
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2001

Using generalized linear models with a mixed
random component to analyze count data
Jungah Jung

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Analysis Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Jung, Jungah, "Using generalized linear models with a mixed random component to analyze count data" (2001). Electronic Theses and
Dissertations. 409.
http://digitalcommons.library.umaine.edu/etd/409

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/409?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages


USING GENERALIZED LINEAR MODELS WITH A MIXED 

RANDOM COMPONENT TO ANALYZE COUNT DATA 

BY 

Jungah Jung 

B.S. Kyungpook National University, 1999 

A THESIS 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Arts 

(in Mathematics) 

The Graduate School 

The University of Maine 

August, 2001 

Advisory Committee: 

William A. Halteman, Associate Professor of Mathematics and Statistics, Advisor 

Robert D. Franzosa, Professor of Mathematics and Statistics 

Sundar Subramanian, Assistant Professor of Mathematics and Statistics 



USING GENERALIZED LINEAR MODELS WITH A MIXED RANDOM 

COMPONENT TO ANALYZE COUNT DATA 

BY 

Jungah Jung 

Thesis Advisor: Dr. William A. Halteman 

An Abstract of the Thesis Presented 
In Partial Fulfillment of the Requirements for the 

Degree of Master of Arts 
(in Mathematics) 

August, 2001 

Many discrete response variables have counts as possible outcomes. Poisson 

regression has been recognized as an important tool for analyzing count data. 

This technique includes the simple Poisson generalized linear model and 

mixtures of independent Poisson models as special cases. Generalized linear 

models have been found usefkl in many statistical analysis. 

Count data analyzed under such models often exhibit overdispersion. In many 

practical circumstances the restriction that the mean and variance are equal is 

not realistic. Especially, when there is overdispersion in the data, a conditional 

negative binomial mixed model, given some random effects, could be an 

attractive alternative. 



This paper focuses on the data analysis using mixed Poisson regressions and 

mixed Negative Binomial regressions. 

The motivation comes from attempts to analyze habitat use from the snow 

tracking data. 



ACKNOWLEDGMENTS 

To my Father and Mother 

ii 



TABLE OF CONTENTS 

.. 
ACKNOWLEDGMENTS ......................................................................... 11 

LIST OF TABLES ................................................................................. v 

LIST OF FIGURES.. ............................................................................ .Vi 

Chapter 

1. GENERALIZED LINEXR MODEL . . . . . . . . . . . . . . . . .  ................................ 1 

1.1. Birthweight Example.. . . . . . . . .  ........................... ..................... 2 

1.2. Horseshoe Crabs and Satellite Example.. ................................. 

1.3. Space Shuttle Challenger Accident Example.. . . . . . . . . . .  ..................... 7 

.... 12 

...................... .13 

1.4. Parameter Estimation.. ................................................... 

1.5. Generalized Linear Model(GLM). . . . . . . . . . . . . . . . . . .  

2. MIXED POISSON REGRESSIONS USING GENERALIZED 

LINEAR MODELS ........................................................................ 16 

2.1. Poisson Generalized Linear Model.. ............................................ 17 

2.2. Mixed Poisson Regression Models.. ................. ...................... ..23 

....................... . . . . . . . . . . . . .  .25 2.3. Parameter Estimation. . . . . . . . . . .  

2.4. Implementation Issues.. ........................ ....................... 

2.4.1. Model Selection.. .................. ....................... . . . . . . . .  31 

2.4.2. Residual Analysis and Goodness of fit.. ............ .................. .33 

............................ .34 2.5. Seizure Frequency Data Analysis.. ........... 

... 
111 



3 .  THE ANALYSIS OF A NEW DATA SET USING GENERALIZED 

LINEAR MIXTURE MODELS ................ ................................ .38 

. . . . .  .40 3.1. Data Analysis Using Mixed Poisson Regressions.. . . . . . . . .  

3.2 Overdispersion.. ..................................................................... .44 

3.3.  Negative Binomial Model.. .......................................... 

3.4. Data Analysis Using Mixed Negative Binomial Models.. .................... . 5  1 

3.5. Conclusion.. ....................................................... ............. .64 

REFERENCES ...................................................................................... 66 

APPENDICES ............................................. .............................. .68 

.69 Appendix A. Mixed Poisson Regression Program. ................................ 

Appendix B. Mixed Negative Binomial Regression Program. ......................... .75 

BIOGRAPHY OF THE AUTHOR ......................................... . . . .  . .81  

iv 



LIST OF TABLES 

Table 1.1. 

Table 2.1. 

Table 3.1. 

Table 3 .2 . The estimation results for overdispersion tests 

Birthweight and gestational age for 24 babies ................................... 2 

Data analysis with mixed Poisson regressions ................................... 35 

The estimation results of mixed Poisson regressions ............................ 40 

for mixed Poisson regressions ...................................................... 46 

The results of the mixed negative binomial regressions ....................... 55 

The results of estimation of the best appropriate model ....................... 61 

Table 3.3. 

Table 3.4. 

V 



Figure 1 .1 .  

Figure 1.2. 

Figure 1.3.  

Figure 1.4. 

Figure 1 .5 .  

Figure 1.6. 

Figure 1.7. 

Figure 1.8. 

Figure 2.1. 

Figure 2.2. 

Figure 2.3. 

Figure 2.4. 

Figure 2.5. 

LIST OF FIGURES 

Birthweight and gestational ages for 24 babies.. ......................... 

A line using mean values of birthweight.. ...................................... .3  

Number of satellites by width of female crab.. ................................ . 5  

Smoothing of horseshoe crab counts.. ........................................... .6 

The estimated mean number of satellites 

for log and identity links.. ........................................................ .7 

Temperatures versus the number of O-ring failures 

with incidents( 1). .................................... 

Temperatures versus the number of O-ring failures 

with incidents(2). .......................... ... ... ................... 9 

Decreasing tendency between incidents and temperatures. ................. 10 

Daily seizure counts.. ............................................................ 18 

The fitted values of the Poisson generalized linear model. ................. .20 

The residual and the QQ plot for the Poisson 

generalized linear model.. .......................... . . . . . . . . . . . . . .  .22 

The residual and the QQ plot of the two-component 

mixture Poisson model.. . . . . .  . . .  .............................. .36 

The fitted values of the two-component 

mixture Poisson model ......................................................... .37 

vi 



Figure 3.1.  

Figure 3.2. 

Figure 3.3.  

Figure 3.4. 

Figure 3.5.  

Figure 3.6. 

Figure 3.7. 

Figure 3.8. 

Figure 3.9. 

Snow tracking data ............................................................. .39 

The residual plot and the QQ plot for the mixed Poisson regression 

model with two-component mixture ......................................... .4 1 

The fitted values of number of tracks per segment for the mixed 

Poisson regression model with two-component mixture. ................. .42 

The residual plot and the QQ plot for the mixed Poisson regression 

model with three-component mixture. ....................................... .42 

The fitted values of number of tracks per segment for the mixed 

Poisson regression model with three-component mixture.. ............... .43 

The residual plot and the QQ plot for the mixed Poisson regression 

model with four-component mixture ....................................... .43 

The fitted values of number of tracks per segment for the mixed 

Poisson regression model with four-component mixture ................ .44 

The residual plot and the QQ plot for the negative binomial 

generalized linear model.. .................................................... .53 

The fitted values of number of tracks per segment from 

the negative binomial generalized linear model ........................... .54 

Figure 3.10. The residual plot and the QQ plot for the two-component mixture 

of negative binomial model.. ................................................ .57 

The fitted values of number of tracks per segment for Figure 3.1 1. 

the two-component mixture of negative binomial model.. ............. .58  

vii 



Figure 3.12 .  The residual plot and the QQ plot for the three-component mixture 

of negative binomial model.. ............................................... .59 

The fitted values of number of tracks per segment for 

the three-component mixture of negative binomial model.. ............ .60 

The residual plot and the QQ plot for the best appropriate model 

Figure 3.13 .  

Figure 3.14 .  

in two-component mixture.. ................................................ .62 

Figure 3.15 .  The fitted values of number of tracks per segment of the best 

appropriate model in two-component mixture. ............................ .63 

... 
M11 



Chapter 1 

GENERALIZED LINEAR MODEL 

This chapter presents the concepts for a generalized linear model. These 

models provide a unified theoretical and conceptual fiamework for many of the 

most commonly used statistical methods. The class of generalized linear 

models is a natural generalization of classical linear models. We introduce the 

concept of generalized linear models with three examples, sections 1.1 to 1.3 .  

Section 1.4 gives the parameter estimation, which is maximum likelihood 

estimation, and Section 1.5 discusses the definition of generalized linear 

models. 
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1.1. Birthweight Example 

The data in Tablel. 1 are the birthweights (g) and estimated gestational ages 

(weeks) of 24 babies born in a certain hospital. The data are shown in the 

scatter plot in Figure 1.1. The question of interest is how to model the apparent 

35 

2925 

38 

2754 

linear trend of birthweight increasing with gestational age. 

36 37 

2625 2847 

42 39 

3210 2817 

Age 
(Weeks) 

Birth 
Weight 

(a) 
Age 

(Weeks) 
Birth 

Weight 
(a) 
Age 

(Weeks) 
Birth 

Weight 
(g) 

40 

2968 

40 

33 17 

37 

2628 

38 

2795 

36 

2729 

38 

3 176 

40 

3 163 

40 

293 5 

40 

342 1 

41 

3295 

40 

3 126 

39 

2875 

40 

3473 

37 

2539 

40 

323 1 

Table 1.1. Bithweight and gestational age for 24 babies. 

Figure 1.1 shows one or more observations for each gestational age. In order 

to construct a model, we use the sample mean of birthweights for each 

gestational age. Figure 1.2 shows a straight line placed to approximate the 

upward trend of these birthweight means. Neither the mean nor the individual 

data points lie exactly on this line. 
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3400 

3200 

2400 

35 36 37 3.3 39 40 41 42 
G&aial.ages.Weeks. 

Figure 1.1. Bithweight and gestational ages for 24 babies. 

35 36 37 3.3 39 40 41  42 
G&aliial sw.Weeks. 

Figure 1.2. A line using mean values of birthweight. 

The distance from data point to the line is denoted as E, for k=l,. . . ,24 and 

assume that the E, ’s are statistically independent and all have the same 
3 



probability distribution, Gaussian with mean 0 and constant variance 02, this 

is denoted by E, -N(O, 0’). 

A general statistical model for these data may be given by 

Yk = a + @, + &, where the response Y, is the birthweight for the k-th baby 

(k=l, . . . ,24), the parameter a represents the intercept of the line, the parameter 

p represents the slope or rate of increase of average birthweight with age, and 

the independent variable x, is the age for the k-th baby. 

We might consider birthweight to be a normal random variable, Y, , because it 

is continuous, and E( E, ) = 0, so we have E (yk) = a + pk, then it follows 

that Y, is N(E(Y,), 02). 

1.2. Horseshoe Crabs and Satellite Example 

These data are from a study of nesting horseshoe crabs. Each female 

horseshoe crab in the study had some number of male crabs, called satellites, 

residing nearby her. Satellite males form large groups around female horseshoe 

crabs. This results in a nonrandom distribution that cannot be explained by 

local environmental conditions or habitat selection. A. Agresti (1996) 

presented a data analysis of the habitat of horseshoe crabs. The study 

investigated factors that affect how many male crabs each female crab had. 
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Explanatory variables that might affect the study include the female crab’s 

color, spine condition, weight, and carapace width. The response outcome for 

each female crab is her number of satellites. For now we use width alone as a 

predictor of the response. This variable is measured in centimeters. 

Figure 1.3 plots the response counts against width. There are many different 

observations for each width, and the substantial variability in counts makes it 

difficult to discern a clear pattern. To obtain a clearer picture of overall trend, 

we group the female crabs into a set of width categories,( 5 23.25,23.25- 

24.25, 24.25-25.25, 25.25-26.25, 26.25-27.25, 27.25-28.25,28.25-29,25, > 

29.25) and calculate the sample mean number of satellites for female crabs in 

3 6 -  - 
d 
f 
ii4- 

f 

each width category. 

......... 
............ .............. . .I .......... 

. .  
. . . .  
. . .  I 

Figure 1.3.  Number of satellites by width of female crab. 
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Figure 1.4 plots these sample means against the sample mean width for crabs 

in each category. The sample means show a strong increasing trend with width. 

The trend seems to be approximately linear, or a smooth curve. 

We discuss models for which the mean or the log of the mean is linear in 

width. Let p denote the expected number of satellites for a female crab, and 

let x denote her width. A statistical model that is often used for count data is 

the Poisson distribution. Using this distribution leads to a Poisson regression 

model with identity link, p = a, + p,x or the Poisson loglinear model with log 

link, logp = a, + P,x . 

w 
4 -  

r 

a 
8 
t i 3 -  
$ 

2 -  

1 -  
,.‘ .’ 

L ,  
22 24 26 28 30 

Widh 

Figure 1.4. Smoothing of horseshoe crab counts. 

Figure 1.5 plots the fitted number of satellites against width, for models with 

log link and with identity link, 
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Figure 1.5. Estimated mean number of satellites for log and identity links. 

1.3. Space Shuttle Challenger Accident Example 

These data are from the space shuttle Challenger accident in 1986 (Dalal, 

Fowlkes and Hoadley ‘Risk analysis of the space shuttle: Pre-Challenger 

Prediction of Failure’, in JASA, 1989). On January 28, 1986 America was 

shocked by the destruction of the space shuttle Challenger, and the death of its 

seven crew members. 

The investigation concluded that the accident was caused by a combustion gas 

leak in a joint, which resulted from the failure of a device called an O-ring. An 

O-ring does not work properly at low temperatures. The temperature of the 0- 

rings at the time of the Challenger launch was 3 1°F. The data are from the 23 
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preaccident launches of the space shuttle and were used to predict O-ring 

performance under the Challenger launch conditions. There were 6 O-rings in 

the shuttle. On the night of January 27, the night before the accident, there was 

a teleconference among the engineers. The discussion focused on the forecast 

of 3 1" F temperature at launch time the next morning, and the effect of low 

temperatures on O-ring performance. The data used by them are plotted in 

Figure 1.6. Each plotted point represents a shuttle flight that experienced 

thermal distress on the O-rings; the X axis shows the temperatures at launch 

and the Y axis shows the number of O-ring failures, Based on the U-shaped 

configuration of points, it was concluded that there was no evidence from the 

3.0 - 

g 2.5 - 
2 
2 

4 

-c 
0 2.0 - 
% 
t; 

1.5 - 

historical data for a temperature effect. 

1.0 4 .. 
I 

50 55 60 65 70 75 

Tmpsralure 

Figure 1.6. Temperatures versus the number of O-ring failures 

with incidents (1). 
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After this accident, the engineers noted that a mistake made in the analysis of 

these data (Figure 1.6) was that the flights with zero number of O-ring of 

failures were left off the plot because it was felt that these flights did not 

contribute any information about the temperature effect. After the accident, 

n 
E 
1 2 0 -  

5 
; 1.5 - 
P g 1.0 - 
z 

0.5 - 

they reanalyzed using all of the data. 

.. 

0.0 i ..... . .. .. . 
50 55 MI 65 70 7s ao 

Tmperalurs 

Figure 1.7. Temperatures versus the number of O-ring failures 

with incidents (2). 

Figure 1.7 shows a plot of the number of O-ring failures versus temperature 

for 23 shuttle flights. This is the same plot as Figure 1.6 with the flights with 

zero incidents. This suggests that aside from one point (75,2), there is a 

tendency for the number of O-ring failures to decrease with increasing 

temperature as depicted in Figure 1.8. 
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Figure 1.8. Decreasing tendency between incidents and temperatures. 
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-.. '. 

A statistical model appropriate for these data follows. 

If p( t )  denotes the probability of a O-ring failure for a given temperature, 

t, p( t )  is a decreasing hnction with increasing temperature. We can 

consider p( t )  = a + p . There are two possible approaches to a model for 

these data. One is using the Binomial probability distribution and the other is 

using the Bernoulli probability distribution. 

If X is the number of O-ring failures, then X has a binomial 

distribution with n=6 (total number of O-ring in the shuttle). The probability 

hnction for the number of failures is given by 

p(t)" (1 - p(t))"-" where p( t )  = a + p . The expected value 

10 



of X is E ( X )  = np(f)  = n(a +Pf). 

This model has a weakness. There would be values t for which p( t )  <O or 

p( t )  >1. Relationships between p ( f )  and t are better modeled nonlinearly 

rather than linearly. 

A fixed change in f may have less impact whenp(t) is near 0 or 1 than when 

p( t )  is near the middle of its range. In practice, nonlinear relationships 

between p(t)  and t are often monotonic, with p ( f )  decreasing continuously as 

t increases. For this we turn to a logistic regression model. 

The logistic regression model is log [/;;*)I = a +pt . 

An alternative approach is to look at the probability of any O-ring damage. 

Denote Y as follows: 

Y = if there was one or more O-ring failures. c otherwise 

Y is a binary random variable with the probability p*(t)  of at least one 0- 

ring incident. Note that Y =O iff X =0, and p and p *  can be compared with 

p *  (f) = 1 - (1 - p(f) )" where P(Y = 1) = p*  ( t )  . The logistic regression model 

for this approach is log [ !:f:t,] = a* + p*f . The expected value of Y is 

11 



ea'+~'t 

E(Y) = p* (f) = 1 + ea*ij't . 

For each of these situations, the data are a realization of a random process, 

which means that we must use the probability model functions to relate the 

data to the parameters of the models. 

1.4. Parameter Estimation 

Generally the parameters of the model are estimated using the method of 

maximum likelihood. We describe this approach using an example below. 

[Maximum Likelihood Estimation] 

For the Gaussian distribution with meanp , and standard deviation 0, the 

probability model for one data point is 

1 

And for the model with N data points, it is 

N 

Using a model pi = a + pi to relate an explanatory variable, X , to the mean 

of Y , the probability model becomes 

12 



N 

Estimates of Q andp are found by maximizing f . 

1.5. Generalized Linear Model (GLM) 

Generalized linear models (GLMs) extend linear models to accommodate 

both non-linear response distributions and transformations to linearity. All 

generalized linear models have three components. These are the random 

component, the systematic component and the link fbnction. 

1 .The random component: For a sample size N, let q,  Yz ,. . .,YN denote the 

observations on the response variable Y .  The GLM treats (q,Yz ,...,YN) as 

sequence of independent observations. The random component of a GLM 

consists of identifying the response variable Y and selecting a probability 

distribution to describe it. 

In section 1.1, we assumed a Normal error regression for birthweight. In 

section 1.2, we used a Poisson distribution for satellites. In section 1.3, we 

presented two possible models. A model for O-ring failures using a Binomial 

distribution, and a model for the damage of any O-ring using a Bernoulli 

distribution. 

13 



2.The systematic component: The systematic component of a GLM specifies 

the x, , x2 ,. . . , xp  variables. These enter linearly as predictors on right hand side 

of the model equation. That is, the systematic component specifies the 

P 
variables that play the roles of x, , x, ,. . . , x, in the formula a , x ,  . This linear 

i=l 

combination of the covariates is called the linear predictor q given by 

P 
q = Cap, 

In each example, the linear predictor involves a simple model with one 

covariate. The linear predictor is a + @. 

3 .  The linkfunction: the link function relates the linear predictor q to the 

expected value, p , of a datum Y .  So we write a link hnction as this form 

7 = g w .  

In the birthweight example, the link function is identity link, 

i.e. E (yk) = p = a + bk . For the horseshoe crabs and satellite example, two 

link functions were used, identity and log link, i.e. p = a, + p,x or 

logp = a, + p,x . In the Challenger accident example, the link function is the 

14 



logit link, i.e. log [ !::t)] = a + pj= but this function is a function of p . For 

the Binomial p = E ( X )  = np(f)  was used. 

15 



Chapter 2 

MIXED POISSON REGRESSIONS USING 

GENERALIZED LINEAR MODELS 

This chapter discusses a specific type of generalized linear model. The model 

uses Poisson regression and a mixture of independent Poisson regressions as 

special cases. 

Section 2.1 introduces data and analyzes them with a Poisson generalized 

linear model. Section 2.2 discusses mixed Poisson regression models. Section 

2.3 and section 2.4 describe the parameter estimation, model selection, residual 

analysis, and goodness-of-fit. Section 2.5 shows data analysis with mixed 

Poisson regressions. 

16 



2.1. Poisson Generalized Linear Model 

In this section we analyze data with a generalized linear model. The data are 

from a clinical trial carried out at British Columbia’s Children’s Hospital 

which investigated the effect of intravenous gammaglobulin (IVIG) on 

suppression of epileptic seizures (Wang, Puterman, Cockburn and Le, 1996). 

Subjects were randomized into two groups. After 28 days of baseline 

observation the treatment group received monthly infksions of M G .  The 

primary end point of the trial was the daily seizure frequency. The principal 

data source was a daily seizure diary that contained the number of hours of 

parental observation and the number of seizures of each type during the 

observation period. The number of seizures depends on how long parents 

observed their children during the trial. The more time they see their children, 

the larger number of seizures they can count. 

We use Poisson regression to analyze the seizure counts from a single subject 

receiving IVIG. The data extracted from the seizure dairy were the daily 

counts, yi and the hours of parental observation, ti, for the i-th day (Figure 

2.1). As covariates we use treatment (x i *  ), trend ( xi2 ) and treatment-trend 

interaction ( xi3 ), where 

1 

0 otherwise, (i 5 28) 

if there is a treatment ( i > 28) (2.1) 

xi* = log(i) 

17 



xi3 = xi ,  x i 2 .  

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97103109115121127133139 
Day 

Figure 2.1. Daily seizure counts. 

We have a generalized linear model using Poisson regression with covariates 

(2. l), (2.2), (2.3) and a log link fbnction. We apply the generalized linear 

model assuming that: 

(1) Each daily observed seizure count, y, , is associated with time 

exposure (observation hours), t ,  , and covariates x, = ( x,, , x,, , xi3 ); - 

18 



(2) Daily seizure counts are independent and follow a generalized linear model 

with means equal to the product of observation time ( t i  ) and the Poisson 

rate (number of seizures per hour). Rates are specified by the log link 

function, which are log A ( x i ,  a) = exp(a, + a l x u  + a 2 x i ,  + a 3 x i 3 )  where 

i=l, . . . ,140. 

- 

Recall that the Poisson density fbnction of Y, is 

1 f(yj 1 A,) = p ( y i  1 Ai)=-Ar exp(-Ai). 
Y i !  

The mean is Ai = t i A ( x i , g )  = t i  exp(a' - -  . x i )  - 

1 
S O  f~~ l x i , t i , d =  --(ti exp(g'.g,))yi exp(-ti exp(&.gi)). 

Yi ! - 

The maximum likelihood parameter estimates obtained for this model are 

& = (-2.9484, -2.1525, -1.8768, 0.6551). 

Figure 2.2 compares the model fit to the data. The right-hand side shows the 

fitted values of this Poisson regression and the left-hand side shows the 

original data. The two plots do not look similar, and we may conclude the 

Poisson generalized model does not fit the data well. 

19 
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0 
1 15 29 43 57 71 85 99113127 

day 

1 16 31 46 61 76 91 106121136 

dW 

Figure 2.2. The fitted values of the Poisson generalized linear model. 

Since the data are being modeled, each response value, y ,  , is not exactly 

equal to the model's parameters (called a fitted value and denoted &). The 

question then arises of how discrepant they are, because while a small 

discrepancy may be tolerable a large discrepancy is not. A measure of 

discrepancy is called goodness offit. It may be formed in various ways, but we 

will consider only the Pearson residual. The Pearson residual (residual) has this 

There are three tools to access goodness of fit; (1) A scattered plot of the 

residuals versus the fitted values. (2) A Normal QQ plot of the residuals. 

20 



(3) The calculation of a goodness of fit statistic. 

If data are fit well, these residuals are randomly scattered around 0 on the Y- 

axis and QQ plot shows a straight line. 

The goodness of fit statistic is computed by summating the squares of Pearson 

residuals. If the data is fit, this result will follow a probability distribution 

called Chi-squared (Mood, A. M, Grabill, F.A., Boes, D.C. 1973). Small 

values relative to the parameter of Chi-squared distribution indicate a goodness 

of fit to the data. 

Figure 2.3 presents both residual plot (top) and QQ plot (bottom). The 

residuals are not scattered randomly around 0 on the Y-axis nor is the QQ plot 

straight. This indicates these seizure data are not well fit by a Poisson 

regression model. 
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Figure 2.3. The Residual plot and the QQ plot for the Poisson 

generalized linear model. 

For this model, the goodness of fit statistic is 8162.072 on 136 degrees of 

freedom. This value exceeds the upper 95% critical point of the x& 

distribution, suggesting that there is an evidence of a lack of fit. 
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Now, we proceed to analyze this data with a mixed model. 

2.2. Mixed Poisson Regression Models 

Wang, Puterman, Cockburn and Le (1996) presented a mixed Poisson 

regression model analysis of the seizure data. This is their approach. 

Let the random variable Y, denote the z-th response variable and let 

{ ( yi , t i ,  xi ), i= 1 , . . . ,n} denote observations where yi is the observed value of 

Y, , tl a non-negative value representing the time or extent of exposure and 5,  

a k-dimensional covariate vector corresponding to the linear predictor part of 

the model. Usually the first element of xi is a 1 corresponding to an intercept. 

Our mixed Poisson regression model assumes: 

(1) The unobserved mixing process can occupy any one of c states where c is 

finite and unknown; 

(2) For each observed count, yi , there is an unobserved random variable, Ai , 

representing the component at which y j  is generated. Further, the (Y, , Aj) 

are painvise independent; 

(3) Ai follows a discrete distribution with c points of support, and Pr(A, = j  ) 

C 

= pi where c p ,  =l; 
j=1 

(4) Conditional on Ai =j, Y, follows a Poisson distribution which we denote by 
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1 q -  fj(yiI zi,t i ,czj)= Po(yi I ~ ~ , t ~ , c t ~ ) =  --A?exp(-A,) 
Yi!  

where 

A, = t i ~ j ( s i , g j ) s t i  exp(g)si) ,  for j = ly...,c, 

with a = (gl, ...,a',)' denoting unknown parameters, and czj = (aj l , . . .yajk)' ,  

j =I, ..., c. 

Note that we could also choose another positive link function. 

- -  - 

The above assumptions define the unconditional distribution of the 

observations, y ,  , as a finite Poisson mixture in which the mixing probabilities, 

p ,  , are constant and the component distributions are Poisson distributions with 

means, Av , which is determined by the exposure, t, , and by the Poisson rate, 

A] (i, , cz, ) , which is related to covariates x, through a log link function. 

Under the above assumptions the probability function of Y, satisfies 

where P, (yi 1 A, ) is given by (4), and p = (pl  ,.. ., pc)' is an unknown 

parameter vector. 
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We may equivalently view the model as arising from the following sampling 

scheme. Observations are independent. For observation i, component j is 

chosen according to a multinomial distribution with probability p i .  

Subsequently, y j  is generated from a Poisson distribution with mean Av . 

When the data are observed, the source (i.e. component) of the observation is 

unknown. 

For the above model, the unconditional mean and variance of Y, are, 

respectively, 

C 

E(Y,)= E(E(Y, I Ai ) )=  t i x p j A v  and 
j=1 

Obviously, Var(E(yI I A i ) )  = 0 if and only if Ail = Ai, = ... = Aic, 

2.3. Parameter Estimation 

For a fixed number of components c, we obtain maximum likelihood 

estimates of the parameters in the above model using the EM algorithm as first 

suggested by Dempster et al. (1977). They described a general method for 

computing maximum likelihood estimates when observations are missing. For 
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the mixture model estimation, we implement the EM algorithm by treating 

unobservable component membership of the observations as missing data. 

We discuss the choice of the number of components later. 

Suppose that (Y ,X ,T)  E { ( y i , t i , x i ) ,  i=l, ..., n} are the observed data 

generated by the above mixture model. Let (Y,  2, X, T )  = { ( y i  , zi , ti , xi ), 

i= 1, .  . . ,n} denote the complete data for the mixture, where the observed 

quantity zi = (zil ,. . .,zit)' satisfies 

0 otherwise. 

The log of the probability hnction Y for the complete cdta is 

n c  n c  

The EM approach finds the maximum likelihood estimates using an iterative 

procedure consisting of two steps: an E-step and an M-step. The E-step 

replaces the missing data by its expectation conditional on the observed data. 

The M-step finds the parameter estimates that maximize the expected log 

probability hnction for the complete data, conditional on the expected values 

of the missing data. In our case, this procedure can be stated as follows. 
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Then 

Q, = f (a'" p'o')log(pj) 
i=l j=1 

=k [zi,l (a'O', p'O') log P I  (do) p'O') log p 2  + * - * + Z,,$ (aC0), P'O') logolc)l 
i=l 

n c-l 

= c[Yi,l (a@', p'O') log P I  +q2 (do), p'0') log p z  +. * -+ zi,c ( d o ' ,  p'0') l og (1 -c  p i ) ]  
j=l i=l 

C c-l 

since C p j  = I .  i.e. p ,  = l - C p j .  
j=l  j = l  

The estimated parameters, 2 and i, , satisfy the following M- step equation: 

a Q 1  

@ j  i=l 

n 

-li,=C 
j= l  

So we have 

=0, for j=1, ..., c-1. (2.7) 
TI,] (a'o',p'o') - zi,c(a'o',p'o') 

- =c F C  @, i=l [ j j  
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The above result yields c-1 simultaneous equations with c-1 unknowns (the 

f i j  1. 

Solving the system (2.7) yields 

and 

,=1 j=1 

n r  1 

n c  

=T, (a'o',p'o')[-logyi !+yi (logti + a ' x ,  ) - t, exp(a)x, 11 

Thus, 
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Since a closed form solution of equation (2.9) is unavailable, we use an 

iterative method such as Newton's method to obtain the estimates. Hence we 

implement the E- and M- steps in the following way to obtain parameter 

estimates. 

Step 0: SpeciG starting values a(') = (a,(') ,.. .,a:)) and PC0) = (p,(') '.. ., p c  (0 )  ), 

and two tolerances E, and E ; 

u 

Step 1: (E-step) Compute 5, = (Tiel ,..., z ~ , ~ ) '  (i= 1,. . .,n) ,using (2.6). 

Step 2: (M-step) 

(a) Find values of 5 using (2.9); 

(b) Find values of 6 by solving (2.8) using Newton's method; 

Step 3: (a) If at least one of the following conditions is true, set g(O) = Li and 

p(O) = i )  , and go to Step 1; otherwise, go to (b). - 

(b) Maximize the observed probability function f ( Y ,  6, j, X, T )  using an 
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iterative approach with & and i, as initial values. Then stop. 

When the number of components, c, is known, the asymptotic normality of 

&((6, P) - (a, p)) can be shown under standard regularity conditions 

(Lehmann,1983). To approximate the standard error, we compute c?(&~,~) and 

&Gj) from the diagonal elements of the inverse of the (c*k + (c-1))- 

dimensional observed information matrix with c fixed at 2 which is defined as 

2.4. Implementation Issues 

2.4.1. Model Selection 

To apply the mixed Poisson regression model we must know the number of 

components, c, and we require a method for inference about the model 

parameters. 

When c is known, inference for the parameters can be carried out using by 

likelihood ratio tests. In practice, this is rarely the case. When c is unknown, 
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we use the following approach for model selection. This is based on maximum 

likelihood estimation. 

Two widely used model selection criteria are Akaike’s Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). McLachlan and 

Basford(l998) and Leroux and Puterman( 1992) discussed the use of AIC and 

BIC to determine the number of components in a finite mixture model without 

covariates. Leroux (1 992) established consistency of parameter estimates under 

the following penalized likelihood criteria. 

AIC: Choose the model for which jc ( X )  -ac ( X )  is largest; 

1 
2 

BIC: Choose the model for which jc ( X )  - (-)(log(n))a, (X) is largest. 

where jc ( X )  is the probability hnction of the mixture with c components 

and covariate X, ac(X)= c*k + (c-1) where k is the dimension of c z j  and n is 

the total number of observations. 

A good model is one that fits the data very well. By including enough 

parameters in the model we can make the fit as close as we please, and indeed 

by having as many parameters as observations we can make the fit perfect. 
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However, simplicity, represented by parsimony of parameters, is also a 

desirable feature of a model; we do not include parameters that we do not need. 

Not only does a parsimonious model enable the analyst to think about the data, 

but one that is substantially correct gives better predictions than one that 

includes unnecessary parameters. 

The model which maximizes AIC and BIC, also minimizes a, (X) where 

a, ( X )  is a fhction of c, the number of components. So we can choose the 

model which maximizes the log-likelihood with the smallest number of 

components. 

Using the BIC (AIC), our selection approach consists of two stages. At the 

first stage, we determine c to maximize BIC (AIC) values for the saturated 

mixture models that contain all possible covariates. At the second stage, our 

goal is choosing an appropriate model to fit the data, by finding the 

combination of covariates of a model that maximizes BIC (AIC) values for the 

selected c-component mixture model. 

2.4.2. Residual Analysis and Goodness of fit 

Once a mixed Poisson regression model has been fit to a set of observations, it 

is essential to check the quality of fit. For this purpose, we consider the 
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Pearson residuals for mixed Poisson regression models. The Pearson residual 

satisfies 

where 

j=1 

n 

Note that the sum of the squared Pearson residuals, C r12 , gives the 
i=l 

goodness-of-fit statistic for the mixed Poisson regression model. 

2.5. Seizure Frequency Data Analysis 

In this section, we apply the mixture models to our data. Table 2.1 shows the 

estimation results of mixed Poisson regressions. We choose the two- 

component mixture model because its AIC and BIC are larger than those of 

three-component mixture model. So this is the good fit of the data. 
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Poisson rate I Log- I 
Pj aj 1 aj2 aj3 aj4 likeli- AIC BIC 

Hood 

1 0.7 1.9870 7.2759 -.2470 -2.2487 

2 0.3 2.4156 1.5015 -.2455 -.5406 

Table 2.1. Data analysis with mixed Poisson regressions. 

-297.78 -304.78 -320.02 

In the two component mixture model, the mixing probabilities equal 0.7 and 

1 0.01 -20.00 26.1732 6.1329 -7.9335 -347.91 
2 0.86 2.289 48.2688 -19.987 -14.504 
3 0.13 -12.07 26.1731 -.1980 -7.9335 

0.3 and the respective conditional rate fbnctions are 

-357.91 -382.50 

4((xi,g1)= exp(1.9870 +7.2759xi, - . 2 4 7 0 ~ ~ , - 2 . 2 4 8 7 ~ ~ ~ )  

and A, (x i  ,g,) = exp(2.4156 +1.5015 xi, - .2455 xi ,  -.5406 xi3 ). 

The sum ofpearson residual, Y’, is 115.5 128 with 13 1 degrees of freedom and 

p-value is 0.83 .Thus, there is strong evidence of a good fit because the value 

does not exceed the upper 95% critical point of the x:31 . 

AIC is -304,7776 and BIC is -320.015. 
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Figure 2.4. The residua plot and the QQ plot for the two-component 

mixture Poisson model. 

In Figure 2.4, residuals are randomly distributed around 0 of the Y-axis, the 

curve follows the straight line in QQ plot. The fitted values of the two- 

component mixture model are displayed in Figure 2.5. 
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Figure 2.5. The fitted values of the two-component mixture Poisson model. 

The right-hand side of Figure 2.5 shows the fitted values of this Poisson 

regression model. We put the original data (Figure 2.1) on the left-hand side to 

compare with these fitted values. The two plots look almost the same, it means 

the fitted values are very close to the data. So this is a good model that fits the 

data well. 

We conclude that the two-component mixture model describes seizure 

frequency data well. 
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Chapter 3 

THE ANALYSIS OF A NEW DATA SET 

USING GENERALIZED LINEAR MIXTURE MODELS 

Wildlife ecologists want to know if snowshoe hare use habitat depending upon 

which vegetation types are around. In order to answer this question, a technique 

called snow tracking is used. 

Lines called transects are randomly placed through the area to be studied. After 

a snowfall, the lines are examined in lOOM(meter) sections and the number of 

hare tracks in each section are counted. The goal of the model is to determine 

whether the average number of tracks differs among various types of vegetation. 

If the habitat use depends upon the vegetation types, one would expect to see a 

higher average number of tracks in more frequently used vegetation types. 

The response outcome for each lOOM section is the number of hare tracks. 

The snow tracking data set contains several covariates: the number of days 

since the last snowfall and an indication of the various vegetation types. The 

number of days since the last snowfall plays an important role in this data set. 

The larger the interval between a snow and counting of the tracks, the more 

tracks there will be to count. There are 10 vegetation types such as White Pine 

Forest, Hemlock Forest, Mixed Center Forest, Spruce Fir Forest, Northern 

White Cedar Forest, Birch-Aspen Forest, Northern Hardwood Forest, Mixed 
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Hardwood-Conifer Forest, Pitch Pine Forest. 

0 I 
0 100 200 300 400 500 

Index 

Figure 3.1. The snow tracking data 

We apply mixed Poisson regressions to this data, but it is not easy to find a 

good fit of the data using these models because of overdispersion. They suggest 

that there might be different models for describing the data set where 

overdispersion is a prominent feature. In this case, certain types of negative 

binomial regression models are perhaps the most convenient to deal with, and 

have been studied by various authors.(Lawless, J.F. 1987.b) 

Section 3.1 analyzes snow tracking data with mixed Poisson regressions. 

Section 3.2 discusses overdispersion and shows the result of overdispersion in 

mixed Poisson regressions. Section 3.3 describes the idea of negative binomial 
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regressions and section 3.4 analyzes the data with negative binomial 

regressions. 

r 
Mixing Goodness of fit Log- 
prob- value I df [ P- like- AIC 

3.1. Data Analysis Using Mixed Poisson Regressions 

Table 3.1 presents the estimation results of mixed Poisson regressions. The 

goodness of fit statistic reveals that these models are inappropriate for the snow 

BIC 

tracking data. 

ability I I value I lihood I 

,5956 

.4044 1178.23 480 0 -1299.75 -1320.75 -1371.264 

Three component mixture 
.4203 I I 

3738.95 1 468 1 0 1 -2164.96 

1958.84 I 472 I 0 I -1601.45 I -1632.448 I -1710.274 

-2205.955 -2311.092 

I I I I I I 

I Four component mixture 

- I I I I I 

.3 187 

.2 182 

Table 3.1. The estimation results of mixed Poisson regressions 

Figure 3.2, 3.4, and 3.6 also support that there is evidence of lack of fit in 

the mixed Poisson regression model. Residual plots show that almost every 
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count centers for small number of fitted values and there are outliers. QQ plots 

show that residuals diverge somewhat for relatively small and relatively large 

Normal values. 

Figure 3.3,3.5, and 3.7 compare the fit of each model to the data. The right- 

hand side shows the fitted values of each mixed Poisson regression and the left- 

hand side shows the original data (Figure 3.1). Since these two plots do not look 

very similar, we conclude that the data are not fit well using mixed Poisson 

regressions. 
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Figure 3.2. The residual plot and the QQ plot for the mixed Poisson regression 

model with two-component mixture. 
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Figure 3.3 .  The fitted values of number of tracks per segment 

for the mixed Poisson regression model with two-component mixture. 
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Figure 3.4. The residual plot and the QQ plot for the mixed Poisson regression 

model with three-component mixture. 
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Figure 3.5. The fitted values of number of tracks per segment 

for the mixed Poisson regression model with three-component mixture. 
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Figure 3.6. The residual plot and the QQ plot for 

model with four-component 

the mixed Poisson regression 

mixture. 
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Figure 3.7. The fitted values of number of tracks per segment for the mixed 

Poisson regression model with four-component mixture. 

Why can we not get a goodness-of-fit in this data set using mixed Poisson 

regressions? 

Because there is overdispersion in the data set. We will discuss overdisversion 

in the next section. 

3.2. Overdispersion 

Count data often show greater variability in the response counts than one would 

expect if the response distribution truly were Poisson. The variances in these 

count data are much larger than the means, whereas Poisson distributions have 

identical mean and variance. The phenomenon of a generalized linear model 
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having greater variability than predicted by the random component of the model 

is called Overdispersion. A common cause of overdispersion is heterogeneity 

among responses. 

To determine whether the data are overdispersed with respect to the Poisson 

distribution in a Poisson regression model, we use three score test statistics 

proposed by Dean (1992). He tested the hypothesis of no overdispersion 

against alternatives representing different forms of overdispersion. 

The test statistics are 

P =  - a  

Corresponding to the following specifications of overdispersion: 

(a) E b ,  ) z p ,  , Var(y, ) E p,  (1 + rp,) for r small; 

(b) Eb, 1 = PI 7 Varb, ) = P,  (1 + v,) ; 

(c) E b , ) = P , ,  Varb,)=p,(l++ 
45 



In these formulas p is the estimated mean value for the case of independent and 

Pa I Pb 

identically distributed observations in a Poisson regression model. Under 

Pc 

H ,  : z = 0, each test statistic asymptotically follows a standard normal 

Two-component 
mixture 

Three-component 
mixture 

Four-component 
mixture 

distribution. 

30.4 125 30.4125 20.3396 

41.3946 41.3946 45.0201 

98.2676 98.2676 100.8950 

Table 3.2 shows the estimated values of the overdispersion test for these data. 

The more components a model has, the higher overdispersion there is. Values 

less than 3 would indicate no overdispersion. 

Table 3.2. The estimation results for overdispersion 

tests for mixed Poisson regressions. 

We conclude that mixed Poisson regressions are not appropriate for describing 

the snow tracking data well because of overdispersion . 

We need to think of better models to analyze these data, we consider the 

negative binomial model. 
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3.3. Negative Binomial Model 

An unpublished Ph.D. dissertation (Plassmann, F., 1997) describes the negative 

binomial distribution from a Poisson distribution that is mixed with a gamma 

distribution. The derivation is as follows: 

Let follow a Poisson distribution with parameter Ai . Assume that this 

parameter follows a two-parameter gamma distribution f ( A i ;  t9,, #i ) , whose 

density fbnction is given by 

For the purpose of finding an interpretation of the parameters of the negative 

binomial distribution, it is common to redefine the second parameter as 

4. =- " , which results in the density fbnction ei 

P12 
'i 

with mean equal to pi  and Var( Ai ) = - . 

On the other hand, the basic Poisson model can be generalized by relaxing the 

assumption that A, is a deterministic function, and by replacing it with the 

47 



assumption A, is generated by A, = A(xi ,  -- a,). The resulting mixed distribution 

is described by E[f(Y ,  1 A, )] , that is, the expectation taken with respect to the 

distribution of A, . If f ( A i )  is the density fbnction of the random parameter Ai , 

the distribution of each Y, is obtained by integrating over A,, which results 

in 

P(6 = y,)  = pyy, = y ,  I A,)f(A,)dA,. 

So the marginal density P(Y, = yi) can now be calculated as 

This density is called a negative binomial distribution with the parameters 

6, > Oand pi > 0. 

As a result of the index-parameterization of the gamma distribution, the mean 

of the negative binomial distribution is equal to the parameter p i ,  and the 
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P2 

01 
variance is given by pi  + I. The parameter Oi determines the degree of 

dispersion, that is, the degree which the variance differs from the mean. For 

0, + 00 the distribution converges to the Poisson distribution which implies the 

variance equals the mean. As both parameters are positive, the variance of the 

negative binomial distribution is larger than the mean and the distribution can be 

used to model data with overdispersion. 

As 0, can be any positive rational number, it is necessary to calculate the 

factorial in the binomial coefficient by using the relationship between factorials 

and the gamma finction T ( x )  = (x - l)! for the integer x . The probability 

P(Y, = y i )  can then be calculated as 

The most widely used estimation technique to estimate the negative binomial 

model is the maximum likelihood method. If n is the number of independent 

observations, then the likelihood function of the negative binomial distribution 

can be determined according to 

‘(Yi+’i) = For any nonnegative integery and any Oi >O, it is possible to write 
r(ei ) 
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0, (ei + l)--.(ei + y i  - 1) so that the loglikelihood hnction can be written 

without using the gamma fhction as 

Y,-1 

=T[{Cln(Oi + k)} - 1nyi!+ei (In 0, - h(p i  + 0,)) - yi(ln pi  - ln(Pj + Qi))I+ 
i=l k=O 

Now we want to find the estimates, p i  0, , that maximize the loglikelihood 

hnction. 

50 



Since closed form solutions of equation (3. l), (3.2) are unavailable, we use an 

iterative method as was done in Chapter 2, to estimate p i ,  ei . 

3.4. Data Analysis Using Mixed Negative Binomial Models 

In this section the analysis of the snow tracking data is repeated with the 

negative binomial distribution. 

In the mixed Poisson regressions, the parameter A is equal to the expected value 

of the Poisson distribution, and the independent variables are introduced into the 

model by expressing A as a deterministic fbnction of these variables. In order to 

guarantee a positive expected A value, the fimctional form estimated is 

A =exp(&11) which is equal t o p  in this case ; i.e. p = exp(@x) as discussed in 

mixed Poisson regressions in Chapter 2. 

Now we apply a generalized linear negative binomial model for the snow 

tracking data set. We use the same link fimction 

p e .  1 7 -  a)= exp(ao + a , x , ,  +.-.+ a , , x i l o )  as with mixed Poisson regressions 

for i=l,. . . ,502 (the number of data point) where 
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and pi =ti&, a) = t ,  exp(g'xi) .We can estimate 

in (3.1) and (3.2) with the link fbnction p(x i ,  cx) . 

by replacing the pi 

The parameter estimates become 

&= (-.8995, .2488, -.8923, -1.8086, -.3414, -.4380, .2285, .6680, .4160, .1778, 

.3978) and 6 =1.2886. 

For this model, the residual deviance is 518.8409 on 491 degrees of freedom. It 

does not exceed the upper 95% critical point of the 

value is .18, suggesting that there is an evidence of goodness of fit. 

distribution and the p- 

But the residual plot and the QQ plot of this model reveal that there is 

something insufficient to choose this model as good of fit, and these plots are 

displayed in Figure 3.8. The residual plot shows some pattern of counts and the 

QQ plot does not show the straight line. 

Figure 3.9 compares the fit to original data. The right-hand side shows the fitted 

values of number of track per segment and the left-hand side shows the original 

data. Since the two plots do not look similar we conclude that the generalized 

linear negative binomial model does not fit well to the data. 
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Figure 3.8. The residual plot and the QQ plot for the negative binomial 

generalized linear model. 
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Figure 3.9. The fitted values of number of tracks per segment 

from the negative binomial generalized linear model. 

So we continue the data analysis using mixed negative binomial regressions. 

We use the same method with mixed Poisson regressions to estimate 

parameters p ,  - Q in negative binomial models. This includes EM algorithm, 

iterative steps, their properties, model selection using AIC and BIC, residual 

analysis and goodness of fit test. 

54 



.5140 

.3665 

bability I pro-- I 

1.9741 *e-014 
1.9186 

lihood value 
Two-component mixture 

-3307 I 6.0617 I 3930 I 477 I 1 I -1572.02 1-1593.02 1-1643.53 
.6693 I 6.8496 1 

Three-component mixture 
.1195 I 3.079 I 9.772 I 465 I 1 I -1722.36 1-1753.36 1-1831.19 

Table 3.3. The results of the mixed negative binomial regressions. 

Chi-square tests give that both negative binomial regressions are appropriate 

for describing data because the p-value is equal to 1. Between these two models, 

we choose the two-component mixture model because it has the larger AIC and 

BIC values than the other. The residual plot and the QQ plot of the negative 

binomial regressions follow in Figure 3.10 and 3.12. 

Both residual plots in Figure 3.10 and 3.12 are randomly placed around the 

0-axis though they center at some small numbers of fitted values, but residuals 

in two-component mixture model is better randomness than three-component 

mixture model. Both QQ plots in Figure 3.10 and 3.12 diverge somewhat for 

relatively small and relatively large Normal values, but the QQ plot of the two- 

component mixture model is better than the three-component mixture model 

because it shows the divergence for relatively large Normal values while the 

other does for both relatively large Normal values. 
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The right-hand side of Figure 3.1 1 and 3.13 shows the fitted values of 

these negative binomial regression models. We put the original data 

(Figure 3.1) to compare with these fitted values on the left-hand side. The 

two plots look similar, meaning the model fits the data well. 
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Figure 3.10. The residual plot and the QQ plot for the two-component 

mixture of negative binomial model. 
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11. The fitted values of number of tracks per segment for 

two-component mixture of negative binomial model. 
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Figure 3.12. The residual plot and the QQ plot for the three-component 

mixture of negative binomial model. 
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Figure 3.13 .  The fitted values of number of tracks per segment for 

the three-component mixture of negative binomial model. 

We consider the two-component mixture model as good fit of data, we want to 

reduce the number of covariates. Recall that the goal is choosing an appropriate 

model to fit data, we decide the best model by finding the model that has the 

largest AIC and BIC values among the two-component mixture models. 
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Mixing 
pro- 

bability 

.3486 

.6514 

I I Goodness of fit I 

0 Negative binomial rate p 

Northern Hardwood Pitch Pine Intercept 
Forest Forest 

5.7087 .1109 -1.4326 -1.7225 

5.6450 -1.557 1.6370 2.1577 

I I 
-1569.46 I -1574.46 I -1591.23 I 4.3748*e-014 

Table 3.4. The results of estimation of the best appropriate model 

df p-value 

493 1 

The i1 and i2 are equal to 5.7087 and 5.6450 respectively, the Pearson 

residual, X 2  , is 4.3748 e-14 with 493 degrees of freedom and the p-value is 1 .  

AIC and BIC are -1574.46 and -1591.23 respectively. Thus, this model fits the 

data well. 

The residuals and QQ plot of this model are displayed in Figure 3.14. We can 

see randomness in the residual plot and check a straight line in the QQ plot. 

We put the original data (Figure 3.1)  on the left-hand side in Figure 3.15 to 

compare with these fitted values. The fitted values of the model are shown on 

the right-hand side in Figure 3.15.  The two plots look similar, meaning the data 

is fit well using this model. 
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Figure 3.14. The residual and the QQ plot for the best appropriate model 

in two-component mixture. 
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Figure 3.15.  The fitted values of number of tracks per segment of the best 

appropriate model in two-component mixture. 

We interpret this fitted model. The mixing probabilities are .3486 and .6514 and 

the respective rates are 

p1 (xi , a l )  = exp(. 1 109 - 1.4326 * NorthernHardwoodForest,, 

- 1.7225 * PitchPineForesti2) 

p ,  ( x i ,  a,) = exp(-l.557 + 1.6370 * NorthernHardwoodForesti, 

+ 2.1577 * PitchPineForesti2) 

for i=l , . .  .,502. 

For instance, ell = -1.4326 is the estimated NorthernHardwoodForest effect 
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when the data come from component one. While &,, = 1.6370 is the estimated 

NorthernHardwoodForest effect when the data come from component two. 

Recall that our goal of the model is to determine whether the average number 

of tracks differ among various types of vegetation. This model suggests that the 

average number of track differ among response values which have the two 

types of vegetation, which are NorthernHardwoodForest and PitchPineForest. 

Since we used the indication of various vegetation type as covariates p ,  (xi, a,) 

has only three values, 1.1173, .2667 and .1996: the average number of tracks 

is 1 . 1  173 when there are no effect of these two vegetation type. The average 

number of tracks is .2667 when there is the only effect of 

NorthernHardwoodForest while the average number of tracks is .1996 when 

there are the only effect of PitchPineForest. There is no case with both effect of 

these two vegetation types at the same time. p ,  ( x i ,  a, ) has also three values, 

which are .2108, 1,0833 and 1.8234 respectively. 

3.5. Conclusion 

This paper provides a mixed generalized linear Poisson regression in which the 

rates of the component distributions depend on covariates. This model can be 

used to explain overdispersion in Poisson regression models. The negative 

binomial regression is derived as a mixed Poisson distribution and can deal with 

overdispersion in Poisson regression models. 
64 



Two examples illustrate the use of these models and provide results. In the first 

application, we analyze the data using mixed Poisson regressions and in the 

second example, we examine the data using mixed negative binomial 

regressions. 
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Appendix A. Mixed Poisson Regression Program 

"mixpisson"<-function(data.frame, vars, offset = T, comp) 

{ 

# Comp is the number of components to be examined 

# If used (i.e. offset = T) the offset variable comes first 

# The response variable is first with all covariates following 

# Use numerical indices in Vars to i denm which variables to use 

# Initialize script 

trms <- length(vars) - 1 

data.mod <- as.matrix(data.frame[vars]) 

if(!offset) { 

trms<-trms+l 

data.mod <- cbind(1, &&.mod) 

I 

if(trms> 1) 

dimnames(data.mod) <- list(NUL,L, c (Y,  "Y", paste("X", l:(trms -l), sep = ' ' I 1 ) ) )  

else dimnames(data.mod) <- list(NULL, c("t", "Y")) 

n <- nrow(data.mod) 

k <- trms * comp # Build formula for model 

zmod <- paste("z", 2:comp, sep = '*'I) 

if(trms > 1) { 

mod <- paste("X", l:(trms - l), sep = "") 

intmod <- outer(xmod, zmod, paste, sep = ":") 

dim(intmod) <- c(1, (trms - 1) * (comp - 1)) 

I 
69 



else { 

xmod <- null() 

intmod <- null0 

1 

model <- paste(c("Y-offset(log(t))", mod, mod, intmod), collapse =V1) # Assign 

uninformative prior mixing probs to components 

pj.old <- rep((l/comp), comp) 

pj.new <- rep(0, comp) 

# estimates 

# Setup vector to receive parameter 

a.old <- matrix(0, comp, t r m s )  

# Build matrix to compute component parameters from regession 

# parameters 

parm.bld <- diag(comp) 

parm.bld[, 11 <- 1 

# Build indicator of component and randomly assign each obs 

# to a component 

rints <- matrix(c(l:n, floor(runif(n, 1, (comp + 0.999)))), mow = n) 

z <- matrix(0, NOW = n, ncol = comp, dimnames = list(NULL, paste("z", l:comp, sep = 

V) 

z[rints] <- 1 

data.mod <- cbind(data.mod, z) # initialize the likelihood 

## keeper 

p <- dpois(data.mod[, "Y"], data.mod[, "Y"]) 

p[is.na@)] <- 1 
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loglik <- sum(log@)) 

1oglike.old <- 0 # i will keep track of numbex of iterations 

i <- 0 

repeat { 

# Start the process 

# run Poisson regression -- z's are indicator of components. 

out.glm <- glm(fonnula(model), family = Poisson, link = log,data = 

as.data.frame(data.mod), control = glm.control( 

maxit = 25)) # save parameter estimates from model 

out. glm[ [ "coeMicients"]] [is.na(out.glm[ [ "coefficients"]])] <- 0 

a.new <- parm.bld %*% matrix(out.glm[["coefficients"]l, ncol = trms, byrow = T) 

loglikemew <- loglik - out.glm[["deviance"]]/2 

# compute estimates of new lambdas 

if(trms > 1) { 

lambda <- data.mod[, 'Y] * exp(cbind(1, datamod[, 3:( 

1 + trms)]) %*YO t(a.new)) 

1 

else { 

lambda <- data.mod[, Y ]  * exp(matrix(1, nrow = n, 

ncol = 1) %*% t(a.new)) 

1 

p <- pj.old * matrix(dpois(data.mod[, "Y"], lambda), ncol = comp) 

p[is.na@)] <- 1 

# Rank conditional probs from smallest to largest 

p.max <- t(apply@, 1, order)) 

# Assign component membership based upon size of conditional prob. 
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data.mod[, dimnames(z)[[2]]] <- ifelse@.max == comp, 1 , O )  

# Compute new mixing probabilities 

pj.new <- colMeans(data.mod[, dimnames(z)[[2]]]) 

# Check to see if a's converged 

a . M < -  sum(abs(a.new - a.old)) 

pj.diff<- sum(abs@j.new - pj.old)) 

1oglike.W <- abs(loglike.new - 1oglike.old) 

# get ready to accept next round parameter estimates 

a.old <- a.new 

pj.old <- pj.new 

1oglike.old <- 1oglike.new # count iterations 

i <- i + 1# exit ifa.estimates converge or i exceeds 10 

if((i > 30) 11 ((a.difT< le-007) && (pj.dif€< le-007) && ( 

1oglike.dS < 0.0001))) 

break 

# Compute analysis results 

# Standard errors (from inverse of information matrix) 

z <- colSums(data.mod[, (2 + trms):(l + t rms + comp)] %*% diag(l/pj.newA2)) 

pinfo <- matrix(z[comp], mow = (comp - l), ncol = (comp - 1)) 

pinfo <- sqrt(diag(ginverse(pinf0 + diag(z)[l:(comp - l), l:(comp - l)] ))) 

x <- kronecker(pam.bld, diag(trms)) 

subs <- (l:k)[out.glm$coefficients != 01 

se <- matrix(0, k, k) 
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se[subs, subs] <- summary.lm(out.glm)$cov.unscaled 

se <- matrix(summary.lm(out.glm)$sigma * sqrt(diag(x %*% se %*% t(x))),ncol = trms, 

byrow = T) # Parameters sets and Wald stats. 

probs <- c(pj.old, se[trms * comp + l:(comp - l)]) 

names(pr0bs) <- c(paste("comp", l:comp, sep = 'I"), pacte("se", l:(comp - l), sep = "")) 

parms <- matrix(t(cbind(a.old, se, a.old/se)), ncol = trms, byrow = T) 

dimnames(parms) <- list(rep(c("comp", "se", "Wald stat"), times = comp), c@aste("a", 

O:(trms - l), sep = ""))) 

# Goodness of fit Statistics 

chistat <- sum(residuals.glm(out.glm, type = "pears0n")~2) 

chistat <- c(Chistat = chistat, d f=  (out.glm[["df.residual"]] - (comp - l)), pvalue = (1 - 

pchisq(chistat, out.glm[["df.residual"]] - ( comp - l), ncp = 0)))  

AIC <- 1oglike.old - k + (comp - 1) 

BIC <- 1oglike.old - ((k + (comp - 1)) * log(n))/2 

Fit <- c(AIC = AIC, BIC = BIC) 

Pa <- sum((data.mod[, "Y"] - fitted(out.glm))"2 - 

# Overdispersion measures 

fitted(out.glm))/sqrt(2 * sum(fitted(out.glm)^2)) 

Pb <- sum((data.mod[, "Y"] - fitted(out.glm))"2 - data.mod[, "Y"])/sqrt(2 * 

sum(fitted(out. glrn)"2)) 

Pc <- (l/sqrt(2 * n)) * sum(((data.mod[, V"] - fitted(o~t.glm))~2 - data.mod[, 

"Y "])/fitted( out. glm)) 

OverDisp <- c(Pa = Pa, Pb = Pb, Pc = Pc) 

finaldata.mod <<- data.mod 

poissonglm.out <<- out.glm 
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# Show final parameter estimates and log likelihood 

list(Reps = i, Tomponent Weights w/SE" = probs, "Comp Parameters" = 

Loglikelihood = loglike.old, "Chi-square Fit" = chistat, 

parms, 

"AIC and BIC Fit" = Fit, "OverDispersion Meas." = OverDisp) } 
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Appendix B. Mixed Negative Binomial Regression Program 

"negbi.prob"<- 

function@, mu, theta) 

{ 

exp((lgamma@ + theta) + y * log(mu) + theta * log(theta)) - (lgamma( 

theta) + lgamma@ + 1) + (theta + y) * log(mu + theta))) 

1 

"mixnegb2"<-function(data.fe, vars, offset = "T", comp) 

{ 

# Comp is the number of components to be examined 

# If used (i.e. offset = T) the offset variable comes first 

# The response variable is first with all covariates following 

# Use numerical indices in Vars to i d e n w  which variables to 

# use 

# Initialize script 

library(Mass) 

offset <- as.logical(offset) 

trms <- length(vars) - 1 

data.mod <- as.matrix(data.fiame[vars]) 

if(!offset) { 

# Need this lib to do Neg Bin Glm 

trms<-trms+I 

data.mod <- cbind( 1, data.mod) 
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1 

if(trms > 1) 

dimnames(data.mod) <- list(NULL, c("t", "Y", paste("X", l:(trms -l), sep = ""))) 

else dimnames(data.mod) <- list(NULL, c("t", "Y")) 

n <- nrow(data mod) 

k <- t rms * comp # Build formula for model 

if(tms > 1) { 

xmod <- paste("X", l:(trms - l), sep = "") 

1 

else { 

xmod <- null() 

1 

model <- paste(c("Y-offset(log(t))", xmod), collapse = "+") 

# Assign uninformative prior mixing probs to components 

pj.old <- rep((l/comp), comp) 

pj.new <- rep(0, comp) 

# estimates 

# Setup vector to receive parameter 

a.new <- a.old <- matrix(0, comp, trms) 

se.parms <- matrix(0, comp, trms) 

theta <- rep( 1, comp) 

se.theta <- rep(0, comp) 

# Build indicator of component and randomly assign each obs to a component 

rhts <- mabix(c(l:n, f loor(df(n,  1, (comp + 0.999)))), nrow = n) 

z <- matrix(0, nrow = n, ncol = comp, dimnames = list(NULL, paste(Y, l:comp, sep = 

Y)) 
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z[rints] <- 1 

data.mod <- cbind(data.mod, z) 

# add columns to receive fitted and residuals 

data.mod <- cbind(data.mod, matrix(0, n, 2)) 

dirnnames(data.mod)[ [2]] [ 1 + trms + comp + 1 :2] <- c("fitted", 

"residual") # i will keep track of number of iterations 

i <- 0 

1oglike.old <- 0 # Start the process 

repeat { 

# run Neg Bin regression -- 2 s  are indicator of components. 

foru in 1:comp) { 

pick.rows <- data.mod[, paste("z", j, sep = '''71 

out.glm <- glm.nb(formula(model), link = log, data = 

as.data.fme(data.mod[pick.rows == 1, I), 

control = glm.control(maxit = 25)) 

# save parameter estimates from model 

out.glm[ ["coefficients"]] [is.na(out.glm[ ["coefficients" 

ID1 <- 0 

a.newu, ] <- out.glm[["coefficients"]] 

1 <- length(summaq.lm(out.glm)$sigma * sqrt(diag( 

summary. lm( out. glm)$cov.unscaled))) 

se.parmsu, 1 <- c(summary.lm(out.glm)$sigma * sqrt( 

diag(summary.lm(out.glm)$cov.unscaled)), rep(0, 

trms - 1)) 
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thetau] <- out.glm$theta 

se.thetau] <- out.glm$SE.theta 

data.mod[pick.rows == 1, "fitted"] <- fitted(out.glm) 

data.modlpick.rows == 1, "residual"] <- residuals.glm( 

out.glm, type = "pearson") 

} 

## compute estimates of new means 

if(trms > 1) { 

mu <- data.mod[, Y ]  * exp(cbind(1, data.mod[, 3:(1 + 

trms)]) %*% t(a.new)) 

1 

else { 

mu <- data.mod[, Y ]  * exp(matrix( 1, NOW = n, ncol = 

1) %*YO t(a.new)) 

} 

p <- pj.old * matrix(negbi.prob(data.mod[, "Y"], mu, theta), ncol = comp) 

p[is.na@)] <- 1 

# Rank conditional probs from smallest to largest 

1oglike.new <- sum(log(apply@, 1, max))) 

p.max <- t(apply@, 1, order)) 

## Assign component membership based upon size of conditional prob. data.mod[, 

dimnames(z)[[2]]] <- ifelse@.max == camp, 1, 0) 

## Compute new mixing probabilities 

pj . new <- colMeans(data.mod[, dimnames(z) [ [2]] I) 
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# Check to see if a's converged 

a.diE<- sum(abs(a.new - a.old)) 

pj.diE<- sum(abs(pj.new - pj.old)) 

1oglike.diff <- abs(loglike.new - 1oglike.old) 

# get ready to accept next round parameter estimates 

a.old <- a.new 

pj.old <- pj.new 

1oglike.old <- 1oglike.new # count iterations 

i <- i + 1# exit if a.estimates converge or i exceeds 30 

if((i > 30) 11 ((a.dB< 0.0001) && (pj.diff< 0.0001) && (1oglike.diff < 0.01))) 

break 

1 

# Compute analysis results 

# Standard errors (from inverse of information matrix) 

z <- colSums(data.mod[, (2 + trms):(l + trms + comp)] %*% diag(l/pj.newA2)) 

pinfo <- matrix(z[comp], nrow = (comp - l), ncol = (comp - 1)) 

pinfo <- sqrt(diag(ginverse(pinfo + diag(z)[l:(comp - l), l:(comp - l)] ))) # Parameter 

sets and Wald stats. 

probs <- c(pj.old, pinfo) 

names(probs) <- c(paste("comp", l:comp, sep = ""), paste("se", l:(comp - l), sep = "'I)) 

parms <- matrix(t(cbind(a.old, se.parms, a.old/se.pms)), ncol = trms, byrow = T) 

&mnames(parms) <- list(rep(c("comp", "se", "Wald stat"), times = comp), c@aste("a", 

O:(trms - l), sep = ""))) 

# Goodness of fit Statistics 

chistat <- sum(data.mod[, "residual"]"2) 
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chistat <- c(Chistat = chistat, df= n - (trms + 1) * comp - 1, pvalue = (1 - pchisq(chistat, n 

- (trms + 1) * comp - 1, 

ncp = 0))) 

AIC <- 1oglike.old - k + (comp - 1) 

BIC <- 1oglike.old - ((k + (comp - 1)) * log(n))/2 

Fit <- c(AIC = AIC, BIC = BIC) 

Theta <- rbindmeta = theta, SE = %.theta) 

finaldata.mod <<- data.mod 

# Show final parameter estimates and log likelihood 

list(Reps = i, "Component Weights w/SE" = probs, "Comp Parameters" = parms, 

Loglikelihood = loglike.old, "Chi-square Fit" = chistat, 

"AIC and BIC Fit" = Fit, "Ests. of Theta" = Theta) 

# Overdispersion measures 
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