la?anhgém%): P ?MQ
e 2 gg e 2 g
We will use these facts when we discuss circum-circles in Chapter VIII.
This concludes our discussion of the basics of hyperbolic geometry and UHP. We

will now examine a few topics in more depth.
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Chapter VII
TheHyperbolic Circle

Since, in UHP, Euclidean and hyperbolic circles coincide, we should ask how the

coordinates of their centers, and their radii, relate to each other.

The Hyperbolic and Euclidean Center and Radius

For this discussion we let C and R denote Euclidean center (y-coordinate), and
radius, and c and r denote its hyperbolic center and radius.
Suppose we have the circle with hyperbolic center P(*,c) and radiusr. Let the

vertical e-line through the center cut the circle at A(*,a) and B(*,b) with ab. (Figure 7.1)

Figure 7.1 The Euclidean and hyperbolic center and radius of the circle

Since:
a0 X0
hAP)=Inc===r hiP,B)=Inc—==r
( ) gCg and ( ) gbz
We know:

a=cx and b=cx"’
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and the Euclidean center C isthe e-midpoint of segment AB:

C= atbh _cx +cxe = cxcosh(r)
2 2
and the Euclidean radius R is half the length of AB:
r-2-b_cx¥ -0 =c>ainh(r)
2 2
We can use these to find the inverse relationships.
R _ c>sinh(r)
— =——— 4~ =tanh(r
C cxcosh(r) ") and C?- R?=c?>cosh?(r)- c?>anh?(r)=c?
And we have:

C=cscosh(r)  R=csinh(r) r:tanh'l(%) ad C€=VC*- R’

These relationships are interesting and elegant in themselves, and they also will

be invaluable as we develop the formulae for the circumference and area of the circle.

Circumference

To find the formula for circumference, we will use the parametric form of the

equation for our circle, and the corresponding modified integration for arc length.

x = R>cos(t) y =C+Rosn(t)
%—_ y y:
- Rosin(t) d " R>cost)
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Circumference=2x¢ dt
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R—Zdt =2XpF R dt
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which, by using the relationships between Euclidean and hyperbolic centers and radii:

C= 2>pC>R = 2>p >sinh(r)
Notice that, though the formulainitially contained the y-coordinate of the center,
the final formula does not. Thisis as we would hope, and the circumference of the circle

depends only upon its radius, and not its position in the plane.

Area

The analogous direct integration we could use to find the area of the circleis
much more difficult than for the circumference, and we will avoid it.

Consider the regular n-gon with circum-radius r, and its decomposition into 2n
congruent right triangles. We can do this by connecting the center to each vertex and to

the midpoint of each side. (Figure 7.2)
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Figure 7.2 Theregular n-gon divided into 2n right triangles

As the number of sides approaches infinity, the area of the n-gon, the sum of the
areas of the 2n triangles, approaches the area of the circle.

We know that the measure of central anglea is 2p/2n or p/n, the hypotenuseis
r, and we can find the measure of angle b by using the formula cot(a)cot(b) = cosh(c)
from our investigation of the trigonometry of right triangles. This gives us:

9—_

b = cot"*(cosh(r)xtan(a ) = cot'lga%osh( xtana®
en gy

and remembering that the area of the triangle is equal to its angle defect we get that the

area of the circle of radiusr is:

p Y- 2 6o
—I|m n -—-a b —I|m n - — - cot™“gcosh ><tan—
n®¥e2 @ &1 n®¥92 ? n g ( gnﬂﬂm
using the fact that arccot(a) = p/2 - arctan(a) we get:
p p a3 oo 128 ap ol
limazn - +tant cosh xanc— —I|m +2nxan “gcosh(r )xan
g v ot B v v fortef

As u approaches zero and c is a constant, arctan(cxl) approaches carctan(u). This gives
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us.

Alr)=-2p +2n mom(r)%m'la?an(j”igij: -2p +2n >cosh(r)x%

en ogg
= 2p »cosh(r)- 2p
or dternately:
Alr)=4p sinhz(%)
We state these together as:

Theorem 7.1: The circumference and area of a circle are given by: C = 2psinh(r), and

A = 4psinh(r/2), wherer isthe radius of the circle.

Note that in hyperbolic geometry, asin Euclidean, the circumference formulais

the derivative of the area formula with respect tor.

The Limiting Case

We know that, for triangles, as their area approaches 0O, their properties (e.g. angle
sum) approach those of triangles in Euclidean space. We can easily confirm that thisis
also true of circles. (It istrue of all objects in the hyperbolic plane.)

To confirm the limiting case of the circle asits radius approaches zero, we
consider the ratio of the hyperbolic and Euclidean formulae for circle area and take the
limit, using L’ Hopital’s rule:

2P >(C(?Shz(l’)- 1) _ i 2>(coshz(r)- 1) _ i 2>sinh(r) _ i 2>cosh(r) 1

r® 0 pr r® 0 3T 0 2% r®0 2

S0, asr® 0, our hyperbolic formula for area approaches the Euclidean formula. The same

istrue of our hyperbolic formulafor circumference:
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i 2P >sinh(r) _ i sinh(r) _ i cosh(r) 1oy
0 2 X @0 I reo 1 1

Unlike the triangle, though, the appearance of the circle in UHP remains the same

as its area approaches zero.

HyperbolicP

In Euclidean space, p is defined as the ratio of the circumference of any circle to
its diameter, and thisisa constant. In hyperbolic geometry, as we can see from the

formulae above, the hyperbolic p ratio for any given circleis equal to:
p >sinh(r)
r

where r isthe radius of the circle and p is Euclidean pi. Obvioudly, thisis not constant,

but as r approaches zero, sinh(r)/r approaches 1, and hyperbolic p approaches Euclidean

p.
The AngleInscribed in a Semicircle

It isawell known fact in Euclidean geometry that any angle inscribed in a
semicircleisaright angle. A common proof of this uses the fact that the angle sum of a

triangleisp. A similar proof in hyperbolic geometry will show:

Theorem 7.2. The measure of an angle inscribed in a semicircleisless than a right

angle.

Proof: Let angle ACB beinscribed in acircle. Consider triangles ACD and BCD where
D isthe center of the circle. (Figure 7.3) Triangles ADC and BDC are isosceles, so the
measure of angle ACB isa + b, and the angle sum of triangle ABC is 2a + 2b which

must be less than p, so angle the measure of ACB islessthan p/2. QED
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Figure 7.3 An angle inscribed in a semi-circle

Since the angle sum of atriangle goesto p asthe area of the triangle goes to zero,
as C approaches B or A, angle ACB will approach p/2.

We saw in Chapter | that the assumption of the existence of a circum-circle to
every triangle led Wolfgang Bolyai to afalse ‘proof’ of the Euclidean parallel postulate,
and we saw in Chapter |1 that not every triangle has a circum-circle. The natural question
to ask iswhich triangles do have circum-circles, and which do not. We answer this

guestion in the next chapter.
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Chapter VIII
In-Circlesand Circum-Circles

We have looked at circles and triangles in the hyperbolic plane, and how they
look in UHP. We will now look at two examples of the interaction of these objects, the

inscribed and circumscribed circles.

In-Circles

Remember, from Chapter 11 that there are four kinds of triangles in hyperbolic
geometry: ordinary, singly asymptotic, doubly asymptotic, and trebly asymptotic. We
can find the in-circle of each of these kinds of triangles. We will consider the ordinary

triangle first.

Thein-circle of theordinary triangle

We showed in Chapter 11 that any ordinary triangle has an inscribed circle. This
iseasy to find. All we need is the center and any point on the circle. These are found in
exactly the same manner as in Euclidean geometry. An example is shown in figure 8.1,
where | and m bisect angles CAB and ACB respectively and intersect in D, and E isthe
foot of the perpendicular n from D to ssde AC. Thecircleis centered at D with radius

DE.

116



Figure8.1 TheIn-circle of atriangle in standard position

Thein-circle of theasymptotic triangle

It is no more difficult to find the in-circle of a singly asymptotic triangle. Since
we have two non-zero angles, we can construct the angle bisectors of these. The
intersection of these angle bisectors will be equidistant from all three sides. Essentialy,
the construction is the same as that for the ordinary triangle and isillustrated in Figure
8.2. (Recall that one vertex of the ordinary triangle was never used in the construction

above.)

Figure 8.2 The In-Circle of the Singly Asymptotic Triangle
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The doubly and trebly asymptotic triangles pose a little more of a problem since
neither of them has a pair of non-zero angles and the angle bisector does not exist for an
angle of measure zero with its vertex at infinity. Thereis, however, for any two limiting
parallels, amirror of reflection that will send one to the other. Since our metric is
preserved by reflection, this mirror will act as an angle bisector in the sense that it isthe
set of points equidistant from both lines. The intersection of these mirrors of reflection
with the angle bisector of the non-zero angle will be equidistant from all three sides, and
therefore the center of our in-circle. Figure 8.3 illustrates this for the doubly asymptotic
triangle. Linel isthe angle bisector of PAQ, lines m and n are the mirrors of reflection
from side PQ to AQ and AP respectively, and line p is the perpendicular from the in-

center to side AQ.

Figure 8.3 The In-Circle of the Doubly Asymptotic Triangle |

Since the doubly asymptotic triangle is defined entirely by the one non-zero
angle, it seems natural that there ought to be a relationship between this angle and the
radius of the in-circle. Consider the situation pictured in Figure 8.4. Since each of the
four angles marked b are the angle of parallelism associated with the radius of the circle,

P(r), we know that they are all congruent, and each of the angles marked d has measure

p - 2P(r).
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Figure 8.4 The In-Circle of the Doubly Asymptotic Triangle I

Applying equation 10 from our discussion of trigonometry in Chapter V to

triangle ABC, we get:
& 0_ . _ .
cosg == cosh(r)>sin(d) = cosh(r)>sin(p - 20 (r))
é

= cosh(r)>sin(2 (r)) = cosh(r)>2>sin( (r)) cos( (r))

Using equations 1 and 3 from Chapter V for substitution gives us:

cosé% g: cosh(r)x2>sin(Q (r))cos( (r)) = 2 xcosh(r) xm stanh(r) = 2 xanh(r)

and we have:

Theorem 8.1: The measure of the non-zero angle a of a doubly asymptotic triangle and

theradiusr of itsin-circle satisfy: cos(a/2) = 2 tanh(r).

The in-circle for the trebly asymptotic triangle is constructed in much the same
manner, by constructing the three mirrors (only two are needed) that reflect the sidesto
each other pairwise. (Figure 8.5) Note that we do not need to construct the perpendicular

from the center to any side of the triangle, as each of the mirrorsis perpendicular to the
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side that it does not reflect.

Figure 8.5 The In-Circle of the Trebly Asymptotic Triangle |

Since a trebly asymptotic triangle has three infinite sides, and three angles of
measure zero, al trebly asymptotic triangles are congruent. We would expect that the
radius of the in-circleis a constant. Figure 8.6 showsthat the three mirrors of reflection
intersect at the center of the circle forming six congruent angles. We know they are
congruent because they are each the angle of parallelism associated with the radius of the

circle.

Figure 8.6 The In-Circle of the Trebly Asymptotic Triangle |

We can apply equation 3 from Chapter V to the angle a, which we know to be
p/3, and get:
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apo_1

tanh(r ) = —r=—

anh(r) o ==
r:tanh'lgégzln—(s)
e2g 2

Theorem 8.2 Theradius of the in-circle of any trebly asymptotic triangle isIn(3)/2

If we consider the equilatera triangle inscribed within the circle of radius In(3)/2,
we discover something curious about the vertex angle of thistriangle. Figure 8.7 shows
this triangle divided into six congruent right triangles, each having the radius of the circle

asits hypotenuse.

-

Figure 8.7 The equilatera triangle inscribed in acircle of radius In(3)/2

Applying equation 11 from Chapter V to any one of the six right triangles, we get:

P 0,01(a) = cosn@3
C0t83 bx:ot(a)—coshg 2 o or  cotfa)=2

Which tells us that:
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snfa)=—= coia):i

J5 and J5

Since the vertex angle of the triangle is 2a, the double angle formulafor sine gives us:

sin(2a) = 2>sin(a ) xcosla ) = 2 g

%Tw

v
=™

Thistells us that the measure of the vertex angle of this equilateral triangle is the same as
the larger of the two non-right angles of the ubiquitous 3-4-5 triangle. (approximately
53.13°) Thisisnot particularly significant, merely curious.

This concludes our discussion of in-circles, and we move on to:

Circum-Circles

We saw in Theorem 2.34 that the perpendicular bisectors of the sides of atriangle
are either: concurrent, parallel in the same direction, or ultra-parallel. Figure 8.8
illustrates this for UHP. Since the intersection of the perpendicular bisectors of the sides
of atriangle is the center of the circum-circle, this circle will exist only if the point of
intersection exists. We can see that thisis not aways the case in UHP.

We know that any circle in UHP is an e-circle, which means that the hyperbolic
circum-circle of triangle ABC is also its Euclidean circum-circle. The problem occurs
when the Euclidean circum-circle of triangle ABC does not lie entirely above x. Figure

8.8 dso illustrates this.
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Figure 8.8 The three cases of the Euclidean circum-circle of triangle ABC

Note that if the Euclidean circum-circle lies entirely above x (Casel), thenit is
the hyperbolic circum-circle. If it istangent to x (CaseIl), it isa horocycle, and if it
intersects x (Case I11) it isa hypercycle.

We know that triangle ABC will not have acircum-circleif A, B and C are
collinear in the Euclidean sense, because its Euclidean circum-circle will not exist. If A,
B and C are collinear in the hyperbolic sense, then the Euclidean circum-circle isthe line
through the three points, and is not a hyperbolic circle because half of it lies below x. We
will restrict our discussion to triples of points that are non-collinear in both the Euclidean
and the hyperbolic sense.

In the case where the circum-circle of triangle ABC does exist, its construction is
simple, and procedurally identical to its construction in Euclidean Geometry. The

perpendicular bisectors of any two sides will intersect in the circum-center. (Figure 8.9)
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Figure 8.9 The circum-circle of triangle ABC

The question is, when does the circum-circle of atriangle exist and when does it
not? We saw in Figure 8.8 and in Chapter VI that the horocycle acts as the ‘limit’ of the
circlein UHP, in the sense that if the e-circle grows any ‘larger’ downward, it ceases to
represent a hyperbolic circle. Thisisthe key to finding a condition for the existence of
the circum-circle

Remember the relationship shown in Figure 6.9, that given a singly asymptotic
triangle ABC with all three points lying on horocycle h and C being the i-point where his

tangent to x, we have:

CAB =CBA= cos'la?anhgém%j: P ?MQ
e 2 pgg € 2 g
Consider any triangle ABC in standard position in UHP, with A(0,1), B(0,k) with
k>1 and C to theright of y. (Figure 8.10) Let h and k be the two horocycles containing A
and B. They will be symmetric about y. We can see by inspection that if C lieson h or
k, outside both h and k, or within the intersection of the interiors of h and k, that the

circum-circle failsto exist. If C lieswithin the interior of h or k, but not both, the circum-

circle exists. (In Figure 8.10, the horocycles are solid curves and the ‘circles’ are dashed.)
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Figure 8.10 The relationship between horocycles and circum-circles

We can show this more concisely by using afew facts about circles. We know
two intersecting circles intersect in exactly two points, and we know that one arc of each
circle lies entirely inside the other circle, and one arc lies outside. We also know that, in
the situation pictured, any continuous path from A to B externa to both circles h and k
must intersect x.

Thistellsus:

Casel: If D lies on the exterior of h and k,(C1 in Figure 8.10) then arc ACB, and
therefore circle ACB, will intersect x, and triangle ACB has no circum-circle.

Casell: If Clieson hor k, then the e-circle through A, B and C is the horocycle
h or k, and the circumcircle does not exist.

Caselll: If Cliesinside both h and k,(C2) then the arc AB not containing C lies
outside both h and k, and intersects x, and the circumcircle fails to exist.

Case |V: If Cliesingde h and outside k,(C3) (or inside k and outside h) then the
arc AB not containing C liesinside k and outside h, (or outside k and inside h) and does

not intersect x, and the circum circle exists.
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So the condition for the existence of the circum circle isthat any vertex of the
triangle must lie in the interior of one, but not both, of the horocycles containing the other
two. Thisisrather wordy and difficult to check. We can do much better.

Consider the construction illustrated in Figure 8.10 and reflect in the mirror that
will send the perpendicular bisector of side AB to the y-axis. Theimages of A and B will
be horizontally related, the image of horocycle h will be the horizontal e-line AB, and the
image of k will be the e-circle through A, B and O (the origin). If the image of C lies
below AB, wereflect inline AB. Thiswill place C above line AB and will map the

horocycles to each other. Thisarrangement isillustrated in Figure 8.11

Figure 8.11 The relationship between horocycles and circum-circles |

The interior of the horocycle his the portion above it, so the region interior to h
and exterior to k is the region lying above the darkened line. Thisiswhere C must lie for
the circum-circle to exist. (It cannot lie inside k and outside h because that region lies
below line AB and C lies above.) We know that if C lieson h or k, then the circum-circle

does not exist, but it will be helpful to examine this situation.
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Assume that C lies on k, and remember the following facts from our discussion of
horocyclesin Chapter V1. (Figure 8.11) First, that the non-zero angles of a singly
asymptotic triangle inscribed in a horocycle are congruent. This tells usthat angles
ACO@CAO, BCO@BO and ABO@AO. Second, that each of these non-zero anglesis
the angle of parallelism associated with one half the length of the finite side of the
triangle, or ABO=P (AB/2). Taken together, these give us:

ACB = CAB + BAO + ABO+ ABC

aAB o

ACB =CAB + ABC + 0 &=
e2gp

Suppose, now, that C lies above the darkened line, (inside h but outside k). This

is the case in which the circum-circle exists. (Figure 8.12)

Figure 8.12 The relationship between horocycles and circum-circles 111

Let C' be the intersection of line CO and horocycle k. We can see that:
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aeABO< CAB+CBA+2p89£9

2 2

ACB<AC'B=C'AB+C' BA+2p

Thisis the case where the circum-circle exists. By asimilar argument, if C liesinside
both h and k, (beneath the darkened line and above segment AB) and C' the intersection

of line CO and horocycle k, we get:

aeA\Bo

ACB > CAB + CBA+ 2p P
2

The case where C liesin the exterior of both horocycles can be handled by adding
the assumption that angle ACB isthe largest angle. Figure 8.13 shows that if C lies

outside (below) h, then angle ACB is not the largest angle.

Figure 8.13 The relationship between horocycles and circum-circles IV

This gives us our condition for the existence of the circumcircle for triangle ABD:
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Theorem 8.3: The circumcircle exists for a given triangle iff the measure of any one of
its anglesis less than the sum of the measures of the other two angles plus twice the angle
of parallelism associated with half the length of the longest side.

aAB§

ACB<CAB+CBA+P¢—+
e2g

Note that two angles of every triangle fit this condition by virtue of their not being the
largest, so we only need to check the largest angle.

We may think of this condition in the following way: Asthe largest angle grows
such that it exceeds the sum of the other two angles, the angle of parallelism associated
with the length of the opposite side must grow larger, meaning that the opposite side, the
longest side, must grow smaller. 1n other words, the circum-circle exists for ‘very’

obtuse triangles, provided they are ‘very’ small.
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Appendix
Constructions

These are some of the basic constructions for the three models of hyperbolic
geometry discussed in Chapter 111. The instructions are appropriate for both pencil-and-
paper constructions as well as for dynamic geometry software such as Cabri |1. Macros
for most of these constructionsin Cabri Il are included on a CDRom with this thesis, as
well as a demonstration version of Cabri I1.

In the figures, original and final objects are drawn solid, while intermediate

objects are dashed.

Constructionsin Euclidean Space

Construction E.1 (Orthogonal Circles): Given a circle c with center C, and a point P

outside c, construct the circle p with center P that is orthogonal to circle c. (Figure A.1)

1) Draw circle aon diameter PC
2) Circlesaand cintersect in point Q

3) Draw circle p centered at P through Q

Figure A.1 Constructing acircle orthogonal to a given circle
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Segments PQ and CQ are radii of circles p and ¢ respectively, and are orthogonal

because angle PQC is inscribed in a semi-circle.

Construction E.2 (Inversion): Given a circle c with center C and a point P, construct

theimage P' of P under inversionin circlec.

Casel: Pliesinsde c (Figure A.2)
1) Draw thelinel through C and P
2) Draw theline m perpendicular to | at P
3) Linemand circle c intersect in Q
4) Draw linentangenttocat Q

5) Linesnand | intersect in P

e R .

=

Figure A.2 Constructing the image of a point under inversion |

Casell: Pliesoutside c (Figure A.3)
1) Draw linel through Pand C
2) Draw circle aon diameter PC
3) Circlesaand cintersect in Q
4) Draw line m through Q perpendicular to |

5) Lines| and mintersect in P
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Figure A.3 Constructing the image of a point under inversion |1

In both cases, triangles CPQ and CQP' are similar by AAA, so CP-CP = CQ2.

Constructionsin KDM

Construction K.1 (Line/Segment): Given two points A and B, construct the

line/segment through them.
1) Draw the Euclidean line/segment | through A and B

Construction K.2 (Polar Point): Given linel, construct the polar point L of I. (Figure

A4)

1) Linel hasideal points P and Q
2) Draw thetangentsmand nto d at P and Q respectively

3) Linesmand n meet at L
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Figure A.4 Constructing the polar point of alinein KDM

Point L is the polar point of line | by definition of the polar point in KDM.

Construction K.3 (Perpendicular): Given alinel and a point A, construct the line p

through A perpendicular to l. (Figure A.5)

1) Draw point L, the polar point of L

2) Draw line p through pointsL and A

Figure A.5 Constructing perpendicularsin KDM

Line p is perpendicular to | by the definition of parallel in KDM.
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Construction K .4 (Perpendicular Bisector/Midpoint): Given two points A and B,
construct C and p, the midpoint and perpendicular bisector of segment AB. (Figure A.6)

1) Draw line mthrough A and B

2) Draw the polar point M of linem

3) Draw e-line AM

4) Line AM cutsd in P such that P is between A and M

5) Draw e-line BM

6) Line BM cutsdin Q such that B is between Q and M

7) Draw e-line PQ

8) LinePW cutsminC

9) Draw line p through C perpendicular to m

Figure A.6 Constructing the perpendicular bisector/midpoint in KDM

Angles ACP and BCQ are congruent (vertical) so segments AC and BC are congruent

since they have the same angle of parallelism. (Angles CBQ and CAP are right angles)
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Construction K.5 (Angle Bisector): Given three points, A, B and C in KDM, construct

line n, the angle bisector of angle ABC. (Figure A.7)

1) LetrayBAcutdinP

4) LetrayBCcutdinQ

5) Draw line PQ

6) Draw line n through B perpendicular to line PQ

P

%

Figure A.7 Constructing the angle bisector in KDM

Since line nis perpendicular to line PQ, angles ABX and CBX are both the angles of

parallelism associated with the distance of B from PQ, and therefore congruent.

Construction K.6 (Mutual Perpendicular): Given two lines| and min KDM, construct

the line p perpendicular to both | and m. (Figure A.8)

1) Draw thepoleL of |
2) Draw the pole M of m
3) Draw the e-line p through L and M
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Figure A.8 Constructing the mutual perpendicular to two linesin KDM
Because line P passes through the polar points of both | and m, it is perpendicular to both.

Construction K.7 (Reflection of a Point in aLine): Given alinel and a point A,

construct the reflection A" of Ain|l. (Figure A.9)

1) Draw line mthrough A perpendicular to |

2) LinemmeetslinelinC

3) Draw line n through A perpendicular to m

4) LinenmeetsdinPand Q

5) Draw the e-line through P and C, cutting d in R

6) Draw the e-line through M and R, cutting min A’
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Figure A.9 Constructing the reflection of apoint inalinein KDM

The justification for this construction is the same as for Construction K.5

Construction K.8 (Circle): Given two points C and A, construct the circle centered at C

with radius CA. (Figure A.10)

1) Draw line AC

2) Draw lineOC

3) Draw A', the reflection of A in OC
4) Draw A", thereflection of A'in AC

5) Draw the Euclidean circle through A, A" and A"
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Figure A.10 Constructing acirclein KDM

Thethree points A, A'and A", are al equidistant from C, and, therefore, lie on the circle

centered at C. The Euclidean circle through the three points is the hyperbolic circle.

Constructionsin PDM

Construction P.1 (Polar Point/Line/Segment): Given two points A and B, construct P

and |, the polar point and line/segment through them. (Figure A.11)

Casel: A and B collinear with the center O of d.
1) Linel isthe e-linethrough A and B (and O)
Casell: A and B are not collinear with the center O of d.
1) Draw A', the Euclidean inverse of A ind
2) Draw the e-perpendicular bisector m of segment AB
3) Draw the e-perpendicular bisector n of segment AA'
4) Lines mand nintersect in ultra-ideal point L, the polar point of linel

5) Draw thee-circle| with center L and radius LA
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Figure A.11 Constructing the line/segment in PDM
Since | contains a pair of inverse points under inversionind, | and d are orthogonal.

Construction P.2 (Perpendicular): Given alinel and a point A, construct the line p

through A perpendicular tol.

Casel: Linelisthrough O (Figure A.12)
1) Draw A, theinverseof A ind
2) Draw the e-perpendicular bisector m of segment AA'
3) Linemintersects| in P (I will need to be extended)

4) Draw e-circle p with center P and radius PA

Figure A.12 Constructing a perpendicular in PDM |
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Casell: Linelisnot through O (Figure A.13)
1) Draw the Euclidean inverse A' of Aind
2) Draw the e-line mthrough Q and R, the ideal points of |
3) Draw the e-perpendicular bisector n of segment AA'
4) Linesmand nintersect in P

5) Draw e-circle p with center P and radius PA

s F

Figure A.13 Constructing a perpendicular in PDM ||

In both cases, p contains a pair of inverse points, A and A' under reflectionind, sopis
orthogonal to d. Inthefirst case, since Pison|, p isorthogonal to |, and in the second, P
ison theradical axis of | and d, so p isorthogonal to |. Both constructions also works if
Aisonl. Inthe second casg, if e-lines| and m are paralel, then line OA is perpendicular

tolinel.

Construction P.3 (Perpendicular Bisector/Midpoint): Given two points A and B,

construct C and p, the midpoint and perpendicular bisector of segment AB. (Figure A.14)

1) Draw e-linel through A and B
2) Draw e-circle c on diameter AB
3) Draw theradical axisr of cand d
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4) liner intersects|in P

5) Draw e-circle p with center P orthogonal to d

Figure A.14 Constructing the perpendicular bisector/midpoint in PDM

Since P ison the radical axis of the circles p and d, it is orthogonal to ¢, and since it ison
the line AB, inversion in p will map A to B, so it isthe perpendicular bisector of segment

AB. Line p intersects segment AB at its midpoint.

Construction P.4 (Angle Bisector): Given three points, A, B and C in KDM, construct

linel, the angle bisector of angle ABC. (Figure A.15)

1) Draw theinverse B' of Biind

2) Draw nthe e-perpendicular bisector of segment BB'
3) Ray BA meetsdinP

4) Ray BC meetsdinQ

5) Draw line e-linet through P and Q

6) Linesnandt intersectinL

7) Draw e-circle| with center L and radius LB
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Figure A.15 Constructing the angle bisector in PDM

Sincel is orthogonal to d, inversionin | maps P and Q to each other, and leaves B fixed.

Construction P.5 (Mutual Perpendicular): Given two lines| and min KDM, construct

the line p perpendicular to both | and m. (Figure A.16)

1) Draw r, theradical axis of e-circlesd and |
2) Draw q, the radical axis of e-circlesd and m
3) Linesr and g intersect in ultra-ideal point P

4) Draw p, the e-circle centered at P and orthogonal to d

Figure A.16 Constructing the mutual perpendicular in PDM

Since P ison the radical axis of both d and I, and d and m, p is perpendicular to | and m.

Should r and q be perpendicular, then the line through O perpendicular to | isaso
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perpendicular to m.

Construction P.6 (Reflection of a Point in aLine): Given alinel and a point A,

construct the reflection A' of Ainl.

Casel: Linel contains O
1) Draw point A', the image of A under reflection in the e-linel
Casell: Linel does not contain O

1) Draw point A", the image of A under inversion in the e-circlel

Construction P.7 (Circle): Given two points C and A, construct the circle centered at C

with radius CA. (Figure A.17)

1) Draw line AC
2) Draw lineOC
3) Draw point A', the reflection of A in OC
4) Draw point A", the reflection of A'in AC

5) Draw thee-circlecthrough A, A'and A"

Figure A.17 Constructing the circlein PDM

Segments CA, CA', and CA" are all congruent, so circle ¢ will contain al three. The e-

circle c is the hyperbolic circle.
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Constructionsin UHP

Construction U.1 (Line/Segment): Given two points A and B, construct |, the

line/segment through A and B. (Figure A.18)

Casel: Points A and B are verticaly related
1) Draw the vertical e-line through A and B

Casell: Points A and B are not verticaly related
1) Draw p, the Euclidean perpendicular bisector of e-segment AB
2) E-linepmeetsxinL

3) Draw e-circle ! with center L and radius LA

&

Figure A.18 Constructing the line/segment in UHP

Construction U.2 (Perpendicular): Givenlinel and point A, construct line mthrough A

perpendicular to|l. (Figure A.19)

Casel: Linelisof vertical e-linetype

1) Linel meetsxinM

2) Draw e-circle mwith center M and radius MA
Casell: Linelisof e-circletypeand A isonl|

1) Draw e-line nthrough A tangent to |

2) LinenmeetsxinP

3) Draw e-circle m with center P and radius PA
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Caselll: Linelisof e-circletypeand A isnot on |
1) Draw A', the Euclidean inverse of A in|
2) Draw e-line n, the perpendicular bisector of e-segment AA'
3) LinenmeetsxinP

4) Draw e-circle m with center P and radius PA

-

"
& Case II

Figure A.19 Constructing perpendicularsin UHP

The first and second cases are obvious. Inthethird, A and A' areinversesin| and are

both on m, so m maps to itself under inversionin |, and is therefore orthogonal to I.

Construction U.3 (Perpendicular Bisector/Midpoint): Given two points A and B,

construct C and p, the midpoint and perpendicular bisector of segment AB.

Case|l: Points A and B are horizontally related
1) Draw e-linem, the Euclidean perpendicular bisector of e-segment AB
2) Line m meets segment AB inC
Casell: Points A and B are not horizontally related (Figure A.20)
1) Draw linel through A and B
2) Draw e-line mthrough A and B
3) LinemmeetsxinP
4) Draw e-circle p centered at P orthogona to |

5) Linep meetslinelinC
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Figure A.20 Constructing the perpendicular bisector/midpoint in UHP

Inversionin p maps| to itself. Since A and B are on | and collinear with P, they map to

each other, and mis the perpendicular bisector of segment AB.

Construction U.4 (Angle Bisector): Given three points A, B and C, construct linel, the

angle bisector of angle ABC. (Figure A.21)

Case |: Points A and B (or B and C) are verticaly related
1) Ray BCmeetsxinL (if B isabove A, thenray CB meetsx inL)
2) Draw e-circle| with center L and radius LB
Case ll: Neither A and B, nor B and C are verticaly related
1) Choose point D on vertical e-line through B
2) Draw e-circle d with center D orthogonal to e-circle BC
3) Circled intersectsrays BA and BC in E and F respectively
4) Draw e-line e through E and F
5) LineemeetsxinL

6) Draw e-circle| with center L orthogonal to d
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Case I
A |
i i
\ L x

Figure A.21 Constructing the angle bisector in UHP

In Casel, inversion in e-circle | will send L to Z and leave B fixed, therefore rays BA and
BC are sent to each other, and | is the angle bisector of ABC.

In Casell, D ison the radical axis of e-circles AB and BC, so e-circle d is orthogonal to
both AB and BC. Sincel isorthogonal to d and L is collinear with E and F, inversionin |
will send E and F to each other. By preservation of angles, this sends rays BA and BC to

each other, so B isfixed (on ) and | is the angle bisector of angle ABC.

Construction U.5 (Mutual Perpendicular): Given two lines| and m, construct the line

p perpendicular to both | and m.

Casel: Linelisof vertica elinetype (Figure A.22)
1) Linel meetsxinP

2) Draw e-circle with center P orthogonal to m

Figure A.22 Construction of the mutual perpendicular in UHP |
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Casell: Bothlinesare of e-circle type (Figure A.23)
1) Draw any e-circle a centered above x that intersects both | and m
2) Circleaintersectslin A andB,andminCand D
3) Draw e-line nthrough A and B and e-line g through C and D
5) LinenintersectsqinE
6) Draw e-liner through E perpendicular to x

7) Liner intersectsx in P

8) Draw circle p with center P orthogonal to |

Figure A.23 Construction of the mutua perpendicular in UHP 11

In Case |, line p is obviously perpendicular to I.
InCasell, Pliesonr, the radical axis of | and m, and since p is perpendicular to |, it is

also perpendicular to m.

Construction U.6 (Reflection of a Point inaLine): Givenalinel and a point A,

construct thereflection A' of Ainl.

Casel: Linelisof the vertical e-ray type

1) Draw the Euclidean reflection A' of A ine-linel
Casell: Linelisof the e-circletype

1) Draw the Euclidean inverse A’ of A in e-circlel|
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Construction U.7 (Circle): Given two points C and A, construct the circle centered at C

with radius CA. (Figure A.24)

1) Draw the vertical e-linel through C

2) Draw linemthrough C and A

3) Draw point A, thereflection of A in|
4) Draw point A", the reflection of A'inm

5) Draw thee-circlethrough A, A'and A"

1

|
|
|
T b
|
|
|
|
|
|
|

Figure A.24 Constructing the circlein UHP

Segments CA, CA', and CA" are all congruent, so circle ¢ will contain al three. The e-

circle c is the hyperbolic circle.
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