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Many discrete response variables have counts as possible outcomes. Poisson
regression has been recognized as an importanttool for analyzing count data.
This technique includesthe simple Poisson generalized linear model and
mixtures of independent Poisson models as special cases. Generalized linear
models have been found useful in many statistical analysis.

Count data analyzed under such models often exhibit overdispersion. In many
practical circumstances the restriction that the mean and variance are equal is
not realistic. Especially, when there is overdispersion in the data, a conditional
negative binomial mixed model, given some random effects, could be an

attractive alternative.



This paper focuses on the data analysisusing mixed Poisson regressions and
mixed Negative Binomial regressions.
The motivation comes from attempts to analyze habitat use from the snow

tracking data.
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Chapter 1

GENERALIZED LINEAR MODEL

This chapter presents the concepts for a generalized linear model. These
models provide a unified theoretical and conceptual framework for many of the
most commonly used statistical methods. The class of generalized linear
models is a natural generalization of classical linear models. We introduce the
concept of generalized linear models with three examples, sections 1.1to 1.3.
Section 1.4 gives the parameter estimation, which is maximum likelihood
estimation, and Section 1.5discusses the definition of generalized linear

models.



1.1. Birthweight Example

The data in Tablel. 1are the birthweights (g) and estimated gestational ages
(weeks) of 24 babies born in a certain hospital. The data are shown in the
scatter plot in Figure 1.1. The question of interest is how to model the apparent

linear trend of birthweight increasing with gestational age.

Age 40 38 40 35 36 37 41 40
(Weeks)
Birth
Weight | 2968 | 2795 | 3163 | 2925 | 2625 | 2847 | 3295 | 3473
(8)
Age 40 36 40 38 42 39 40 37
(Weeks)
Birth
Weight | 3317 | 2729 | 2935 | 2754 | 3210 | 2817 | 3126 | 2539
(8)
Age 37 38 40 38 36 38 39 40
(Weeks)
Birth
Weight | 2628 | 3176 | 3421 | 2975 | 2412 | 2991 | 2875 | 3231

(8

Table 1.1. Bithweight and gestational age for 24 babies.

Figure 1.1shows one or more observations for each gestational age. In order
to constructa model, we use the sample mean of birthweights for each
gestational age. Figure 1.2 shows a straight line placed to approximatethe
upward trend of these birthweight means. Neither the mean nor the individual

data points lie exactly on this line.
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Figure 1.1.Bithweight and gestational ages for 24 babies.
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Figure 1.2. A line using mean values of birthweight.

The distance from data point to the line is denoted as ¢, for k=1,...,24 and

assume that the ¢, ’s are statistically independent and all have the same
3



probability distribution, Gaussian with mean 0 and constant variance &, this
is denoted by &, ~N(0, o?).

A general statistical model for these data may be given by
Y, =a t fx, t¢&, wherethe response ¥, is the birthweight for the k-th baby
(k=1,...,24), the parameter a represents the intercept of the line, the parameter
P representsthe slope or rate of increase of average birthweight with age, and
the independent variable x, is the age for the k-th baby.

We might consider birthweight to be a normal random variable, ¥, , because it

is continuous, and E( &, ) =0, sowe have E(Y,) = a + f, , then it follows

that ¥, is N(E(Y,), o).

1.2. Horseshoe Crabs and Satellite Example

These data are from a study of nesting horseshoe crabs. Each female
horseshoe crab in the study had some number of male crabs, called satellites,
residing nearby her. Satellite males form large groups around female horseshoe
crabs. This results in a nonrandom distribution that cannot be explained by
local environmental conditions or habitat selection. A. Agresti (1996)
presented a data analysis of the habitat of horseshoe crabs. The study

investigated factors that affect how many male crabs each female crab had.



Explanatory variables that might affect the study include the female crab’s
color, spine condition, weight, and carapace width. The response outcome for
each female crab is her number of satellites. For now we use width alone as a
predictor of the response. This variable is measured in centimeters.

Figure 1.3 plots the response counts against width. There are many different
observationsfor each width, and the substantial variability in counts makes it
difficult to discern a clear pattern. To obtain a clearer picture of overall trend,
we group the female crabs into a set of width categories,( < 23.25,23.25-
24.25,24.25-25.25,25.25-26.25, 26.25-27.25,27.25-28.25,28.25-29,25, >
29.25) and calculatethe sample mean number of satellites for female crabs in

each width category.

o
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Numb er.of Satelites
-~
)

N
1.

0 . N WEmEmeme mENES Smm © 90 Ox4

T T T T T T T —
20 22 24 26 28 30 32 34
Width

Figure 1.3. Number of satellites by width of female crab.



Figure 1.4plots these sample means against the sample mean width for crabs
in each category. The sample means show a strong increasing trend with width.
The trend seemsto be approximately linear, or a smooth curve.

We discuss models for which the mean or the log of the mean is linear in
width. Let x denote the expected number of satellites for a female crab, and
let x denote her width. A statistical model that is often used for count data is
the Poisson distribution. Using this distribution leads to a Poisson regression

model with identity link, x =a, * ,x orthe Poisson loglinear model with log

link, logu =a, t4,x.

Number.of Satelit s
w -~
\
\\
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[N]
AN

22 24 % 28 30
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Figure 1.4.Smoothing of horseshoe crab counts.

Figure 1.5 plots the fitted number of satellites against width, for models with

log link and with identity link,
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Figure 1.5.Estimated mean number of satellites for log and identity links.

1.3. Space Shuttle Challenger Accident Example

These data are from the space shuttle Challenger accident in 1986 (Dalal,
Fowlkes and Hoadley ‘Risk analysis of the space shuttle: Pre-Challenger
Prediction of Failure’, in JASA, 1989). On January 28, 1986 Americawas
shocked by the destruction of the space shuttle Challenger, and the death of its
seven crew members.

The investigation concluded that the accident was caused by a combustion gas
leak in ajoint, which resulted from the failure of a device called an O-ring. An

O-ring does not work properly at low temperatures. The temperature of the O-

rings at the time of the Challenger launch was 31°F.The data are from the 23

7



preaccident launches of the space shuttle and were used to predict O-ring
performance under the Challenger launch conditions. There were 6 O-rings in
the shuttle. On the night of January 27, the night before the accident, there was

a teleconference among the engineers. The discussion focused on the forecast

of 31'F temperature at launch time the next morning, and the effect of low
temperatures on O-ring performance. The data used by them are plotted in
Figure 1.6.Each plotted point represents a shuttle flight that experienced
thermal distress on the O-rings; the X axis shows the temperatures at launch
and the Y axis shows the number of O-ring failures, Based on the U-shaped
configuration of points, it was concluded that there was no evidence from the

historical data for atemperature effect.

3.0

N-P>er.ofOring.F N es
N N

o o
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Figure 1.6. Temperaturesversus the number of O-ring failures

with incidents (1).



After this accident, the engineers noted that a mistake made in the analysis of
these data (Figure 1.6)was that the flights with zero number of O-ring of
failures were left off the plot because it was felt that these flights did not
contribute any information about the temperature effect. After the accident,

they reanalyzed using all of the data.

Nunber.of.O.fing.F ilures
= b o Ind w
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50 55 60 65 70 75 80
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Figure 1.7. Temperatures versus the number of O-ring failures

with incidents (2).

Figure 1.7 shows a plot of the number of O-ring failures versus temperature
for 23 shuttle flights. This is the same plot as Figure 1.6 with the flights with
zero incidents. This suggeststhat aside from one point (75,2), there is a
tendency for the number of O-ring failuresto decrease with increasing

temperature as depicted in Figure 1.8.
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Figure 1.8.Decreasing tendency between incidents and temperatures.

A statistical model appropriate for these data follows.

If p(r) denotes the probability of a O-ring failure for a given temperature,

t, p(r) is a decreasing function with increasing temperature. We can

consider p(f) =at g . There are two possible approaches to a model for

these data. One is using the Binomial probability distribution and the other is

using the Bernoulli probability distribution.

If X isthe number of O-ring failures, then X has a binomial

distribution with n=6 (total number of O-ring in the shuttle). The probability

function for the number of failures is given by

P(X =x)= (Z) p(®)* (L-p()"™ where p(r) =a* S . The expected value

10



of X is E(X) =np(t) =n(a+pfr).
This model has a weakness. There would be values t for which p(r) <0 or
p(®)>1. Relationshipsbetween p(r) and t are better modeled nonlinearly

rather than linearly.

A fixed changein ¢ may have less impact when p(¢) is near 0 or 1than when
p(?) is near the middle of its range. In practice, nonlinear relationships
between p(¢) and ¢ are often monotonic, with p(f) decreasing continuously as
t increases. For this we turn to a logistic regression model.

t
The logistic regression model is Iog[lfézt)] —at+p,

An alternative approach is to look at the probability of any O-ring damage.

Denote Y as follows:

Y Z if there was one or more O-ring failures.
otherwise

Y is a binary random variable with the probability p“(¢) of at least one O-
ring incident. Note that Y =0 iff X =0, and pand p* canbe compared with

p* () =1-(1-p@))" where P(Y =1)=p"(¢) . The logistic regression model

for this approach is log [1 14 ('tzt)} =a" + /'t . The expected value of Y is
-P

11



ea'+ﬂ't

EX)=p (t)=1 @A .
For each of these situations, the data are a realization of a random process,
which means that we must use the probability model functions to relate the

data to the parameters of the models.

1.4. Parameter Estimation
Generally the parameters of the model are estimated using the method of

maximum likelihood. We describe this approach using an example below.

[Maximum Likelihood Estimation]
For the Gaussian distribution with meanp ,and standard deviation o, the

probability model for one data point is

1
2no?

f(y;u,o){ )2 exp[-(y~u)* /20°].

And for the model with N data points, it is

N

f(y;u,a):[ ! 2]7 xpl-3 (3, — ) 120°].

2no i=1

Using a model x, =a* f, to relate an explanatory variable, X ,to the mean

of Y ,the probability model becomes

12



1
2no?

f(y;a,ﬂ,a)=( )2 eXP[—Z(y,-—(a+ﬂx,-))2/202]-

Estimates of a and £ are found by maximizing ¥ .

1.5. Generalized Linear Model (GLM)

Generalized linear models (GLMs) extend linear models to accommodate
both non-linear response distributions and transformationsto linearity. All
generalized linear models have three components. These are the random

component, the systematic component and the link function.

1.Therandom component: For a sample size N, let 1},7,.....Y,, denotethe
observations on the response variable Y . The GLM treats (1,,Y,,....Y,,) as

sequence of independent observations. The random component of a GLM
consists of identifying the response variable Y and selecting a probability

distributionto describe it.

In section 1.1, we assumed a Normal error regression for birthweight. In
section 1.2, we used a Poisson distribution for satellites. In section 1.3,we
presented two possible models. A model for O-ring failures using a Binomial
distribution, and a model for the damage of any O-ring using a Bernoulli
distribution.

13



2.The systematic component: The systematic component of a GLM specifies

the x,,x,,..,x, variables. These enter linearly as predictors on right hand side

of the model equation. That is, the systematic component specifies the

P
in the formula ) _ o, . This linear

variables that play the roles of x, ,x,,....x,

combination of the covariates is called the linear predictor 7 given by

n :Zaixi

i=1

In each example, the linear predictor involves a simple model with one

covariate. The linear predictoris a + fx.

3. The link function: the link function relates the linear predictor 7 to the

expected value, i ,0f adatum Y .So we write a link function as this form

n=g).

In the birthweight example, the link function is identity link,
ie. E(Y,) = 4 =a+ fx, Forthe horseshoe crabs and satellite example, two
link functions were used, identity and log link, i.e. u =a, + g,x or

log 4 =a, t B,x . In the Challenger accident example, the link function is the

14



logit link, i.e. log [——B—(l} =a* & but this function is a function of 4 . For

1- p(?)

the Binomial 4 = E(X) =np(f) was used.

15



Chapter2

MIXED POISSON REGRESSIONS USING

GENERALIZED LINEAR MODELS

This chapter discusses a specific type of generalized linear model. The model
uses Poisson regression and a mixture of independent Poisson regressions as

special cases.

Section 2.1 introduces data and analyzes them with a Poisson generalized
linear model. Section 2.2 discusses mixed Poisson regression models. Section
2.3 and section 2.4 describe the parameter estimation, model selection, residual
analysis, and goodness-of-fit. Section 2.5 shows data analysis with mixed

Poisson regressions.

16



2.1. Poisson Generalized Linear Model

In this section we analyze data with a generalized linear model. The data are
from a clinical trial carried out at British Columbia’s Children’s Hospital
which investigated the effect of intravenousgammaglobulin (IVIG) on
suppression of epileptic seizures (Wang, Puterman, Cockburn and Le, 1996).
Subjectswere randomized into two groups. After 28 days of baseline
observation the treatment group received monthly infusions of M G . The
primary end point of the trial was the daily seizure frequency. The principal
data source was a daily seizure diary that contained the number of hours of
parental observation and the number of seizures of each type during the
observation period. The number of seizures depends on how long parents
observed their children during the trial. The more time they see their children,
the larger number of seizuresthey can count.

We use Poisson regressionto analyze the seizure counts from a single subject

receiving IVIG. The data extracted from the seizure dairy were the daily

counts, y, and the hours of parental observation, ¢,, for the i-th day (Figure
2.1).As covariates we use treatment (x;,, ), trend (x,,) and treatment-trend
interaction (x,, ), where
x,=,1 ifthereisatreatment (1> 28) (2.1)
<O otherwise, (i < 28)

X, = log(¥) (22)
17



Xi3 = Xy Xy (2.3)

Seizures
3

1 7 13192531 37 4349 55 61 67 73 79 85 91 97103109115121127133139
Day

Figure 2.1. Daily seizure counts.

We have a generalized linear model using Poisson regression with covariates
(2.1), (2.2), (2.3) and a log link function. We apply the generalized linear

model assuming that:

(1) Each daily observed seizure count, y, , is associated with time

exposure (observation hours), ¢, , and covariates x;, = (x,, ,X,, ,X;; );

18



(2) Daily seizure counts are independent and follow a generalized linear model
with means equal to the product of observationtime (¢, ) and the Poisson

rate (number of seizures per hour). Rates are specified by the log link

function, which are log A(x,, @) =exp(e, ta,x, ta,x, *a,x,;) where

Recall that the Poisson density function of Y, is
FO, 12)= 00, |zi)=;‘j—!sz exp(-1,)
The mean is A, = £,A(x,, @) =1, exp(a-X,)
50 (3 15,4,8)= —(, Xpla )" eXp(-1, xpla x,)

The maximum likelihood parameter estimates obtained for this model are

a = (-2.9484,-2.1525, -1.8768, 0.6551).

Figure 2.2 compares the model fit to the data. The right-hand side shows the
fitted values of this Poisson regression and the left-hand side shows the
original data. The two plots do not look similar, and we may conclude the

Poisson generalized model does not fit the data well.

19
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Figure 2.2. The fitted values of the Poisson generalized linear model.

Since the data are being modeled, each response value, Yy, , is not exactly
equal to the model's parameters (called a fitted value and denoted ;). The

question then arises of how discrepant they are, because while a small
discrepancy may be tolerable a large discrepancy is not. A measure of
discrepancy is called goodness of fit. It may be formed in various ways, but we

will consider only the Pearson residual. The Pearson residual (residual) has this

yi_[li

yvar(i,)

form:

There are three tools to access goodness of fit; (1) A scattered plot of the

residuals versus the fitted values. (2) A Normal QQ plot of the residuals.

20



(3) The calculation of a goodness of fit statistic.

If data are fit well, these residuals are randomly scattered around O on the Y-
axis and QQ plot shows a straight line.

The goodness of fit statistic is computed by summating the squares of Pearson
residuals. If the data is fit, this result will follow a probability distribution
called Chi-squared (Mood, A. M, Grabill, F.A., Boes, D.C. 1973). Small
values relative to the parameter of Chi-squared distribution indicate a goodness

of fit to the data.

Figure 2.3 presents both residual plot (top) and QQ plot (bottom). The
residuals are not scattered randomly around 0 on the Y-axis nor is the QQ plot
straight. This indicates these seizure data are not well fitby a Poisson

regression model.

21
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Figure 2.3. The Residual plot and the QQ plot for the Poisson

generalized linear model.

For this model, the goodness of fit statisticis 8162.072 on 136 degrees of

freedom. This value exceedsthe upper 95% critical point of the 2,

distribution, suggesting that there is an evidence of a lack of fit.
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Now, we proceed to analyze this data with a mixed model.

2.2. Mixed Poisson Regression Models

Wang, Puterman, Cockburn and Le (1996) presented a mixed Poisson
regression model analysis of the seizure data. This is their approach.

Let the random variable ¥, denote the z-th response variable and let

{(y, 2,,x,),1=1,...,n} denote observationswhere y, is the observed value of
Y ,t, anon-negative value representing the time or extent of exposure and x,
a k-dimensional covariate vector corresponding to the linear predictor part of
the model. Usually the first element of x, isa 1 correspondingto an intercept.

Our mixed Poisson regression model assumes:
(1) The unobserved mixing process can occupy any one of ¢ states where c is

finite and unknown;

(2) For each observed count, y, ,there is an unobserved random variable, A, ,
representing the component at which y, is generated. Further, the (¥, ,A;)
are pairwise independent;

(3) A, follows a discrete distribution with ¢ points of support, and Pr(A;=j)
= p, Where > p =I;
j=1

(@ Conditional on A,=j, ¥, follows a Poisson distribution which we denote by
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1
f (.y | ._x’ 1’—-—]) P(yxl =i z’_])- —2’51 exp(—)'ij) (24)
il
where
Ay =t A, (x,, @)=t exp(a,Xx,), forj=1,....c,
with a =(a,,...,a,)" denoting unknown parameters, and & ; =(a a5 Lay),

Jj=1,...,c.

Note that we could also choose another positive link function.

The above assumptions define the unconditional distribution of the

observations, y, , as a finite Poisson mixture in which the mixing probabilities,
p, ,are constant and the component distributions are Poisson distributions with
means, 4, ,which is determined by the exposure, ¢ , and by the Poisson rate,

A, (x;,2,),which is related to covariates x, through a log link function.

Under the above assumptionsthe probability function of ¥, satisfies

SO 2.8, 2, p)= ZP,P()’ | 44) (2.5)

where Z,(y, |A,) isgivenby (4), and p =(p,,...,p.)" isan unknown

parameter vector.
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We may equivalently view the model as arising from the following sampling
scheme. Observations are independent. For observationi, componentj is

chosen according to a multinomial distributionwith probability p ;.
Subsequently, y; is generated from a Poisson distributionwith mean A .

When the data are observed, the source (i.e. component) of the observation is

unknown.

For the above model, the unconditional mean and variance of ¥, are,

H

respectively,

C

EX)=EET |A)=1Q P4 and
Jj=

Var(Y)=E(WVar(Y,|A)) + Var(E(, | A,))

2
=12 Pk ’f{zpﬂgz—{zpf%} }
=1 =1 j=

Obviously,Var(E(Y, | A;))=0ifand only if 4, =4, =...=4,.
2.3. Parameter Estimation

For a fixed number of components c, we obtain maximum likelihood
estimates of the parameters in the above model using the EM algorithm as first
suggested by Dempster et al. (1977). They described a general method for

computing maximum likelihood estimateswhen observations are missing. For
25



the mixture model estimation, we implementthe EM algorithm by treating

unobservable component membership of the observations as missing data.

We discuss the choice of the number of components later.

Supposethat (¥, X,T) = {(¥,,¢,,x;), i=1,...,n} are the observed data

generated by the above mixture model. Let (Y,Z, X )T )= {(V: 2 o %),
i=1,...,n} denote the complete data for the mixture, where the observed
quantity z,=(z,, ,..,2, )" satisfies

z,=1 if A,=]

v

0 otherwise.

The log of the probability function Y for the complete data is

f.Z,a,p,X,T)= 3 3 z,log(p;) + 3 > z,log K, (v | 4;)-

i=1 j=1 i=l j=l

The EM approach finds the maximum likelihood estimatesusing an iterative
procedure consisting of two steps: an E-step and an M-step. The E-step
replaces the missing data by its expectation conditional on the observed data.
The M-step finds the parameter estimates that maximize the expected log
probability function for the complete data, conditional on the expected values
of the missing data. In our case, this procedure can be stated as follows.
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E-step. Given @@ and p®, replace the missing data Z by its expectation
conditioned on these initial values of the parameters and the observed data.
(¥, X, T).1In this case, the conditional expectation of the j -th component of z;
equals the probability that the observation y, was generated by the j-th
component of the mixture distribution, conditional on the parameters, the data,

and the covariates. Denote the conditional expectation of the j -th component

of z, by 7,,(@®,p) . Then

0)
p.Sf,ilx,t,a;”)
c

0)
Zplfl(.yi lx,.%,a;,)
1=1

g © 0y _
zi,j (g a_p_ )_

=1,..,c (2.6)

M-step. Given conditional probabilities { Z, @@, p®) = ZirsenZie)s

i=1,...,n}, obtain estimates of the parameters by maximizing, with respect to

and p,

IR

O(a, pla®,p)= E{f(¥,Z,a,p,X,D)|Y,a?, p®,X,T}

=0 +0,

where (), :ZZEIJ (a(o),p(o))log(pj) and

i=l j=1

0, =37 (@, p)og K, 14,) -

i=l =1
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Then

n c

Q. =3>7% (&, p)log(p,)

i=l j=1

=2n;['5,-,1 @@, p@)log p, % 2@, P)log p, +-++2,, (@, p)log(p,)]

c-1

:Z[?i,l (a(0)>p(0)) Iog b +El,2(a(0)’p(0)) |Og P, +---+z,._c(a(o),p(o))log(l—zlpj)]
o=

i=1

1

since > p, =1. ie. pc:l—ipj.
j=1 j=l

The estimated parameters, & and p , satisfy the following M- step equation:

an _ 1 Zi,j (a(O) > p(O)) Ex‘,c (a © > p(O))
%’", Iﬁj - Z ﬁ - c-

i=1l j 1_ ﬁj
1

—

-
1]

~ ~

d Ei,j(a<°>,p<°))_'z‘i,c<a‘°>,p‘°>)j
p} pC

So we have

Z ; (a(O),p(O)) _ Ei,c(a(O)’p(O))

— = ol 5 =0, for j=1,...,¢c-1. (2.7)
;( 5 2 ]

J

¥
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The above result yields c-1 simultaneous equations with c-1 unknowns (the

?j)'

Solving the system (2.7)yields

P, =-1—Z'zv,.,j @®,p®)  forj=1,.. ¢l (2.8)
n<

and

=337 (@, p)og Ry, | 4,)

i=1 j=l

ZZZ,J(‘Z(O) p(o))logy A, exp(=4,)

i=l j=1

=22 Z @, p (0))[logy +y,logA; - 4;]

i=l j=1

=]
(]

7, @, p)-logy,l+y,(logt, ta'x ) -1, exp(a;x,)]

J

3
3]

-7, . @®, p)ogy + D>z, (@, p©)y, logt,

i=1 =1

1
—
-,

1]
—

+ zZ,,(@®, p e x,y, 7@, pO), expla;x,) .

i=l j=1 i=1 j=1

Thus,

% =238, g R0 1 4,)

i=l j=1
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= Z, @, p)x,y, - D7, (@@, p)x, exp(a;x,)=0. (2.9)

i=l j=1 i=l j=l

Since a closed form solution of equation (2.9)is unavailable, we use an
iterative method such as Newton's method to obtain the estimates. Hence we
implement the E- and M- steps in the following way to obtain parameter

estimates.

Step 0: Specify starting values @@ =(a(®,...,a®) and P© =(p{?,..., po),

and two tolerances ¢,and ¢ ;
Step 1: (E-step) Compute Z; = (Z;,,....2;,)" (i= 1,...,n) ,using (2.6).
Step 2: (M-step)
(a) Find values of p using (2.9);
(b) Find values of & by solving (2.8)using Newton's method;

Step 3: (a) If at least one of the following conditions is true, set ® =& and

p® =p ,and goto Step 1;otherwise, go to (b).

¢ k
(1) "& —a“”“ = ZZ'&N - af.f’,)i >¢;
g

@ |p-r°|= 35, - 2|2 &;
=

®) [f.4,5,X. 1)~ fX,a®, p®, X.T)|2,

(b) Maximize the observed probability function (¥, &, p, X ,T ) using an
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iterative approach with & and p as initial values. Then stop.

When the number of components, c, is known, the asymptotic normality of
Jn((&, p) - (ap)) can be shown under standard regularity conditions

(Lehmann,1983). To approximate the standard error, we compute &(& ;1) and
&(p;) from the diagonal elements of the inverse of the (¢*k + (c-1))-

dimensional observed information matrix with ¢ fixed at ¢ which is defined as

o’f 0/

0 f(¥,a,p,X,T) _| oa® Oadp
d(a, p)’ o'f o'f
dodp op°

2.4. Implementation Issues

2.4.1. Model Selection

To apply the mixed Poisson regression model we must know the number of
components, ¢, and we require a method for inference about the model
parameters.
When c is known, inference for the parameters can be carried out using by

likelihood ratio tests. In practice, this is rarely the case. When c is unknown,
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we use the following approach for model selection. This is based on maximum

likelihood estimation.

Two widely used model selection criteria are Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC). McLachlan and
Basford(1998) and Leroux and Puterman( 1992) discussed the use of AIC and
BIC to determine the number of components in a finite mixture model without
covariates. Leroux (1992) established consistency of parameter estimates under

the following penalized likelihood criteria.

AIC: Choose the model for which f’c(X )-a,(X) is largest;

BIC: Choose the model for which £, ( X )—(%)(log(n))ac (XDis largest.

where j‘c ( X)) isthe probability function of the mixture with ¢ components
and covariate X, a,(X)=c*k*(c-1) wherek isthe dimension of «; and n is

the total number of observations.

A good model is one that fits the data very well. By including enough
parameters in the model we can make the fit as close as we please, and indeed

by having as many parameters as observations we can make the fit perfect.
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However, simplicity, represented by parsimony of parameters, is also a
desirable feature of a model; we do not include parametersthat we do not need.
Not only does a parsimonious model enable the analystto think about the data,
but one that is substantially correct gives better predictions than one that

includes unnecessary parameters.

The model which maximizes AIC and BIC, also minimizes a, (X)where

a,( X) is a function of c, the number of components. So we can choose the

model which maximizes the log-likelihood with the smallest number of

components.

Using the BIC (AIC), our selection approach consists of two stages. At the
first stage, we determine ¢ to maximize BIC (AIC) values for the saturated
mixture models that contain all possible covariates. At the second stage, our
goal is choosing an appropriate model to fit the data, by finding the
combination of covariates of a model that maximizes BIC (AIC) values for the

selected c-component mixture model.

2.4.2 Residual Analysis and Goodness of fit
Once a mixed Poisson regression model has been fit to a set of observations, it

is essential to check the quality of fit. For this purpose, we consider the
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Pearson residuals for mixed Poisson regression models. The Pearson residual

satisfies

where

Ao=1Yp4,
j=1

2
V)= 43P, A+ ’,-Z{ZPJ-%-Z "{pr}“ﬁf} }
=] j=1 =

Note that the sum of the squared Pearson residuals, er ,gives the

goodness-of-fit statistic for the mixed Poisson regression model.

2.5. Seizure Frequency Data Analysis

In this section, we apply the mixture models to our data. Table 2.1 shows the
estimation results of mixed Poisson regressions. We choose the two-
component mixture model because its AIC and BIC are larger than those of

three-component mixture model. So this is the good fit of the data.
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Poisson rate Log-
Pj ojl aj2 aj3 aj4 likeli- AIC BIC
Hood
Q7 (1980 | 7.2/ | -.2470 | -2.2487 | -297.73 | -304.78 | -320.02
03 [ 2415% | 1.5015 | -.2455 | -.5406
0.01 | -20.00 | 26.1732 | 6.1329 | -7.9335 | -347.91 | -357.91 -382.50
0.86 | 2.289 | 48.2688 | -19.987 | -14.504
0.13 | -12.07 | 26.1731 | -.1980 | -7.9335

Table 2.1.Data analysis with mixed Poisson regressions.

In the two component mixture model, the mixing probabilities equal 0.7 and

0.3 and the respective conditional rate functions are

A (x;,a,)= exp(1.9870 +7.2759x,, - .2470x,,-2.2487 x,,)

and

A, (x;,a,)=exp(2.4156+1.5015 x,, - .2455x,,-.5406 x,; ).

The sum of Pearson residual, 7, is 115.5128 with 131 degrees of freedom and

p-value is 0.83.Thus, there is strong evidence of a good fit because the value

does not exceed the upper 95% critical point of the x3, .

AIC is -304,7776 and BIC is -320.015.
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@

day

residual

-3 -2 1 0 1 2 3
Normal Distribution

Figure 2.4. The residua plot and the QQ plot for the two-component

mixture Poisson model.

In Figure 2.4, residuals are randomly distributed around 0 of the Y-axis, the
curve follows the straight line in QQ plot. The fitted values of the two-

component mixture model are displayed in Figure 2.5.
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Figure 2.5. The fitted values of the two-component mixture Poisson model.

The right-hand side of Figure 2.5 shows the fitted values of this Poisson
regression model. We put the original data (Figure 2.1) on the left-hand side to
compare with these fitted values. The two plots look almost the same, it means

the fitted values are very close to the data. So this is a good model that fits the

data well.

We conclude that the two-component mixture model describes seizure

frequency data well.
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Chapter 3

THE ANALYSIS OF A NEW DATA SET

USING GENERALIZED LINEAR MIXTURE MODELS

Wildlife ecologists want to know if snowshoe hare use habitat depending upon

which vegetation types are around. In order to answer this question, a technique
called snow tracking is used.

Lines called transects are randomly placed through the areato be studied. After
a snowfall, the lines are examined in 100M(meter) sections and the number of
hare tracks in each section are counted. The goal of the model is to determine
whether the average number of tracks differs among various types of vegetation.

If the habitat use depends upon the vegetation types, one would expect to see a
higher average number of tracks in more frequently used vegetation types.

The response outcome for each 100M section is the number of hare tracks.

The snow tracking data set contains several covariates: the number of days
since the last snowfall and an indication of the various vegetation types. The
number of days since the last snowfall plays an important role in this data set.
The larger the interval between a snow and counting of the tracks, the more
tracks there will be to count. There are 10 vegetation types such as White Pine
Forest, Hemlock Forest, Mixed Center Forest, Spruce Fir Forest, Northern

White Cedar Forest, Birch-Aspen Forest, Northern Hardwood Forest, Mixed
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Hardwood-Conifer Forest, Pitch Pine Forest.

50

40 -1

30

Track

20

Index

Figure 3.1. The snow tracking data

We apply mixed Poisson regressions to this data, but it is not easy to find a
good fit of the data using these models because of overdispersion. They suggest
that there might be different models for describing the data set where
overdispersion is a prominent feature. In this case, certain types of negative
binomial regression models are perhaps the most convenient to deal with, and

have been studied by various authors.(Lawless, J.F. 1987.b)

Section 3.1 analyzes snow tracking data with mixed Poisson regressions.
Section 3.2 discusses overdispersion and shows the result of overdispersionin

mixed Poisson regressions. Section 3.3 describes the idea of negative binomial
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regressions and section 3.4 analyzes the data with negative binomial

regressions.

3.1. Data Analysis Using Mixed Poisson Regressions

Table 3.1 presents the estimation results of mixed Poisson regressions. The

goodness of fit statistic reveals that these models are inappropriatefor the snow

tracking data.

Mixing Goodness of fit Log-
prob- | value | df | P- like- AIC BIC
ability | | value | lihood
5956
1178.23| 480 0 -1299.75 | -1320.75 | -1371.264
4044
Three component mixture
4203 | I
3625 I1958.84|I 472 0 -1601.45 | -1632.448 | -1710.274
2172 | | | | |
| Four component mixture
| 0498 |
4243 3738.95| 468 0 -2164.96 | -2205.955 | -2311.092
.3187 ‘
2182

Table 3.1. The estimation results of mixed Poisson regressions

Figure 3.2, 3.4, and 3.6 also support that there is evidence of lack of fit in

the mixed Poisson regression model. Residual plots show that almost every
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count centers for small number of fitted values and there are outliers. QQ plots
show that residuals diverge somewhat for relatively small and relatively large

Normal values.

Figure 3.3,3.5, and 3.7 compare the fit of each model to the data. The right-
hand side shows the fitted values of each mixed Poisson regression and the left-
hand side shows the original data (Figure 3.1). Since these two plots do not look
very similar, we conclude that the data are not fit well using mixed Poisson

regressions.

7 7
®
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k- I T B
o0 e °© o
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1 2% Yca 1
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o Tadod
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10 30 50 -2.8 -0.6 16
Fitted.values. Normal Distribution

Figure 3.2. The residual plot and the QQ plot for the mixed Poisson regression

model with two-component mixture.
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Figure 3.3. The fitted values of number of tracks per segment

for the mixed Poisson regression model with two-component mixture.

esiduals
Residuals

Fitted.values

Figure 3.4.The residual plot and the QQ plot for the mixed Poisson regression

model with three-component mixture.
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Figure 3.5. The fitted values of number of tracks per segment

for the mixed Poisson regression model with three-component mixture.
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Figure 3.6. The residual plot and the QQ plot for the mixed Poisson regression

model with four-component mixture.
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Figure 3.7. The fitted values of number of tracks per segment for the mixed

Poisson regression model with four-component mixture.

Why can we not get a goodness-of-fit in this data set using mixed Poisson
regressions?
Because there is overdispersion in the data set. We will discuss overdisversion

in the next section.

32. Overdispersion

Count data often show greater variability in the response counts than one would

expect if the response distribution truly were Poisson. The variances in these

count data are much larger than the means, whereas Poisson distributions have

identical mean and variance. The phenomenon of a generalized linear model
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having greater variability than predicted by the random component of the model
is called Overdispersion. A common cause of overdispersion is heterogeneity

among responses.

To determine whether the data are overdispersed with respect to the Poisson
distribution in a Poisson regression model, we use three score test statistics
proposed by Dean (1992). He tested the hypothesis of no overdispersion

against alternatives representing different forms of overdispersion.

The test statisticsare
Z((.yx "':&i)z _I[li)
P, = —
W5

P = Z((yx —ﬁi) —yi),

’ 2>

1 «Oi-A) -y
and P = S :
) Vznz Hi

Correspondingto the following specifications of overdispersion:
@ EW,)=u,, Var(y,)= gLt zy,) for ¢ small;
(b) E(y:) =Hi> Var(yi) =H (1 +T/ui);

© EQ)=u, Var(,) = u,1+1).
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In these formulas u is the estimated mean value for the case of independent and
identically distributed observations in a Poisson regression model. Under

H, :7 =0, each test statisticasymptotically follows a standard normal

distribution.

Table 3.2 shows the estimated values of the overdispersiontest for these data.
The more components a model has, the higher overdispersionthere is. Values

less than 3 would indicate no overdispersion.

Pa | PDb Pc
Two-component 30.4125 30.4125 20.3396
mixture
Three-component 41.3946 41.3946 45.0201
mixture
Four-component 98.2676 98.2676 100.8950
mixture

Table 3.2. The estimation results for overdispersion

tests for mixed Poisson regressions.

We conclude that mixed Poisson regressions are not appropriate for describing
the snow tracking data well because of overdispersion .
We need to think of better models to analyze these data, we consider the

negative binomial model.
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3.3. Negative Binomial Model
An unpublished Ph.D. dissertation (Plassmann, F.,1997) describes the negative
binomial distribution from a Poisson distribution that is mixed with a gamma

distribution. The derivation is as follows:

Let ¥, follow a Poisson distribution with parameter A, . Assume that this

parameter follows a two-parameter gamma distribution f(4,;86;,8,) ,whose

density fbnction is given by

A

A‘."“le_r"

24;6,,9,) = —,
03000 = har )

For the purpose of finding an interpretation of the parameters of the negative

binomial distribution, it is common to redefine the second parameter as

@ = ’;i , Which results in the density fbnction

i

A6
6;-1 H Qo
f(ﬂi)=/1i ge 0,
4T 6,)

b

i

with mean equal to x4, and Var(A4,) =

On the other hand, the basic Poisson model can be generalized by relaxing the

assumption that A, is a deterministic function, and by replacing it with the
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assumption A, is generated by A = A(x; a5 ) .The resulting mixed distribution
is described by E{ f(¥, | A)] ,that is, the expectation taken with respect to the
distributionof A, . If £(1,) isthe density function of the random parameter 4, ,
the distribution of each Y, is obtained by integratingover A,, which results

in

P, =y)=[ P =y, 1 4)f(A)dA;.

Sothe marginal density P(Y; =y,) can now be calculated as

Vi =% 9 -1,6, ——}1‘?’—
z‘iie ﬂ’i 91' e Hi

yuT(©,)

P =y)= |

A [ ,W’rle_j"(H”de,t

Ty

_[6:+y -1 y7 (e, “
6, -1 H; + 0, H; +0;

This density is called a negative binomial distribution with the parameters

6, > Oand g, >0.

As a result of the index-parameterization of the gamma distribution, the mean

of the negative binomial distribution is equal to the parameter g;, and the
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$

dispersion, that is, the degree which the variance differs from the mean. For

variance is givenby g, . The parameter 6, determines the degree of

8, — « the distribution converges to the Poisson distributionwhich impliesthe

variance equals the mean. As both parameters are positive, the variance of the
negative binomial distribution is larger than the mean and the distribution can be

used to model data with overdispersion.

As 6, can be any positive rational number, it is necessary to calculate the

factorial in the binomial coefficient by using the relationship between factorials

and the gamma function I'(x) = (x —1)! for the integerx . The probability

P(Y, =y,) canthen be calculated as

i al
P(Y =y)=r(y,+0,) Iui g 61'
CTT i) \#+6, ) \ 4 +6,

The most widely used estimation technique to estimate the negative binomial
model is the maximum likelihood method. If n is the number of independent
observations, then the likelihood function of the negative binomial distribution

can be determined according to

e To6) [ a Y[ 6 Y
L0 1y) = 11 r(yi+1)r(ei)(ui+0ij (ﬂﬁ@)

'y, +6,) _
re,)

For any nonnegative integer y and any 8,>0, it is possible to write
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6,(8, T1)---(6, ty, - 1), sothat the loglikelihood function can be written

without using the gamma function as

InL(x,,6,1y;)

n Y=l
—S S in8, +K} ~In y, 46, 6, ~In(, +6,)) - y,(in g, ~In(as, +6)].

i=l k=0

Now we want to find the estimates, x;,; , that maximize the loglikelihood

function.
OlnL 0 |
= _Biln(ﬂi+0i)—yi1nﬂi+yiln(ﬂi+9i)}
du; oy [Z;
o 40 p 6,
— c yi—ei _ i
A
n __6_ )
So we have Olnl =Zy’ i Yiog 3.1

ou, o M+l

dlnL _ 0 | &% P
And =—| <> In(b; +k) +6,In6, — 6, In(y, +6,)+y,In(u, +6,)
06. 00, k=0

i il =1

3L g +1-in(u +6)-—5+ 2
|2\ &g SRR )
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olnL LN BT | y, -6,
h = +In@ +1-In{(u, +0.)+=—L|[=0 (3.2
so we have 5 [;{;9'_”{} né, n(y; +6,) +0} (3.2)

i i i

Since closed form solutions of equation (3.1), (3.2) are unavailable, we use an

iterative method as was done in Chapter 2, to estimate 4;,6; .

3.4. Data Analysis Using Mixed Negative Binomial Models

In this section the analysis of the snow tracking data is repeated with the
negative binomial distribution.

In the mixed Poisson regressions, the parameter A is equal to the expected value
of the Poisson distribution, and the independent variables are introduced into the
model by expressing A as a deterministic function of these variables. In order to
guarantee a positive expected A value, the functional form estimated is
A=exp(a'x) which is equal to & inthis case; i.e. # = exp(a'x) as discussed in

mixed Poisson regressions in Chapter 2.

Now we apply a generalized linear negative binomial model for the snow
tracking data set. We use the same link function
u(xpa)=exp(a, +a,x, +:++a,,%;,) as with mixed Poisson regressions

fori=1,...,502 (the number of data point) where

_ TG +6) m V(o Y
f(yi|xi,ti,a,9,~) I‘(y,-+1)r(9i)['ui+0"] (ﬂi .]
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and u, =t u(x,, a)=t, exp(a x,) .We can estimate a by replacing the x;

in (3.1)and (3.2)with the link function u(x,,2).

The parameter estimates become

& = (-.8995, 2488, -.8923, -1.8086, -.3414, - 4380, 2285, .6680, .4160, .1778,

:3978) and §=1.2886.

For this model, the residual deviance is 518.8409 on 491 degrees of freedom. It
does not exceed the upper 95% critical point of the xZ, distributionand the p-

value is .18, suggestingthat there is an evidence of goodness of fit.

But the residual plot and the QQ plot of this model reveal that there is
something insufficientto choose this model as good of fit, and these plots are
displayed in Figure 3.8. The residual plot shows some pattern of counts and the
QQ plot does not show the straight line.

Figure 3.9 comparesthe fit to original data. The right-hand side shows the fitted
values of number of track per segment and the left-hand side shows the original
data. Since the two plots do not look similar we conclude that the generalized

linear negative binomial model does not fit well to the data.
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Figure 3.8. The residual plot and the QQ plot for the negative binomial

generalized linear model.
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Figure 3.9. The fitted values of number of tracks per segment

from the negative binomial generalized linear model.

So we continue the data analysis using mixed negative binomial regressions.

We use the same method with mixed Poisson regressions to estimate

parameters 4,8 in negative binomial models. This includes EM algorithm,

iterative steps, their properties, model selection using AIC and BIC, residual

analysis and goodness of fit test.
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ro- like-
pability Value | df ‘ P~ lihood
value

Two-component mixture
.3307 | 6.0617 .8930 477 | 1 -1572.02 | -1593.02 | -1643.53
.6693 | 6.8496

Three-component mixture
1195 3.079 | 9.772 465 1 -1722.36 1-1753.36| -1831.19
5140 | 1.9741 | *e-014
3665 | 1.9186

Table 3.3. The results of the mixed negative binomial regressions.

Chi-square tests give that both negative binomial regressions are appropriate
for describing data because the p-value is equal to 1. Between these two models,
we choose the two-component mixture model because it has the larger AIC and
BIC values than the other. The residual plot and the QQ plot of the negative

binomial regressions follow in Figure 3.10 and 3.12.

Both residual plots in Figure 3.10 and 3.12 are randomly placed around the
0-axisthough they center at some small numbers of fitted values, but residuals
In two-component mixture model is better randomness than three-component
mixture model. Both QQ plots in Figure 3.10 and 3.12 diverge somewhat for
relatively small and relatively large Normal values, but the QQ plot of the two-
component mixture model is better than the three-component mixture model
because it shows the divergence for relatively large Normal values while the

other does for both relatively large Normal values.

55




The right-hand side of Figure 3.11 and 3.13 shows the fitted values of
these negative binomial regression models. We put the original data
(Figure 3.1)to compare with these fitted values on the left-hand side. The

two plots look similar, meaning the model fits the data well.
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Figure 3.10. The residual plot and the QQ plot for the two-component

mixture of negative binomial model.
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Figure 3 11. The fitted values of number of tracks per segment for

the two-component mixture of negative binomial model.
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Figure 3.12.The residual plot and the QQ plot for the three-component

mixture of negative binomial model.
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Figure 3.13. The fitted values of number of tracks per segment for

the three-component mixture of negative binomial model.

We consider the two-component mixture model as good fit of data, we want to
reduce the number of covariates. Recall that the goal is choosing an appropriate
model to fit data, we decide the best model by finding the model that has the

largest AIC and BIC values among the two-component mixture models.
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Mixing 0 Negative binomial rate p
bsz;icﬁt Intercept Northern Hardwood | Pitch Pine
y Forest Forest
3486 5.7087 .1109 -1.4326 -1.7225
.6514 5.6450 -1.557 1.6370 2.1577
1171?8 AL BIC Goodness of fit
1KE-
lihood Value df p-value
-1569.46 | -1574.46 | -1591.23 4.3748*e-014 493 1

Table 3.4. The results of estimation of the best appropriate model

The 6, and 8, are equal to 5.7087 and 5.6450 respectively, the Pearson

residual, X ,is 4.3748e™™* with 493 degrees of freedom and the p-value is 1.

AIC and BIC are -1574.46and -1591.23respectively. Thus, this model fits the

data well.

The residuals and QQ plot of this model are displayed in Figure 3.14. We can

see randomness in the residual plot and check a straight line in the QQ plot.

We put the original data (Figure 3.1) on the left-hand side in Figure 3.15 to

compare with these fitted values. The fitted values of the model are shown on

the right-hand side in Figure 3.15. The two plots look similar, meaning the data

is fit well using this model.
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Figure 3.14. The residual and the QQ plot for the best appropriate model

in two-component mixture.
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Figure 3.15. The fitted values of number of tracks per segment of the best

appropriate model in two-component mixture.

We interpret this fitted model. The mixing probabilities are .3486 and .6514 and

the respective rates are

4 (x, @) = exp(. 1109 - 1.4326™ NorthernHardwoodForest,

— 1.7225* PitchPineForest,,)

4, (x;,a,)=exp(~1.557 +1.6370* NorthernHardwoodForest,
+2.1577% PitchPineForest ;)

fori=1,...,502.

For instance, &,, =-1.4326 s the estimated NorthernHardwoodForest effect
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when the data come from component one. While &,, = 1.6370is the estimated

NorthermHardaoodrorest effect when the data come from component two.
Recall that our goal of the model is to determine whether the average number
of tracks differ among various types of vegetation. This model suggests that the

average number of track differ among response values which have the two
types of vegetation, which are NorthermHardioodForest and Pt PingForest.

Since we used the indication of various vegetation type as covariates x4, (x;,a,)

has only three values, 1.1173, .2667 and .1996: the average number of tracks
is 1.1173 when there are no effect of these two vegetation type. The average
number of tracks is .2667 when there is the only effect of
NorthermHardaoodrorest while the average number of tracks is .1996 when

there are the only effect of PitdPingFarest. There is no case with both effect of

these two vegetation types at the sametime. ,(x;,a,) has also three values,

which are 2108, 1,0833and 1.8234respectively.

35. Conclusion

This paper provides a mixed generalized linear Poisson regression in which the
rates of the component distributions depend on covariates. This model can be
used to explain overdispersion in Poisson regression models. The negative
binomial regression is derived as a mixed Poisson distribution and can deal with

overdispersion in Poisson regression models.
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Two examples illustrate the use of these models and provide results. In the first
application, we analyze the data using mixed Poisson regressions and in the
second example, we examine the data using mixed negative binomial

regressions.
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Appendix A. Mixed Poisson Regression Program

"mixpoisson"<-function(data.frame, vars, offset = T, comp)
{
# Comp is the number of componentsto be examined
# If used (i.e. offset = T) the offset variable comes first
# The response variable is first with all covariatesfollowing
# Use numerical indicesin Vars to identify which variablesto use
# Initialize script
trms <- length(vars) - 1
data.mod <- as.matrix(data.frame[varsj)
if(Yoffset) {
trms <- trms + 1
data.mod <- ¢bind(1, data.mod)
|
if(trms > 1)
dimnames(data.mod) <- listtNULL, c("t", "Y", paste("X", 1:(trms -1), sep="")))
else dimnames(data.mod) <- listONULL, c("t", "Y"))
n <- nrow(data.mod)
k <-trms* comp # Build formula for model
zmod <- paste("z", 2:comp, sep="")
if(trms > 1) {
xmod <- paste("X", 1:(trms - 1), sep="")
intmod <- outer(xmod, zmod, paste, sep=":")

dim(intmod) <- ¢(1, (trms- 1) * (comp - 1))
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else {

xmod <- null()

intmod <- null()
}
model <- paste(c("Y~offset(log(t))", xmod, zmod, intmod), collapse="+") # Assign
uninformativeprior mixing probs to components
pj.old <- rep((1/comp), comp)
pj.new <-rep(0, comp)  # Setup vector to receive parameter
# estimates
a.old <- matrix(0, comp, trms)
# Build matrix to compute component parameters from regession
# parameters
parm.bld <- diag(comp)
parm.bld[, 1] <- 1
# Build indicator of component and randomly assign each obs
# to a component
rints <- matrix(c(1:n, floor(runif(n, 1, (comp+0.999)))), nrow =n)
z <- matrix(0, Now = n, ncol = comp, dimnames =listONULL, paste(*z", 1:comp, sep =
)
z[rints] <- 1
data.mod <- ¢bind(data.mod, z) # initializethe likelihood
# keeper
p <- dpois(data.mod[, “Y"], data.mod[, "Y"])

plis.na(p)] <- 1
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loglik <- sum(log(p))
loglike.old <- 0 # i will keep track of number of iterations
i<-0 # Start the process
repeat {
# runPoisson regression -- z's are indicator of components.
out.glm <- gim(formula(model), family = poisson, lirk=1og,data =
as.data.frame(data.mod), control = glm.control(
maxit = 25)) # save parameter estimates from model
out.glm| ["coefficients"}}[is.na(out.glm[["coefficients"]])] <- O
a.new <- parm.bld %*% matrix(out. glm[["coefficients"]], ncol = trms, byrow =T)
loglike.new <- loglik - out.glm{{"deviance"]}/2
# compute estimates of new lambdas
if(trms > 1) {
lambda <- data.mod[, "t"] * exp(cbind(1, data.mod[, 3:(

1+1trms)])%*% t(a.new))

3
else {
lambda <- data.mod][, “t"] * exp(matrix(1, nrow =n,
ncol = 1) %*% t(a.new))
b

p <- pj.old * matrix(dpois(data.mod[, "Y"], lambda), ncol = comp)
plisna(p)] <- 1

# Rank conditional probs from smallestto largest
p.max <- t(apply(p, 1, order))

# Assign component membership based upon size of conditional prob.
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data.mod[, dimnames(z)([2}}] <- ifelse(p.max ==comp, 1,0)
# Compute new mixing probabilities
pj.new <- colMeans(data.mod(, dimnames(z){[2]]])
# Check to see if a's converged
a.diff <- sum(abs(a.new - a.old))
pj.diff <- sum(abs(pj.new - pj.old))
loglike.diff <- abs(loglike.new - loglike.old)
# get ready to accept next round parameter estimates
a.old <- a.new
pj.old <- pj.new
loglike.old <- loglike.new # count iterations
i <- 1+ 1# exitif a.estimates converge or i exceeds 10
L(( > 30) || ((a.diff < le-007) && (pj.diff < 1e-007) && (
loglike.diff < 0.0001)))
break

# Computeanalysis results
# Standard errors (from inverse of information matrix)
z <- colSums(data.mod[, (2 +trms):(1 +trms + comp)] %*% diag(1/pj.new”2))
pinfo <- matrix(z[comp}, nrow = (comp - 1), ncol = (comp - 1))
pinfo <- sqrt(diag(ginverse(pinfo + diag(z)[1:(comp - 1), 1:(comp - 1)] )))
X <- kronecker(parm.bld, diag(trms))
subs <- (1:k)[out.glm$coefficients 1=0]

se <- matrix(0, k, K)
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se[subs, subs] <- summary.lm(out.glm)$cov.unscaled

se <- matrix(summary.lm(out.glm)$sigma * sqrt(diag(x %*% Se %*%t(x))),ncol = trms,
byrow = T) # Parametersse's and Wald stats.

probs <- c(pj.old, se[trms * comp + 1:(comp - 1)])

names(probs) <- c(paste("comp", 1:comp, sep =""), paste("se", L:(comp - 1), sep=""))
parms <- matrix{t(cbind(a.old, se, a.old/se)), ncol =trms, byrow =T)

dimnames(parms) <- list(rep(c("comp", "se", "Wald stat"), times = comp), c(paste("a",
O:(trms - 1), sep="")))

# Goodness of fit Statistics

chistat <- sum(residuals.glm(out. glm, type = "pearson”")"2)

chistat <- ¢(Chistat = chistat, d f= (out.glm[["df .residual"]} - (comp - 1)}, pvalue = (1 -

pehisq(chistat, out. glm[["df residual“]] - ( comp - 1), ncp =0)))
AIC <- loglike.old - k + (comp - 1)
BIC <- loglike.old - ((k + (comp - 1)) * log(n))/2
Fit <- ¢(AIC = AIC, BIC=BIC) # Overdispersion measures
Pa <- sum((data.mod[, “Y"] - fitted(out.glm))*2 —
fitted(out.glm))/sqrt(2 * sum(fitted(out.glm)~2))
Pb <- sum((data.mod[, "Y"] - fitted(out.glm)*2 - data.mod(, "Y*])/sqrt(2 *
sum(fitted(out.glm)"2))
Pc <- (1/sqrt(2 * n)) * sum(((data.mod[, "Y"] - fitted(out.glm))*2 - data.mod{,
"Y"])/fitted(out.gim))
OverDisp <- c¢(Pa =Pa, Pb =Pb, Pc =Pc)
finaldata. mod <<- data, mod

poissonglm.out <<- out.glm
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# Show final parameter estimates and log likelihood
list(Reps = i, "Component Weights w/SE" = probs, "Comp Parameters"=  parms,
Loglikelihood = loglike.old, "Chi-squareFit" = chistat,

"AIC and BIC Fit" = Fit, "OverDispersion Meas." = OverDisp) }
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Appendix B. Mixed Negative Binomial Regression Program

"negbi.prob"<-
function(y, mu, theta)
{
exp((lgamma(y + theta) +y * log(mu) +theta * log(theta)) - (Igamma(

theta) +1gamma(y + 1) + (theta +y) * log(mu + theta)))

"mixnegb2"<-function(data.frame, vars, offset ="T", comp)
{
# Comp is the number of componentsto be examined
# If used (i.e. offset =T) the offset variable comes first
# The response variable is first with all covariatesfollowing
# U2 numerical indices in Vars to identify which variables to
# use
# Initialize script

library(Mass)  # Need this b to do Neg Bin GIm

offset <- as.logical(offset)

trms <- length(vars) - 1

data.mod <- as.matrix(data.frame[vars})

if(toffset) {

trms <- trms + 1

data.mod <- ¢bind(1, data.mod)
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}
if(trms > 1)
dimnames(data. mod) <- list(NULL, c(*t", "Y", paste("X", 1:(trms -1), Sep="")))
else dimnames(data. mod) <- listONULL, ¢("t", "Y"))
n <- nrow(data.mod)
k<-trms * comp # Build formula for model
if(trms > 1) {

xmod <- paste("X", L:(trms - 1), sep="")

}
else {

xmod <- null()
3

model <- paste(c("Y~offset(log(t))", xmd), collapse ="+")
# Assign uninformative prior mixing probs to components
pj.old <- rep((1/comp), comp)
pj.new <-rep(0, comp)  # Setup vector to receive parameter
# estimates
a.new <-a.old <- matrix(0, comp, trms)
se.parms <- maftrix(0, comp, trms)
theta <- rep(1, comp)
se.theta <- rep(0, comp)
# Build indicator of component and randomly assign each obs to a component
rints <- matrix(c(1:n, floor(runif(n, 1, (comp +0.999)))), NKON =n)
z <- matrix(0, nrow =1, ncol = comp, dimnames = listNULL, paste("z", 1:comp, Sep =

" ")))

76



z[rints] <- 1
data.mod <- ¢bind(data.mod, z)
# add columns to receive fitted and residuals
data.mod <- ¢bind(data.mod, matrix(0, n, 2))
dimnames(data.mod)[[2]][1+trms +comp + 1: 2] <- ¢("fitted",
"residual™) # i will keep track of number of iterations
i<-0
loglike.old <- 0  # Start the process
repeat {
# runNeg BiIn regression -- 2's are indicator of components.
for(j in 1:comp) {
pick.rows <- data.mod|, paste("z", j, sep="")]
out.glm <- glm.nb(formula(model), link = log, data =
as.data.frame(data. mod[pick.rows == 1, ]),
control = glm.control(maxit = 25))
# save parameter estimates from model
out.glm[["coefficients"][is.naout. glm[["coefficients"
b1<-0
a.new(j, ] <-out.glm[["coefficients"]]
1<- length(summary.lm(out.glm)$sigma * sqrt(diag(
summary.Im(out.gim)$cov.unscaled)))

se.parmsfj, ] <- ¢c(summary.lm(out.glm)$sigma * sqri(

diag(summary.im(out.glm)$cov.unscaled)), rep(0,

trms - 1))
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theta[j] <- out.glm$theta
se.theta[j] <- out.glm$SE.theta
data.mod[pick.rows == 1, "fitted"] <- fitted(out.gim)
data.mod[pick.rows == 1, "residual']<- residuals. glm(
out.glm, type = "pearson™)
}
# compute estimates of new means

if(trms > 1) {

mu <- data.mod[, "t"] ¥ exp(cbind(1, data.mod[, 3:(1 +

trms)]) %*% t(a.new))

3
else {
mu <- data.mod][, "t"] * exp(matrix(1, Now =n, ncol =
1)%*% t(a.new))
}

p <- pj.old * matrix(negbi.prob{data.mod[, "Y"}, mu, theta), ncol = comp)
plis.na(p)] <- 1
# Rank conditional probs from smallestto largest
loglike.new <- sum(log(apply(p, 1, max)))
p.max <~ t(apply(p, 1,order))
# Assign component membership based upon size of conditional prob. data.mod[,

dimnames(z)[[2]]] <- ifelse(p.max == comp, 1, 0)

# Compute new mixing probabilities

pj.new <- colMeans(data.mod|, dimnames(z) [[211])
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# Check to see if a's converged
a.diff <- sum(abs(a.new - a.0ld))
pj.diff <- sum(abs(pj.new - pj.old))
loglike.diff <- abs(loglike.new - loglike.old)
# get ready to accept next round parameter estimates
a.old <- a.new
pj.old <- pj.new
loglike.old <- loglike.new # count iterations
i <-1i+ 1# exit if a.estimates converge or i exceeds 30
if((i > 30) || ((a.diff < 0.0001) && (pj.diff < 0.0001) && (loglike.diff < 0.01)))
break
}
# Compute analysis results
# Standard errors (from inverse of information matrix)
Z <- colSums(data.mod|, (2 +trms):(1 +trms + comp)] %*% diag(1/pj.new"2))

pinfo <- matrix(z{comp], nrow = (comp - 1), ncol = (comp - 1))

pinfo <- sqrt(diag(ginverse(pinfo +diag(z)[1:(comp - 1), 1:(comp - 1)] ))) # Parameter

se's and Wald stats.

probs <- ¢(pj.old, pinfo)

names(probs) <- c¢(paste("comp"”, 1:comp, sep=""), paste("se", 1:(comp - 1), sep=""))

parms <- matrix(t(cbind(a.old, se.parms, a.old/se.parms)), ncol = trms, byrow = T)

dimnames(parms) <- list(rep(c("comp", "s¢", "Wald stat"), times = comp), c(paste("a",

0:(trms - 1), sep=""))
# Goodness of fit Statistics

chistat <- sum(data.mod[, "residual"]*2)
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chistat <- ¢(Chistat = chistat, df=n - (trms+ 1)* comp - 1,pvalue = (1 - pchisq(chistat, n
- (trms+ 1)* comp - 1,
nep =0)))
AIC <-loglike.old - k + (comp - 1)
BIC <- loglike.old - ((k + (comp - 1))* log(n))/2
Fit <- ¢c(AIC =AIC,BIC =BIC)  # Overdispersion measures
Theta <- rbind(Theta =theta, SE = se.theta)
finaldata. mod <<- data.mod
# Show final parameter estimatesand log likelihood
list(Reps =1, "ComponentWeights w/SE" =probs, "Comp Parameters" = parms,
Loglikelihood=loglike.oid, "Chi-squareFit" = chistat,

"AIC and BIC Fit" =Fit, "Ests. of Theta" = Theta)
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