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It has been observed in various practical applications that data do not conform to 

the normal distribution, which is symmetric with no skewness. The skew normal distribu- 

tion proposed by Azzalini (1985) is appropriate for the analysis of data which is unimodal 

but exhibits some skewness. The skew normal distribution includes the normal distribution 

as a special case where the skewness parameter is zero. 

In this thesis we study the structural properties of the skew normal distribution, 

with an emphasis on the reliability properties of the model. More specifically, we obtain 

the failure rate, the mean residual life function, and the reliability function of a skew normal 

random variable. We also compare it with the normal distribution with respect to certain 



stochastic orderings. Appropriate machinery is developed to obtain the reliability of a 

component when the strength and stress follow the skew normal distribution. Finally, I& 

score data from Roberts (1988) is analyzed to illustrate the procedure. 
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Chapter 1 

INTRODUCTION 

The celebrated Gaussian (Normal) distribution has been known for centuries. 

Its popularity has been driven by its analytical simplicity and the associated Central 

Limit Theorem. The multivariate extension is straightforward because the marginals 

and conditionals are both normal, a property rarely found in most of the other multi- 

variate distributions. Yet there have been doubts, reservations, and criticisms about 

the unqualified use of normality. There are numerous situations when the assumption 

of normality is not validated by the data. In fact Geary (1947) remarked, “Normal- 

ity is a myth; there never was and never will be a normal distribution.” As an 

alternative, many near normal distributions have been proposed. Some families of 

such near normal distributions, which include the normal distribution and to some 

extent share its desirable properties, have played a crucial role in data analysis. For 

description of some such families of distributions, see Mudholkar and Hutson (2000). 

See also Azzalini (1985), Turner (1960) and Prentice (1975). Many of the near nor- 
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ma1 distributions described above deal with effects of asymmetry. These families 

of asymmetrical distributions are analytically tract able, accommodate practical val- 

ues of skewness and kurtosis, and strictly include the normal distribution. These 

distributions can be quite useful for data modeling and statistical analysis. 

In this thesis we are concerned with a skew normal distribution, proposed by 

Azzalini( 1985), whose probability density function is given by 

where 4 ( z )  and @ (2) denote the standard normal density and distribution function, 

respectively. The parameter X varies in (-00,oo) and regulates the skewness and 

X = 0 corresponds to the standard normal case. The density given by (1.1) enjoys 

a number of formal properties which resemble those of the normal distribution, for 

example if 2 has the pdf of (l.l), then Z2 has a chi-square distribution with one 

degree of freedom. From a practical point of view, the density (1.1) is suitable 

for the analysis of data exhibiting a unimodal empirical distribution but with some 

skewness present, a structure often occurring in data analysis. Arnold et al. (1993) 

provided the following motivation for the skew normal model. Suppose students 

admitted to a college are screened with respect to their SAT scores and their progress 

is monitored with respect to their grade point average (GPA). Let ( X , Y )  denote 

their (GPA, SAT). Assuming that ( X ,  Y )  follows a bivariate normal distribution and 

assuming that only those students whose SAT scores are above average are admitted 
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to the college, the distribution of X follows a non-standard skew normal distribution 

and its standardized version is given by (1.1). 

A multivariate version of (1.1) has been recently studied by Azzalini and 

Dalla Valle (1996) and Azzalini and Capitanio (1999). This distribution represents 

a mathematically tractable extension of the multivariate normal density with the 

addition of a parameter to regulate skewness. These authors demonstrate that the 

multivariate skew normal distribution has a reasonable flexibility in real data fitting, 

while it maintains some convenient formal properties of the normal density. 

The purpose of this present work is to study, in detail, the model given by 

(1.1) and investigate some of its properties useful in reliability. We also study the 

maximum likelihood estimation of the parameters and present an application to the 

strength-stress model useful in reliability. The strength-stress model consists in esti- 

mating R = P (Y < X )  , which has been studied extensively in the literature. The 

problem originated in the context of the reliability of a component of strength X 

subjected to a stress Y .  The component fails if at any time the applied stress is 

greater than its strength and there is no failure when X > Y .  Thus P (Y < X) 

is a measure of the reliability of the component. More specifically, in Chapter 2 we 

present the basic properties of the model including several representations, the mo- 

ment generating function, and moments. Chapter 3 deals with the failure rate and 

other reliability functions of the aforementioned model. We also compare it with 

the normal distribution with respect to certain stochastic orderings and prove that 
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the failure rate of a skew normal distribution is increasing, a property enjoyed by the 

symmetric normal distribution. In Chapter 4 appropriate machinery is developed to 

obtain an expression for the P (Y < X ) ,  where X and Y each have a skew normal 

distribution. In Chapter 5, the data of Roberts (1988) dealing with Otis I& scores 

is analyzed to illustrate the procedure. Finally, we give some conclusions and rec- 

ommendations justifying the skew normal distribution. We also point out several 

directions for future research. 
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Chapter 2 

THE UNIVARIATE SKEW NORMAL DISTRIBUTION 

2.1 The Model 

In this chapter we shall define the univariate skew normal distribution, first pro- 

posed by Azzalini (1985). The distribution will be defined by its density function 

and three representations in terms of the normal distribution. We shall also discuss 

several properties and the moments of the distribution. 

First, we introduce two lemmas which can be used to prove that the skew normal 

is a proper density and to derive the moment generating function. 

Lemma 2.1 Let Y be a standard normal random variable and let h and k be real 

numbers. Then 

k E { @  (hY + k)} = @ for all h and k, 

where @ (.) is  the standard normal distribution function. 
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Proof. Let X and Y be independent random variables where X - N (p ,  a2) and 

Y - N (0 , l ) .  Let 2 = X - Y .  Then 2 is a normal random variable with mean p 

and variance a2 + 1. We have 

P ( 2  < 0) = P ( X  < Y )  = E y  [ P ( X  < Y JY = y)] 

--M 

= E{@(hY +k)} 1 I-L where h = - and k = --. a 
a 

We now derive an alternative expression for P (2 < 0) directly from the distribution 

of 2. We have 

--M 

where h = - 1 and k = --. CL 
a a 

Equating the two expressions for P (2 < 0), we have the desired result. 
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We now present an alternative proof of Lemma 2.1. 

Proof. Let Y be a standard normal random variable. For any real h and k, 

define a function Q (h,  k) as follows: 

--M 

Then Q (h,  k) = E {@ (hY + k)} . We now differentiate (2.2) with respect to k: 

--m 

Now, integrating with respect to k, we have 

Q (h,  k) = @ , which proves the lemma. 
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Lemma 2.2 Let f be a densi ty  function which is symmetric about 0 and let G be a 

distribution function which is absolutely continuous and whose derivative is symmetric 

about 0. Then 

is a proper density function for  any X E R. 

Proof. Let X and Y be independent random variables where X has density 

function G’ and Y has density function f. Since X and Y are both symmetric about 

0, then X - XY must also be symmetric about 0. So we have P ( X  - XY < 0) = i. 
Conditioning on Y ,  we also have 

P ( X  - XY < 0) = EY [P ( X  < XY I y = dl 

00 

It follows that 2G (Xy) f (y) dy = 1. rn 
-cQ 

We now define the skew normal probability density function (pdf) and prove that 

it is a proper density. 



9 

Definition 2.1 Let X E R. A random variable 2 is distributed skew normal with 

parameter X i f  Z has the density function 

where 4 ( . )  is the standard normal density function. 

If Z has the skew normal density, we write 2 - SN (A) .  The fact that 4 (2; A) is 

a proper pdf can be verified by applying Lemma 2.1 or Lemma 2.2 as shown in the 

following theorems . 

Theorem 2.1 The skew normal density 4 (2; A) is a proper density f o r  each X E R. 

Proof. Let Y be a standard normal random variable and fix X E R. Apply 

Lemma 2.1 with k = 0. Then we have 

/ 2a) (Xy)  4 ( y )  dy  = 2 E  {a) (XU)}  = 1. 
--m 

We now present an alternative proof of Theorem 2.2. 
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Proof. Let X and Y be independent standard normal random variables and fix 

X E R. Define 2 = X - XY. Then 2 is a normal random variable with expected 

value 0. Then we have 

_ -  I - P ( 2  < 0) = P ( X  - XY < 0) = P ( X  < X U )  
2 

It follows from lemma 2.2 that 

and therefore 4 ( z ;  A) is a proper density. 
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2.2 Representations of the Skew Normal Distribution 

In this section we present some useful representations of the skew normal distri- 

bution in terms of normal random variables. 

Theorem 2.2 Let U and V be independent standard normal random variables and 

let 

T h e n  Z - SN (A) 

Proof. Let a = ~ andlet b =  - & *  Then @ 

- " )  4 (u) d u  
0 
m 

Differentiation yields the density of Z as follows: 

m 

Using the fact that a2 + b2 = 1, we obtain 
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= 2 4 ( z )  @ (Xz) , the skew normal density. 

Theorem 2.3 Let X and Y be independent standard normal random variables and 

X E R. The distribution of Y conditionally o n  X < XY is SN (A ) .  

Proof. If X and Y are independent standard normal random variables and X E R, 

then 

P ( Y  5 t , X  < X U )  
P ( X - X Y < O )  P ( Y 5 t I X C X Y )  = 

-m 

Differentiating with respect to t ,  we have the skew normal pdf: 

d 
dt  
--P (Y 5 t IX < X U )  = 2@ (A t )  4 ( t ) .  
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P [ Y < y l X > O ]  = P Y l Y  [ 

Theorem 2.4 Let Y and W be independent standard normal random variables and 

X E R. Define X = (XY - W )  /(1+ X2)l j2  . Then 

> O l  

(XY - W )  

(1 + x y 2  

(i)  ( X , Y )  has a standard bivariate normal distribution with 

correlation coeficient - 

(ii) the  distribution of Y conditionally on X > 0 is  SN (A ) .  

Proof. Let Y and W be independent standard normal random variables and fk 

X E R. Define the random variable X = (XU - W )  / (1 + X2)1/2 . Then X has a 

&P and 

standard normal distribution and 

corr (X ,Y)  = E ( X Y )  

Thus ( X , Y )  has a standard bivariate normal distribution. Then we have 

= P [ Y  5 ylXY > W ]  

= @ ( Y ; X )  by Theorem 2.4. 

There is one further representation of the skew normal distribution which will be 

discussed in a later section. 
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2.3 Properties of the Skew Normal Distribution 

The following are some useful properties of the skew normal density. 

Property I. The standard normal distribution is a special case of the skew-normal 

distribution when A = 0. 

Property 11. As X + 00, 4 ( z ;  A) tends to the half normal density. 

Property 111. If 2 - SN (A), then -2 - SN (-A). 

Property IV. @ (2; - A) = 1-@ (-2; A) , where @ (2; A) is the distribution function 

of the skew normal. 

Property VI. If 2 - SN (A), then Z2 is a chi-square random variable with one 

degree of freedom. It is known that the square of a standard normal random 

variable is a chi-square random variable with one degree of freedom. This 

property of the skew normal implies that the converse is not true. A chi-square 

random variable is not necessarily the square of a standard normal. 
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2.4 Moments of the Skew Normal 

In this section we derive the moment generating function and the moments of a 

skew normal random variable. 

Theorem 2.5 Let Z N SN ( A ) .  The moment generating function of Z is 

Proof. 

-00 

00 

-aJ 

= 2egE {a (A (u + t ) ) }  where U N N ( 0 , l ) .  

t 2  
Applying Lemma 2.1, Mz ( t )  = 2 e ~ a  - ($3) 

The first moment of a skew normal is given by 
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The second moment of a skew normal is given by 

E ( 2 2 )  = M” (0) 

= 2@ (0) 

= 1. 

It follows that 

and 

2x2 
7r (1 + x2) ‘ Var (2) = 1 - 
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Chapter 3 

RELIABILITY FUNCTIONS OF THE SKEW NORMAL 

DISTRIBUTION 

In this chapter we discuss the reliability properties of the skew normal distribution 

and compare it with the normal distribution with respect to some stochastic orderings. 

Before proceeding further, we present the following definitions: 

Let X be a random variable having absolutely continuous distribution function F 

and pdff .  Then 

1. The survival function of X is defined as ( t )  = P (X > t )  = 1 - F ( t )  . 

2. The failure rate (hazard rate) of X is defined as 

P ( t  5 X 5 t + A t I X  > t )  
At r F  ( t )  = lim 

at -+o 
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3. The mean residual life function or life expectancy is defined as 

It is well known that ( t)  , r F  ( t )  , and p F  ( t )  are equivalent in the sense that 

They also characterize the given one of them, the other two can be determined. 

distribution uniquely; see Gupta (1981). 

We now define the following criteria used in reliability: 

1. F is said to be Polya frequency of order 2 (PF2) if In f (LG) is concave. 

2. F is said to have increasing (decreasing) failure rate, IFR (DFR), if r F ( t )  is 

increasing (decreasing). 

3. F is said to have decreasing (increasing) mean residual life, DMRL (IMRL), if 

p F  ( t )  is decreasing (increasing), assuming that the mean exists. 

It is well known that PF2 + I F R  + DMRL.  The reverse implications are 

not necessarily true. 
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3.1 Reliability Properties of the Skew Normal 

In order to derive the failure rate of a skew normal random variable 2, we must 

first define its distribution function, which is given by 

where 

T (2; A) = 

t o  

see Azzalini (1985) for details. The function T (2; A) is an integral over a polygonal 

region. Its derivation in closed form is not feasible. Owen (1956) gives tables of 

values of T (z ;  A). Computer routines which evaluate T ( z ;  A) are also available. The 

following is an expression for T ( z ;  A) in terms of an infinite series: 

where 

see Owen (1956). It is known that T (2; A) is a decreasing function of h and 
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1. -T ( z ;  A) = T ( z ;  -A)  , 

2. T ( - z ; A )  = T ( z ; A ) ,  and 

3. 2T (z; 1) = Q, ( z )  Q, (-2) , see equations (2.4) and (2.5) of Owen (1956). 

Therefore, the reliability function and the failure rate of a skew normal random 

variable 2 are given by 

R ( t )  = P (2 > t )  = 1 - Q, ( t )  + 2T (ti A) (3.4) 

and 

(3-5) 
4P;  A) - - 2 4  ( t )  Q, ( A t )  r ( t )  = 

1 - ip (t; A) 1 - ip ( t )  + 2T (t; A) * 

The expressions for A < 0 can be similarly obtained. 

We now derive the mean residual life function (MRLF) of 2,which is given by 

p ( t )  = E (2 - t (2 > t )  = E (2 12 > t ) - t. 

Now 
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Hence 

Due to the complicated nature of the expressions for the reliability function and 

the failure rate, the usual derivative methods are cumbersome if we are interested in 

studying the monotonicity of the failure rate or the MRLF. Accordingly, we take 

an alternative approach. In the following, we shall examine the monotonicity of the 

failure rate and the mean residual life function. First, we prove the following result. 

Theorem 3.1 The skew normal density function is log concave. 

Proof. To prove that log $ ( z ;  A) is a concave function of z ,  it suffices to show 

that the second derivative of log @ ( z ;  A) is negative for all z.  Differentiating log 

4 ( z ;  A) we have 

d2 d2  
dz2 dz2 -log (b ( z ;  A) = - [log 2 + log 4 ( z )  + log @ (Xz)] 

We will show that the above quantity is negative. Since q5 ( z )  and @ (Xz) are positive 
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for all z ,  it is sufficient to show that $# + Xz is positive for all Xz. 

Case I: If X z  2 0, then a ap(xz) + ~z is clearly positive. 

Case 11: If Xz < 0, let t = -Xz. Then ~ ( X Z )  = q5(-Xz) = 4 ( t )  and ~ ( X Z )  = 

1 - @ (-XZ) = 1 - @ ( t )  . Thus a(xz) + Xz = $& - t = h ( t )  - t ,  where h ( t )  

is the failure rate of the standard normal distribution. Since it is known (see 

Azzalini (1986)) that h ( t )  > t for all t ,  the assertion is proved. 

Corollary 3.1 The skew normal random variable Z has increasing failure rate (IFR) 

for  all values of X and hence decreasing mean residual life (DMRL). 

3.2 Comparison with the Normal Distribution 

We shall now compare the skew normal distribution k t h  the normal distribution 

First we present the definitions of some with respect to some stochastic relations. 

stochastic order relations. 

Let X and Y be two absolutely continuous random variables with probability 

density functions f and g and survival functions F and G. Then 
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1. X is said to be larger than Y in likelihood ratio ordering, written as X ER Y, if 

f (x) / g  (x) is nondecreasing as x increases. 

2. X is said to be larger than Y in failure rate ordering, written as X:RY, if 

r F  (x) 5 r G  (x) for all X. 

3. X is said to be larger than Y in stochastic ordering, written as X $TY, if 

E (x) 2 G (x) for all x. 

4. X is said to be larger than Y in mean residual life ordering, written as X M& Y, 

if pF (x) 2 pG (z) for all X. 

ItiswellknownthatXERY +X:RY-X:TYand X:RY*XM&Y; 

see Gupta and Kirmani (1998). 

Now suppose X is a random variable having a skew normal distribution function 

F given by (3.1) and pdf given by f (x) = 2 q5 (x) @ (Ax). Also, suppose Y is a 

random variable with a standard normal distribution function G (z) = (x) and pdf 

g (x) = 4 (x) . Then 

= 2@ (Ax), 

which is increasing if X > 0 and decreasing if X < 0. Thus if X > 0, it follows that 
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X & Y. This implies that: 

1. r F  (z) 5 r G  (z) for all Z, 

2. F (z) _> G (z) for all z, and 

3. p F  (z) 2 pG (z) for all 2. 

Similarly, if X < 0, it follows that X :R Y and hence: 

1. r F  (z) 2 r G  (x) for all x, 

2. F (z) 5 G (z) for all z, and 

3. p F  (2) 5 p G  (z) for all Z. 
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Chapter 4 

APPLICATION TO STRENGTH-STRESS MODEL 

In this section we are interested in estimating the P ( 2 1  < 2 2 )  when 2 1  and 2 2  are 

independent skew normal random variables with parameters X 1  and X 2 ,  respectively. 

Before proceeding further we obtain the distribution function of a 1 2 1  + ~ 2 2 2 ,  where 

al and a 2  are constants. 

Theorem 4.1 Let Z1 and Z2 be independent where 2 1  - SN (XI) and 2 2  - SN ( A , ) .  

For any real numbers al and a2, the distribution function of a 1 2 1  + a 2 2 2  is given b y  

where 6, = J "̂ i = 1,2 and a2 = a: (1 - 6:) + a; (1 - 6;) . 
l+X! ' 

Proof. Using Theorem 2.2, with 6 1  = A 1  and 6 2  = , 2 1  and 2 2  can be 

written as 
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and 

where Yo, Y17 and Y2 are independent standard normal random variables. Thus 

P(UlZl+ a222 € u) = P (a1 (61 JYOl+ (1 - 6;); K) 

+ a2 (S2lYOl + (1 - 6;);  Y2) u) 

+a2 (1 - 6i)’yz € - (a161 + a d z )  IYOJ + u) 

1 
= P a1 1 - 6 y Y 1  

1 

( (  

= 7 P  (AlYl+ A2Y2 < u - (al& + a2b2) t) 2 4  (t) dt, 
0 

1 1 

where Al = al (1 - 6;) 

a normal distribution with E (V) = 0 and Var (V) = A: + A$ = 02. Therefore, 

and A2 = a2 (1 - 6;)’ . Let V = A1K + A2Y2. Then V has 

) 24(t)dt 
u - (a161 + a262) t 

P (a121 + a 2 2 2  € u) = s”.<V-o (T c 
(T 

0 

= 2T@ ( u  - (a161 + w 5 2 )  t 
c7 

0 
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Remark 4.2 I n  general, if for  i = 1 , 2 ,  ... n, the Zi are independent, and each Zi N 

SN (Xi) , then 

where 6i = Ai and o2 = ~ ~ ' l  a: (1 - 6:) . 

The next theorem deals with the pdf of a121 + a&?. 

Theorem 4.3 Let 21 and 2 2  be independent where 2 1  - SN (XI) and 2 2  N SN (A,). 

For any real numbers al and a,, 

Proof. From (4.1) the pdf of a121 + a 2 2 2  is given by 
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U 2 1 2  

Jm - -  - e-5w @ ( sw)  where w = 6 
= 24 (w) @ (;w) . 

Thus 

Remark 4.4 In general if 2; are independent  SN (Xi) i = 1 ,2 ,  ... nl t h e n  

n n where 6; = a = a,& and a2 = a: (1  - 6;) . m' 
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We now apply the skew normal to a strength-stress model. If 21 is the stress on 

a component and 2 2  is the strength of the component, we use the previous theorem 

to evaluate P (21 < 2 2 )  , where 21 - SN (A,) and 2 2  - SN (A2) . First we must 

prove the following lemma. 

Lemma 4.1 For any real h, 
do 

1 1 
@ (hu) 4 (u) du = - arctan h + -. s 271 4 

0 

Proof. Consider a more general integral, given by 

9 (h, k) = @ (hu + k) 4 (21) du. 7 0 

Taking the derivative of (4.6) with respect to h, we get 

7 a 
--9 (h, k) = 
ah 

2~4 (hu + k) 4 (21) du 
0 

r 

k2 - k 2  

(hk)e 2(1+h2) [ ( hk )] (4.7) Jrn 1-@ - e- - - 
27r + h2) (1 + h2)T 
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Strictly speaking, (4.7) has to be integrated back with respect to h. However, the 

value of this cannot be obtained in a closed form. It can be obtained in an infinite 

series form as it is the same form of integral involved in the distribution function of 

2, see Theorem 1 of Henze (1986). 

For our purposes, we can consider the case Ic = 0 and get 

a 1 
--\k (h, 0) = 
ah 27r(1+ h2)’ 

where 

1 
2n 

\I, (h, 0 )  = - arctan h + B ,  for some real constant B.  

Since -\k (0,O) = a, it follows that B = a. Hence 

1 1 
@ (hu) 4 (u) du = - arctan h + -. s 27T 4 

0 

We are now in a position to evaluate P (Z1 < 2 2 )  . 

Theorem 4.5 Le t  2 1  and Z2 be independent  where 2 1  - SN (A,) and 2 2  N SN (A,). 

T h e n  

1 
P (21 < 2 2 )  = - arctan 

7r 
(4.9) 

xi i = 1,2. JiTp where bi = 
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Proof. We apply Lemma 4.1 in the case where a1 = l ,u2  = -1, and u = 0. We 

get a2 = (1 - 6:) + (1 - 6;) = 2 - 6; - 6; and hence using (4.1) we have 
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Chapter 5 

ANALYSIS OF THE ROBERTS DATA 

Before proceeding further, we present the following motivation, due to Arnold et 

al. (1993), for the skew normal distribution involving location and scale parameters. 

Let ( X ,  Y) have a bivariate normal density with mean vector ( p l ,  p2) ,  variance vector 

(ui, 0;) and correlation p. Let f (2, y) denote the joint density of X and Y . If Y is 

truncated below at its mean, p2, then the joint density of X and Y is given by 

, - m < x < m ,  y > p 2  
elsewhere, 

which is a truncated bivariate normal distribution. 

standard skew normal random variable X .  

We shall now derive a non- 

Theorem 5.1 Let X and Y have the joint density (5.1). 

of the untruncated variable X is given by 

The marginal distribution 
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where A = A. 

normal distribution. 

The random variable X is said to have a non-standard skew &7 

Proof. Integrating the joint density of X and Y with respect to Y, we have 

m 
n 

Letting V = y - p2 - pa2 (7) /02&7, we have 

If X has the pdf given by (5 .2) ,  it is called a non-standard skew normal with 

parameter X = -. +P 
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The moments of the non-standard skew normal are given by 

and 

Let XI ,X2,  ... X,, be a random sample of size n from the pdf (5.2). Then the 

moment estimators are given by 

where 5 is the sample mean, s2 is the sample variance, and m3 is the third central 

sample moment. These moment estimators will be useful in choosing the initial 

values for solving the nonlinear likelihood equations given in the next section. 
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5.1 Maximum Likelihood Estimates 

The log likelihood function is given by 

n n 
n 
2 

In L = c - - 1.2 - 
i=l 2 .  

2=1 

The likelihood equations are given by 

and 
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If we let w (x i )  = 4 [A (y)] /@ [A (y)] the above equations become 

and 

Solving (5.3), (5.4), and (5.5), the maximum likelihood estimators are given by 

- n  
i=l 

and 

.. e\ u 1 
A =  t=l 

(5-9) 

The inverse of the Fisher Information Matrix can be used to find the variance- 

covariance matrix for the estimates. The Fisher Information Matrix is given by 
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1 3 x 3  = 

where 

b = El and 

ak = E { Z k ( $ # ) 2 } l ( k = O l l 1 2 ) l  with 

The derivation of the matrix can be found in the appendix. 

5.2 Estimates for IQ Data 

Arnold et al. (1993) applied the skew normal distribution to a portion of an I& 

score data set from Roberts (1988). In this section we expand the application to the 

full data set. The Roberts I& data gives the Otis I& scores for 87 white males and 

52 non-white males hired by a large insurance company in 1971. The data is given in 

the following tables: 
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Table 5.1: Otis I& scores for whites 
124, 106, 108, 112, 113, 122, 100, 108, 108, 94, 102, 120, 101, 118, 
113, 117, 100, 106, 111, 107, 112, 120, 102, 135, 125, 98, 121, 117, 
124, 114, 103, 122, 122, 113, 113, 104, 103, 113, 120, 106, 132, 106, 
112, 118, 113, 112, 112, 121, 112, 85, 117, 109, 104, 129, 140, 106, 
115, 109, 122, 108, 119, 121, 113, 107, 122, 103, 97, 116, 114, 131, 
94, 112, 108, 118, 112, 116, 113, 111, 122, 112, 136, 116, 108, 112, 

108, 116, 103 

Table 5.2: Otis I& scores for non-whites 
91, 102, 100, 117, 122, 115, 97, 109, 108, 104, 108, 118, 103, 123, 
123, 103, 106, 102, 118, 100, 103, 107, 108, 107, 97, 95, 119, 102, 
108, 103, 102, 112, 99, 116, 114, 102, 111, 104, 122, 103, 111, 101, 

91, 99, 121, 97, 109, 106, 102, 104, 107, 95 

To apply the skew normal as a truncated normal according to the motivation 

of the model given by Arnold et al. (1993), we assume that these individuals were 

screened with respect to some variable Y ,  which is unknown. We further assume 

that only individuals who scored above average with respect to the screening variable 

were hired. 

Let X represent the I& scores of the individuals hired. The variable X is the 

unscreened variable, and only this variable is observed. We assume that ( X , Y )  has 

a bivariate normal distribution with mean vector (p1, p2) ,  variance vector (a:, 0;) 

and correlation p .  Therefore the observed I& scores represent a sample from a non- 

standard skew normal distribution. 

We apply the non-standard skew normal maximum likelihood estimators to the 

I& score sample to estimate the mean and variance of I& scores for the unscreened 

population. We now let XI represent the score for whites and let Xz represent the 

scores for non-whites. The two data sets displayed above are analyzed separately, 
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each under the assumptions of normality and skew normality. The estimates are 

given in the following tables: 

Table 5.3: Parameter estimates for Otis I& scores for whites 
paramer normal skew normal (95% Confidence Interval) 

Pl 112.86 105.78 (100.38, 111.26) 
g 1  9.58 11.94 (8.81, 15.86) 
A1 1.14 (-0.09, 1.77) 

Table 5.4: Parameter estimates for Otis I& scores for non-whites 
paramer normal skew normal (95% Confidence Interval) 

P1 106.65 98.79 (93.11, 104.47) 
0 1  8.23 11.38 (8.17, 11.71) 
A1 1.71 (0.4, 2.02) 

For both data sets, under the assumption of normality the mean is overestimated 

and the standard deviation is underestimated. 

Using the estimates from above, we first transform the data sets, given in Tables 

5.1 and 5.2, to the data sets on standard skew-normal random variables Z1 and 2 2 .  

We then estimate X i  and X i  for the standard skew-normal random variables. The 

resulting estimates are A: = 1.15 and X i  = 1.84. We now employ the machinery 

developed in section 4 to estimate the probability that the I& score for a white 

employee is less than the I& score for a non-white employee. From the estimates of 

X i  and and (4.9), we have 61 = .755 and 62 = .878 and 

1 1 
P(Z1 < 2 2 )  = - arctan 

7r 

= .5473. 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

In many real life applications, it has been observed that the unrestricted use of the 

normal distribution to model data can yield erroneous results. For the Roberts (1988) 

data analyzed in chapter 5 ,  the application of normality resulted in overestimates of 

the mean I& scores in both cases. This is due to the fact that the scores were obtained 

by screening on some other variable which is unknown, giving rise to skewness in the 

data. For this reason, we have used the skew normal distribution to estimate the 

desired probability. 

There are many possible extensions of the skew normal model. Azzalini and Dalla 

Valle (1996) and Azzalini and Capitanio (1999) have investigated the properties of the 

multivariate skew normal. The reliability functions examined in this paper may also 

be extended to the multivariate case. Also many other reliability properties of skew 

normal or multivariate skew normal models which are true for a normal distribution 
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can be investigated, see for example Gupta and Gupta (1997, 2000). 

Another area of interest is the application of the univariate skew normal to linear 

models. In the recent presidential election, there was considerable discussion about 

the measurement error of the machine and hand recounts. In linear models, the 

error term is assumed to be normal with mean zero. However, if we consider each 

Florida county separately, with each showing a significant margin of victory for one 

of the two candidates, then the measurement error will have skewness in favor of the 

winner. Therefore, it is appropriate to investigate the nature of a linear model with 

a skew normal error term. 
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APPENDIX 

FISHER INFORMATION MATRIX 

The elements of the Fisher Information Matrix are derived as follows. We let 

b = 6, 

The log likelihood function is given by 

l n L = C - n I n u 2 - C ~ + C I n ~ ( X Z , ) ,  2 where Cisaconstant.  
i=l a= 1 

We now derive the elements of the matrix. First, we have 
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_-  u2 
ue 2 d u .  1 n m  

-m i=l 

It is known that the first moment of a standard normal random variable is zero. Thus 
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Next, we have 

It is known that the even moments of a standard normal random variable equal one, 

thus 

Xnb(1  +2X2) , X2nal 
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Next, we have 

Next, we have 

Again using the fact that the odd moments of a standard normal are zero and the 

fact that the second moment is one, we have 

n 
(72 

I 2 , 2  = - (1 + X 2 a 2 )  . 
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Next, we have 

Finally, we have 

I3,3 = 
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