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Chapter I 
The History of Non-Euclidean Geometry 

The Birth of Geometry 

 We know that the study of geometry goes back at least four thousand years, as far 

back as the Babylonians (2000 to 1600 BC).  Their geometry was empirical, and limited 

to those properties physically observable.  Through their measurements they approxi-

mated the ratio of the circumference of a circle to its diameter to be 3, an error of less 

than five percent.  They had knowledge of the Pythagorean Theorem, perhaps the most 

widely known of all geometric relationships, a full millennium prior to the birth of 

Pythagoras. 

 The Egyptians (about 1800 BC) had accurately determined the volume of the 

frustum of a square pyramid.  It is not surprising that a formula relating to such an object 

should be discovered by their society. 

 Axiomatic geometry made its debut with the Greeks in the sixth century BC, who 

insisted that statements be derived by logic and reasoning rather than trial and error.  We 

have the Greeks to thank for the axiomatic proof. (Though thanks would likely be slow in 

coming from most high school geometry students.) 

 This systematization manifested itself in the creation of several texts attempting to 

encompass the entire body of known geometry, culminating in the thirteen volume 

Elements by Euclid (300 BC).  Though not the first geometry text, Euclid’s Elements 

were sufficiently comprehensive to render superfluous all that came before it, earning 

Euclid the historical role of the father of all geometers.  Today, the lay-person is familiar 

with only two, if any, names in geometry, Pythagoras, due the accessibility and utility of 

the theorem bearing his name, and Euclid, because the geometry  studied by every high 

school student has been labeled “Euclidean Geometry”. 
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 The Elements is not a perfect text, but it succeeded in distilling the foundation of 

thirteen volumes worth of mathematics into a handful of common notions and five 

“obvious” truths, the so-called postulates. 

 The common notions are undefineable things, the nature of which we must agree 

on before any discussion of geometry is possible, such as what are points and lines, and 

what it means for a point to lie on a line.  The ideas are accessible, even ‘obvious’ to 

children. 

 The five obvious truths from which all of Euclid’s geometry is derived are: 

The Euclidean Postulates 

Postulate I:  To draw a straight line from any point to any point. (That through any two    

 distinct points there exists a unique line) 

Postulate II:  To produce a finite line continuously in a straight line. (That any segment 

 may be extended without limit) 

Postulate III:  To describe a circle with any center and distance.  (Meaning of course, 

 radius) 

Postulate IV:  All right angles are equal to one another.  (Where two angles that are 

 congruent and supplementary are said to be right angles) 

Postulate V:  If a straight line falling upon two straight lines makes the interior angles 

 on the same side less than two right angles (in sum) then the two straight lines, if 

 produced indefinitely, meet on that side on which are the two angles less than the 

 two right angles.   

 The first four of these postulates are, simply stated, basic assumptions.  The fifth 

is something altogether different.  It is not unlikely that Euclid himself thought so, as he 

put off using the fifth postulate until after he had proven the first twenty eight theorems 

of the Elements.  It has been suggested that Euclid had tried in vain to prove the fifth 
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postulate as a theorem following from the first four postulates, and reluctantly included it 

as a postulate when he was unable to do so.  His attempts were followed by the attempts 

of scores, probably hundreds, of mathematicians who tried in vain to prove the fifth 

postulate redundant.  So many, in fact, that in 1763, G.S.Klügel was able to submit his 

doctoral thesis finding the flaws in twenty eight “proofs” of the parallel postulate.  We 

will discuss, here, a few of the ‘highlights’ from this two thousand year period. 

The Search for a Proof of Euclid’s Fifth 

   Proclus (410-485 A.D.) said of the fifth postulate, “..ought even to be struck out 

of the Postulates altogether; for it is a theorem involving many difficulties,....,The 

statement that since the two lines converge more and more as they are produced, they will 

sometime meet is plausible but not necessary.”  John Wallis (1616-1703) replaced the 

wordy and cumbersome parallel postulate with the following.  Given any triangle ABC 

and given any segment DE, there exists a triangle DEF that is similar to triangle ABC.  

He then proved Euclid’s parallel postulate from his new postulate.  It turns out that his 

postulate and Euclid’s are logically equivalent. 

 The Italian Jesuit priest Saccheri (1667-1733) studied a particular quadrilateral, 

one with both base angles right, and both sides congruent.  He knew that both summit 

angles were congruent, and that if he could, using only the first four postulates, prove 

them to be right angles, then he would have proven the fifth postulate.  He was able to 

derive a contradiction if he assumed they were obtuse, but not in the case that they were 

acute.  He argued instead that, “The hypothesis of the acute angle is absolutely false, 

because it is repugnant to the nature of the straight line!”  His sentiment was echoed 

much later in 1781 by Immanuel Kant.  Kant’s position was that Euclidean space is, 

“inherent in the structure of our mind....(and) the concept of Euclidean space is...an 

inevitable necessity of thought.”  The Swiss mathematician Lambert (1728-1777) also 
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studied a particular quadrilateral that now bears his name, one having three right angles.  

The remaining angle must be acute, right or obtuse.  Like Saccheri, Lambert was able to 

prove that the remaining angle can not be obtuse,  but he also was unable to derive a 

contradiction in the case that it is acute.  We will explore some of the characteristics of 

Saccheri and Lambert quadrilateral in Chapter II. 

 Adrien Legendre (French 1752-1833) continued the work of Saccheri and 

Lambert, but was still unable to derive a contradiction in the acute case.  In 1823, just 

about the time that it was shown that no proof was possible, Legendre published the 

following “proof”. (Figure 1.1) 

 Given P not on line l, drop perpendicular PQ from P to l at Q.  Let m be the line 

through P perpendicular to PQ.  Then m is parallel to l, since l and m have the common 

perpendicular PQ.  Let n be any line through P distinct from m and PQ.  We must show 

that n meets l.  Let PR be a ray of n between PQ and a ray of m emanating from P.  There 

is a point R' on the opposite side of PQ from R such that angles QPR' and QPR are 

congruent.  Then Q lies in the interior of RPR'.  Since line l passes through the point Q 

interior to angle RPR', l must intersect one of the sides of this angle.  If l meets side PR, 

then certainly l meets n.  Suppose l meets side PR' at a point A.  Let B be the unique point 

on side PR such that segment PA is congruent to PB.  Then triangles PQA and PQB are 

congruent by SAS, and PQB is a right angle so B lies on l and n.  QED (Quite 

Erroneously Done?) 

 

Figure 1.1  Legendre’s ‘proof’ of the parallel postulate 
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 The flaw is in the assumption that any line through a point interior to an angle 

must intersect one of the sides of the angle.  We will show this to be false in Chapter II. 

 The Hungarian mathematician Wolfgang Bolyai also tried his hand at proving the 

parallel postulate.  We include his “proof” here because it includes a false assumption of 

a different nature. 

 Given P not on l, PQ perpendicular to l at Q, and m perpendicular to PQ at P.  Let 

n be any line through P distinct from m and PQ.  We must show that n meets l.  Let A be 

any point between P and Q, and B the unique point on line PQ such that Q is the midpoint 

of segment AB. (Figure 1.2)  Let R be the foot of the perpendicular from A to n, and C be 

the unique point such that R is the midpoint of segment AC.  Then A, B and C are not 

collinear, and there is a unique circle through A, B and C.  Since l and n are the 

perpendicular bisectors of chords AB and AC of the circle, then l and n meet at the center 

of circle.  QED (again, erroneously) 

 

Figure 1.2  Bolyai’s ‘proof’ of the parallel postulate 

 The problem with this proof is that the existence of a circle through A, B and C 

may not exist, as we cannot show that lines l and n intersect.  We will show, in Chapter II 

that this cannot be shown, and we will find a condition for the existence of the circle in 

Chapter VIII. 
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The End of the Search 

  Frustrated in his efforts to settle the issue of the parallel postulate, in 1823 Bolyai 

cautioned his son János to avoid the “science of parallels”, as he himself had gone further 

than others and felt that there would never be a satisfactory resolution to the situation, 

saying, “No man can reach the bottom of the night.” 

 Heedless of his fathers warning, János proceeded, that same year, to explore the 

“science of parallels”.  He wrote to his father that, “Out of nothing I have created a 

strange new universe.” (hyperbolic geometry)  The elder Bolyai agreed to include his 

son’s work at the end of his own book, and did so in 1832.  Before publishing, however, 

he sent his son’s discoveries to his friend Carl Friedrich Gauss.  Gauss replied that he had 

already done essentially the same work, but had not yet bothered to publish his findings.  

He declined to comment upon the younger Bolyai’s accomplishment, as praising his 

work would amount to praising himself.  János was so disheartened by Gauss’s response 

that he never published in mathematics again. 

 Nicolai Ivanovitch Lobachevsky (1793-1856) had published his results in 

geometry without the parallel postulate in 1829-30, two or three years before the work of 

János Bolyai saw print, but Lobachevsky’s work had not reached Bolyai.  Though he did 

not live to see his work acknowledged, hyperbolic geometry today is often referred to as 

Lobachevskian geometry. 

 Henri Poincaré and Felix Klein set about creating models within Euclidean 

geometry consistent with the first four postulates, but that allowed more than one parallel.  

They succeeded, proving that if there is an inconsistency in the Non-Euclidean geometry, 

then Euclidean geometry is also inconsistent, and that no proof of the parallel postulate 

was possible.  We will explore their models in Chapter III. 
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 In 1854 Riemann (1836-1866) developed a geometry based on the hypothesis that 

the non-right angles of the Saccheri quadrilateral are obtuse.  To do so, he needed to 

modify some of the postulates, such as replacing the “infinitude” of the line with 

“unbounded ness”.  The reader may be familiar with the popular model of geometry on 

the sphere.  In this paper, we will deal only with the geometries derived from the first 

four postulates as stated by Euclid, and will not discuss the geometry of Riemann. 

 In 1871 Felix Klein gave the names Hyperbolic, Euclidean, and Elliptic to the 

geometries associated with acute, right, and obtuse angles in the Saccheri quadrilateral.  

The distinctions between these geometries may be illustrated as follows.  Given any line l 

and any point P not on l, there exist(s)_____lines through P parallel to l.  Parabolic 

(Euclidean) geometry guarantees a unique parallel, in Hyperbolic geometry there are an 

infinite number, and in Elliptic geometry there are none. 

 A More Complete Axiom System 

 Over the course of the two millennia following the work of Euclid, 

mathematicians determined that Euclid’s system of five postulates were not sufficient to 

serve as a foundation of Euclidean geometry.  For example, the first postulate of Euclid 

guarantees that if we have two points, then we may draw a line, but none of the postulates 

guarantees the existence of any points, nor lines.  Also, when we discuss the measure of a 

line segment or of an angle, we are assuming that measurement is possible and 

meaningful, but Euclid’s postulates are silent on this issue. 

 The following system of axioms is complete, (where Euclid’s postulate system is 

not) that is, it is a sufficient system from which to derive geometry.  The geometry and its 

development are identical using both systems, but the problem in using Euclid’s system is 

that one must make many unstated assumptions, which is unacceptable. 
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Axiom I:  There exist at least two lines 

Axiom II:  Each line is a set of points having at least two elements (This guarantees at 

 least two points) 

Axiom III:  To each pair of points P and Q, distinct or not, there corresponds a  non-

negative real number PQ which satisfies the following properties: 

  (a)  PQ = 0  iff  P = Q        and 

  (b)  PQ = QP (This allows us to discuss measure) 

Axiom IV:  Each pair of distinct points P and Q lie on at least one line, and if PQ < α, 

 that line is unique   (If α is infinite we get Euclidean and/or hyperbolic geometry.  

 If α is finite we get elliptic geometry) 

Axiom V:  If l is any line and P and Q are any two points on l, there exists a one to one 

 correspondence between the points of l and the real number system such that P 

 corresponds to zero and Q corresponds to a positive number, and for any two 

 points R and S on l,  RS = | r - s | , where r and s are the real numbers 

 corresponding to R and S respectively  (This allows us to impose a convenient 

 coordinate system upon any line) 

Axiom VI:  To each angle pq (the intersection of lines p and q), degenerate or not, there 

 corresponds a non-negative real number pq which satisfies the following 

 properties: 

  (a)  pq = 0  iff  p = q         and 

  (b)  pq = qp 

  (This does for angles what Axiom III did for lines) 

Axiom VII:  β is the measure of any straight angle (We get the degree system by letting 

 β be 180, π gives radians) 
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Axiom VIII:  If O is the common origin of a pencil of rays and p and q are any two rays 

 in the pencil, then there exists a coordinate system g for pencil O whose 

 coordinate set is the set { x : -β < x [ β , x ∈  ℜ } and satisfying the properties: 

  (a)  g(p) = 0  and  g(q) > 0        and 

  (b)  For any two rays r and s in that pencil, if g(r) = x  and  g(x) = y  then 

 rs = | x - y | in the case | x - y | [ β, and rs = 2β - | x - y | in the case | x - y | > 2β 

 (This does for angles what Axiom V did for lines) 

Axiom IX (Plane separation principle):  There corresponds to each line l in the plane 

 two regions H
1 
and  H

2
 with the properties: 

         (a)  Each point in the plane belongs to exactly one of  l, H
1 
and  H

2
  

  (b)  H
1 
and  H

2
 are each convex sets            and 

  (c)  If A ∈  H
1
  and B ∈ H

2
 and AB < α then l intersects line AB 

 (This makes the discussion of  the “sides” of a line possible) 

Axiom X:  If the concurrent rays p, q, and r meet line l at respective points P, Q, and R 

 and l does not pass through the origin of p, q and r, then Q is between P and R iff 

 q is between p and r.  (This guarantees, essentially, that if a ray ‘enters’ a triangle 

 at one vertex, then it must ‘exit’ somewhere on the opposite side.  A slightly 

 different wording of this is sometimes called the Crossbar Principle) 

Axiom XI (SAS congruence criterion for triangles):  If in any two triangles there exists 

 a correspondence in which two sides and the included angle of one are 

 congruent, respectively, to the corresponding two sides and included angle of the 

 other, the triangles are congruent. 

Axiom XII:  If a point and a line not passing through it be given, there exist(s)______ 

 line(s) which pass through the given point parallel to the given line.  (“One” gives 

 Euclidean geometry, “No” lines gives Elliptic, and “Two” gives Hyperbolic) 
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 Note that axioms four and twelve are worded in such a way that different choices 

will lead to different geometries.  Euclid’s postulates lead to Euclidean geometry only, 

but this system gives us, with rather minor modifications, Euclidean, hyperbolic, and 

elliptic geometries. 

 We will begin our discussion of hyperbolic geometry by developing the geometry 

derived from the first four of Euclid’s postulates, or more accurately, the first eleven 

axioms.  During our discussion, we will refer to the postulates rather than the axioms 

because the geometry we will be discussing was originally developed using the 

postulates.  In addition, the average reader is likely more familiar with the postulates than 

with the axioms.  
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Chapter II 
Neutral and Hyperbolic Geometries 

Neutral Geometry 

 Neutral geometry (sometimes called Absolute geometry) is the geometry derived 

from the first four postulates of Euclid, or the first eleven axioms (see Chapter I).  As 

Euclid himself put off using his fifth postulate for the first twenty eight theorems in his 

Elements, these theorems might be viewed as the foundation of neutral geometry.  We 

will see that Euclidean and hyperbolic geometries are contained within neutral geometry, 

that is the theorems of neutral geometry are valid in both.   

 We will develop neutral geometry to a degree sufficient to provide a foundation 

for hyperbolic geometry.  It should not be surprising, since hyperbolic geometry was born 

as a result of the controversy over the fifth postulate, (the only postulate to address 

parallelism) that parallels will be the main focus of our discussion and the topic of our 

first few theorems of neutral geometry: 

Theorem 2.1:  If two lines are cut by a transversal such that a pair of alternate interior 

angles are congruent, then the lines are parallel. (Parallel at this point means nothing 

more than non-intersecting.) 

 Proof:  Suppose lines l and m are cut by transversal t with a pair of alternate 

interior angles congruent.  Let t cut l and m in A and B respectively.  Assume that l and m 

intersect at point C. (Figure 2.1)  Let C' be the point on m such that B is between C and C' 

and AC≅BC', and let D be any point on l such that A is between D and C.  Consider 

triangles ABC and BAC'.  By SAS, they are congruent, so angles BAC' and ABC are 

congruent, which means that angles BAC' and BAC are supplementary, so CAC' is a 

straight angle and C' lies on l.  But then we have l and m intersecting in two distinct 

points, which is a contradiction of Postulate I, so l and m do not intersect, and are 
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parallel.  QED 

 

 

Figure 2.1  Congruent alternate interior angles implies parallelism 

This theorem has two useful corollaries. 

Corollary 2.2:  If two lines have a common perpendicular, they are parallel. 

Corollary 2.3:  Given line l and point P not on l, there exists at least one parallel to l 

through P. 

 The parallel guaranteed here is simple to construct.  Draw t, perpendicular to l 

through P, and m perpendicular to t through P.  By Corollary 2.2, m and l are parallel. 

Theorem 2.4:  The external angle of any triangle is greater than either remote interior 

angle. 

 Proof:  Given triangle ABC with D on ray AB such that B is between A and D, 

angle CBD is our external angle. (Figure 2.2)  Assume that angle ACB is greater than 

angle CBD.  Then there is a ray CE between rays CA and CB such that angles BCE and 

CBD are congruent.  But these are the alternate interior angles formed by transversal CB 

cutting CE and BD, which tells us that CE and BD are parallel, by the preceding theorem.  

Since ray CE lies between rays CA and CB, it intersects segment AB and therefore line 
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BD, and we have a contradiction.  The case for angle BAC is symmetric.  QED 

 

Figure 2.2  The external angle of a triangle is greater than either remote interior angle 

 This theorem is the key to proving the AAS condition for congruence.  SAS and 

ASA criterion for triangle congruence are also valid in neutral geometry, but these are 

fairly obvious so we omit their proofs.  AAS is not so intuitive. 

Theorem 2.5 (AAS congruence):  Given two triangles ABC and A'B'C', if side AB≅A'B', 

angle ABC≅A'B'C', and angle BCA≅B'C'A', then the two triangles are congruent. 

 Proof:  Suppose we have the triangles described. (Figure 2.3)  If side BC≅B'C', 

the triangles are congruent by ASA, so assume that side B'C'>BC.  If so, there is a unique 

point D on segment B'C' such that B'D is congruent to BC.  Consider triangles ABC and 

A'B'D.  By SAS, they are congruent, and angle A'DB'≅ACB≅A'C'B', which is a 

contradiction of Theorem 2.4, as angle A’DB’ is the exterior angle and A'C'B' a remote 

interior angle of triangle A'C'D.  QED 
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Figure 2.3  Angle-angle-side congruence of triangles 

 It happens that we have all of the congruence rules for triangles in hyperbolic 

geometry that we have in Euclidean; SAS, ASA, AAS, SSS, and HL (The proof of 

hypotenuse-leg congruence for right triangles is elementary, and we will not include it 

here.).  Actually, we will see in Theorem 2.19 that we have another congruence criterion 

in hyperbolic geometry that is not valid in Euclidean. 

 Before we get to that, we must take look at several elementary properties of 

triangles in neutral geometry, starting with: 

Theorem 2.6:  In any triangle, the greatest angle and the greatest side are opposite each 

other. 

 Proof:  Given any triangle ABC, assume that ABC is the greatest angle, and that 

AB is the greatest side. (Figure 2.4)  There is a unique point D on segment AB such that 

AD≅AC.  This means that triangle CAD is isosceles, and angle ACD≅ADC, but, by 

Theorem 2.4, angle ADC>ABC.  So angle ACB>ABC, contradicting our assumption.  

QED 
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Figure 2.4  The greatest angle is opposite the greatest side 

Theorem 2.7:  The sum of two angles of a triangle is less than 180° 

 Proof:  Given triangle ABC, assume that the sum of angles ABC and BAC is 

greater than 180°. (Figure 2.5)  We can construct line AE interior to angle CAB such that 

angle BAE=180°− ABC.  This gives us angle BAD=ABC, but this is a pair of alternate 

interior angles, so line AE is parallel to BC, an obvious contradiction.  In the case where 

ABC+BAC=180°, point E lies on line AC, and we have AC parallel to BC, which is also 

absurd, so ABC+BAC<180°. 

 

 

Figure 2.5  The sum of any two angles of a triangle is less than 180° 
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 Up to this point, all of the theorems of neutral geometry are theorems that we 

recognize (in their exact form) from Euclidean geometry.  Now we have come to a point 

where we will see a difference.  Theorem 2.8 is slightly weaker than its Euclidean 

analogue. 

Theorem 2.8 (Saccheri-Legendre):  The angle sum of a triangle is less than or equal to 

180°. 

 Proof (Max Dehn, 1900):  Given triangle ABC, let D be the midpoint of segment 

BC, and let E be on ray AD such that D is between A and E, and AD≅DE. (Figure 2.6)  

By SAS, triangles ABD and ECD are congruent.  Since angle BAC=BAD+EAC, and by 

substitution, BAC=AEC+EAC, either AEC or EAC must be less than or equal to ½BAC.  

Also, triangle AEC has the same angle sum as ABC.  Assume now that the angle sum of 

any triangle ABC is greater than 180°, or =180°+ p where p is positive.  We see from 

above that we can create a triangle with the same angle sum as ABC, with one angle less 

than ½BAC.  By repeated application of the construction, we can make one angle 

arbitrarily small, smaller than p.  By this and the previous theorem, the angle sum of 

ABC must be less than 180°+p, a contradiction.  So the angle sum of any triangle is 

≤180°.  QED 

 

Figure 2.6  The angle sum of a triangle is less than or equal to 180° 
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 In Euclidean geometry, the angle sum of a triangle is exactly 180°.  To prove this 

we must use the Euclidean parallel postulate, or its logical equivalent. (The statement that 

the angle sum is 180° is actually equivalent to the parallel postulate)  A common proof is 

given below. 

Theorem 2.9:  In Euclidean Geometry, the angle sum of any triangle is 180°. 

 Proof:  Given triangle ABC, let l be the unique parallel to line BC through A.  Let 

D be a point on l such that B and D are on the same side of AC, and E a point on l such 

that A is between D and E. (Figure 2.7)  Because alternate interior angles formed by a 

transversal cutting two parallel lines are congruent, angle EAC≅ACB and angle 

DAB≅ABC.  So the three angles add up to a straight angle, 180°.  QED 

 

Figure 2.7  The angle sum of an Euclidean triangle is 180° 

 The reader is no doubt  acquainted with this proof.  It is included to illustrate how 

it uses the converse of Theorem 2.1, which is not valid in neutral geometry.  A corollary 

of this theorem in Euclidean geometry is that the sum of any two angles of a triangle is 

equal to its remote exterior angle.  In neutral geometry, the corollary to the Saccheri-

Legendre theorem is as we might expect: 
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Corollary 2.10:  The sum of two angles of a triangle is less than or equal to the remote 

exterior angle. 

 This is obvious: angle ABC+BCA+CAB≤180°, so angle ABC+BCA≤180°-CAB, 

which is the measure of the remote exterior angle at vertex A. 

Corollary 2.11:  The angle sum of a quadrilateral is less than or equal to 360°. 

 We can see this by noting that any quadrilateral can be dissected into two 

triangles by drawing one diagonal.  The angle sum of the quadrilateral is the sum of the 

angle sums of the two triangles. 

 Let us look, again, at the parallel postulate of Euclid: 

Parallel Postulate (Euclid):  That, if a straight line falling on two straight lines make the 

interior angles on the same side less than two right angles (in sum), the two straight 

lines, if produced indefinitely, meet on that side on which are the angles less than the two 

right angles. 

or in language more palatable to modern readers: 

Parallel Postulate (Euclid):  Given two lines l and m cut by a transversal t, if the sum of 

the interior angles on one side of t is less than 180°, then l intersects m on that side of t. 

The version we are more familiar with is that of John Playfair (1795): 

Parallel Postulate (Playfair):  Given any line l and point P not on l, there exists a 

unique line m through P that is parallel to l. 

 These two statements are logically equivalent. 
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Theorem 2.12:  Euclid’s Parallel Postulate implies Playfair’s Parallel Postulate, and 

vice versa. 

 Proof:  First suppose Playfair’s is true.  Let lines l and m be cut by a transversal t.  

Let t cut l in A, and m in B, and let C and D lie on l and m respectively on the same side 

of t. (Figure 2.8)  Further, suppose that angle CAB+DBA<180°.  Let n be the unique line 

through A such that the alternate interior angles cut by t crossing m and n are congruent.  

By Theorem 2.1, this line is parallel to m, and by Playfair, we know it is the only such 

line.  By our conditions, n is distinct from m, and meets l in point E.  Furthermore, E is 

on the same side of AB as C and D, else triangle ABE would have angle sum greater than 

180°.  So Playfair’s implies Euclid’s. 

 

Figure 2.8  The postulates of Euclid and Playfair are equivalent 

 Now suppose Euclid’s Parallel Postulate is true.  Given line m and point A not on 

m, and any line t through A that cuts m in B.  Let D be any point on m other than B.  We 

know there is a unique ray AF such that angle BAF≅DBA, and that line n containing ray 

AF will be parallel to m. (Figure 2.8)  Line m and any line l through A other than n, will 

not form congruent alternate interior angles when cut by t, so on one side of AB the sum 

of the interior angles will be less than 180°, and by Euclid, l and m will meet on that side, 

and l will not be parallel to m.  So n is the unique parallel to m through A, proving 

Playfair and the postulates of Euclid and Playfair are equivalent.  QED 
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 In Euclidean geometry, the angle sum of a triangle is 180°, and we will show that 

in hyperbolic geometry it is less than 180°.  Before we do so, we must define: 

Definition:  The angle defect of a triangle is 180° minus the angle sum. 

 In Euclidean geometry, the angle defect of every triangle is zero, which is why the 

term is never used.  In hyperbolic geometry, the angle defect is always positive.  We will 

explore the significance of the angle defect in Chapter V. 

Theorem 2.13:  In any triangle ABC, with any point D on side AB, the angle defect of 

triangle ABC is equal to the sum of the angle defects of triangles ACD and BCD. 

 The proof of this is trivial substitution and simplification, and we omit it. 

 

Figure 2.9  Angle defect is additive 

 Theorem 2.13 tells us that, like the area of triangles, angle defect (and angle sum) 

is additive, and gives us a useful corollary: 

Corollary 2.14:  If the angle sum of any right triangle is 180°, than the angle sum of 

every triangle is 180°. 

 Since any triangle can be divided into two right triangles,(this is shown in the 

proof of Theorem 2.15) its angle defect is the sum of the angle defects of the two right 

triangles, which are both zero. 
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 The angle sum of the triangle is a striking difference between our two geometries.  

We have not yet proved that we can not have triangles with positive defect and zero 

defect residing within the same geometry.  We show now that this is indeed the case. 

Theorem 2.15:  If there exists a triangle with angle sum 180° then every triangle has 

angle sum 180° 

 Proof:  Suppose we have a triangle ABC with angle sum 180°.  We know that any 

triangle has at least two acute angles. (If not, its angle sum would exceed 180°.)  Let the 

angles at A and B be acute.  Let D be the foot of the perpendicular from C to line AB.  

We claim that D lies between A and B.  Suppose it does not, and assume that A lies 

between D and B. (Figure 2.10)  By Theorem 2.4, angle BAC>BDC=90°.  This 

contradicts our assumption that angle BAC is acute.  By the same argument, B is not 

between A and D.  It follows that D lies between A and B. 

 

Figure 2.10  One altitude of a triangle must intersect the opposite side 

 So triangle ABC may be divided into two right triangles, both with angle defect of 

zero, since angle defect is additive and non-negative. 

 Consider now the right triangle ACD.  From this we shall create a rectangle. (a 

quadrilateral with four right angles)  There is a unique ray CE on the opposite side of AC 

from D such that angle ACE≅CAD, and there is a unique point F on ray CE such that 

segment CF≅AD. (Figure 2.11)  By SAS, triangle ACF≅CAD, and by complementary 

angles, quadrilateral ADCF is a rectangle. 
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Figure 2.11  From any right triangle with angle sum 180° we can create a rectangle 

 Consider now any right triangle ABC with right angle at C.  We can create a 

rectangle DEFG (by ‘tiling’ with the rectangle above) with EF>BC and FG>AC, and we 

can find the unique points H and K on sides EF and FG respectively such that FH≅BC 

and FK≅AC.  Triangle KFH will be congruent to ABC by SAS. (Figure 2.12) 

 

Figure 2.12  Fitting any right triangle into a rectangle 

 By drawing segments EG and EK, we divide the rectangle into triangles.  By the 

additivity of angle defect, the angle sum of triangle KHF, and therefore ABC, is 180°.  So 

the angle sum of any right triangle is 180°, and by Corollary 2.14 the angle sum of any 

triangle, is 180°.  QED 
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Corollary 2.16:  If there exists a triangle with positive angle defect, then all triangles 

have positive angle defect. 

 This neatly divides neutral geometry into two separate geometries, Euclidean 

where the angle sum is exactly 180°, and hyperbolic, where the angle sum is less than 

180°.  It is assumed that the reader is familiar with Euclidean geometry.  We will now 

move on to: 

Hyperbolic Geometry 
 

 Where the foundation of neutral geometry consists of the first four of Euclid’s 

postulates, hyperbolic geometry is built upon the same four postulates with the addition 

of: 

The Hyperbolic Parallel Postulate:  Given a line l and a point P not on l, then there are 

two distinct lines through P that are parallel to l. 

 While the postulate states the existence of only two parallels, all of the lines 

through P between the two parallels will also be parallel to l.  We can make this more 

precise.  Let Q be the foot of the perpendicular from P to l, and A and B be points on m 

and n, the two parallels, respectively, such that A and B are on the same side of PQ. 

(Figure 2.13)  Any line containing a ray PC between PA and PB must also be parallel to l. 

  In the Euclidean plane, given non-collinear rays PA and PB, and a point Q lying 

in the interior of angle APB, any line through Q must intersect either PA, PB or both.  

This is not the case in the hyperbolic plane.  In Figure 2.13 line l through Q cuts neither 

line n nor m. 
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Figure 2.13  Two distinct parallels imply infinitely many parallels 

 Theorem 2.17 formalizes a couple of the ideas alluded to in Chapter I. 

Theorem 2.17:  Every triangle has angle sum less than 180°. 

 Proof:  All we need to show is that there exists a triangle with angle sum less than 

180°.  It will follow by Corollary 2.16 that all triangles have angle sum less than 180°.  

Suppose we have line l and point P not on l.  Let Q be the foot of the perpendicular from 

P to l, and line m perpendicular to PQ at P.  Let n be any other parallel to l through P 

guaranteed by the hyperbolic parallel postulate, and suppose PA is a ray of n such that A 

is between m and l.  Also let X be a point on m such that X and A are on the same side of 

PQ. (Figure 2.14) 

 

Figure 2.14  Finding a triangle with angle sum less than 180° 

 Angle XPA has positive measure p, and angle QPA has measure 90°-p.  Then the 

angle QPB for any point B on l to the right of Q will be less than QPA.  If we can find a 

point B on l such that the measure of angle QBP is less than p, then the angle sum of 
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triangle QBP will be less than 90°+90°-p+p, or less than 180° which is what we want.  To 

do this, we choose point B' on l to the right of Q such that QB'≅PQ.  Triangle QPB' is an 

isosceles right triangle, so angle QB'P is at most 45°.  If we then choose B'' to the right of 

B' on l such that B'B''≅PB', then triangle PB'B'' is an isosceles triangle with summit angle 

at least 135°, so angle PB''B' is at most 22½°.  By continuing this process, eventually we 

will arrive at a point B such that angle PBQ is less than p, and we have our triangle PBQ 

with angle sum less than 180°.  QED 

 So in the hyperbolic plane, all triangles have angle sum less than 180°. 

Corollary 2.18:  All quadrilaterals have angle sum less than 360°. 

 In Euclidean geometry triangles may be congruent or similar. (or neither), but in 

hyperbolic geometry: 

Theorem 2.19:  Triangles that are similar are congruent. 

 Proof:  Given two similar triangles ABC and A'B'C', assume that they are not 

congruent, that is that corresponding angles are congruent, but corresponding sides are 

not.  In fact, no corresponding pair of sides may be congruent, or by ASA, the triangles 

would be congruent.  So one triangle must have two sides that are greater in length than 

their counterparts in the other triangle.  Suppose that AB>A'B' and AC>A'C'.  This means 

that we can find points D and E on sides AB and AC respectively such that AD≅A'B' and 

AE≅A'C'. (Figure 2.15)  By SAS, triangle ADE≅A'B'C' and corresponding angles are 

congruent, in particular, angle ADE≅A'B'C'≅ABC and AED≅A'C'B'≅ACB.  This tells us 

that quadrilateral DECB has angle sum 360°.  This contradicts Corollary 2.18, and 

triangle ABC is congruent to triangle A'B'C'.  QED 
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Figure 2.15  Similarity of triangles implies congruence 

 Note that this gives us another condition for congruence of triangles, AAA, which 

is not valid in Euclidean geometry. 

 We will explore several properties of triangles in Chapter V.  We will now turn 

our attention to the nature of parallel lines in the hyperbolic plane.  Before we look at 

parallel lines, we will need to learn a few things about some special quadrilaterals we 

mentioned in Chapter I. 

 

Saccheri and Lambert quadrilaterals 
 

Definition:  A quadrilateral  with base angle right and sides congruent is called a 

Saccheri quadrilateral. The side opposite the base is the summit, and the angles formed 

by the sides and the summit are the summit angles 

In the Euclidean plane, this would of course be a rectangle, but by Corollary 2.18 there 

are no rectangles in the hyperbolic plane. 

 Note that the summit angles of a Saccheri quadrilateral are congruent and acute, 

and the segment joining the midpoints of the base and summit of a Saccheri quadrilateral 

is perpendicular to both.  These facts are easy to verify by considering the perpendicular 

bisector of the base. (MM' in Figure 2.16)  By SAS,  triangles MM'D and MM'C are 

congruent, and also by SAS, triangles AMD and BMC are congruent.  This gives us that 
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M is the midpoint of, and perpendicular to, side AB, and also that angles DAM and CBM 

are congruent. 

 

Figure 2.16  The Saccheri quadrilateral 

 There is one more fact we need to establish regarding the Saccheri quadrilateral.  

To do this we consider a more general quadrilateral. 

Theorem 2.20:  Given quadrilateral ABCD with right angles at  C and D, then side 

AD>BC iff angle ABC>BAD. 

 Figure 2.17 should give the reader the idea of the proof. 

 

Figure 2.17  The longer side is opposite the larger angle 

 A direct consequence of this is that  the segment connecting the midpoints of the 

summit and base of a Saccheri quadrilateral is shorter than its sides.  We also know that 

this segment is the only segment perpendicular to the base and summit. (If there were 

another, then we would have a rectangle).  We will state these facts together as: 
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Theorem 2.21:  The segment connecting the midpoints of the summit and base of a 

Saccheri quadrilateral is shorter than the sides, and is the unique segment perpendicular 

to both the summit and base. 

 We now have what we need to examine and classify parallels in the hyperbolic 

plane. 

Two kinds of hyperbolic parallels 

 In Euclidean geometry, parallel lines are often described as lines that are 

everywhere equidistant, like train tracks.  This property is equivalent to the Euclidean 

parallel postulate, so as we would expect, this description is untrue in the hyperbolic 

plane. 

Theorem 2.22:  If lines l and l' are distinct parallel lines, then the set of points on l that 

are equidistant from l' contains at most two points. 

 Note that distance P is from l is defined in the usual way, as the length of segment 

PQ where Q is the foot of the perpendicular from P to l. 

 Proof:  Given two parallel lines l and l', assume that distinct points A, B and C lie 

on l and are equidistant from l'.  Let A', B' and C' be the feet of the perpendiculars from 

the corresponding points to l'. (Figure 2.18)  ABB'A', ACC'A' and BCC'B' are all 

Saccheri quadrilaterals, and their summit angles are all congruent, so angles ABB' and 

CBB' are congruent supplementary angles, and therefore right.  But we know they are 

acute, so we have a contradiction, and the set of points on l equidistant from l' contains 

fewer than three points.  QED 
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Figure 2.18  Three points on a line l equidistant from l’ parallel to l 

 We have no guarantee that any set of points on l equidistant from l' has more than 

one element.  If it does, there are some things we know about l and l'. 

Theorem 2.23:  If l and l' are distinct parallel lines for which there are two points A and 

B on l equidistant from l', then l and l' have a common perpendicular segment that is the 

shortest segment from l to l'. 

 Proof:  Let A and B be on l equidistant from l', and let A' and B' be the feet of the 

perpendiculars from A and B to l'. (Figure 2.19)  The existence of the common 

perpendicular is immediate by Theorem 2.21.  To show that this common perpendicular 

is the shortest distance between l and l', choose any point C on l, and let C' be the foot of 

the perpendicular from C to l'.  MM'C'C is a Lambert quadrilateral, and by Theorem 2.20, 

side CC' is greater than MM'.  QED 

 

Figure 2.19  The mutual perpendicular is the shortest segment between two parallels 
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Theorem 2.24:  If lines l and l' have a common perpendicular segment MM' with M on l 

and M' on l', then l is parallel to l', MM' is the only segment perpendicular to both l and l', 

and if A and B lie on l such that M is the midpoint of segment AB, then A and B are 

equidistant from l'. 

 Proof:  We know that if l and l' have a common perpendicular MM', then l is 

parallel to l' by Theorem 2.1.  We also know MM' is unique because if it were not, we 

would have a rectangle.  It remains to be shown that A and B, so described above (Figure 

2.20) are equidistant from l'.  By SAS, triangles AMM' and BMM' are congruent, and by 

AAS, triangles AA'M' and BB'M' are congruent.  So segments AA' and BB' are 

congruent.  QED 

 

Figure 2.20  Points equidistant from the mutual perpendicular are equidistant from l' 

We can add one more fact here about lines having a mutual perpendicular. 

Theorem 2.25:  Given lines l and l' having common perpendicular MM', if points A and 

B are  on l  such that MB>MA, then A is closer to l' than B. 

 Proof:  Given the situation stated.  If A is between M and B, let A' and B' be the 

feet of the perpendiculars from A and B to l', and consider the Sacchieri quadrilateral 

ABB'A' (Figure 2.21)  We know that angles MAA' and ABB' are acute, so A'AB is 

obtuse, and therefore greater than ABB'.  By Theorem 2.22 side BB'>AA', and B is 

farther from l' than is A.  If M is between A and B, then there is a unique point C on 

segment MB such that M is the midpoint of segment AC.  Let C' be the foot of the 
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perpendicular from C to l'.  Apply Theorem 2.22 to quadrilateral CBB'C', and the fact that 

CC'≅AA', and we have the theorem.  QED 

 

Figure 2.21  Points closer to the common perpendicular are closer to l' 

 So two lines having a mutual perpendicular diverge in both directions.  We define 

such lines to be: 

Definition:  Two lines having a common perpendicular are said to be  divergently-

parallel. 

 It is also common for such lines to be called ultra-parallel or super-parallel.  A 

more intuitive picture of  ultra-parallel lines is shown in Figure 2.22. 

 

Figure 2.22  Divergently-parallel lines 

 We will state the following theorem, which is slightly different from Theorem 

2.1, as we will be using it in later proofs. 
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Theorem 2.26:  If two lines are cut by a transversal such that alternate interior angles 

are congruent, then the lines are divergently-parallel. 

 This differs from Theorem 2.1 because it guarantees not only that the lines do not 

intersect, but also that they diverge in both directions.  There is another type of 

parallelism in hyperbolic geometry, those that diverge in one direction and converge in 

the other.  We will look at this type now. 

 In Euclidean geometry, when two lines l and l' have a common perpendicular PQ, 

and you rotate l about P through even the smallest of angles, the lines will no longer 

parallel.  In hyperbolic geometry, this is not the case, but how far can we rotate l about P?  

To answer this question, we first need to lay a little groundwork.   

Theorem 2.27:  Given a line l and a point P not on l, with Q the foot of the perpendicular 

from P to l, then there exist two unique rays PX and PX' on opposite sides of PQ that do 

not meet l and have the property that any ray PY meets l iff PY is between PX and PX'.  

Also, the angles QPX and QPX' are congruent. 

 Proof:  Given line l and P not on l, with Q the foot of the perpendicular from P to 

l, let m be the line perpendicular to PQ at P.  Line m is divergently parallel to l.  Let S be 

a point on m to the left of P.  Consider segment SQ. (Figure 2.23)  Let Σ be the set of 

points T on segment SQ such that ray PT meets l, and Σ' the complement of Σ.  We can 

see that if T on SQ is an element of Σ, than all of segment TQ is in Σ.  Obviously, S is an 

element of Σ', so Σ' is non-empty.  So there must be a unique point X on segment SQ 

such that all points on open segment XQ belong to Σ,  and all points on open segment 

XS, to Σ'.  PX is the ray with the property we are after. 
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Figure 2.23  Rays from P parallel to, and intersecting l 

 It is easy to show that PX itself does not meet l.  Suppose PX does meet l in A, 

then we can choose any point B on l such that A is between B and Q, and ray PB meets l, 

but cuts open segment XS, which contradicts what we know about X. (Figure 2.24)  So 

PX can not meet l. 

 

Figure 2.24  Rays from P intersecting l 

 We can find X' to the right of PQ in the same fashion, and all that remains to be 

shown is that angles QPX and QPX' are congruent.  Assume that they are not, and that 

angle QPX>QPX'.  Choose Y on the same side of PQ as X such that angle QPY≅QPX'. 

(Figure 2.25)  PY will cut l in A.  There is a unique point A' on l such that Q is the 

midpoint of segment AA'.  By SAS, triangle PAQ≅PA'Q, and angle A'PQ≅APQ≅X'PX', 

and A' lies on PX', a contradiction, so angles QPX and QPX' are congruent.  QED 
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Figure 2.25  Limiting parallels form congruent angles with the perpendicular 

Definition: Given line l and point P not on l, the rays PX and PX' having the property 

that ray PY meets l iff PY is between PX and PX' are called the limiting parallel rays 

from P to l, and the lines containing rays PX and PX' are called the limiting parallel 

lines, or simply the limiting parallels. 

 These lines are sometimes called asymptotically parallel.  We will state a few 

fairly intuitive facts here about limiting parallels without proof, for sake of brevity. 

 First:  Limiting parallelism is symmetric, that is if line l is limiting parallel from P 

to line m, and point Q is on m, then m is the limiting parallel from Q to l in the same 

direction. 

 Second:  Limiting parallelism is transitive, if points P, Q and R lie on lines l, m 

and n respectively, and l is limiting parallel from P to m, and m is limiting parallel from 

Q to n in the same direction, then l is the limiting parallel from P to n in that direction. 

 Third:  If line l is limiting parallel from P to  m, and point Q is also on l, then the l 

is the limiting parallel from Q to m in the same direction.  

 Given these properties, it is reasonable to say that lines that are limiting parallels 

to one another in one direction intersect in a point at infinity. We call these points ideal 

points and denote them, for the moment, by capital Greek letters. 



 

35 

 In Theorem 2.27, the angle QPX is not a constant, but changes with the distance 

of P from l.  This angle will prove to be useful in our upcoming investigations and will 

require formal notation. 

Definition:  Given line l, point P not on l, and Q the foot of the perpendicular from P to l,  

the measure of the angle formed by either limiting parallel ray from P to l and the 

segment PQ is called the angle of parallelism associated with the length d of segment 

PQ, and is denoted Π(d). (Figure 2.26) 

 

Figure 2.26  The angle of parallelism associated with a length 

 Note that Π(d) is a function of d only, so for any point at given distance d from 

any line, the angle of parallelism is the same.  Also: Π(d) is acute for all d, approaches 

90° as d approaches 0, and approaches 0° as d approaches ∞ .  These are not obvious 

facts, and we will prove them in Chapter V when we derive a formula for Π(d). 

 It is intuitive (and true) that as a point on l moves along l in the direction of 

parallelism, its distance from m becomes smaller, and as it moves in the other direction, 

its distance grows.  So limiting parallels approach each other in one direction and diverge 

in the other.  This distinguishes them from divergent parallels.  We can show that they 

approach each other asymptotically and diverge to infinity. 

 Suppose, then, that we have lines l and m limiting parallel to each other, to the 

right.  Select any point A on l, and let Q be the foot of the perpendicular from A to m. 

(Figure 2.27)  We can choose any point R on segment AQ such that segment QR has any 

length less than AQ.  Let line n be the limiting parallel from R to m, to the left.  Since n 
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can not meet m, and can not be limiting parallel to m to the right, (or n=m) n will meet l 

in point S.  Let T be the foot of the perpendicular from S to m, and choose Q' on m such 

that T is the midpoint of segment QQ'.  By SAS, triangles STQ and STQ' are congruent, 

and SQ≅SQ'.  The perpendicular to m at Q' will cut l in R'.  By subtraction of angles and 

congruent triangles, we see that Q'R'≅QR, which was arbitrarily small. 

 

Figure 2.27  Limiting parallels are asymptotic and divergent in opposite directions 

 A symmetric argument, choosing R on line AQ such that A is between Q and R, 

will give us Q'R' arbitrarily large.  So Limiting parallels are asymptotic in the direction of 

parallelism, and diverge without bound in the other.  Also, since R was chosen at an 

arbitrary distance from m, there exists a point P on either line such that the distance from 

P to the other line is d.  So: 

Theorem 2.28:  Limiting parallels approach one another asymptotically in the direction 

of parallelism, diverge without limit in the other, and the distance from one to the other 

takes on all positive values. 

We now need one more theorem pertaining to a special kind of triangle 

 

Definition:  A triangle having one or more of its vertices at infinity (an ideal point) is an 

asymptotic triangle.  Singly, doubly and trebly asymptotic triangles have one, two and 

three vertices at infinity, respectively. 
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 An example of each type of asymptotic triangle is shown in Figure 2.28.  A singly 

asymptotic triangle has only one finite side and two non-zero angles.  A doubly 

asymptotic triangle has one non-zero angle and no finite sides, and is therefore defined 

entirely by the one non-zero angle.  A trebly asymptotic triangle has no finite sides and 

no non-zero angles, (the measure of the asymptotic angle is taken to be zero), so all trebly 

asymptotic triangles are congruent.  Note that the angle sum of any asymptotic triangle is 

less than 180°.   

 

Figure 2.28  Singly, doubly and trebly asymptotic triangles 

 The following theorem establishes that the AAA criterion for congruence of 

singly asymptotic triangles. 

Theorem 2.29:  Let two asymptotic triangles be given such that their non-zero angles are 

pairwise congruent.  Then their finite sides are congruent. 

 Proof:  Suppose we are given ABΣ and PQΩ , both singly asymptotic triangles 

such that pairs of angles ABΣ and PQΩ , and BAΣ and QPΩ  are congruent. (Figure 2.29)  

Let A' and P' be the feet of the perpendiculars from A and P to BΣ and QΩ  respectively. 

Assume that segment AB>PQ, then AA'>PP'.  We show this by Letting C be on segment 

AB such that BC is congruent to PQ, and letting C' be the foot of the perpendicular from 

C to BΣ.  AAS congruence tells us that CC' is congruent to PP', and it is obviously less 

than AA'. 
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Figure 2.29  AAS condition for congruence of singly asymptotic triangles 

  Since  AA'>PP', and since AΣ is asymptotic to BΣ, we can find the unique point D 

on AΣ such that PP' is congruent to DD', where D' is the foot of the perpendicular from D 

to BΣ. (Figure 2.29)  The angle of parallelism D'DΣ is congruent to P'PΩ .  By choosing 

point E on ray DB such that D'E is congruent to P'Q, we get triangle DD'E≅PP'Q, and 

angle DED'≅PQP'≅ABA'.  AB is parallel to DE, by Theorem 2.1, and ADEB is a 

quadrilateral with angle sum 360°, a contradiction of Corollary 2.18, so AB≅PQ.  QED 

 Recall from Chapter I the proof of the parallel postulate given by Legendre.  The 

assumption was made that any line through a point in the interior of an angle must 

intersect at least one side of the angle.  The following theorem shows that this is not the 

case. 

Theorem 2.30 (The Line of Enclosure):  Given any two intersecting lines, there exists a 

third line that is the limiting parallel to each of the given lines, in opposite directions. 

 Proof:  Given lines l and m intersecting in point O, consider any one of the four 

angles formed by them.  Let the ideal points at the ‘ends’ of l and m be Σ and Ω  

respectively  Choose points A and B on OΣ and OΩ  respectively such that OA≅OB.  

Draw segment AB, and the limiting parallels from A to m (AΩ ), and from B to l (BΣ).  

These lines will intersect in point C.  Next, draw the angle bisectors n and p of angles 
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ΣAΩ  and ΣBΩ .  These will cut BΣ and AΩ  in F and G respectively.  Also, let D be a 

point on ray AF such that F is between A and D. (Figure 2.30)  We can see that angles 

OAC and OBC are congruent, and therefore angle ΣAC≅ΩBC, and we have 

ΣAF≅FAC≅CBG≅GBΩ .  We will show that n and p are ultra-parallel, and therefore have 

a common perpendicular, and we will see that this common perpendicular is parallel to 

both l and m. 

 First, assume that rays AF and BG intersect in H.  If so, then angles BAH and 

ABG are congruent, by angle subtraction, and AH≅BH.  By a fairly trivial congruence 

argument, H is equidistant from AΩ  and BΩ , so if we draw ray HΩ , then angle 

AHΩ≅ΒΗ Ω , which cannot be.  So rays AF and BG do not intersect.  Since angle 

AFΣ+FAΣ<180°, by substitution, GBF+BFD<180°, so rays FA and GB can not intersect, 

and the lines n and p do not intersect. 

 

Figure 2.30  The line of enclosure of two intersecting lines I 
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 Now assume that n and p are limiting parallels.  Again, since angle 

DFB+FBG<180°, we know that n and p must be limiting parallels in the direction of ray 

AF, and ‘intersect’ in ideal point Γ.  By applying Theorem 2.31 to the singly asymptotic 

triangles FAΣ and FBΓ, we see that FA≅FB, and therefore angle BAF≅ABF which is 

impossible.  So n and p are not limiting parallels, and the only case remaining is that they 

are ultra-parallel and have a common perpendicular. 

 Let this perpendicular cut n in N and p in P. (Figure 2.31)  ABPN is a Saccheri 

quadrilateral, so AN≅BP.  Assume that NP is not limiting parallel to m, and draw NΩ  and 

PΩ .  Considering that N and P are equidistant from AΩ  and BΩ  respectively (by 

dropping the perpendiculars and  using AAS) angles ANΩ  and BPΩ  are congruent, but 

this tells us that triangle NPΩ  has one exterior angle congruent to the alternate interior 

angle, a contradiction of Theorem 2.4.  So ray NP is limiting parallel to m, and by the 

symmetric argument, also to l, and line NP is limiting parallel to both intersecting lines l 

and m.  There are, of course, three other such lines, one for each angle formed by l and m.  

QED 

 

Figure 2.31  The line of enclosure of two intersecting lines II 
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Definition:  Given angle ABC, the line lying interior to the angle, and limiting parallel to 

both rays BA and BC is the line of enclosure of angle ABC. 

 This theorem also shows that our angle of parallelism may be as small as we like, 

because no matter how small we choose the angle AOB, there is a line of enclosure l such 

that the angle of parallelism associated with distance from O to l is one half of AOB. 

 There is one more topic we will cover before we move on to the next chapter. 

The in-circle and circum-circle of a triangle 

 In Euclidean geometry, every triangle has an inscribed circle, and the center of 

this circle is the intersection of the angle bisectors of the triangle.  To prove this, we show 

that the three angle bisectors coincide, and that their mutual intersection point is 

equidistant from all three sides.  The reader is no doubt acquainted with the Euclidean 

proof.  This proof is also valid in hyperbolic geometry. 

Theorem 2.31:  Inside any given triangle can be inscribed a circle tangent to all three 

sides. 

 Every triangle in Euclidean geometry also has a circumscribed circle, whose 

center is the intersection point of the perpendicular bisectors of the three sides. In contrast 

to the angle bisectors, the perpendicular bisectors of the three sides of a triangle in 

hyperbolic geometry will not always intersect. 
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`Theorem 2.32:  Give any triangle, the perpendicular bisectors of the three sides either; 

intersect in the same point, are limiting parallels to each other, or are divergently 

parallel and share a common perpendicular. 

 The circumscribed circle exists only for the case where the three bisectors 

intersect.  We will examine this condition more closely in Chapter VIII. 

 Proof:  Suppose we have triangle ABC with l and m the perpendicular bisectors of 

segments AB and BC. 

 Case I:  Suppose l meets m in O. (Figure 2.32)  We need to show that the 

perpendicular bisector of AC passes through O.  By SAS congruence of the appropriate 

triangles, we can see that AO, BO and CO are all congruent, so triangle AOC is isosceles, 

so the perpendicular from O to AC will bisect AC, by HL congruence, and the fact that 

the perpendicular bisector of AC is unique, it passes through O, and we are done. 

 

Figure 2.32  The circum-center of a triangle 

 Case II:  Suppose that l and m are divergently parallel with common 

perpendicular p. (Figure 2.33)  We need to show that the perpendicular bisector of AC is 

perpendicular to p.  Drop perpendiculars AA', BB' and CC' from A, B and C to p, and let 

l meet AB and p in L and L', and m meet BC and p in M and M' respectively.  Now, by 

SAS, triangles AL'L and BL'L are congruent, so segment AL'≅BL', and angle 
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AL'L≅BL'L.  By angle subtraction, we have angle AL'A'≅BL'B', and by AAS, triangle 

AL'A'≅BL'B'.  This gives us AA'≅BB', and by the same argument, BB'≅CC'.  ACC'A' is a 

Saccheri quadrilateral, and the segment connecting the midpoints of A'C' and AC are 

perpendicular to both, and is therefore the perpendicular bisector of side AC, and 

perpendicular to p, and we are done. 

 

Figure 2.33  The pairwise parallel perpendicular bisectors of the sides of a triangle  

 Case III:  This case trivial since, if l and m are limiting parallels, the 

perpendicular bisector of AC being anything other than limiting parallel to both would be 

contradictory to one of the first two cases, and we have proven the theorem.  QED 

 We will look more at the properties of triangles and circles in hyperbolic 

geometry.  Before we do so, however, we will introduce some models of the hyperbolic 

geometry that we have studied abstractly so far.  These models will allow us to visualize 

the properties of non-Euclidean geometry much more clearly. 
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Chapter III 
The Models 

 
 So far, we have developed hyperbolic geometry axiomatically, that is independent 

of the interpretation of the words ‘point’ and ‘line’.  To help visualize objects within the 

geometry, and to make calculations more convenient we use a model.  We define points 

and lines as certain ‘idealized’ physical objects that are consistent with the axioms.  This 

system of lines and points is the model of the geometry.  Though the pictures drawn in 

the model are consistent with the axiomatic development of the geometry it represents, 

they are not the geometry, merely a way of picturing objects and operations within the 

geometry.  Probably the best known model of a geometry is: 

The Euclidean Model 

 This model is derived by defining a point to be an ordered pair of real numbers 

(x,y), a line to be the sets of ordered pairs (points) that solve an equation having the form  

ax + by = c  where a, b and c are given real numbers, and the plane to be the collection of 

all points.  Two lines  ax + by = c  and  dx + ey = f  are said to intersect if there exists a 

point (x,y) that satisfies both equations. 

The distance between two points A(x,y) and B(z,w) in the plane is given by: 

( ) ( ) ( )22, xwxzBAd −+−=  

And the angle between two lines  ax + by = c  and  dx + ey = f  by: 
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(or by π minus this value.) 
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 This model is consistent with the five postulates of Euclidean geometry, and is 

usually referred to as the Euclidean Plane, the Real Plane, or R².  It is assumed that the 

reader is familiar with the Euclidean Plane Model, and we will move on to the hyperbolic 

models.  There are three models that dominate the discussion of elementary hyperbolic 

geometry; the Klein Disk, the Poincaré Disk and The Poincaré Upper Half-Plane models.  

All three are realized with the Euclidean Plane, but all three have entirely different 

flavors, especially when constructing objects within them. (These will be explored in the 

Appendix)  All three also have their advantages and disadvantages.  The Upper Half-

Plane is the most convenient for employing the Calculus and analytic geometry to derive 

formulae and prove relationships, and we shall use this model for most of our 

development of hyperbolic geometry.  Before we do, we will look at the two other 

models. 

The Klein Disk Model 

 For the actual definition and construction of the most basic objects such as points 

and lines, the Klein Disk model is the easiest of the three.  For this reason we introduce it 

first.  For anything more complicated, such as calculating angle measures, it is 

considerably less convenient. 

 When introducing parallel lines to middle school or high school students, teachers 

often say something along the lines of, “Parallel lines never meet no matter how far you 

extend them.  Lines that are not parallel will eventually meet if you extend them far 

enough.”  The Klein Disk Model, (or KDM) removes this distinction by eliminating the 

infinitude (in the Euclidean sense) of the line. 

 The model consists of the interior of the unit circle.  The points are Euclidean 

points within the unit circle {(x,y) : x² + y² < 1} , ideal points lie on the circle {(x,y) : x² 

+ y² = 1} , and ultra-ideal points lie without{(x,y) : x² + y² > 1} .  The lines are the 
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portions of Euclidean lines lying within the unit circle, or the chords of the circle, and 

two lines intersect if they intersect in the Euclidean sense and the point of intersection 

lies inside the unit circle. 

 Figure 3.1 illustrates the model.  A, B, C, D and O are points;  P, Q, R and S are 

ideal points; and AB, CD, OC, and CP are lines.  Notice that line AB may also be 

referred to as AP, BQ, PQ or any combination of two distinct points or ideal points lying 

on it. 

 

Figure 3.1  Points and lines in KDM 

 Note that line AB is limiting parallel to line CP, and divergently parallel to CD 

and CO. 

 A tool that we will be using in the discussions of metric in all three models is the 

cross ratio.  For that reason we will introduce it here.  Given four points in the plane, A, 

B, P and Q, we define the cross ratio (AB,PQ) by: 

( ) ( )( )
( )( )BPAQ

BQAPPQAB =,
 

where, e.g., AP is the length of the Euclidean segment AP. 
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The metric of KDM 

 The distance between any two points A to B in KDM is defined as follows: 

( ) ( )PQAB
BPAQ
BQAP

BAh ,ln
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1
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
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where P and Q are the ideal points associated with line AB. 

 If A and B coincide, then (AB,PQ)=1, and h(A,B)=0, so h(A,A)=0. 

 The cross ratios (AB,PQ) and (BA,PQ) are merely reciprocals of each other, so 

the absolute values of the logs of these expressions will be equal, and h(A,B)=h(B,A). 

 We will not show the triangle inequality for the metric, but we can confirm easily 

that h(A,B) + h(B,C) = h(A,C) if A, B and C are collinear: 
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 Notice that as A and B become very close to each other (AB,PQ) approaches 1 

and the metric approaches zero.  Notice also that as A (or B) approaches P (or Q) the 

cross ratio (AB,PQ) approaches either zero or infinity, and h(A,B) approaches infinity.  

So, with this metric, our lines are indeed infinite. 

Angle measure in KDM 

 A disadvantage of KDM is that it does not represent angles ‘accurately’, in fact 

the definition of angle measure is rather inconvenient.  For lines l and m intersecting in 

point A, we define the measure of the angle formed by l and m at A as the angle formed 

by l' and m' at A' where l' and m' are the arcs of circles orthogonal to the unit circle at the 
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endpoints of l and m, and A' is the intersection of l' and m'. 

This is illustrated in Figure 3.2. 

 

Figure 3.2  Angle measure in KDM 

 This angle measure gives us a curious definition for perpendicularity in KDM.  In 

KDM, each line has associated with it an ultra-ideal point exterior to d (the unit circle) 

called the polar point of the line.  It is defined for line l in KDM as the intersection L of 

the e-lines tangent to d at the endpoints of l. (Figure 3.3)  A line through O will have no 

polar point. (We can think of it as having its polar point at infinity) 

 

Figure 3.3  The polar point L of line l in KDM 

 We define a line m as perpendicular to line l if the extension of line m contains 

the polar point L of line l, (l will contain M) (Figure 3.4)   

  This definition is easier to understand when we consider the definition of angle measure.  

Lines l and m are perpendicular if their related Euclidean circles l' and m' are.  But if l' 
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and m' are perpendicular, then l', m' and d are pairwise orthogonal, and the center of each 

lies on the radical axis of the other two.  In Euclidean Geometry, given two circles 

intersecting in two points P and Q, any circle centered on line PQ that is orthogonal to 

one of the circles will be orthogonal to the other, and in fact, to any other circle 

containing P and Q.  The set of circles containing both P and Q form a pencil of circles, 

and the line PQ is the radical axis of the pencil. (A development of pencils and radical 

axes can be found in Greenberg pp232-3)  The radical axis of l' and d is the extended line 

l and the center of m' is M, so the extended line l must contain M, as line m must contain 

L. (Figure 3.4) 

 

Figure 3.4  Perpendicular lines in KDM 

 One nice thing about KDM is that it has rotational symmetry, so regular polygons 

and tessellations have a pleasing and complete appearance that reminds one of, and may 

well have inspired, some of the works of M.C. Escher.    Figure 3.5 depicts a partial 

tessellations of KDM by equilateral triangles. 
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Figure 3.5  A partial tessellation of KDM 

The Poincaré Disk Model 

 The second model we will consider is the Poincaré Disk Model, or PDM.  It is 

somewhat similar to KDM in appearance.  The slightly more complicated definition of 

lines in PDM gives it an important advantage over KDM.  It is conformal. 

 PDM also resides in the interior of the unit circle d in the Euclidean plane.  As in 

KDM, the points of PDM are the points lying interior to d, ideal points lie on d, and ultra 

ideal points lie exterior to d.  The lines of PDM are general Euclidean circles (Euclidean 

lines and circles) orthogonal to d.  These will either be arcs of Euclidean circles 

orthogonal to d (line AB in Figure 3.6), or diameters of d (line OC in Figure 3.6).  Note 

that Figure 3.6 shows the same situation for PDM as was shown for KDM in Figure 3.1. 
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Figure 3.6  Points and lines in PDM 

The metric of PDM 

 The metric in PDM is the same as in KDM: 

( ) ( )PQAB
BPAQ
BQAP

ABh ,ln
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where P and Q are the ideal points at the ‘ends’ of the line AB.  All the same properties 

of the metric hold. 

Angle measure in PDM 

 The measure of the angle formed at point A by lines l and m is defined as the 

measure of the angle formed by lines l' and m' at A where l' and m' are the Euclidean 

lines tangent to l and m, respectively, at A. 

 The polar points of our lines in PDM (defined the same way as in KDM) make 

calculating angle measure simple.  The angle formed by lines l and m at point A is equal 

to the measure of angle LAM, or its complement, where L and M are the polar points of l 

and m respectively. (Figure 3.7)  It is evident that rotation through a right angle about A 
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sends the tangents to the Euclidean circles l and m at A to the lines LA and MA, which 

are the radii of the Euclidean circles l and m. 

 

Figure 3.7  Measuring angles in PDM 

 While constructions in PDM tend to be more complicated than in KDM, the fact 

that PDM is conformal makes the pictures of objects look more like they ‘should’.  For 

example, Figure 3.8 shows a right triangle in both KDM and PDM.  The right angle at C 

looks right in PDM, but not in KDM. 

  

Figure 3.8  Right triangles in KDM and PDM 

 Tessellations are also symmetric and nice in PDM.  Figure 3.9 shows a partial 

tiling of the plane by equilateral triangles. 
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Figure 3.9  A partial tessellation of PDM 

 While both KDM and PDM allow for easy visualization, a major disadvantage of 

both is that any calculations are tedious and messy.  Our next model, The Upper Half-

Plane Model (UHP) is much more convenient for calculations and we will use it to 

investigate many theorems and formulae of hyperbolic geometry. 

The Upper Half-Plane Model 

 We will now introduce the third of our three models of hyperbolic geometry.  The 

Upper Half-Plane Model, (or UHP) is defined as follows. 

 UHP resides within R².  The points of UHP are: 

( ){ }0,,:, >∈ yRyxyx  

Which is the half-plane lying above the x-axis (or x) in R².  We will refer to these points 

by capital letters from the beginning of the alphabet. (A, B, C, ....)  In addition to ordinary 

points, it will be useful for us to define the set of ideal-points (or i-points) in UHP as: 

( ){ } { }∞∪∈ Rxx :0,  
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Which are the Euclidean points on the x-axis with the addition of the Euclidean point at 

infinity. We will denote i-points by capital letters beginning with P (P, Q, R, ...) and we 

will reserve the label ‘Z’ for the point at infinity.  It is not entirely incorrect to think of 

the set of ideal points of UHP as surrounding the model with the point at infinity ‘tying’ 

the ends of the x-axis together ‘above’ the plane, much like the i-points of KDM and 

PDM surround the ordinary points. 

 A line in UHP is defined as the set of points satisfying the conditions  x = b and   

y > 0,  or  (x - c)² + y² = r²  and  y > 0, where b, c, and r are real numbers and r is positive.  

These are obviously of two types.  The first type is an open vertical ray emanating from 

the x-axis, and the second is the upper half of a circle centered on the x-axis.  (Note that 

we can consider the vertical ray as a circle of infinite radius).  Both types of lines are 

orthogonal to the x axis. ( y = 0 )  We will denote lines by lower case letters from the 

second half of the alphabet. (l, m, n, ...)  Note also that each line ‘contains’ two i-points, 

one at each ‘end’.  Lines of the Euclidean circle type ‘contain’ two i-points on x while 

lines of the vertical Euclidean ray type ‘contain’ one i-point on x and Z at the other ‘end’. 

(Figure 3.10)  Notice that this means that all lines of this type are limiting parallel to each 

other, as they all contain the same i-point. 

 Two lines are said to intersect if there is a point of UHP that satisfies the 

equations of both lines (if they intersect in the Euclidean sense) 

 Figure 3.10 shows three lines l, m, and n.  Lines l and m intersect in point A, m 

and n are limiting parallels, as they share i-point S, and lines l and n are divergently 

parallel.  Curves p and q are not lines, as they are not orthogonal to x, but they do have a 

significance we will discuss in Chapter VI. 
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Figure 3.10  Lines and Non-lines in UHP 

 Figure 3.11 shows some triangles in UHP.  Triangle ABC is an ordinary triangle, 

while DER is singly-asymptotic, both PEQ and QER are doubly-asymptotic, and PQR is 

trebly-asymptotic. 

 

Figure 3.11  Triangles in UHP 

 We will sometimes need to refer to an object in UHP by its role in the Euclidean 

Plane.  For example, in Figure 3.10, the object labeled l is a line in UHP, but is a half 

circle in R².  To avoid confusion, when we are referring to the role an object plays in R², 

we will prefix an e- to the front of the name.  So instead of saying, “the radius of the 
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Euclidean circle associated with line l”, we will say, “the radius of e-circle l”. (Since it 

does not make sense to refer to the radius of a line.)  Similarly, line n might also be called 

e-ray n. 

Angle measure in UHP 

 The measurement of angles in UHP is straightforward.  The measure of angle 

ABC is defined as the measure of the angle formed by the e-rays tangent to BA and BC at 

B in the same direction as rays BA and BC. (Figure 3.12)  In other words, the UHP 

measure for the angle between lines is the same as the Euclidean measure of the angle 

between the half circles.  We say that UHP is conformal, (angles are as they appear). 

 The measure may also be thought of as the measure of e-angle OBP (or its 

complement, according as BA and BC are in the same or opposite clockwise directions, 

respectively) where O and P are the centers of the e-circles AB and BC respectively.  In 

Figure 3.12, angle ABC is the complement of e-angle OBP. 

 

 

Figure 3.12  Measurement of angles in UHP I 

 Angles formed by lines of the vertical e-line and e-circle type are measured 

similarly, but somewhat more simply.  In figure 3.13, the measure of angle ABC is equal 

to the measure of e-angle OPB (or its complement, should C and P lie on opposite sides 

of AB), where O and P are the intersection of AB with x and the center of e-circle BC 
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respectively. This can be shown by a simple counterclockwise rotation through a right 

angle.  This simpler method of measurement will be invaluable in our development of 

trigonometry in Chapter V. 

  

Figure 3.13  Measurement of angles in UHP II 

 The metric of UHP 

 Using the Euclidean metric in UHP would be problematic, because our model 

would fail to adhere to Euclid’s second postulate, essentially that lines are infinite in both 

directions.  So, we need to adjust our metric.  Since, as P approaches the ‘end’ of line l, 

its y-coordinate approaches zero, it seems that division by the y-coordinate might be in 

order. 

  We define a metric as: 

( )













= ∫

s

dt
dt
dy

dt
dx

yxFBAh ,,,inf,
 

where s is any path from A to B, and F is a function.  For ease of notation, we will 

shorten  dx/dt  and  dy/dt  to  x-dot and y-dot.  We call the path that yields the minimum 

distance (if it exists) the geodesic.  In R², the geodesic is the line segment AB and the 

function used to define the metric is: 
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( ) 22,,, yxyxyxFE &&&& +=  

If we alter this slightly, by division by the y-coordinate, we get: 

( ) 221,,, yx
y

yxyxFUHP &&&& +=
 

To find the extremal curve for this function, in this case the curve that yields the minimal 

distance, or geodesic, we must satisfy the two differential equations: 
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We can reparameterize by letting  x = t , giving us: 
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Substituting these into the first of our differential equations we get: 
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If we let z = y² and substitute: 

zRz −= 2

2
1 &

     or     zR

z

−
=

22
1

&

 

and integrate both sides over x and re-substitute: 

kyRkzRx

zR

z

xx

+−=+−=

−
= ∫∫

222

22
1

&

 

which is exactly the equation of a circle of radius R centered at k on the x-axis, and we 

have that the lines  of UHP are the geodesics.  It turns out that the solution to the second 

differential equation is the same. 

 Note that this solution only confirms that lines of the e-circle type are geodesics 

and says nothing about lines of the vertical e-ray type.  In Chapter IV we will see that 

lines of e-circle type and vertical e-ray type in UHP may be sent to each other by 

isometries.  Since isometries preserve metric, our vertical lines are also geodesics.  Note 

also that since the equation is valid for all values of R and k, any line of the e-circle type 

is a geodesic, regardless of its position on x, or its radius. 

 To find a useful expression for our metric, we impose upon UHP the polar 

coordinate system with the center of e-circle AB (which has e-radius R) at the origin. 

(Figure 3.14) 
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Figure 3.14  Line AB in UHP with center at O 

This gives us the following parametric representation: 

( )αcos⋅= RA   and   ( )βsin⋅= RB  

and if we let (x,y) on the line, our geodesic, be written in polar coordinates: 

( )tRx cos⋅=   and   ( )tRy sin⋅=  

we get: 

( )tRx sin−=&  
 and     ( )tRy cos=&  

Plugging these into our formula for F gives us: 
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And integrating along our geodesic we get: 
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 Note that the radius of our e-circle has been eliminated from the expression.  This 

tells us that the length of segment AB depends only upon the position of A and B on the 

e-circle relative to the positive x-axis, that is the angles formed by e-rays OA OB with x.  

 If we consider lines of the vertical e-ray type to be e-circles with their centers at 

infinity we find an even simpler expression for the metric along these types of lines. 

(Figure 3.15)  As the center O of the e-circle containing segment AB moves to infinity 

(Z, not an i-point on x) both angles α and β go to zero.  The ratio of the tangents of these 

angles approaches the ratio of the y-coordinates, a and b, of points A and B, and the 

interior of our metric approaches: 

( ) a
b
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bah ln,
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Figure 3.15  Metric for segments of vertical e-lines in UHP 

 Clearly both expressions for distance will have negative value when α > β or 

when  a > b.  Since we want h(A,B) to be non-negative we take the absolute value and 

get: 
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=
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BAh ln,
 

according as line AB is of the e-circle or vertical e-ray type. 

 Though this is the most common, and useful for our purposes, form of the metric, 

there is another form that will be important to us when we look at isometries in UHP.  It 

turns out that the metric in UHP is equivalent to the metrics of PDM and KDM.  To show 

this we consider points A and B on a line of the e-circle type centered at point O on x, 

and let P and Q be the i-points at the ‘ends’ of the line.  We say angle QOA=α, and angle 

QOB=β. (Figure 3.16)  Using the Law of Cosines to express the cross ratio (AB;PQ) in 

terms of α and β give us: 
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which is exactly the interior portion of our expression for the hyperbolic metric.  This 

gives us an alternative expression for h(A,B): 

( ) ( )PQABBAh ,ln, =  

 

Figure 3.16  Metric of UHP as cross-ratio 

 We note here some basic properties of the metric that follow immediately from 

the properties of logs. 

    h(A,B) ≥ 0 with equality iff  B = A    and     h(A,B)=h(B,A). 

The fact that we are measuring along geodesics gives us the triangle inequality; 

      h(A,C) + h(C,B) µ h(A,B). 

 We will now verify that UHP satisfies the first four Euclidean postulates, as well 

as the hyperbolic parallel postulate. 
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The hyperbolic postulates in UHP 

Postulate I:  Through any two distinct points there exists a unique line. 

 This is obvious by the definition of the lines of UHP.  If two points A and B are 

vertically related, there is a unique vertical e-ray through them.  If not, then the e-

perpendicular bisector of e-segment AB will intersect x in a unique i-point.  The e-circle 

containing A and B that is centered at this i-point gives us the line. 

Postulate II:  To produce a finite line continuously in a straight line. (lines are infinite) 

 This can be shown by an examination of our metric.  For lines of e-circle type, as 

A (or B) approaches either ‘end’ of the line, α (or β) approaches 0 or π, and the interior 

expression in our metric formula approaches either 0 or infinity.  Taking the log and the 

absolute value, the distance goes to infinity.  The same is true of lines of the vertical e-ray 

type.  As A (or B) approaches the x-axis, or the point Z at infinity, the interior of the 

metric formula goes to 0 or infinity, and the distance approaches infinity.  Since the 

distance formula is continuous for both types of lines, and  h(A,B) = 0, we can extend a 

segment to any length. 

Postulate III:  To describe a circle with any center and distance. 

 This follows almost directly from the metric.  If we consider all of the lines 

through a given point C, and all the points on these lines at a given distance r from C, we 

get a circle.  We will see what this circle looks like in Chapter 6, and examine its 

properties in Chapter 7. 

Postulate IV:  All right angles are equal to one another. 

 This follows immediately from the fact that our model is conformal. 

Postulate V:  (the Hyperbolic Parallel Postulate)  Given a line l and a point P not   on l, 

then there are two distinct lines through P that are parallel to l. 

 This is evident by the definition of line in UHP.  We can see in Figure 3.17 that 

there are two distinct lines through A (indeed an infinite number) that are parallel to l. 



 

65 

 

Figure 3.17  Illustration of the hyperbolic parallel postulate in UHP 

 Since all five postulates of hyperbolic geometry hold in UHP, it is a valid model 

of hyperbolic geometry.  We will use this model to explore many formulae and theorems 

relating to triangles and circles in hyperbolic geometry.  And we will discuss a couple 

objects in hyperbolic geometry that do not exist in Euclidean geometry.  Before we do so, 

it will be helpful to examine the isometries in UHP. 
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Chapter IV 
Isometries on UHP 

 

 Before we explore triangles in Chapter V, we must introduce isometries on UHP, 

and before we do that we will discuss: 

Isometries on the Euclidean Plane 

 Plane isometries are functions from the plane onto itself that preserve the metric 

and angles.  In the Euclidean plane there are 4 different isometries; reflection, rotation, 

translation, and glide-reflection.  We will discuss the isometries of the Euclidean plane 

here as a basis for comparison to the isometries on the hyperbolic plane, specifically in 

the Upper Half-plane Model of hyperbolic geometry. 

Reflection 

 The reflection in a given line l (called the mirror of the reflection) is defined as 

follows: 

22: RRl →ρ   ( ) 'PPl =ρ  

where l is the perpendicular bisector of every segment PP'. (Figure 4.1)  The points of the 

mirror l are fixed under the reflection. 

 

Figure 4.1  Reflection in the Euclidean Plane  
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 Note that reflection reverses the ‘sense’ of an object.  In Figure 4.1 triangle PQR 

is ‘counter-clockwise’, but its image, triangle P'Q'R' is ‘clockwise’.  Also notice that 

reflection in line l is self- inversive.  That is: 

( )( ) PPll =ρρ  

 Finding the mirror of a reflection given any point P and its image P' under the 

reflection is simple, merely construct the perpendicular bisector of segment PP'.  Since 

any segment of positive length has a unique perpendicular bisector, any point P can be 

sent to any point Q, distinct from P, by reflection in exactly one mirror. 

Translation 

 Translation through a given vector AB is defined as follows: 

22: RRAB →τ   ( ) 'PPAB =ρ  

where vector PP’ is of the same length and parallel to, or collinear with, vector AB.  

Equivalently for all P not on line AB, quadrilateral ABP'P is a parallelogram. (Figure 4.2)  

A translation in a non-zero vector has no fixed points.   

 

Figure 4.2  Translation in the Euclidean Plane 

 Note that translation retains the sense of an object.  In Figure 4.2 both triangles 
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PQR and P'Q'R' are counter-clockwise.  Also notice that the inverse of the translation in 

vector AB is the translation in vector BA, or: 

( )( ) PPBAAB =ττ  

 The vector of translation  that sends P to P' is merely the vector PP', or any vector 

having the same length and direction. 

 We can describe the translation in vector AB as the composition of two 

successive reflections.  The first in line l, the line through A perpendicular to vector AB, 

and then in line m, the perpendicular bisector of segment AB. (Figure 4.2).  Note that the 

distance between l and m is half the length of vector AB. 

 Even though a given vector yields a unique translation, each translation is defined 

by infinitely many vectors, all congruent and in the same direction as each other. 

Rotation 

 The rotation about a point C (called the center of the rotation) through oriented 

angle α (called the angle of the rotation) is defined as follows: 

22
, : RRRC →α  ( ) ', PPRC =α  

where segments CP and CP' are congruent, and angle PCP' has directed measure α. 

(Figure 4.3)  Only the center of the rotation is fixed. 
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Figure 4.3  Rotation in the Euclidean Plane 

 Note that rotation, like translation, preserves the sense of the object, and that the 

inverse of rotation about center C by angle α is the rotation about C by -α, or: 

( )( ) PPRR CC =− αα ,,  

 Given any two points P and Q and their images P' and Q' under the reflection, the 

center and angle of reflection  can be found as follows.  Construct the perpendicular 

bisectors l and m of segments PP' and QQ'.  Since these are not parallel, they will 

intersect in point C, the center of the rotation.  Directed angle PCP' gives us α. 

 We can describe any rotation with center C and directed angle α, as the 

composition of two successive reflections.  The first in l, the line through C and P, and 

the second in line m, the angle bisector of angle PCP', where P is any point other than C 

and P' is its image under the rotation. (Figure 4.3)  Note that the angle formed by l and m 

at C is one-half α. 



 

70 

Glide-reflection 

 Glide-reflection in a vector AB is defined as the composition of translation by 

vector AB with reflection in line AB. (Figure 4.4)   

22: RRGAB →  ( ) ( )PPG ABABAB τρ o=  

The order of the translation and reflection is unimportant.  No points are fixed under 

glide-reflection in a vector of positive length.  

 

Figure 4.4  Glide-reflection in the Euclidean Plane 

 Note that glide-reflection reverses the sense of an object. 

 Finding the vector AB of a glide-reflection given two points P and Q and their 

images P' and Q' under the glide-reflection takes a little bit of work.  First, find the 

midpoints M and N of segments PP' and QQ', then drop perpendiculars from each of P 

and P' to the line MN.  The feet of these perpendiculars are A and B respectively. (Figure 

4.5)  Remember that the vector of a translation is not unique.  This is also true of the 

glide-reflection.  Any vector contained within line AB that is congruent to vector AB and 

in the same direction will define the same glide-reflection as vector AB. 
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Figure 4.5  Finding the vector of a Glide-reflection 

 The glide-reflection, being the composition of a translation and a reflection, may 

also be described as the composition of three successive reflections in two parallel 

mirrors and a third which is mutually perpendicular to them.  Specifically, these are line l, 

perpendicular to line AB at A, line m, the perpendicular bisector of segment AB, and line 

AB itself. 

 All isometries on the Euclidean plane are of one of these four types, and all are 

completely defined by three non-collinear points and their images.  This means that given 

any two congruent triangles, we can find a unique isometry that will send one to the 

other.  Furthermore, if the two triangles have the same sense, they are related to each 

other by either a translation or a rotation, each of which are the composition of two 

reflections.  If the triangles have opposite sense they are related to each other by a 

reflection or a glide-reflection, either a single reflection or the product of three 

reflections.  A much more complete treatment of Euclidean plane isometries may be 

found in Dodge [1]. 

 Before we discuss our hyperbolic isometries, we need to look at one more 

Euclidean transformation: 
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Euclidean Inversion 

 Before we define inversion, we must first extend R² by attaching a point we call 

the point at infinity, giving us the Extended Euclidean Plane.  Or: 

{ }∞∪=∞
22 RR  

 We need this infinite point to define the effect of inversion on the center of 

inversion. While we defined the isometries as mapping R² to itself, we can easily define 

them on the extended plane by merely stating that the point at infinity is fixed under all of 

them.  It is not fixed under inversion. 

 Given any circle γ with center O and radius r, we define inversion in this circle as: 

22: ∞∞ → RRIγ  ( ) 'PPI =γ  

where O, P and P' are collinear, OP · OP' = r², and: 

( ) ∞=OIγ  and ( ) OI =∞γ  

 In the extended Euclidean plane, inversion preserves neither lines nor the metric, 

but we will see that it does preserve angles.  Also, inversion reverses the sense of an 

object. (Figure 4.6)  The only fixed points under inversion are the points lying on the 

circle. 
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Figure 4.6  Inversion in the Extended Euclidean Plane 

 We note a few fairly obvious facts about inversion:  first, Iγ is self-inversive, that 

is Iγ(Iγ(P)) = P,  second, Iγ maps the interior of γ to the exterior, and vice versa.  So the 

points of γ are the only fixed points. 

 The following two theorems will show that inversion in a circle preserves angles. 

Theorem 4.1:  Given circle γ with center O and points P and Q such that P, Q and O are 

not collinear.  Assume P' and Q' are the images of P and Q under inversion in γ.  Then 

triangle OPQ is similar to triangle OQ'P'.  (Figure 4.7) 

Proof:  We know from the definition of inversion that: 
2' rOPOP =⋅    and   

2' rOQOQ =⋅  

Where r is the radius of γ,  So: 

'
'

''

OP
OQ

OQ
OP

OQOQOPOP

=

⋅=⋅

 

 And since angle POQ is equal to angle Q'OP',by SAS triangles OPQ and OQ'P' 

are similar.  QED 
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Figure 4.7  Similar triangles under inversion 

Theorem 4.2:  Angles formed by curves are invariant under inversion. We say that 

inversion is conformal. 

Proof:  Let a  and b  be curves intersecting in R, and let OP, (where O is the center of 

γ, the circle of inversion) be a ray different from OR that intersects a  and b  in P and 

Q respectively.  Let a ', b ', R', P', and Q' be the images of  a , b , R, P, and Q under 

Iγ. (Figure 4.8)  We need to show that angle QRP = angle Q'R'P'.  We know that the 

exterior angle of a triangle is equal to the sum of the two remote angles.  So by simple 

angle subtraction: 

PRQ ≅ OPR - PQR    and    P'R'Q' ≅ OR'P' - OR'Q' 

And from Theorem 4.1: 

PQR ≅ OR'Q'    and    OPR ≅ OR'P'' 

Simple substitution gives us: 

PRQ ≅ P'R'Q' 

Now, as ray OP approaches OR, the lines RP, RQ, R'P' and R'Q' approach continuously 

the tangent lines to a , b , a ' and b '.  It follows that the angles formed by a  and b , 

and a ' and b ' are equal.  QED    
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Figure 4.8  Preservation of angles under inversion 

 We can see that inversion does not preserve lines, but if we consider lines to be 

circles centered at infinity, and generalized circles to be the set of all circles and all lines, 

inversion does preserve generalized circles.  We will look at how inversion affects these 

generalized circles. 

Theorem 4.3:  The image of a circle not containing the center of inversion is another 

such circle. (Figure 4.9) 

 Proof:  Let α be a circle not containing O, the center of inversion.  Let the ray OP 

through the center of α cut α in P and Q.  Let ray OR cut α in any point R not on OP.  

Let P', Q' and R' be the images of P,Q and R under the inversion with center O and any 

radius.  Since the angle PQ is a diameter of α, PRQ is a right angle.  By the same 

argument we used in proving the preceding theorem, P'R'Q' is also a right angle, and 

therefore R' lies on the circle β having diameter P'Q'.  So the image of any point R on α is 

the point R' on β, and the image of any circle α not through O is another circle which 

does not contain O.  QED 
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Figure 4.9  Circle mapping to circle under inversion 

 The condition in the preceding theorem prompts us to ask, What happens to a 

circle that does contain the center of inversion. 

Theorem 4.4:  The image under inversion of a circle α containing O, the center of 

inversion, is a line orthogonal to the line containing O and the center of circle α.  Also, 

the image of a line l not through O is a circle containing O and centered on the line 

through O orthogonal to l.  (Figure 4.10) 

 Proof:  Let α be any circle containing O, the center of inversion.  Let OP be a 

diameter of α,  Q be any point of α, save O and P, and P' and Q' be the images of P and Q 

under the inversion .  We know from Theorem 4.1 that triangles OPQ and OQ'P' are 

similar and therefore, angles OQP and QP'Q' are both right angles, so the image of Q lies 

on the line orthogonal to OP at P'.  Also, inversion is bijective, so the image under 

inversion with center O of a circle containing O is the line orthogonal to the diameter OP 

of the circle at the image of the point P.  The converse is an immediate consequence of 

the fact that an inversion is its own inverse.  QED 
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Figure 4.10  Circle mapping to line under inversion 

 So we know that the image under inversion of a circle is either a line or a circle, 

according as it does or does not contain the center of inversion.  We also know that the 

image under inversion of a line not containing the center O of inversion is a circle 

containing O.  These theorems tell us that inversion preserves generalized circles.  There 

is one rather special situation left to consider:  When a circle maps to itself. 

 Suppose that circle α maps to itself under inversion in circle γ, (with center O) 

(Figure 4.11).  Since each point outside γ  maps to a point inside γ, α must contain a point 

outside, and a point inside γ, and by the nature of circles, must intersect γ in two points 

which will be fixed under inversion in γ.  Choose either of these points and call it Q and 

suppose that line OQ intersects α in another point P.  If P is not on γ (Figure 4.11), since 

α maps to itself, OQ must also intersect α in P’.  This means that line OQ intersects a 

circle in three points, which cannot be. If line OQ intersects α in a point P on γ (Figure 

4.11), then O lies on chord PQ and is in the interior of α.  We may choose any ray OR 

through any point R on α.  Obviously R is not on γ, or else α and γ would intersect in 

three points, so ray OR also contains R', and intersects α in two points, something a ray 

emanating from the interior of a circle cannot do. 

 So OQ intersects α in just one point, Q, and is therefore tangent to α, but OQ is a 

radius of γ, so α must be orthogonal to γ.  This tells us that if a circle maps to itself under 
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inversion, it is orthogonal to the circle of inversion. 

 

Figure 4.11  Inversion of orthogonal circle I 

 We demonstrate the converse of this statement as follows. 

 Suppose circle α is orthogonal to γ, the circle of inversion at P and Q.  Rays OP 

and OQ , where O is the center of inversion, are tangent to α.  Both rays and points P and 

Q are fixed by the inversion.  Since inversion is conformal, tangency is maintained and 

the image of α must also be tangent to OP and OQ at P and Q respectively.  But only one 

circle fits that condition, and that is α, so α maps to itself under inversion, and we have 

the following: 

Theorem 4.5:  Circles and lines map to themselves under inversion iff they are 

orthogonal to the circle of inversion. 

 It is evident that Theorem 4.5 is true for lines when one considers that a line 

orthogonal to the circle of inversion must contain the center of inversion. 

 We will now show how inversion affects the cross-ratio, (from our discussion of 

the metrics of the models in Chapter III). 
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Theorem 4.6:  Given four points A, B, P and Q such that none of the pairs AP, AQ, BP 

or BQ are collinear with point O, then the cross ratio of A, B, P and Q is preserved by 

inversion centered at O. 

 Proof:  Given a pair of points A and P, and their images A' and P' in an inversion 

about O, we have that triangle OAP is similar to triangle OP'A'.  Applying this to our four 

relevant pairs gives us: 

OP
PA

AO
AP

'
''=
    

,
    OP

PB
BO
BP

'
''=
    

,
   OQ

QA
AO
AQ

'
''=
    and    OQ

QB
BO
BQ

'
''=
 

Now simple substitution gives us: 

( ) ( )PQAB
BQAP
BPAQ

OQBQBOOPAPAO
BOOPBPAOOQAQ

QBPA
PBQA

QPBA ,
''

''
''''
''''

'','' =





⋅
⋅=





⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅=





⋅
⋅=

 

and we have the theorem.  QED 

 We now have the tools we need to begin our discussion of: 

Isometries on UHP 

 We will approach our hyperbolic isometries in a slightly different way.  Since an 

isometry preserves metric and angle, it is completely defined by a triangle and its image 

under the isometry.  We will look at how, given two congruent triangles, we may find the 

isometry that will send one to the other.  We will begin by looking at: 

Reflection 

 In Euclidean geometry, a line is sometimes viewed as a circle with its center at 

infinity, and reflection in the line as inversion in the infinite circle.  Since the lines of 

UHP are e-circles, it seems natural that reflection in a line of UHP is the Euclidean 

inversion in the associated e-circle.  This turns out to be the case. 
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 Consider the congruent triangles ABC and A'B'C' with different orientations. 

(Figure 4.13)  Suppose the perpendicular bisectors of segments AA' and BB' coincide and 

call this line m.  We know that the e-circles associated with lines AA' and BB' are  

orthogonal to the e-circle associated with line m,  and will remain fixed under inversion 

in e-circle m.  Since our metric is preserved, this inversion will send A and B to A' and B' 

respectively.  Also by preservation of angle and metric, and by the fact that inversion is 

orientation reversing, C will be sent to C', and we have that the Euclidean inversion in e-

circle m acts as the hyperbolic reflection in line m. 

 

Figure 4.12  Reflection in UHP 

 Recall that under Euclidean inversion circles orthogonal to the circle of inversion, 

as well as lines through the center of inversion, remain fixed.  This means that in UHP, 

lines perpendicular to the line of reflection remain fixed, and our hyperbolic reflection is 

defined entirely by the line (mirror) and is a direct analog of Euclidean reflection.  

Reflection in a line of vertical e-ray type is simply the Euclidean reflection in the 

associated e-line. 

 We will deal shortly with the case of an orientation reversing isometry where the 

perpendicular bisectors of AA' and BB' do not coincide, but before we do, we will 
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examine the orientation preserving isometries. 

 We saw that in Euclidean geometry that the product of two reflections is either a 

rotation or a translation, according as the mirrors of reflection intersect or are parallel.  In 

hyperbolic geometry two lines either intersect, are limiting parallels or are divergent 

parallels, so the product of two reflections in UHP will give us three distinct isometries.  

We will begin with the case where the mirrors intersect: 

Rotation 

 Suppose we are given congruent triangles ABC and A'B'C' having the same 

orientation, and that the perpendicular bisectors l and m of segments AA' and BB' 

intersect in point O. (Figure 4.13) 

 

Figure 4.13  Rotation in UHP 

 The point O is the center of rotation.  We can use line l as one of the mirrors and 

the line n through O and A' as the other.  It is evident that reflection in line l will send A 

to A', and that reflection in line n will leave A' fixed.  By the preservation of angle and 

the fact that point O is equidistant from B and B', that the rotation will send B to B', and 

therefore C to C'. 
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 Since O is equidistant from A and A', and since line l is the perpendicular bisector 

of segment AA', line l is an altitude of isosceles triangle AOA' and therefore bisects angle 

AOA'.  So the successive reflections in the mirrors l and n gives us a rotation about point 

O through the twice the angle between the mirrors l and n.  Thus the rotation is 

completely defined by a point (center) and an angle, and is a direct analog to Euclidean 

rotation.  As with Euclidean rotation, the only fixed objects are the e-circles mutually 

orthogonal to the mirrors l and n.  We will discuss the role of these objects in UHP in 

Chapter VII. 

 We will now consider the case where the mirrors are limiting parallels to each 

other: 

≡-Rotation 

 Suppose we have the same situation as in Figure 4.13, except that the 

perpendicular bisectors l and m are limiting parallels sharing the point O at infinity. 

(Figure 4.14)  As with rotation, this isometry is achieved by taking successive reflections 

in lines l and n (through O and A').  This isometry is different from a rotation because 

angle AOA' has measure zero.  It also differs from Euclidean translation because 

corresponding line segments of the triangles are not always parallel to each other. (Note 

that AB and A'B' in Figure 4.14 will probably intersect if extended.) 
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Figure 4.14  ≡-Rotation in UHP 

 Because the ‘angle’ of rotation has measure zero, we cannot define this rotation 

by a center and an angle measure.  We must instead define it by the specific angle AOA' 

where A and A' are any point and its image under the ≡-rotation, and O is the point at 

infinity at one end of the perpendicular bisector of segment AA'. (The i-point at the other 

end of the perpendicular bisector will yield a different ≡-rotation.) 

 The fixed objects under ≡-rotation are e-circles that are tangent to x at O.  We will 

discuss these objects in Chapter VII.  This brings us to our last case of the orientation 

preserving isometries: 

Translation 

 Suppose, again, that we have the situation described in Figure 4.13, except that 

the perpendicular bisectors l and m are divergently parallel to each other. (Figure 4.15) 
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Figure 4.15  Translation in UHP 

 Since l and m are divergently parallel, they have a unique mutual perpendicular p.  

Consider the perpendicular from point A' to line p, and call this line n.  Successive 

reflection in l and n will map A to A' and will leave p fixed, as l and n are orthogonal to 

p.  We can see by the preservation of angles (specifically the angle formed by lines AB 

and p) and metric, that B will map to B', and C to C'. 

 This translation is defined entirely by the vector DE, where D and E are the feet 

of the perpendiculars from A and A' to line p. (line l is the perpendicular bisector of this 

vector).  This makes this isometry most closely related to the translation of the Euclidean 

plane, but it is not a direct analog.  In Euclidean geometry, each point is ‘moved’ by the 

same distance.  This is not the case in hyperbolic geometry.  Segments AA' and BB' are 

not necessarily the same length. 

 The objects that remain fixed under translation in UHP are e-circles orthogonal to 

both mirrors.  These turn out to be the e-circles containing the i-points P and Q at the 

‘ends’ of line p.  We will study these objects in Chapter VII. 

 This takes care of the three types of orientation preserving isometries, or products 

of two reflections.  We have only one case remaining to consider, that of the orientation 
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reversing isometry that is not a simple reflection.  This is the hyperbolic analog of 

Euclidean glide-reflection: 

Glide-reflection 

 Suppose we have congruent triangles ABC and A'B'C' with opposite orientations, 

and that the perpendicular bisectors l and m of segments AA' and BB' do not coincide.  

Consider the midpoints M and N of the segments AA' and BB', the line l through M and 

N, and points D and E, the feet of the perpendiculars from A and A' to line l. (Figure 

4.16) 

 

Figure 4.16  Glide-reflection in UHP 

 The glide-reflection that sends triangle ABC to A'B'C' is the product of the 

translation through vector DE and the reflection in line l (through D and E), or the 

product of three successive reflections.  The only fixed object is line l itself. 

 So in the hyperbolic plane, as in the Euclidean plane, any triangle can be sent to 

any congruent triangle using three or fewer reflections.  This allows us to place any 

object in UHP in a ‘standard’ position, and will greatly facilitate our discussion of 

triangles in the next chapter, and of circles in Chapter VII. 
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Chapter V 
Triangles in UHP 

 
 To facilitate our study of triangles and trigonometry it will be necessary to place 

them in a standard position, or more accurately to examine a triangle in standard position 

congruent to the triangle in which we are interested.  We showed in Chapter IV that this 

is possible. 

Definition:  A triangle in UHP is in standard position if it has vertices A(0,k), B(s,t) and 

C(0,1) where k>1, and both s and t positive. 

 

Figure 5.1  Triangle in standard position 

 Triangles ABC, A'B'C', and A''B''C'' in Figure 5.1 are congruent to each other and 

triangle ABC is in standard position.  For our discussion of triangles, we will assume that 

all of our triangles are in standard position. 
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Angle Sum and Area 

 We know from Theorem 2.17 that if the hyperbolic parallel postulate holds, which 

it does in UHP, then every triangle has a positive defect.  So: 

Theorem 5.1:  Every triangle has positive angle defect. 

 We will now examine the relationship between the angle sum of a triangle and its 

area.  Recall that the angle defect is π minus the angle sum. 

 In Chapter II we discussed asymptotic triangles, those having one or more 

vertices at ideal points.  We will begin our investigation of the area of triangles by 

looking at singly asymptotic triangle ABZ, where A and B are ordinary points and Z is 

ideal. (Figure 5.2)  If we let the ‘center’ of line AB lie at the origin, and r be the ‘radius’ 

of line AB, then line AB has the equation: 

22 xry −=  

and points A and B have x-coordinates: 

( ) ( )ααπ coscos ⋅−=−⋅= rra      and     ( )βcos⋅= rb  
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Figure 5.2  Singly asymptotic triangle ABZ 

 Double integration over x and y, using our UHP metric, gives us: 
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 It is a short jump from here to our formula.  Refer to Figure 5.3, the picture of a 

general triangle in standard position with angles α, β and γ (where β=β'-β''). 
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Figure 5.3   The triangle as the difference of two singly asymptotic triangles 

By subtracting the area of ABZ from that of CBZ, we find the area ABC to be: 

( ) ( )( )
( )

γβαπ

γββαπ

βαππβγπβαππβγπ

−−−=

−−−−=

+−+−−−=−−−−−−

'''

''''''

 

which is exactly the angle defect of triangle ABC, so: 

Theorem 5.2:  The area of a triangle is equal to its angle defect. 

 We will move on to triangle trigonometry next, beginning with the trigonometry 

of the singly asymptotic right triangle.  This has a significance to which we have 

previously alluded: 

Trigonometry of the Singly Asymptotic Right Triangle  

 Recall that given a line l and a point A at a distance of d from l, that the angle of 

parallelism of d is the angle CAP where AC is the perpendicular from A to l, and AP is 

asymptotically parallel to l.  Consider Figure 5.4, the singly asymptotic right triangle 

ACP in standard position with right angle at C.  Let the length of segment AC be d, and 
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angle CAP is α, the angle of parallelism associated with d.  We can make the relationship 

between α and d precise. 

 

 

Figure 5.4  Singly asymptotic right triangle in standard position 

 First of all, we know from our metric that  d=ln(k),  so k=e
d
.  Also we have the 

following relationships: 

( )

2
1

12

1

2

222

222

222

+=

=++−

=+−

=+

k
r

rkrr

rkr

rkn

 

and 

(1)     
( ) ( )de

e
k

k
r
k

d

d

cosh
1

1
2

1
2

sin 22 =
+

⋅=
+

==α
 

Similarly we get: 

(2)     
( ) ( )dsinh

1tan =α
         and         (3)     ( ) ( )dtanhcos =α  
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 These three equations relate distance and its related angle of parallelism.  We will 

use the third to express the angle of parallelism as a function of distance: 

( ) ( )( )dd tanhcos 1−=π  

 We assumed in Chapter II that this relationship was a function, independent of our 

choice of line l and point P.  Now that we have transformational geometry on UHP, we 

know it is.  Given any line l and P not on l, we may place l on the unit circle, P on the y-

axis, and consider them to be one infinite side and the opposite vertex of a singly 

asymptotic right triangle in standard position.  We also claimed in Chapter II that as d 

approaches 0, π(d) approaches π/2, and as d approaches ≡, π(d) approaches 0.  These 

claims are now evident by the formula. 

 These relationships will form the basis for our development of the trigonometry of 

the hyperbolic plane. 

 As in Euclidean geometry, it is helpful to begin the investigation of trigonometry 

with the study of the simplest (right) triangles first and then apply the results to general 

triangles.  We just looked at the relationship between the one finite side and the one non-

zero non-right angle of the singly asymptotic right triangle.  We will apply those results 

to the general singly asymptotic triangle, then the right triangle, and finally the general 

triangle.  From the angle of parallelism results, the relationships of the singly asymptotic 

triangle are almost immediate. 

Trigonometry of the General Singly Asymptotic Triangle 

 Consider singly asymptotic triangle ABZ with finite side AB having length d.  If 

we place side AB on the unit circle, the y-axis will be perpendicular to side AB at E(0,1). 

(Think of this ‘segment’ EZ as an ‘altitude’ of the triangle)  Suppose for the moment that 

E is between A and B, and segments AE and BE have lengths d
1
 and d

2
, and let angles 
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EAZ and EBZ have measures α and β respectively. (Figure 5.5)  Note that α = π(d
1
) and 

β = π(d
2
). 

  

Figure 5.5  Singly asymptotic triangle as sum of two singly asymptotic right triangles 

So using relationships (1), (2) and (3) for substitution, we have the following: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )βαβα cotcotcsccsc

sinhsinhcoshcoshcoshcosh 212121

⋅+⋅=

⋅+⋅=+= ddddddd

 

so 

(4)   

( ) ( )
( ) ( )βα

βα
sinsin

coscos1)cosh(
⋅
⋅+=d

 

And similarly: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )αββα

αββα

csccotcsccot

coshsinhcoshsinsinhsinh 21

⋅+⋅=

⋅+⋅=+= ddd

 

(5)     
( ) ( ) ( )

( ) ( )βα
βα

sinsin
coscossinh

⋅
+=d

 

And combining these: 

(6)     
( ) ( ) ( )

( ) ( )βα
βα

coscos1
coscostanh
⋅+

+=d
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 It is not correct to assume that E lies between A and B, but the calculations work 

out the same if it does not, as we might expect form our experience with the same type of 

calculations in Euclidean space.  We now have what we need to begin our investigation 

of the trigonometry of the right triangle. 

Trigonometry of the Right Triangle 

 Let ABC be a right triangle in standard position, with right angle at C, sides a, b 

and c opposite A, B and C, and angles α and β at vertices A and B, respectively.  Let AE 

and BD be vertical rays forming angles ABD=β
1
 and BAE=π-α. (Figure 5.6) 

 

Figure 5.6  The right triangle in standard position 

 Before we get the relationships we are after, we need several preliminary results 

from simple Euclidean trigonometry: 

( )
r
k=αsin

     
,
     

( )
r
d=αcos

     and     
( )

d
k=αtan
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( )
r
t=1sin β

     
,
     

( )
r

sd +=1cos β
     and     

( )
sd

t
+

=1tan β
 

( ) t=+ 1sin ββ      
,
     ( ) s=+ 1cos ββ      and     

( )
s
t=+ 1tan ββ

 

 The angle difference formulae, and   β=(β+β
1
)-β

1
  give us: 
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Applying our metric to b we get  b=e
k
 , so: 
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Using formulae (1), (2) and (3)  with the ordinary trig ratios of α, β and γ, we have: 

( ) ( ) t
sa =

+
=

1tan
1sinh

ββ  
   ,

    
( ) ( ) t
a 1

sin
1cosh

1

=
+

=
ββ    

   and      ( ) sa =tanh  

Combining formulae (4), (5) and (6)  with the ordinary trigonometry and the following 

relationships: 

222 rkd =+      and     ( ) 222 rtsd =++      which combine to give us    2
12 −=⋅ k

sd
 

 we get: 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) tk

rs

r
t

r
k

r
d

r
sd

c
⋅
⋅=

⋅

−+

=
⋅
−=

⋅−
+−=

1

1

1

1

sinsin
coscos

sinsin
coscos

sinh
βα
αβ

βαπ
βαπ
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( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

tk
k

tk

k
k

tk
sddr

r
t

r
k

r
sd

r
d

c

⋅⋅
+=

⋅

−−
=

⋅
⋅−−=

⋅

+⋅−
=

⋅
⋅−=

⋅−
⋅−+=

2
12

1
1

sinsin
coscos1

sinsin
coscos1

cosh

2

2
2

22

1

1

1

1

βα
βα

βαπ
βαπ

 

and 

( )
1

2tanh 2 +
⋅⋅=

k
rsc

 

 Now we get to the more significant and meaningful relationships.  We can 

combine these numerous expressions for our regular and hyperbolic trig functions to get 

the following: 

(7) 
( ) ( ) ( )a

t
s

r
k

tk
rsc sinhsinsinh ==⋅
⋅
⋅=⋅ α

 

(8) ( ) ( ) ( )as
d

k
d
k

k
k

b tanh
2

1
2

1
tansinh

22

==
⋅
−=⋅

⋅
−=⋅ α

,     remember     2
12 −=⋅ k

ds
 

(9) 
( ) ( ) ( )b

k
k

k
ds

r
d

k
rs

c tanh
1
1

1
2

1
2

costanh 2

2

22 =
+
−=

+
⋅⋅=⋅

+
⋅⋅=⋅ α

 

(10) 
( ) ( ) ( )βα cos

2
1

2
1

sincosh
22

=
⋅
−=⋅

⋅
−=⋅

r
k

r
k

k
k

b
 

(11) 
( ) ( ) ( )c

tk
k

tk
ds

td
ds

k
d

cosh
2

111
cotcot

2

=
⋅⋅

+=
⋅
+⋅=

⋅
+⋅⋅=⋅ βα

 

and, of course, their counterparts: 
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(12) ( ) ( ) ( )ba tanhtansinh =⋅ β  

(13) ( ) ( ) ( )bc sinhsinsinh =⋅ β  

(14) ( ) ( ) ( )ac tanhcostanh =⋅ β  

(15) ( ) ( ) ( )αβ cossincosh =⋅a  

 These relationships may be seen as similar to the trig ratios of the right triangle in 

the Euclidean plane.  Of special note are (13) and (9) which, written differently, look 

familiar: 

( ) ( )
( )

( )
( )hyp
opp

c
a

sinh
sinh

sinh
sinhsin ==α

     and     
( ) ( )

( )
( )
( )hyp
adj

c
b

tanh
tanh

tanh
tanhcos ==α

 

and are almost direct analogues to their Euclidean counterparts. 

 The Euclidean Pythagorean Theorem also has its hyperbolic counterpart, a simple 

and elegant relationship between the three sides of the right triangle. 

Theorem 5.3 (The Hyperbolic Pythagorean Theorem):  In any right triangle ABC, with 

right angle at C, then the lengths of the three sides are related by: 

    cosh(c)=cosh(a)cosh(b) 

 

Proof:  
( ) ( ) ( )ba

tk
k

tk
k

c coshcosh
1

2
1

2
1

cosh
22

⋅=⋅
⋅
+=

⋅⋅
+=

     QED 
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Trigonometry of the General Triangle 

 We are now ready to consider the general triangle ABC in the hyperbolic plane.  

Assume that the altitude from A intersects the opposite side (we know from the proof of 

Theorem 2.15 that this must be true of at least one altitude), and let E be the foot of this 

altitude, such that E divides side a into a
1
 and a

2
 and ray AE divides angle α into α

1
 and 

α
2
. (Figure 5.7)  This decomposes our triangle into two right triangles AEC and AEB.  

We may use the information from the preceding section to derive three interesting 

relationships within the hyperbolic triangle. 

 

Figure 5.7  The general triangle decomposed into two right triangles 

 By using the angle sum and difference formulae on cos(α), and making 

substitutions using the right triangle relationships from the preceding section, (equations 

7-15) we get the following: 
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( ) ( ) ( ) ( ) ( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )bc

aa
d
c

d
bbc

bc
aadhbc

bc
aadbc

c
a

b
a

b
d

c
d

sinhsinh

sinhsinh
cosh
cosh

cosh
coshcoshcosh

sinhsinh
sinhsinhsec1coshcosh

sinhsinh
sinhsinhtanhcoshcosh

sinh
sinh

sinh
sinh

tanh
tanh

tanh
tanh

sinsincoscoscoscos

21

21
2

21
2

21

212121

⋅

⋅−⋅−⋅
=

⋅
⋅−−⋅⋅=

⋅
⋅−⋅⋅=

⋅−⋅=

⋅−⋅=+= ααααααα

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )bc

abc

bc
aabc

bc
aaaabc

sinhsinh
coshcoshcoshcos

sinhsinh
coshcoshcosh

sinhsinh
sinhsinhcoshcoshcoshcosh

21

2121

⋅
−⋅=

⋅
±−⋅=

⋅
⋅+⋅−⋅=

α
 

 This formula relates one angle and the three sides of a general triangle in the 

hyperbolic plane,  as does the Law of Cosines in the Euclidean plane. 

 We now apply the same technique to cosh(a): 
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( ) ( ) ( ) ( ) ( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )γβ

αγβ

γβ
ααααγβ

γβ

γβγβαα

γβ
γβαα

γβγ
α

β
α

sinsin
coscoscos

cosh

sinsin
sinsincoscoscoscos

sinsin
cosh
cos

cosh
coscoscoscoscos

sinsin
coscossec1coscos

tan
tanh

tan
tanh

sin
cos

sin
cos

sinhsinhcoshcoshcoshcosh

2121

21

2
21

21

212121

+⋅=

⋅−⋅+⋅=

⋅−⋅+⋅
=

⋅⋅−+⋅=

⋅+⋅=

⋅+⋅=+=

a

dd

dh

dd

aaaaaaa

 

 This formula relates one side and the three angles of a triangle, something that is 

not possible in the Euclidean plane.  This formula is a consequence of the absence of 

similar triangles in hyperbolic geometry. 

 Finally, we turn our attention to the sine.  Using the first cosine relationship for 

substitution, we get: 

( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )cba

cbacbb

cba
acbcb

cba
acbcb

aa

222

222

222

222

222

222

2

2

2

2

sinhsinhsinh
coshcoshcosh2coshcoshcosh1

sinhsinhsinh
coshcoshcoshcosh1cosh1

sinhsinhsinh
coshcoshcoshsinhsinh

sinh
cos1

sinh
sin

⋅⋅
⋅⋅⋅+−−−=

⋅⋅
−⋅−−⋅−=

⋅⋅
−⋅−⋅=−= αα
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 Which is symmetric in terms of a, b and c, so the ratio is the same for all three 

pairs of α and a, β and b, and γ and c.  Also, since all three angles are between 0 and π, 

all terms are positive, so we can take the square root and get: 

( )
( )

( )
( )

( )
( )cba sinh

sin
sinh
sin

sinh
sin γβα ==

 

 We state these results formally as: 

Theorem 5.4 (Hyperbolic Laws of Cosines):  Given triangle ABC, labeled in the usual 

manner: 

( ) ( ) ( ) ( )
( ) ( )cb

acb
sinhsinh

coshcoshcoshcos
⋅

−⋅=α
    and     

( ) ( ) ( ) ( )
( ) ( )γβ

αγβ
sinsin

coscoscoscosh +⋅=a
 

and: 

Theorem 5.5 (Hyperbolic Law of Sines):  Given triangle ABC, labeled in the usual 

manner: 

    

( )
( )

( )
( )

( )
( )cba sinh

sin
sinh
sin

sinh
sin γβα ==

 

 The similarity between the two laws of cosines leads us to believe that they are 

closely related.  Since we get one from the other by simply exchanging corresponding 

angles and sides, and regular and hyperbolic trig functions, we might consider them to be 

duals.  We have yet to find any simple direct link between them. 

 This concludes our discussion of trigonometry, and of triangles for the moment.  

We will look at the inscribed and circumscribed circles of a triangle in Chapter VIII, but 

first we must investigate the roles played by Euclidean circles in UHP. 
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Chapter VI 
Euclidean Circles in UHP 

 

 A Euclidean circle in UHP can play several roles, depending on its position 

relative to the x axis (x for sake of brevity). We have four cases to consider, the first of 

which we have already seen.  An e-circle centered on the x, or more accurately the 

portion lying above x of an e-circle centered on x, is a line in UHP.  We will look now at 

the other three cases: intersecting x in two points, tangent to x, and lying entirely above x. 

(The case of an e-circle lying entirely below x is irrelevant, as it contains no points in 

UHP) 

 The first case, that of a Euclidean circle intersecting x in two points, plays a 

curious role in UHP, one that is played by a line in Euclidean space: 

Hypercycles 

 Given a line l in UHP with i-points P and Q, let A be any point at distance d from 

l.  Consider the e-circle a through A, P and Q. (Figure 6.1)  This obviously intersects x in 

the two points P and Q, and is not a line, else it would coincide with l, and A is not on l.  

The x-axis is the radical axis of a and l, and any line (e-circle centered on x) orthogonal 

to l is also orthogonal to a.  So the line perpendicular to a at A is perpendicular to l at A' 

and h(A,A') is the distance d from A to l. 

 Now choose any point B on e-circle a distinct from A and let the mutual 

perpendicular to l and a through B meet l in B'.  h(B,B') is the distance from B to l.  We 

can show that  h(B,B')=h(A,A')=d  by considering the perpendicular bisector m of 

segment AB.  Since m is perpendicular to both a and l, reflection in m sends A to B.  

Since angles are preserved, this reflection also sends line AA' to BB'.  Since l is fixed 

under the reflection, A' is mapped to B'.  This tells us that A and B are equidistant from l, 

and since B was chosen at random, every point on a is at distance d from l. 



 

102 

 

Figure 6.1  An e-circle intersecting x in two points 

 This is not the entire set of points at distance d from l, but the rest are easy to find.  

All we need to do is to reflect a in l, and by preservation of distance, we get the other 

‘half’ of the curve. (Figure 6.2)  This portion of the curve also happens to be the 

reflection of the lower portion of e-circle a in the x-axis. 

Definition 6.1:  The hypercycle of distance d from l is {A : h(A,l)=d}.  This is also 

sometimes called the curve of constant distance. 

 Though not Euclidean circles, we will at this point discuss the hypercycle of 

distance d from a line of vertical e-ray type.  The illustration is simple.  All we need to do 

is reflect the objects l and a as defined above in any line centered at P (or Q).  This will 

send Q to Q', P to Z (the ideal point ‘above’), l to l' of vertical e-ray type, and a to two 

straight e-rays (not vertical) a
1
 and a

2
  forming the same angles with l' at Q' that a formed 

with l at Q. (Figure 6.2) 
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Figure 6.2  Curves of constant distance to lines of both types 

 We state these results as: 

Theorem 6.1:  Given line l having i-points P and Q, and point A
1
 at distance d from l, 

both in UHP.  The hypercycle at distance d from l is the portion lying above x of the e-

circles through P, Q and A
1
, and P, Q and A

2
, the reflection of A

1
 in l.  If line l is of 

vertical e-ray type having i-points P and Z, the horocycle consists of the e-rays PA
1
 and 

PA
2
 

 As mentioned in Chapter II, most teachers of elementary geometry describe 

parallel lines as a set of train tracks that are everywhere equidistant (an excellent 

description).  In Hyperbolic space, however,  a pair of train tracks would not be a pair of 

lines, but rather a pair of hypercycles or one hypercycle and one line.  

 We look now at our second case, that of e-circles lying entirely above x in UHP.  

These turn out to be hyperbolic: 

Circles 

 Consider the e-circle c lying entirely above x in UHP, and its reflection -c in x, 

lying entirely below x. (Figure 6.3)  The x axis is the radical axis of c and -c, and any e-
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circle centered on x orthogonal to c is also orthogonal to -c.  Furthermore, each e-circle in 

the intersecting orthogonal pencil defined by c and -c passes through two points we will 

call C and -C lying within c and -c respectively.  This tells us that any line orthogonal to c 

must pass through a point C in c’s interior, (also that any line through C is orthogonal to 

c)  We shall, without justification for the moment, call C the center of c. 

 

 

Figure 6.3  The center of a circle 

 Let A be any point on c, and call r = h(C,A) the radius of c.  Choose any point B 

on c distinct from A and consider lines CA and CB. (Figure 6.4)  Take m to be the angle 

bisector of ACB.  Since m passes through C, it is orthogonal to c, and c is fixed under 

reflection in m.  This reflection sends segment CA to CB, and therefore h(C,A) = r = 

h(C,B).  Since B on c was chosen at random, this shows that every point on the e-circle c 

is at distance r from C, so c is the hyperbolic circle centered at C with radius r.  Note that 

the hyperbolic center of circle c does not coincide with the Euclidean center of e-circle c. 
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Figure 6.4  The hyperbolic circle 

 Showing that hyperbolic circles are Euclidean circles is simple.  Given center C 

and point A (radius r = h(C,A)), consider the intersecting pencil of e-circles defined by C 

and -C.  This gives us the pencil of lines through C.  The image of A under reflection in 

all of these lines will give us the circle c, but this is the unique e-circle through A that is 

orthogonal to the pencil of e-circles.  And we have: 

Theorem 6.2:  The set of circles in UHP is exactly the set of e-circles lying entirely 

above x. 

 We now reach our third and final case, that of e-circles in UHP tangent to x.  

These also play a role played by lines in Euclidean space: 

Horocycles 

 Often when discussing circles and lines in Euclidean geometry, we include a line 

at infinity, and define all circles and lines as generalized circles, with lines being circles 

centered on the line at infinity.  This is not possible in hyperbolic space, because as the 

center of a circle approaches infinity  the circle does not approach a line.  We can see this 

by considering a circle c containing A centered at C as C approaches i-point P. (Figure 

6.5)  As A remains fixed and C approaches P on x, the radius of c approaches infinity.  

Since P is a point at infinity, the distance from C to P is always infinite.  Circle c 
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intersects ray CP in a point B such that h(C,B) = h(C,A), and as C approaches P on x, B 

approaches C and P. (in the Euclidean sense)  Since c always lies entirely above x, the 

limit of circle c as C approaches P is the e-circle through A and tangent to x at P. 

 

Figure 6.5  The limit of a circle as its center approaches P on x  

 If we let C approach Z, the point at infinity “above”, c approaches the horizontal 

e-line through A. (Figure 6.6)  Though they look like circles, horocycles are not closed 

curves and therefore do not define, in the strict sense, an interior and exterior region, as 

both regions defined are unbounded.  We will consider the interior of the horocycle to be 

the interior of the associated e-circle, or the portion above the associated horizontal e-line 

 

 

Figure 6.6  The limit of a circle as C approaches i-point Z “above” 
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 The horocycle is an interesting and useful object in the hyperbolic plane, and is 

the key to proving, without the use of a model, many of the relationships and theorems 

we have discussed here.  We will look now at a few facts about horocycles that will prove 

useful to us in Chapter VIII. 

 First, each pair of points is contained in two distinct horocycles.  This is evident 

from Figure 6.7.  If the points are horizontally related, one of the horocycles is the 

horizontal e-line through the two points.  If they are vertically related, then the horocycles 

are congruent (in the Euclidean sense).  All horocycles are congruent in the hyperbolic 

sense. 

 

 

Figure 6.7  Horocycles defined by two points 

 Second, any ‘radius’ r (line through center C) of a horocycle h is orthogonal to h.  

This is obvious by both a simple continuous limit argument and also by noting that any 

line r through C is orthogonal to e-circle h at C, and therefore also at the other point of 

intersection.  Figure 6.8 
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Figure 6.8  Any radius of a horocycle is orthogonal to the horocycle 

 Third, Given C, the ‘center’ of a horocycle defined by points A and B, then angles 

CAB and CBA are congruent.  To see this, consider the perpendicular bisector of 

segment AB.  This will contain C, the ‘center’ of the horocycle.  Since reflection in this 

line sends A and B to each other, leaves C fixed, and preserves angles, angles CAB and 

CBA are congruent.  This is illustrated in Figure 6.9. 

 

Figure 6.9  Non-zero angles of a singly asymptotic triangle inscribed in a horocycle 

 Also evident from Figure 6.9 is that angles CAB and CBA, are each the angle of 

parallelism associated with half the length of AB, or: 

( ) ( )




=



 





== −

2
,

2
,

tanhcos 1 BAhBAh
CBACAB π

 

 We will use these facts when we discuss circum-circles in Chapter VIII. 

 This concludes our discussion of the basics of hyperbolic geometry and UHP.  We 

will now examine a few topics in more depth. 
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Chapter VII 
The Hyperbolic Circle 

 

 Since, in UHP, Euclidean and hyperbolic circles coincide, we should ask how the 

coordinates of their centers, and their radii, relate to each other. 

The Hyperbolic and Euclidean Center and Radius 

 For this discussion we let C and R denote Euclidean center (y-coordinate), and 

radius, and c and r denote its hyperbolic center and radius. 

 Suppose we have the circle with hyperbolic center P(*,c) and radius r.  Let the 

vertical e-line through the center cut the circle at A(*,a) and B(*,b) with a>b. (Figure 7.1) 

 

 

Figure 7.1  The Euclidean and hyperbolic center and radius of the circle 

Since: 

( ) r
c
a

PAh =




= ln,

     and     
( ) r

b
c

BPh =




= ln,

 

We know: 

reca ⋅=      and     
recb −⋅=  
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and the Euclidean center C is the e-midpoint of segment AB: 

( )rc
ececba

C
rr

cosh
22

⋅=⋅+⋅=+=
−

 

and the Euclidean radius R is half the length of AB: 

( )rc
ececba

R
rr

sinh
22

⋅=⋅−⋅=−=
−

 

We can use these to find the inverse relationships. 

( )
( ) ( )r
rc
rc

C
R tanh

cosh
sinh =

⋅
⋅=

     and      ( ) ( ) 2222222 sinhcosh crcrcRC =⋅−⋅=−  

And we have: 

( )rcC cosh⋅= ,     ( )rcR sinh⋅= ,     
( )C
Rr 1tanh −=

, and     
22 RCc −=  

 These relationships are interesting and elegant in themselves, and they also will 

be invaluable as we develop the formulae for the circumference and area of the circle. 

Circumference 

 To find the formula for circumference, we will use the parametric form of the 

equation for our circle, and the corresponding modified integration for arc length. 

( )

( )tR
dt
dx

tRx

sin

cos

⋅−=

⋅=

         and          

( )

( )tR
dt
dy

tRCy

cos

sin

⋅=

⋅+=

 

So: 
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R

RC
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which, by using the relationships between Euclidean and hyperbolic centers and radii: 

( )r
c

RC sinh22 ⋅⋅=⋅⋅= ππ
 

 Notice that, though the formula initially contained the y-coordinate of the center, 

the final formula does not.  This is as we would hope, and the circumference of the circle 

depends only upon its radius, and not its position in the plane. 

Area 

 The analogous direct integration we could use to find the area of the circle is 

much more difficult than for the circumference, and we will avoid it. 

 Consider the regular n-gon with circum-radius r, and its decomposition into 2n 

congruent right triangles.  We can do this by connecting the center to each vertex and to 

the midpoint of each side. (Figure 7.2) 
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Figure 7.2  The regular n-gon divided into 2n right triangles 

 As the number of sides approaches infinity, the area of the n-gon, the sum of the 

areas of the 2n triangles, approaches the area of the circle. 

 We know that the measure of central angle α is  2π/2n  or  π/n, the hypotenuse is 

r, and we can find the measure of angle β by using the formula  cot(α)cot(β) = cosh(c)  

from our investigation of the trigonometry of right triangles.  This gives us: 

( ) ( )( ) ( ) 



 





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n
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παβ tancoshcottancoshcot 11

 

and remembering that the area of the triangle is equal to its angle defect we get that the 

area of the circle of radius r is: 

( ) ( )




















 





⋅−−⋅=



 





 −−−⋅= −

∞→∞→ n
r

n
nnrA

nn

πππβαππ tancoshcot
2

2lim
2

2lim 1

 

using the fact that  arccot(α) = π/2 - arctan(α)  we get: 
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As u approaches zero and c is a constant, arctan(c⋅u)  approaches  c⋅arctan(u).  This gives 
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us: 
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or alternately: 

( ) ( )2sinh4 2 rrA π=
 

We state these together as: 

Theorem 7.1:  The circumference and area of a circle are given by:  C = 2πsinh(r),  and 

A = 4πsinh²(r/2), where r is the radius of the circle. 

 Note that in hyperbolic geometry, as in Euclidean, the circumference formula is 

the derivative of the area formula with respect to r. 

The Limiting Case 

 We know that, for triangles, as their area approaches 0, their properties (e.g. angle 

sum) approach those of triangles in Euclidean space.  We can easily confirm that this is 

also true of circles.  (It is true of all objects in the hyperbolic plane.) 

 To confirm the limiting case of the circle as its radius approaches zero, we 

consider the ratio of the hyperbolic and Euclidean formulae for circle area and take the 

limit, using L’Hopital’s rule: 
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so, as r→ 0, our hyperbolic formula for area approaches the Euclidean formula.  The same 

is true of our hyperbolic formula for circumference: 
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 Unlike the triangle, though, the appearance of the circle in UHP remains the same 

as its area approaches zero. 

Hyperbolic Π 

 In Euclidean space, π is defined as the ratio of the circumference of any circle to 

its diameter, and this is a constant.  In hyperbolic geometry, as we can see from the 

formulae above, the hyperbolic π ratio for any given circle is equal to: 

( )
r

rsinh⋅π
 

where r is the radius of the circle and π is Euclidean pi.  Obviously, this is not constant, 

but as r approaches zero, sinh(r)/r approaches 1, and hyperbolic π approaches Euclidean 

π. 

The Angle Inscribed in a Semicircle 

 It is a well known fact in Euclidean geometry that any angle inscribed in a 

semicircle is a right angle.  A common proof of this uses the fact that the angle sum of a 

triangle is π.  A similar proof in hyperbolic geometry will show: 

Theorem 7.2:  The measure of an angle inscribed in a semicircle is less than a right 

angle. 

Proof:  Let angle ACB be inscribed in a circle.  Consider triangles ACD and BCD where 

D is the center of the circle. (Figure 7.3)  Triangles ADC and BDC are isosceles, so the 

measure of angle ACB is α + β, and the angle sum of triangle ABC is 2α + 2β which 

must be less than π, so angle the measure of ACB is less than π/2. QED 



 

115 

 

Figure 7.3  An angle inscribed in a semi-circle 

 Since the angle sum of a triangle goes to π as the area of the triangle goes to zero, 

as C approaches B or A, angle ACB will approach π/2. 

 We saw in Chapter I that the assumption of the existence of a circum-circle to 

every triangle led Wolfgang Bolyai to a false ‘proof’ of the Euclidean parallel postulate, 

and we saw in Chapter II that not every triangle has a circum-circle.  The natural question 

to ask is which triangles do have circum-circles, and which do not.  We answer this 

question in the next chapter. 
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Chapter VIII 
In-Circles and Circum-Circles 

 

 We have looked at circles and triangles in the hyperbolic plane, and how they 

look in UHP.  We will now look at two examples of the interaction of these objects, the 

inscribed and circumscribed circles. 

In-Circles 

 Remember, from Chapter II that there are four kinds of triangles in hyperbolic 

geometry: ordinary, singly asymptotic, doubly asymptotic, and trebly asymptotic.  We 

can find the in-circle of each of these kinds of triangles.  We will consider the ordinary 

triangle first. 

The in-circle of the ordinary triangle 

 We showed in Chapter II that any ordinary triangle has an inscribed circle.  This 

is easy to find.  All we need is the center and any point on the circle.  These are found in 

exactly the same manner as in Euclidean geometry.  An example is shown in figure 8.1, 

where l and m bisect angles CAB and ACB respectively and intersect in D, and E is the 

foot of the perpendicular n from D to side AC.  The circle is centered at D with radius 

DE. 
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Figure 8.1  The In-circle of a triangle in standard position 

The in-circle of the asymptotic triangle 

 It is no more difficult to find the in-circle of a singly asymptotic triangle.  Since 

we have two non-zero angles, we can construct the angle bisectors of these.  The 

intersection of these angle bisectors will be equidistant from all three sides.  Essentially, 

the construction is the same as that for the ordinary triangle and is illustrated in Figure 

8.2. (Recall that one vertex of the ordinary triangle was never used in the construction 

above.) 

 

Figure 8.2  The In-Circle of the Singly Asymptotic Triangle 
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 The doubly and trebly asymptotic triangles pose a little more of a problem since 

neither of them has a pair of non-zero angles and the angle bisector does not exist for an 

angle of measure zero with its vertex at infinity.  There is, however, for any two limiting 

parallels, a mirror of reflection that will send one to the other.  Since our metric is 

preserved by reflection, this mirror will act as an angle bisector in the sense that it is the 

set of points equidistant from both lines.  The intersection of these mirrors of reflection 

with the angle bisector of the non-zero angle will be equidistant from all three sides, and 

therefore the center of our in-circle.  Figure 8.3 illustrates this for the doubly asymptotic 

triangle.  Line l is the angle bisector of PAQ, lines m and n are the mirrors of reflection 

from side PQ to AQ and AP respectively, and line p is the perpendicular from the in-

center to side AQ. 

 

Figure 8.3  The In-Circle of the Doubly Asymptotic Triangle I 

 Since the doubly asymptotic triangle is defined entirely by the one non-zero 

angle, it seems natural that there ought to be a relationship between this angle and the 

radius of the in-circle.  Consider the situation pictured in Figure 8.4.  Since each of the 

four angles marked β are the angle of parallelism associated with the radius of the circle, 

π(r), we know that they are all congruent, and each of the angles marked δ has measure  

π - 2π(r). 
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Figure 8.4  The In-Circle of the Doubly Asymptotic Triangle II 

 Applying equation 10 from our discussion of trigonometry in Chapter V to 

triangle ABC, we get: 
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Using equations 1 and 3 from Chapter V for substitution gives us: 
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and we have: 

Theorem 8.1:  The measure of the non-zero angle α of a doubly asymptotic triangle and 

the radius r of its in-circle satisfy:  cos (α/2) = 2 tanh(r). 

 The in-circle for the trebly asymptotic triangle is constructed in much the same 

manner, by constructing the three mirrors (only two are needed) that reflect the sides to 

each other pairwise. (Figure 8.5)  Note that we do not need to construct the perpendicular 

from the center to any side of the triangle, as each of the mirrors is perpendicular to the 
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side that it does not reflect. 

Figure 8.5  The In-Circle of the Trebly Asymptotic Triangle I 

 Since a trebly asymptotic triangle has three infinite sides, and three angles of 

measure zero, all trebly asymptotic triangles are congruent.  We would expect that the 

radius of the in-circle is a constant.  Figure 8.6 shows that the three mirrors of reflection 

intersect at the center of the circle forming six congruent angles.  We know they are 

congruent because they are each the angle of parallelism associated with the radius of the 

circle.   

 

Figure 8.6  The In-Circle of the Trebly Asymptotic Triangle II 

 We can apply equation 3 from Chapter V to the angle α, which we know to be 

π/3, and get: 
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so: 

Theorem 8.2:  The radius of the in-circle of any trebly asymptotic triangle is ln(3)/2 

 If we consider the equilateral triangle inscribed within the circle of radius ln(3)/2, 

we discover something curious about the vertex angle of this triangle.  Figure 8.7 shows 

this triangle divided into six congruent right triangles, each having the radius of the circle 

as its hypotenuse. 

 

Figure 8.7  The equilateral triangle inscribed in a circle of radius  ln(3)/2 

Applying equation 11 from Chapter V to any one of the six right triangles, we get: 
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Which tells us that: 
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( )
5

1sin =α
 and 

( )
5

2cos =α
 

Since the vertex angle of the triangle is 2α, the double angle formula for sine gives us: 

( ) ( ) ( )
5
4

5
2

5
12cossin22sin =⋅⋅=⋅⋅= ααα

 

This tells us that the measure of the vertex angle of this equilateral triangle is the same as 

the larger of the two non-right angles of the ubiquitous 3-4-5 triangle. (approximately 

53.13°)  This is not particularly significant, merely curious. 

 This concludes our discussion of in-circles, and we move on to: 

Circum-Circles 

 We saw in Theorem 2.34 that the perpendicular bisectors of the sides of a triangle 

are either: concurrent, parallel in the same direction, or ultra-parallel.  Figure 8.8  

illustrates this for UHP.  Since the intersection of the perpendicular bisectors of the sides 

of a triangle is the center of the circum-circle, this circle will exist only if the point of 

intersection exists.  We can see that this is not always the case in UHP. 

 We know that any circle in UHP is an e-circle, which means that the hyperbolic 

circum-circle of triangle ABC is also its Euclidean circum-circle.  The problem occurs 

when the Euclidean circum-circle of triangle ABC does not lie entirely above x.  Figure 

8.8 also illustrates this. 
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Figure 8.8  The three cases of the Euclidean circum-circle of triangle ABC 

 Note that if the Euclidean circum-circle lies entirely above x (Case I), then it is 

the hyperbolic circum-circle.  If it is tangent to x (Case II), it is a horocycle, and if it 

intersects x (Case III) it is a hypercycle. 

 We know that triangle ABC will not have a circum-circle if A, B and C are 

collinear in the Euclidean sense, because its Euclidean circum-circle will not exist.  If A, 

B and C are collinear in the hyperbolic sense, then the Euclidean circum-circle is the line 

through the three points, and is not a hyperbolic circle because half of it lies below x.  We 

will restrict our discussion to triples of points that are non-collinear in both the Euclidean 

and the hyperbolic sense. 

 In the case where the circum-circle of triangle ABC does exist, its construction is 

simple, and procedurally identical to its construction in Euclidean Geometry.  The 

perpendicular bisectors of any two sides will intersect in the circum-center. (Figure 8.9) 
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Figure 8.9  The circum-circle of triangle ABC 

 The question is, when does the circum-circle of a triangle exist and when does it 

not?   We saw in Figure 8.8 and in Chapter VI that the horocycle acts as the ‘limit’ of the 

circle in UHP, in the sense that if the e-circle grows any ‘larger’ downward, it ceases to 

represent a hyperbolic circle.  This is the key to finding a condition for the existence of 

the circum-circle 

 Remember the relationship shown in Figure 6.9, that given a singly asymptotic 

triangle ABC with all three points lying on horocycle h and C being the i-point where h is 

tangent to x, we have: 
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 Consider any triangle ABC in standard position in UHP, with A(0,1), B(0,k) with 

k>1 and C to the right of y. (Figure 8.10)  Let h and k be the two horocycles containing A 

and B.  They will be symmetric about y.  We can see by inspection that if C lies on h or 

k, outside both h and k, or within the intersection of the interiors of h and k, that the 

circum-circle fails to exist.  If C lies within the interior of h or k, but not both, the circum-

circle exists. (In Figure 8.10, the horocycles are solid curves and the ‘circles’ are dashed.)   
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Figure 8.10   The relationship between horocycles and circum-circles 

 We can show this more concisely by using a few facts about circles.  We know 

two intersecting circles intersect in exactly two points, and we know that one arc of each 

circle lies entirely inside the other circle, and one arc lies outside.  We also know that, in 

the situation pictured,  any continuous path from A to B external to both circles h and k 

must intersect x. 

 This tells us: 

 Case I:  If D lies on the exterior of h and k,(C1 in Figure 8.10) then arc ACB, and 

therefore circle ACB, will intersect x, and triangle ACB has no circum-circle. 

 Case II:  If C lies on h or k, then the e-circle through A, B and C is the horocycle 

h or k, and the circumcircle does not exist. 

 Case III:  If C lies inside both h and k,(C2) then the arc AB not containing C lies 

outside both h and k, and intersects x, and the circumcircle fails to exist. 

 Case IV:  If C lies inside h and outside k,(C3) (or inside k and outside h) then the 

arc AB not containing C lies inside k and outside h, (or outside k and inside h) and does 

not intersect x, and the circum circle exists. 
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 So the condition for the existence of the circum circle is that any vertex of the 

triangle must lie in the interior of one, but not both, of the horocycles containing the other 

two.  This is rather wordy and difficult to check.  We can do much better. 

 Consider the construction illustrated in Figure 8.10 and reflect in the mirror that 

will send the perpendicular bisector of side AB to the y-axis.  The images of A and B will 

be horizontally related, the image of horocycle h will be the horizontal e-line AB, and the 

image of k will be the e-circle through A, B and O (the origin).  If the image of C lies 

below AB, we reflect in line AB.  This will place C above line AB and will map the 

horocycles to each other.  This arrangement is illustrated in Figure 8.11 

 

Figure 8.11  The relationship between horocycles and circum-circles II 

 The interior of the horocycle h is the portion above it, so the region interior to h 

and exterior to k is the region lying above the darkened line.  This is where C must lie for 

the circum-circle to exist. (It cannot lie inside k and outside h because that region lies 

below line AB and C lies above.)  We know that if C lies on h or k, then the circum-circle 

does not exist, but it will be helpful to examine this situation. 
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 Assume that C lies on k, and remember the following facts from our discussion of 

horocycles in Chapter VI. (Figure 8.11)  First, that the non-zero angles of a singly 

asymptotic triangle inscribed in a horocycle are congruent.  This tells us that angles 

ACO≅CAO, BCO≅CBO and ABO≅BAO.  Second, that each of these non-zero angles is 

the angle of parallelism associated with one half the length of the finite side of the 

triangle, or ABO=Π(AB/2).  Taken together, these give us: 
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 Suppose, now, that C lies above the darkened line, (inside h but outside k).  This 

is the case in which the circum-circle exists. (Figure 8.12) 

 

Figure 8.12  The relationship between horocycles and circum-circles III 

Let C' be the intersection of line CO and horocycle k.  We can see that: 
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This is the case where the circum-circle exists.  By a similar argument, if C lies inside 

both h and k, (beneath the darkened line and above segment AB) and C' the intersection 

of line CO and horocycle k, we get: 
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 The case where C lies in the exterior of both horocycles can be handled by adding 

the assumption that angle ACB is the largest angle.  Figure 8.13 shows that if C lies 

outside (below) h, then angle ACB is not the largest angle. 

 

Figure 8.13  The relationship between horocycles and circum-circles IV 

This gives us our condition for the existence of the circumcircle for triangle ABD: 
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Theorem 8.3:  The circumcircle exists for a given triangle iff the measure of any one of 

its angles is less than the sum of the measures of the other two angles plus twice the angle 

of parallelism associated with half the length of the longest side. 
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AB
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Note that two angles of every triangle fit this condition by virtue of their not being the 

largest, so we only need to check the largest angle. 

 We may think of this condition in the following way:  As the largest angle grows 

such that it exceeds the sum of the other two angles, the angle of parallelism associated 

with the length of the opposite side must grow larger, meaning that the opposite side, the 

longest side, must grow smaller.  In other words, the circum-circle exists for ‘very’ 

obtuse triangles, provided they are ‘very’ small. 
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Appendix 
Constructions 

 

 These are some of  the basic constructions for the three models of hyperbolic 

geometry discussed in Chapter III.  The instructions are appropriate for both pencil-and-

paper constructions as well as for dynamic geometry software such as Cabri II.  Macros 

for most of these constructions in Cabri II are included on a CDRom with this thesis, as 

well as a demonstration version of Cabri II. 

 In the figures, original and final objects are drawn solid, while intermediate 

objects are dashed.  

Constructions in Euclidean Space 

Construction E.1 (Orthogonal Circles): Given a circle c with center C, and a point P 

outside c, construct the circle p with center P that is orthogonal to circle c. (Figure A.1) 

1)  Draw circle a on diameter PC 

2)  Circles a and c intersect in point Q 

3)  Draw circle p centered at P through Q 

 

Figure A.1  Constructing a circle orthogonal to a given circle 
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 Segments PQ and CQ are radii of circles p and c respectively, and are orthogonal 

because angle PQC is inscribed in a semi-circle. 

Construction E.2 (Inversion): Given a circle c with center C and a point P, construct 

the image P' of P under inversion in circle c. 

Case I: P lies inside c (Figure A.2) 

 1)  Draw the line l through C and P 

 2)  Draw the line m perpendicular to l at P 

 3)  Line m and circle c intersect in Q 

 4)  Draw line n tangent to c at Q 

 5)  Lines n and  l intersect in P' 

 

Figure A.2  Constructing the image of a point under inversion I 

Case II:  P lies outside c (Figure A.3) 

 1)  Draw line l through P and C 

 2)  Draw circle a on diameter PC 

 3)  Circles a and c intersect in Q 

 4)  Draw line m through Q perpendicular to l 

 5)  Lines l and m intersect in P' 
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Figure A.3  Constructing the image of a point under inversion II 

In both cases, triangles CPQ and CQP' are similar by AAA, so CP·CP' = CQ². 

Constructions in KDM 

Construction K.1 (Line/Segment):  Given two points A and B, construct the 

line/segment through them. 

 1)  Draw the Euclidean line/segment l through A and B 

Construction K.2 (Polar Point):  Given line l, construct the polar point L of l. (Figure 

A.4) 

 1)  Line l has ideal points P and Q 

 2)  Draw the tangents m and n to d at P and Q respectively 

 3)  Lines m and n meet at L 
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Figure A.4  Constructing the polar point of a line in KDM 

Point L is the polar point of line l by definition of the polar point in KDM. 

Construction K.3 (Perpendicular): Given a line l and a point A, construct the line p 

through A perpendicular to l. (Figure A.5) 

 1)  Draw point L, the polar point of L 

 2)  Draw line p through points L and A 

 

Figure A.5  Constructing perpendiculars in KDM 

Line p is perpendicular to l by the definition of parallel in KDM. 
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Construction K.4 (Perpendicular Bisector/Midpoint): Given two points A and B, 

construct C and p, the midpoint and perpendicular bisector of segment AB. (Figure A.6) 

 1)  Draw line m through A and B 

 2)  Draw the polar point M of line m 

 3)  Draw e-line AM 

 4)  Line AM cuts d in P such that P is between A and M 

 5)  Draw e-line BM 

 6)  Line BM cuts d in Q such that B is between Q and M 

 7)  Draw e-line PQ 

 8)  Line PW cuts m in C 

 9)  Draw line p through C perpendicular to m 

 

 

Figure A.6  Constructing the perpendicular bisector/midpoint in KDM 

Angles ACP and BCQ are congruent (vertical) so segments AC and BC are congruent 

since they have the same angle of parallelism. (Angles CBQ and CAP are right angles) 
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Construction K.5 (Angle Bisector): Given three points, A, B and C in KDM, construct 

line n, the angle bisector of angle ABC. (Figure A.7) 

 1)  Let ray BA cut d in P 

 4)  Let ray BC cut d in Q 

 5)  Draw line PQ 

 6)  Draw line n through B perpendicular to line PQ 

 

Figure A.7  Constructing the angle bisector in KDM 

Since line n is perpendicular to line PQ, angles ABX and CBX are both the angles of 

parallelism associated with the distance of B from PQ, and therefore congruent. 

Construction K.6 (Mutual Perpendicular): Given two lines l and m in KDM, construct 

the line p perpendicular to both l and m. (Figure A.8) 

 1)  Draw the pole L of l 

 2)  Draw the pole M of m 

 3)  Draw the e-line p through L and M 
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Figure A.8  Constructing the mutual perpendicular to two lines in KDM 

Because line P passes through the polar points of both l and m, it is perpendicular to both. 

Construction K.7 (Reflection of a Point in a Line): Given a line l and a point A, 

construct the reflection A' of A in l. (Figure A.9) 

 1)  Draw line m through A perpendicular to l 

 2)  Line m meets line l in C 

 3)  Draw line n through A perpendicular to m 

 4)  Line n meets d in P and Q 

 5)  Draw the e-line through P and C, cutting d in R 

 6)  Draw the e-line through M and R, cutting m in A' 
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Figure A.9  Constructing the reflection of a point in a line in KDM 

The justification for this construction is the same as for Construction K.5 

Construction K.8 (Circle): Given two points C and A, construct the circle centered at C 

with radius CA. (Figure A.10) 

 1)  Draw line AC 

 2)  Draw line OC 

 3)  Draw A', the reflection of A in OC 

 4)  Draw A'', the reflection of A' in AC 

5) Draw the Euclidean circle through A, A' and A'' 
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Figure A.10  Constructing a circle in KDM 

The three points A, A' and A'', are all equidistant from C, and, therefore, lie on the circle 

centered at C.  The Euclidean circle through the three points is the hyperbolic circle. 

Constructions in PDM 

Construction P.1 (Polar Point/Line/Segment):  Given two points A and B, construct P 

and l, the polar point and line/segment through them. (Figure A.11) 

Case I:  A and B collinear with the center O of d. 

 1)  Line l is the e-line through A and B (and O) 

Case II:  A and B are not collinear with the center O of d. 

 1)  Draw A', the Euclidean inverse of A in d 

 2)  Draw the e-perpendicular bisector m of segment AB 

 3)  Draw the e-perpendicular bisector n of segment AA' 

 4)  Lines m and n intersect in ultra-ideal point L, the polar point of line l 

 5)  Draw the e-circle l with center  L and radius LA 
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Figure A.11  Constructing the line/segment in PDM 

Since l contains a pair of inverse points under inversion in d, l and d are orthogonal. 

Construction P.2 (Perpendicular): Given a line l and a point A, construct the line p 

through A perpendicular to l. 

Case I:  Line l is through O (Figure A.12) 

 1)  Draw A', the inverse of A in d 

 2)  Draw the e-perpendicular bisector m of segment AA' 

 3)  Line m intersects l in P (l will need to be extended) 

 4)  Draw e-circle p with center P and radius PA 

 

Figure A.12  Constructing a perpendicular in PDM I 
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Case II:  Line l is not through O (Figure A.13) 

 1)  Draw the Euclidean inverse A' of A in d 

 2)  Draw the e-line m through Q and R, the ideal points of l 

 3)  Draw the e-perpendicular bisector n of segment AA' 

 4)  Lines m and n intersect in P 

 5)  Draw e-circle p with center P and radius PA 

 

Figure A.13  Constructing a perpendicular in PDM II 

In both cases, p contains a pair of inverse points, A and A' under reflection in d, so p is 

orthogonal to d.  In the first case, since P is on l, p is orthogonal to l, and in the second, P 

is on the radical axis of l and d, so p is orthogonal to l.  Both constructions also works if 

A is on l.  In the second case, if e-lines l and m are parallel, then line OA is perpendicular 

to line l. 

Construction P.3 (Perpendicular Bisector/Midpoint): Given two points A and B, 

construct C and p, the midpoint and perpendicular bisector of segment AB. (Figure A.14) 

 1)  Draw e-line l through A and B 

 2)  Draw e-circle c on diameter AB 

 3)  Draw the radical axis r of c and d 
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 4)  line r intersects l in P 

 5)  Draw e-circle p with center P orthogonal to d 

 

Figure A.14  Constructing the perpendicular bisector/midpoint in PDM 

Since P is on the radical axis of the circles p and d, it is orthogonal to c, and since it is on 

the line AB, inversion in p will map A to B, so it is the perpendicular bisector of segment 

AB.  Line p intersects segment AB at its midpoint. 

Construction P.4 (Angle Bisector): Given three points, A, B and C in KDM, construct 

line l, the angle bisector of angle ABC. (Figure A.15) 

 1)  Draw the inverse B' of B in d 

 2)  Draw n the e-perpendicular bisector of segment BB' 

 3)  Ray BA meets d in P 

 4)  Ray BC meets d in Q 

 5)  Draw line e-line t through P and Q 

 6)  Lines n and t intersect in L 

 7)  Draw e-circle l with center L and radius LB 



 

143 

 

Figure A.15  Constructing the angle bisector in PDM 

Since l is orthogonal to d, inversion in l maps P and Q to each other, and leaves B fixed. 

Construction P.5 (Mutual Perpendicular): Given two lines l and m in KDM, construct 

the line p perpendicular to both l and m. (Figure A.16) 

 1)  Draw r, the radical axis of e-circles d and l 

 2)  Draw q, the radical axis of e-circles d and m 

 3)  Lines r and q intersect in ultra-ideal point P 

 4)  Draw p, the e-circle centered at P and orthogonal to d 

 

Figure A.16  Constructing the mutual perpendicular in PDM 

Since P is on the radical axis of both d and l, and d and m, p is perpendicular to l and m.  

Should r and q be perpendicular, then the line through O perpendicular to l is also 
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perpendicular to m. 

Construction P.6 (Reflection of a Point in a Line): Given a line l and a point A, 

construct the reflection A' of A in l. 

Case I:  Line l contains O 

 1)  Draw point A', the image of A under reflection in the e-line l 

Case II:  Line l does not contain O 

 1)  Draw point A', the image of A under inversion in the e-circle l  

Construction P.7 (Circle): Given two points C and A, construct the circle centered at C 

with radius CA. (Figure A.17) 

 1)  Draw line AC 

 2)  Draw line OC 

 3)  Draw point A', the reflection of A in OC 

 4)  Draw point A'', the reflection of A' in AC 

 5)  Draw the e-circle c through A, A' and A'' 

 

Figure A.17  Constructing the circle in PDM 

Segments CA, CA', and CA'' are all congruent, so circle c will contain all three.  The e-

circle c is the hyperbolic circle. 
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Constructions in UHP 

Construction U.1 (Line/Segment): Given two points A and B, construct l, the 

line/segment through A and B. (Figure A.18) 

Case I:  Points A and B are vertically related 

 1)  Draw the vertical e-line through A and B 

Case II:  Points A and B are not vertically related 

 1)  Draw p, the Euclidean perpendicular bisector of e-segment AB 

 2)  E-line p meets x in L 

 3)  Draw e-circle l with center L and radius LA 

 

Figure A.18  Constructing the line/segment in UHP 

Construction U.2 (Perpendicular):  Given line l and point A, construct line m through A 

perpendicular to l. (Figure A.19) 

Case I:  Line l is of vertical e-line type 

 1)  Line l meets x in M 

 2)  Draw e-circle m with center M and radius MA 

Case II:  Line l is of e-circle type and A is on l 

 1)  Draw e-line n through A tangent to l 

 2)  Line n meets x in P 

 3)  Draw e-circle m with center P and radius PA 
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Case III:  Line l is of e-circle type and A is not on l 

 1)  Draw A', the Euclidean inverse of A in l 

 2)  Draw e-line n, the perpendicular bisector of e-segment AA' 

 3)  Line n meets x in P 

 4)  Draw e-circle m with center P and radius PA 

 

Figure A.19  Constructing perpendiculars in UHP 

The first and second cases are obvious.  In the third, A and A' are inverses in l and are 

both on m, so m maps to itself under inversion in l, and is therefore orthogonal to l. 

Construction U.3 (Perpendicular Bisector/Midpoint):  Given two points A and B, 

construct C and p, the midpoint and perpendicular bisector of segment AB. 

Case I:  Points A and B are horizontally related 

 1)  Draw e-line m, the Euclidean perpendicular bisector of e-segment AB 

 2)  Line m meets segment AB in C 

Case II:  Points A and B are not horizontally related (Figure A.20) 

 1)  Draw line l through A and B 

 2)  Draw e-line m through A and B 

 3)  Line m meets x in P 

 4)  Draw e-circle p centered at P orthogonal to l 

 5)  Line p meets line l in C 



 

147 

  

Figure A.20  Constructing the perpendicular bisector/midpoint in UHP 

Inversion in p maps l to itself.  Since A and B are on l and collinear with P, they map to 

each other, and m is the perpendicular bisector of segment AB. 

Construction U.4 (Angle Bisector): Given three points A, B and C, construct line l, the 

angle bisector of angle ABC. (Figure A.21) 

Case I: Points A and B (or B and C) are vertically related 

 1)  Ray BC meets x in L (if B is above A, then ray CB meets x in L) 

 2)  Draw e-circle l with center L and radius LB 

Case II: Neither A and B, nor B and C are vertically related 

 1)  Choose point D on vertical e-line through B 

 2)  Draw e-circle d with center D orthogonal to e-circle BC 

 3)  Circle d intersects rays BA and BC in E and F respectively 

 4)  Draw e-line e through E and F 

 5)  Line e meets x in L 

 6)  Draw e-circle l with center L orthogonal to d 
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Figure A.21  Constructing the angle bisector in UHP 

In Case I, inversion in e-circle l will send L to Z and leave B fixed, therefore rays BA and 

BC are sent to each other, and l is the angle bisector of ABC. 

In Case II, D is on the radical axis of e-circles AB and BC, so e-circle d is orthogonal to 

both AB and BC.  Since l is orthogonal to d and L is collinear with E and F, inversion in l 

will send E and F to each other.  By preservation of angles, this sends rays BA and BC to 

each other, so B is fixed (on l) and l is the angle bisector of angle ABC. 

Construction U.5 (Mutual Perpendicular): Given two lines l and m, construct the line 

p perpendicular to both l and m. 

Case I:  Line l is of  vertical e-line type (Figure A.22) 

 1)  Line l meets x in P 

 2)  Draw e-circle with center P orthogonal to m 

 

Figure A.22  Construction of the mutual perpendicular in UHP I 
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Case II:  Both lines are of e-circle type (Figure A.23) 

 1)  Draw any e-circle a centered above x that intersects both l and m 

 2)  Circle a intersects l in A and B, and m in C and D 

 3)  Draw e-line n through A and B and e-line q through C and D 

 5)  Line n intersects q in E 

 6)  Draw e-line r through E perpendicular to x 

 7)  Line r intersects x in P 

 8)  Draw circle p with center P orthogonal to l 

 

Figure A.23  Construction of the mutual perpendicular in UHP II 

In Case I, line p is obviously perpendicular to l. 

In Case II, P lies on r, the radical axis of l and m, and since p is perpendicular to l, it is 

also perpendicular to m. 

Construction U.6 (Reflection of a Point in a Line):  Given a line l and a point A, 

construct the reflection A' of A in l. 

Case I:  Line l is of the vertical e-ray type 

 1)  Draw the Euclidean reflection A' of A in e-line l 

Case II:  Line l is of the e-circle type 

 1)  Draw the Euclidean inverse A' of A in e-circle l 
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Construction U.7 (Circle):  Given two points C and A, construct the circle centered at C 

with radius CA. (Figure A.24) 

 1)  Draw the vertical e-line l through C 

 2)  Draw line m through C and A 

 3)  Draw point A', the reflection of A in l 

 4)  Draw point A'', the reflection of A' in m 

 5)  Draw the e-circle through A, A' and A'' 

 

Figure A.24  Constructing the circle in UHP 

Segments CA, CA', and CA'' are all congruent, so circle c will contain all three.  The e-

circle c is the hyperbolic circle. 
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