





Jiangiang Zhao’s paper[1] shows that the multiple zeta function can be ana-
lytically continued to a meromorphic function on all of C. But there still exist

two open problems:

1. Determine the complete set of trivial (resp. nontrivial) zeros of the mul-

tiple zeta function.

2. Determine the functional equation (if any) of the multiple zeta functions
which generalize the classical functional equation of the Riemann zeta
function.

1.3 Nested harmonic sums.

Let w1, - - ,wn be complex-valued differential 1-forms defined on a real inter-
val {a,b]. We have w; = fi(s)ds where fy,---, fn are complex functions. Define

the iterated integral f: wy - - -wy inductively by

/abwl = /:fl(s)ds

and

/:m.”w"z/‘;bfl(s)(/:wf“wnds) if n> 1.

Nested harmonic sums of arbitrary depth k (or k-fold Euler sums) and their
(81 + s + - - - + sx)-dimensional iterated integral representations are defined by

k a’:‘:’
C(sla'“,sk;ala'“aak) = Z H J'

ny
ni>n> >0 >0 j=1 ]
where a; = £1 and s1a; #1

1
= / Q‘“_lwl ...Q‘ﬁ—lwk
[1]

dr T;dz;
where Q= —,w; = ——L- 1, = Hai
I )

and s; are positive integers.



Ezxzample 1.3.1.

(=)™

2,1;-1,1
¢( ) v

n1>nz>0
/l dIl /21 —-d:l:z /32 —d$3
o T1 Jp 1+z2Jy l1+2z3°

1.4 The multiple polylogarithm.

We define the multiple polylogarithm by
k a'}j
C(sla"')sk;ala"'rak)= Z HnJ—sJ7
m>ng>->ne>0j5=1 "J

where s; and a; € C.

The multiple polylogarithm is the extension of the nested harmonic sums
and the multiple zeta functions because they extend the variables s; and a; of
nested harmonic sums to any complex numbers and let us control the increas-
ing and decreasing speed of the multiple zeta functions by the each a; as n; is
increasing. For example, the decreasing speed of values ((2; %) is faster than

that of {(2;1) as n is increasing.

1.5 The shuffle operation.

Let A denote a finite set of letters; let A* denote the set of all words
on A. Define U (Shuffle operation) by uUv = Y Z,1)Zo(2) - - - Za(nt+m), fOT
u=2I- -2, € A and v = Ty - Tpem € A", where the sum is over all

n+m

permutations o of the set {1,2,--,n+m} which satisfy 0 ~1(j) <
n ,

o”lk)foralll<j<k<nandn+1<j<k<n+m.



Ezxample 1.5.1.
abb U ab = 6a%b® + 3abab? + ab’ab.

The shuffle operation U can be extended linearly to the non-commutative
polynomial ring Q < A > in the natural way. This makes Q < A > into a

commutative associative Q-algebra with multiplication LI.

Ezample 1.5.2.
abU (3ba — 2ab) = 6ab’a — abab + 3baba + 6ba’b — 8a%b>.

Iterated integrals satisfy the following property: Let wy, - - -, Wn+m be complex-
valued differential 1-forms defined on a real interval [a, b}, then

b b b
/ wl"'wn/ Wnyl ' Wnym = 2 / Woy " Wopms
a a > Ja

where o runs over all (n, m)-shuffles of the symmetric group Sy +m, which shows
that the product of nested harmonic sums can be decomposed using the shuffle

operation.

Ezxample 1.5.3.

dr
-z

i 1
€(2,1;1,1)¢(2;1) = /wa/ Qw where W=7
-—.J0 0
1 1 1
= 6/ 92w3+3/ Qwa2+/ Quw?Qw
[1] 0 0

= 6¢(3,1,1;1,1,1) + 3¢(2,2,1;1,1,1)

w + ¢(2,1,21,1,1)



1.6 The multi-set.

We define a multi-set by a collection whose repeated elements are allowed.
So the multi-set {a,b,c,c} is the same as the multi-set {a,b,2¢} but distinct
from the multi-set {a,b,c}. Contrast this with the set {a,b,c,c} which is the

same as the set {a,b,c}.

The number of repetitions of each member is called the multiplicity of that
member. For the multi-set {a,b,¢,c}, the multiplicity of a and b is 1, and the

multiplicity of ¢ is 2.

Let A and B be multi-sets, we define A = B to mean that every element of A
is an element of B, their multiplicities are equal and vice versa. We also define
A C B to mean that every element of A is an element of B and the multiplicity
of each element of A is less than or equal to that of B. If AC B and A # B,

we say that A is a strict multi-subset(or subset) of B.

Ezample 1.6.1. Let S be the multi-set of all words as the result of ab? U ab.

Then

S = {a%®a?h% a?b?,a%h?,ab?, a%b®, abab?, abab?, abab?, ab®ab}

{6a%b, 3abab?, ab%ab}.

Furthermore, {a%b3, abab?, ab®ab} is a strict multi-subset of S.



Chapter 2

IDENTITIES FOR MULTIPLE
POLYLOGARITHMS

2.1 Analytic identity 1 and its formula for nested

harmonic sums.

Proposition 1 .
z z z
Z (_l)nz4n/ (4a2b2)n = Z(_l)kz2k/ (ab)k Z z2m/ (ab)m
n>0 0 k>0 0 m>0 0

where a and b are any differential forms whose integrals converge.

Proof. Let a = f(z)dr and b = g(x)dr; let D, = 7(17)% and Dy = ;45

let F(z,2) 1= 3,50 (=1)"2%" Jy (4a%b)™, then

D,F(z,z) = T(lz_)g;'gl(—l)nz4n‘/0:4na2b2(azb2)n—l

T
= Z(_l)n4nz4n}_(1?)_ad; i a?b?(a?b?)""1
n>0

T
= Z (_1)n4nz4n/ ab2(a2b2)n—1
n>0 0
Taking D2F, D,D2F, and D?D?F in this order on both sides, we obtain
T
Z(_l)ﬂ+lz4n+44n+l/ (a2b2)n
0

n>0
= -42'F(z,2).

DD.F(z,2)

So, F(z,z) is a solution of 4th order differential equation D?D2 + 424 = 0.



Let G(z,2) :== 3,59 (=1)k22* [(ab)* PRI s J3 (ab)™, then

D.G(z,z) = Z(—l)kzzk /zb(ab k-1 ZZZm/’(a’b)m

E>1 . m20 .
+ kzzn(—l)"z” /0 (ab): ".22:1 2m /0 b(ab),m_l
= é(—l)"“z“iz /0 b(ab)"mEZjoz”: /0 (ab)™
- / @ 3 | banm

Taking D2G, DyD2G, and DZD2G in this order on both sides, we obtain
DEDG(z,z) = -42'G(z, 2)

So, G(z, z) is also a solution of DZD2 + 424 = 0.

We can get four initial conditions, putting £ = 0 at the each step taking
D,, D%, DyD?, and DED? on both sides: F(0,2) = G(0,z), D,F(0,z) =
D,G(0,z), D?F(0,z) = D2G(0,z) and DyD2F(0,z) = DyD2G(0,z), Then
F(z,z) = G(z, 2).

dz

dz
1-z?

In Proposition 1, if we take @ = ¢ and b = then we can get the

following formula involving nested harmonic sums:

Formula 2 .

D (DR 1L 1) = Y (DR 2Y (1Y) Y ey (1),
n>0 k>0 m>0
where the notation { X }™ indicates n successive instances of the integer sequence

X.

Proof. Let a = ';—’ and b = %2, Apply a and b to Prdposition 1, then we

-z~

have the followings: . —



1
LHS = Y (-)rz™ / (4a%p%)"
]

n>0

> (~Dr2mang({3, 137 {1, 1))

n>0

and

R.H.S

_kz2klak z2mlam
S0t [t e [

k>0 m>0

(DR (1)) Y ARy (1.

k>0 m>0

Hence we have the following formula:

LHS = Y (-)mz*"¢({3,1}"{11}")

n>0

= Y (-DEE2Y 1)) Y ARy (1)
k>0 m>0

= R.H.S.

2.2 Combinatorial identity 2 for nested harmonic sums.

Theorem 3 .

t t 2 t 3 ¢ 4 . e
{1+(1—i)a+(1—i)ab+(1—i)aba+(l—i) abab + - -}
_t__ t 2 t 3 t 4

U {1+ (i7la+ (g53) eb+ () abe + (1) abab+ -}

= 1+ ta+t%a® + t%a? + t'a%b? + t2a’b%a + t8a?b?a® + - -
where t € C.
Proof. In the following lemmas we show that the coefficients of 47, ¢47+1,

t4+2 and t*"*2 for n € N in the two series given in Theorem 3 coincide. This

will establish the prd.(_)_f;)‘fmTilile(;remw.'i. Afterwards, we can obtain four identities



involving multiple polylogarithms as formulas to the four lemmas if we find a

proper setting of a and b.
2.2.1 The coefficient of t'".

Let us find the coefficient of t4" in the left hand side in Theorem 3 and show

the equality between the coefficients on both sides:

Lemma 1 . The coefficient of t™ in Theorem 3 is:

— Z (=1)"[(ab)™"" U (ab)™"] = (a*b*)™.
IrI<n

Proof. Let us investigate first several terms on the left hand side to find

the pattern:
(——)4 abab + (-——)( )3

- i (35 @baUia) + (1 L

(o) @bUab)

+

,)4abab+---.
i

The shuffle operation is commutative and we have the following compu-

tations: (75)* = (l__1+_‘.)4 = -} (&G =1 G5 2 ()? = ) and
eIl (1 ;)3 = —%. Therefore we obtain the coefficient of 47 on the left hand
side as

= 3 -1)7Ia) " a7,

Iri<n

Putting k = n—r, we can rewrite the statement of the lemma as the following:

2n

Z (_l)n—k[(ab)k U (ab)Zn—k] = 4n(a2'b2)n.

k=0

We will prove this statement.



Let S; be the multi-set of all words as the result of (ab)* U (ab)?"~*, for
0 < k < n. Then we get the following inclusion by Lemma 6 [Inclusion of multi-
set 1): Si for 0 < k < 2n and k # n. Since the shuffle operation is commutative,

then S;,_x = Si. Hence every word on the left hand side is contained in S,.

On the other hand, we know that (a2b?)" is not contained in S for 0 < k <
2n and k # n. Consider the formation of (a25?)" in detail. If we let (ab)™ be
(a1by - - -apby) in (ab)™ U (ab)”, then every a; and b; can take 2 positions. This

gives us the coefficient of (a2b?)™ as 22" = 4",

So, it is sufficient to show that there does not exist any other word except

(a2b?)™ on the left hand side. Since

2n 2n 4
E (_1)n~r|Srl = E(_l)n—r n = 4"

r=0 r=0 2r

by Lemma 9 [Binomial coefficient 1}, then we can conclude that the only re-

maining word on the left hand side is (a?b?)™ and its coefficient is 4™.
2.2.2 The coefficient of t*"+!,

Let us find the coefficient of t*»*! in the left hand side in Theorem 3 and

show the equality between the coefficients on both side:

Lemma 2 . The coefficient of ti"+! in Theorem 3 is

ZIF 3™ (~1)7[(ab)™" L (ab)™*"a] = (a2b%)"a.

frisn

Proof. Let us investigate first several terms on the left hand side to find

10



the pattern:

(aUabab) + (———)2( ) (ab U aba)

( )2(aba U ab) + (———)4( )5ababa

)(abab U a) + (

l+z
+

The shuffle operation is commutative and we have the following computa-
tions: (17)° = ==, (T)4 ()" = =%, ()% (h0)? = 5, (L)) =
B, (35)M()! = =5, and (155)° = =4, Therefore we obtain the coeffi-
cient of t"+! as

1 -1 T
= HZ (=1)7[(ab)"~" U (ab)"*a].
ri<n

Putting k = n—r, we can rewrite the statement of the lemma as the following;:

2n
> (=1)"*{(ab)* U (ab)**~*a] = 47 (a%b?)"a.
k=0

We will prove this statement.

Let Sy be the multi-set of all words as the result of (ab)* U (ab)?"*a, for
0 < k < 2n. Then we get the following inclusion by Lemma 7 {Inclusion of
multi-set 2]: Sp CS; C - C Sy, and Sz, C --- C Sp. And so, every word on

the left hand side is contained in S;,.

On the other hand, we know that (a?b?)"a is not contained in S for 0 <
k < 2n and k # n. Consider the formation of (a26%)"a in detail. If we let (ab)"a
be (a1b; - - - anbn)an4 in (ab)™ U (ab)™a, then a; and b;, for 1 < i < n, can take

2 positions. This gives us that the coefficient of (a2b%)"a is 22" = 4".

11



So, it is sufficient to show that there does not exist any other word except

(a®b?)"a. Since

i 2 dn+1
> DS =Y (- =4
r=0 r=0 2r+1

by Lemma 10 [Binomial coefficient 2], then the only remaining word on the left

hand side is (a2b?)"a and its coefficient is 4™.

2.2.3 The coeflicient of t4"12,

Let us find the coefficient of t4*+2 in the left hand side in Theorem 3 and

show the equality between the coefficients on both side:

Lemma 3 . The coefficient of t"*+2 in Theorem 3 is

3" (—1)[(ab)*"a U (ab)™*"a] = (a%b?)"a?.

2. 4"
Ir|<n

Proof. Let us investigate first several terms on the left hand side to find

the pattern:

( )Gababab + (-—)(—)5(a u ababa) + (-——)2( )‘(ab U abab)

~ 4 (——-)( )3(abauaba)+(—)‘( )(ababUab)

6

(1+i)(ababal_.la)+(1_i) +
The shuffle operation is commutative and we have the following computa-
tions: (ﬁ)ﬁ = -8" 1- t)5(1+|)l = (1 )4(1+,)2 = é? (1__1:')3(—1%)3 = %’
(ﬁ)%ﬁ)" = 3, () (1+I)5 =l and (m)s = £. Therefore we obtain

the coefficient of t4"+2 as

3 (~1)[(ab)*"aU (ab)**"a].

2. 4"
|r|{<n

12



Putting k = n—r, we can rewrite the statement of the lemma as the following;:

2n
3 (1) *{(ab)*a Li (ab)*"~*a] = 2- 4" (a®b*)"a’.

k=0

We will prove this statement.

Let Si be the multi-set of all words as the result of (ab)*a Ul (ab)?"~*a, for
0 < k < n. Then we get the following inclusion by Lemma 7 [Inclusion of
multi-set 2}: So C S C -+ C S,. Since the shuffle operation is commutative,

then S3,,—x = Sk. And so, every word on left hand side is contained in S,.

On the other hand, we know that (a?b?)"a® is not contained in Si for
0 < k < 2n and k # n. Consider the formation of (a2b*>)"a? in detail. If
we let (ab)™a be (a1 b; - - - anby)any) in (ab)"all(ab)"a, then every a; and b; can

take 2 positions. This gives us that the coefficient of (a2b?)"a? is 22"+! = 2.4".

So, it is sufficient to show that there does not exist any other word except

(a%b?)™a? on the left hand side. Since

2n 2n n+2
S orrs =) oy =2-4"
r=0 r=0 2r+1

by Lemma 11 [Binomial coefficient 3], then the only remaining word on left

hand side is (a2b?)™a? and its coefficient is 2 - 4™.
2.2.4 The coefficient of t4"+3,

Let us find the coefficient of ##7+3 in the left hand side in Theorem 3 and

show the equality between the coefficients on both side:

13



Lemma 4 . The coefficient of tA"*3 in Theorem 3 is

n+1
2-14n 3" (-1)"[(ab)*"abui (ab)**"a] = (a®b?)"ab.

r=-n

Proof. Let us investigate first several terms on the left hand side to find a

pattern:

(3 )7abababa+(————)(——) (U ababab) + (1-)?(7—)" (ab U ababa)
+ (l—t_—)( -)*(aba U abab) + ()" )° (ababLlaba)
bGP (ababa L ab) + ()*(1—) (abababLl )
+ (lt_i)7abababa+---

The shuffle operation is commutative and we have the following computa-

tions: (1-:)7 = 1s'> 1 = (1+;)l BT =55, 1 — (1+;)2 —}6 ’(Tl—_i)4(1_-'l+‘i)3 =
.1—11(—5—"( (1+l)4 - 16" 1~t)2(1+t)5 —161’ 1-:) (1-+-:)6 _llsi’ 1+t)7
l—flt::'i' Therefore we obtain the coefficient of t4"*+3 on the left hand side as
1 n+41
oD > (-1)(ab)""abU (ab)™*"a].
r=—n

Putting k = n — r, we can rewrite the statement of lemma as the following:

2n+1
Z (—1)""*[(ab)***abU (ab)*a] = 2 - 4"(a2b*)"a®b.
k=0

We will prove this statement:

Let Sk be the multi-set of all words as the result of (ab)>**abU (ab)*a, for
0 < k < 2n. Then we get the following inclusion by Lemma 7 [Inclusion of
multi-set 2]: Sop C S1 € - C Sp and Spp41 C -+ C Sy. And so, every word on

the left hand side is contained in S,,.

On the other hand, we know that (a?b?)"a?b is not contained in Sy for e

0< k <2n+1 and k # n. Consider the formation of (a?b*)"a?b in detail. If we

14



let (ab)™*! be (a1b1 - - - Gnbn)ans1bn41 in (ab)"a i (ab)™+!, then every a; and b;
except bp41 can take 2 positions. This gives us that the coefficient of (a?b?)"a2%b

is 22741 = 2. 4",

So, it is sufficient to show that there does not exist any other word except

(a?b?)™a®b on the left hand side. Since

2n+1 2n+1 4n+3
3 D IS = Y (- =2.4n
r=0 r=0 2r+1

by Lemma 12 [Binomial coefficient 4], then the only remaining word on the left

hand side is (a%b2)"a?b and its coefficient is 2 - 4”.
2.2.5 Connection between Proposition 1 and Lemma 1.

Even though Proposition 1 and Theorem 3 are proved in different ways,
that is, Proposition 1 is proved using an analytical method such as solving a
differential equation with initial conditions, while Theorem 3 is proven, using
combinatorial methods such as using the shuffle operation, there is a connection

between Proposition 1 and Theorem 3:

In fact, Proposition 1 plays the same role as Lemma 1. Let us derive Propo-

sition 1 from Lemma 1:

Lemma 1 says

2n
Z (_l)n—r[(ab)r u (ab)2n—r] - 4"(021)2)".

r=0

If we let a and b be any differential forms whose integrals converge, then
2n z z e <
Z (_l)rz4n / (ab)r / (ab)zn—r = (_l)nz4n/ (402b2)n’
—o 0 0 0

15



obtained by multiplying with z4" and taking integrals of both sides over the
interval [0,z].

Taking a summation of both sides gives us the following:

z 2n z z
Z(_l)nz«ln-/o (4a2b2)n ZZ(__I)rz:tn./o (ab)r./o (ab)2n—r

n>0 n>0r=0
T x
= 3 (-1 / (ab)* 3 22 / (ab)™.
k>0 0 m>0 0

Hence Formula 2 can be also derived from Lemma 1.

2.3 Combinatorial identity 3 for multiple polylogarithms.
Theorem 4 .
> (~1){(ab)™"" U (ba)™*"} = 2 47~{(abba)" + (baab)"}.
frign
Proof. Let k = n—r, then we can rewrite the left hand side as the following:
2n
> (-1)**{(ab)* U (ba)*"*}
k=0
We will show that this is equal to the right hand side. Let Sx be the multi-set
of all words as the result of (ab)* U (ba)?*~*, for 0 < k < n. Then we get the
following inclusion by Lemma 8 [Inclusion of multi-set 3}:So € S; C -+ C Sp.
Since the shuffie operation is commutative, then S>,_x = S¢. And so, every

word on the left hand side is contained in S,,.

Let us look at the words on the right hand side. From the formation, we know
that (abba)™ and (baab)™ are not contained in S; for 0 < k£ < 2n and &k # n.
=~~~ Consider the formation of (abba)™ in detail. Let (ba)™ be (biaibaas - - - bpa,) in

(ab)™u(ba)™. Then every a; and b; except an can take 2 positions and a, must be

16



fixed at the end. Similarly, when forming (baab)” in (ab)” U (bya1b2a2 - - - bpay),
every a; and b; except b; can take 2 positions and b; must be fixed in the first
position. From these choices, we get that the coefficients of (ebba)™ and (baab)™

are 22"1 =2 .41,

So, it is sufficient to show that there does not exist any other word except

(abba)™ and (baab)™. Since

2n 2n 4
S st =y | =

r=0 r=0 2r

by Lemma 9 [Binomial coefficient 1], the only remaining terms on the left hand

side are (abba)™ and (baeb)™ and the coefficients are 2 - 4"~1.
2.3.1 Formula(1) from identity 3.

Even though Theorem 4 was proven using a combinatorial method, unfor-

tunately, a and b cannot be any differential forms. For instance, if the iterated

integral starts with @ = df and b= Td_iz, then the integral is divergent because
the series starting with b = 01 %‘- and ending with a = 0’ " de are divergent.

But it does not mean that there do not exist any analytic formulas. Let us
try to find analytic formulas putting a and b as differential forms whose integrals

converge:

Let a = T'L_“—’_{ and b = léii:% where a, 8,v,8 € C, |a] > 1, and |3| > 1, then

we obtain the following formula:

17



Formula 5 .

> DT, 1, {1, = a5

Iri<n

C(lv 11 {11 1}n+r-1;

i
'
3
[
—
U
—
J—‘
(=Y
(=)
p—
e
S
3
|
—

where |a| > 1 and || > 1.

Proof. Leta = %% and b = ;’j; where @, 8,7,6 € C, |a} > 1, and |8] > 1;

let us find the following integrals: j;,l (abba)™, _/: (baab)™, fol (ab)™ , and fol(ba)".

If we apply these results to Theorem 4, then we can get a formula.

To start, let us take an integral of abba over the interval [0,1. Then we

obtain the following using geometric series:

) 6d$2 2 5d$3 *3 ’7d$4
/abba / 1__L A

=% ) T-%Jp 1-%
a—kl —k4ﬂ—k2—k3

= (@)’ 3 3 (kL) (k1 + ka)(ky + k2 + ks)(ky + Kz + k3 + k)

kq>1 k3>l ka>1ky>1

Kweputng =k, n3 =k, +ko,no =k +ko+ks,andny = k; +ky + k3 +kq,
then

a—™ +n2—n4ﬂ-ﬂ2+ﬂ4

1
_ 2
/0 abba = (afBvd) Z ninsnzng

N1 >ng3>ng>ngy >0

la,sB
a3’ 1,;).

Next, let us take the integral of (abba)? over the interval [0,1], to find a

(@f87)¢(1,1,1,1; =

pattern. We obtain the following using geometric series:

1
2 _ 4
| (attay? = @it 3

kg, k1>1

a~(k1+k4+k5+ks)ﬂ—(k2+k3+ke+k7)
ki(ky +ky) - (k1 + ko + k3 +--- + ks)

18



If we put ng = k), n7 =ky +kz, ng = k1 +ky+ks, -,y =k +ko+ k3 +
-+« + kg, then we get the following:

a—(m -nz+n4—M+ﬂe)ﬂ—(ﬂz—m+ne—ﬂe)

[ @r = @ot

m>ng>>ng>0 ninz---ng

l a B a B
= e 64 1’1’1’1’1717171;_7—717—111_117—.
(aBvd)*{( 25 al3 a)

For the general case fol (abba)™ over the interval [0,1]. Then we get the
following using geometric series :

a-_(zmzl(k""'s+k""))ﬂ—(2mzl(k""_2+k""'l))

|ttty = @proy Y-

m
kan o k121 Hle Zl:l ki
If we put ng4, = kl, Nan—1 = k1 +k2, ceyny = Ej;l:l k., as we did for

the case (abba)?, then we can change the previous sums into the following sums.
After that, we can convert the sums into multiple zeta values using the definition

of multiple zeta values:

1
/ (abba)™
0
—(ﬂ1+2n_ (—nam-2+n4m)) —(Zn_ (Mam—2—N4m))
a m=1 ﬂ m=1
D> 4
nI>na> - >nga>0 Hr::l Nm
a.la_ B a B
= 62" 17171717 1,1,1,11\ 1;—7—)11— 17—711-" 1'
@11 (L 2 5,02, 0,81, 8y

Symmetrically, we can get the following for the general case (baab)™:

B

1 a
a a’ ]
a

B B

Let us investigate the left hand side in the same way. To begin, to find the

1 ——.
/(baab)"=(aﬂ7¢§)2"<(1,1’1,1,{1,1,1,1}n~1; ’g’ly {1, 1’%}"—1)-
0

pattern, let us look at some simple cases.

If we take an integral of (ab) over the interval [0,1], then we can get the

following using geometric series:--—— - --
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1 1 z
vdz) ! édz,
ab =/ / :
/(;( ) o 1-3 /o 1-%
kzﬁ ky

0,3'76 Z Z kl +k2)

k2>1k1>1

If we put n; = k; and n; = k; +k, then we can obtain another sum different

from the previous sums. By the definition of multiple zeta values, we get the

/0 '(ab)

following;:

a—m+wzﬂ—nz

(aByd) Y

ny >n2>0

(aBy8)C(L, 1; =3

Let us take the integral of (ab)? over the interval [0,1] to find the pattern,

nin2

)-

then we get the following using geometric series:

Ve L [Podm [T ddzy [ sy (% bdoy
0(a) = 1= ), 1-= 1— Zs 1-— 22
p 8 J0 a J0 [2]
6 \ a-—(k2+k4)ﬁ—(kl+k3)
= (aBfyd) Z ki(ky + ko) (k1 + ko + k3) (k1 + ko + k3 + kg)~

kaq k3,k2,k12>1

K weputng = k1, n3 = k1 +ko, no = k1 +ko+k3z, and ny = ky + kg + k3 + k4,
then we can get the following in the same way as for the case (ab)
a—(m —ﬂ2+ﬂs—fu)ﬂ—(ﬂ2—"3+ﬂ4)

1
./..(ab)z = (0B76)2 - Z -n1n2n3‘n4

n1>nz>nz>ng>0

(aﬁvé)((ulll%é%

Let us take an integral of the general case (ab)™ over the interval [0,1]. Then

)-

we get the following using geometric series:

! a—(z’v‘n=1 "2“)3‘(2’.‘“1 kam-.)
(ab)" = (a18)" g
/(; an |§1 >0 H:}:l Zl::l kl

2n

If we put no,, = k1, non—1 = k1 + kg, ---,and ny = —1 km, then we get
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the following by the definition of multiple zeta values:

1 D™ (T (C)™nm)
[@r = @ ¥ 2 - b2t

2n
n1>Ng> >Nz >0 Hm=1 Nm

(@Byd)" (1,1, {1,175 2, 5.
Symmetrically, we get the following for the case (ba)™:
! n_ n n-1 1 é g é n—1
[ 0o = @srarcan )28, (5, Ly,

If we apply these results to Theorem 4 and cancel the (afv6)?" on both

sides, we get the following formula:

LHS = .r%.( )7 / (ab)™=" / (ba)™"}
= 3 DL L 5
€ 5, 8,5 By,
= 2-4"-1[c(1,1,1,1,{1,1,1,1}"-1%,%,1,-51,{1,%,1,2}"—1)
+ ¢(1,1,1,1,{1,1,1,1)"}; % 5,1,%,{1,2,1,%}"-1)]

1 1
. 4n—1 n ny
2.4 /0 (abba)™ + /0 (baab)*} = R.H.S.

2.3.2 Formula(2) from identity 3.

If we put a = 2>~ !dz and b = z8~'dx where a- B # 0, a + 8 # 0, ma +
(m+1)8 #0, (m+1)a+mB # 0, and m € Z, then we obtain another
formula. Moreover, this formula is related to rational functions, which means
that our identities can derive other formulas, that are not related to multiple

zeta functions:
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Formula 6 .

T 1 "‘*' 1
l,én(_l) [,.1;[, i{(G — Va +jB} ,_1:[1 jlia+ (G - L
— .4qn—1 e 1 1
= J_l:ll J'(J'+1)[{J'a+(j—l)ﬂ}-{ja+(j+1)/3}

1
G=Dat 78 {G+ Datih).

wherea-B#0,a+ B #0, ma+(m+1)8#0, (m+1)a+mB #0, andm € Z.

-+

Proof. Let a = z*"'dz and b = rP~ldr where a-8 # 0, a+ 8 # 0,
ma+(m+1)8#0, (m+1)a+mB #0, and m € Z; let us find the following
integrals: fol (abba)™, fol (baad)™, fol (ab)™ , and fol (ba)™. If we apply these re-

sults to Theorem 4, then we get a formula.

To start, let us take the integral of (ab)™ over the interval [0,1]. Then we get

the following:

1 1 zy 1
/(ab)" = /z‘l”ldn/ zg‘ dz,
0 0 0
Z2w—72 T2n -1
-1 -1
/(; zgﬂ—ldz2""1/0 3€n dzan

1 zy
/ z‘l"'ldzl / fg_ld.'l‘z
[} [}

T2n-2
a-—1 zgn-l d -
Ton—1 T2n—1
Q

ﬁ —_
1
{G - Na+iBHia+ 358}

n

_ 1 1
T (a8 11 jlja+ (G- 1B}

i=1

n
i=1

Symmetrically, we can get the following result for the case (ba)™:

n

Looa 1 1 o
/o (ba)” = (a+p)" Hj{ja+(j—1)ﬂ}'

=1
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Let us look at the right hand side: If we take the integral of (abba) over the

interval [0,1], then we can easily obtain a pattern.

1 1 ) . zg+B
. _
/o“"”“ /0’1 "“1/ * a@rh”

z§a+25

ala + B)(a + 26)(2a + 28) l
1
a(a + B)(a + 268)(2a + 28)
1
1-2(a+ B)2ala+28)

If we take the integral of (abba)™ over the interval [0,1], then we obtain the

following result:

! 1 - 1
abba)™ = —- - - - - .
J; v @+ U555 0Gas G- DfGas G+ DA
Symmetrically, we get the following resuit taking the integral of (baab)™ over
the interval [0,1]:

1 " 1 i 1
/0 (baab)® = @+ p)n H G+ V{G-Da+iBH{{G+a+j8}

j=1
If we apply these results to The Theorem 4 and cancel (a—-;-lB)T’ then we get

the following:

LHS = Y (-1)7{ (@b [ o)
Ir|<n / /
. . n—r n+r 1
= 2ol s DaT 7T 556087
= 2. 4"‘1n—r L [ !
1 J0+ D) e+ (G~ 18} {ja+ (G +1)8}

1
{G-Da+8 (G Da+iB)

1 1
n—1 A n ny _
2-4 {/0 (abba) +/0 (baab)™} = R.H.S.
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Remark. If we put a = e~%tdt and b = e~Ptdt, where |a| > 0 and |8 > 0,
and take the integrals of both sides over the interval [0, o0}, then we also can

get the same result as Formula 6. If we put z = e’ in the setting of Formula 6,

we can derive Formula 6 from this setting.

2.4 Combinatorial identity 4 for multiple polylogarithms.

1 unit

e
Let a base be aaaabbaaaabb- - - aaaabb = (a*b?)". Then the base is in the

o p—

n units

multi-set S,, coming from (a2b)" U (a®b)".

We define by (2n — j) transpositions between ‘b's with their

2n—-3
closest ‘a’ on the base

1 unit

——
(a*b?)® = aaaabbaaaabb- - - aaaabb.

o p—

n units
2n -1 2n-1
Then the number of words in is
2n —j 2n—j
2n-1
Let us look at examples of
2n —-j

Ezample 2.4.1. In case n = 3, denotes one transposition between

1
'y’ and its closest ‘a’ on the base (a%b?)® = aaaabbaaaabbaaaabb , that is,
)
= (a®baba*b?a’b? + a'baba®b’a’h® + a'b’adbaba’t?
1

+ a'b?a*baba®b?® + a*b’a'b’adbab).

Ezample2.4.2. In the casen = 3, denotes two transpositions between
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'b's and their closest ‘a’ on the base (a*b?)3, respectively. Then the number of

5
terms is =10.
2
Theorem 7 .
n ] 2n-1
z (_l)r[(a2b)n—r u (a2b)n+r] = 3" z oF
Ir|<n i=1 2n—j

Proof. To begin with, we can rewrite the left hand side as follows, by
putting k=n - r:

2n

Z(_l)n—k{(azb)k u (a2b)2n—k}

k=0

We will show that it is equal to the right hand side.

Let Si be the multi-set of all words coming from (a2b)* U (a?b)?"~%, for
0 < k < n. Then we can get the following inclusion by Lemma 6 {Inclusion of
multi-set 1]: S C &) C --- C S,,. Since the shuffle operation is commutative,

then S25,_x = Sk. Hence every word on the left hand side is contained in S,.

6n
On the other hand, since the number of elements of Si is , then, by

3k
Lemma 13 [Binomial coefficient 5], we get the following:

2n 2n 6n
S-UrHSH = (-1
k=0 k=0 3k
2 | 2n-1
= 3y ¥ ,
=0 2n—j

where |Si] is the number of elements of Si.
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Therefore, to complete the proof of Theorem 7, we have to show that every

word on the right hand side is contained in S, and the coefficient of every word

2n-1 ,

in is 37 - 27. The first statement is obvious from the formations of
n-j

the words.

To show the second statement, we will use the following strategy: First, we
investigate several beginning terms. This investigation reveals a pattern of the
coefficients of terms on the right hand side. Secondly, from the pattern, we will
formulate a lemma of the formation that states the general rule. Finally, we

will prove the lemma.

Let us investigate first several terms to find a pattern of the coefficients of

terms on the right hand side:

For

3n22n 2n-1 - 3n22n(a4b2)n’
0

each aab and AAB must be used to make a*b? of the (a*b?)" in S, if we put one
(aab)™ as (AAB)". And so, two 'A’s can choose 3 positions with repeats and

one ' B’ can choose 2 positions in each unit a*b?. Hence, the coefficient (actually

the number of choices) is. =3-22

This process must be repeated n-times to make (a*b?)™. Therefore, the co-

efficient is 3"22", since (a*b?)" is contained in S,, but not Sk for 0 < k < n.
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For
3n22n—1 2n-1
1

since we have one transposition between b’ and its closest 'a’, the forms are of
the following two types wherever the location of 'V is:

...a’babath? - .- 1)

.--a*babadh?---. (2)

It does not matter where the location of ‘b’ is because the type is unique if

we consider the broken a*b? or (a*h?)?, partially. Since the coefficient of words

2n-1
in is 3722"~1  we need that the coefficient of (1) and (2) is 3223,

1

because 3"~222("=2) comes from (a*b?)"2.

For

since we have two transpositions between ‘b’ and its closest ‘a’, the forms are of

the following types:

e a3balbadp® - .- (3)

--.a*baba’bab - - - . (4)

or the combination of two separated (1)s,(2)s, or (1) and (2) on a%b%s.

Wherever the locations of 'b's are, the types are unique if we consider the

I 2n-1

broken a%b?s partially. Since the coefficient of terms in is 3n22n-2,
2
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we need that the coefficient of (3) and (4) is 3222, because 3"~222(*~2) comes

from (a%b?)" 2.

For

3ﬂ22n—3 2n -1

3

since we have three transpositions between ‘b’ and its closest ‘a’, then the forms

are of the following types:

.- a%ba2baZbabatd? - - -, (5)

---a*baba’ba’ba’p? - - - (6)

or the combination of (1) through (4).

Wherever the locations of the 'b's are, the types are unique if we consider the

2n -1
broken a®b?s partially. Since the coefficient of terms in is 3n22n-3,
3

we need that the coefficient of (5) and (6) is 332, because 3"~322("~3) comes

from (a%b?)"~3.

To make sure a pattern, let us look at the next case: For

3ng2n-3 2n-1

4

since we have four transpositions between b’ and its closest ‘a’, then the forms

are of the following types:

.- a3bababaZba’b? - - -, )

-+~ a'baba’ba’ba’bab - - -, (8)
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or the combination of (1) through (6).

2n-1
In this case, since the coefficients of terms in are 32274 we

4

need that the coefficient of (7) and (8) is 3322, because 3"~322("=3) comes from
(a%*b?)"~3. Wherever the locations of the 'b's are, the types are unique if we

consider the broken a%?s, partially.

From these examples, we can get a pattern described in the following lemma

and complete the proof by proving the lemma.

2.4.1 Lemma for the coefficients.

Lemma 5 .

1. Ifm=2k+1,0< k <n—1, then the coefficients of a3b(ab)**aba’b?
and a*bab(a?b)?*a®b? are 35+223,

2. Ifm = 25, 1 < 3 < n, then the coefficients of a®b(a®b)?*~'a3b? and

a*bab(a®b)?>*~1ab are 32122

Proof. Case 1-1:The coefficient of a®b(a®b)?*aba®b? is 3¥+223,

Since 3 - 22 comes from a*b?, it’s sufficient to show that the coefficient of

a®b(a®b)**ab is 35+12.

Here is the strategy for proving Case 1-1: First, it will be shown that it’s true
for several initial subcases. Secondly, we will find the pattern of coefficients and

explain our notation from this investigation. Finally, the pattern will be proved.
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If k = 0, then a®bab comes from either (aaU A)bAB or (AAUa)Bab and the

coefficient is 3 - 2. We will call this type of pair the symmetric case.

If k£ = 1, a®b(a?b)%ab comes from the following:

For (aab)?U(AAB)?, the coefficient of a3b(a?b)2ab is 3222 from the following

table:
Part A Part B Part C CFC
(aU A)bAB
(aaU A)b | (aU A)B by a symmetric case
or AABab
{ { 1 x2
3 2 . 3 3222

Table 2.1. a®b(a®b)%ab (1)

There exists a symmetric case using (AAUa) instead of (aatl4) in Part A. So,
the sub-total coefficient is 3222 (CFC is denoted the Coefficient For each Cases).

For (aab)® U (AAB) and (aab) U (AAB)? (we will also call this a symmetric

case.), the coefficient of a®b(a%b)%ab is 3?2 from the following table:

Part A | Part B Part C CFC
alU A)Bab
(aaU A)b | aab ( ) by a symmetric case
or aabAB
1 4 1 x2
3 1 3 322

Table 2.2. a®b(a?b)?%abd (2)
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There exists a symmetric case at (aab) LI (AAB)3. So, the sub-total coeffi-

cient is 322. Therefore, the total coefficient of a®b(a%b)2ab is 3222 — 322 = 322.

To make sure the pattern is correct, let us investigate the subcase k = 2.

Then the coefficient of a®b(a?b)*ab comes from the following table:

Part A Part B Part C CFC
(au A)bAB
(aa U A)b | (au A)B(al A)b(aU A)B 3223
or AABab
(a U A)Bab
(aa U A)b aab(aU A)B(a U A)b -3222
or aabAB
' (aU A)Bab
(aaU A)b | (aUA)BAAB(aU A)b : +3222
or aabAB
(aU A)Bab
(aa U A)b (aU A)B(a U A)baab —-3222
or aabAB
(aU A)bAB
(aa U A)b aabaab(a U A)B -322
or AABab
(aU A)bAB
(aa U A)b aab(aU A)BAAB +322
or AABab
(aU A)bAB
(aaUA)b | (auA)BAABAAB 322
or AABab
(a U A)Bab
(aa U A)b aabaabaab 32
or aabAB

Table 2.3. a®b(a?b)*ab

By symmetries, the total coefficient is 332.
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Let CU! be the case that the number of unbroken aab(or AAB) in Part B is
2-1; let CLI be the case that the number of unbroken aab(orAAB) in Part B is
2-1+ 1. Then, in the formations of each case, the Number of Remaining Terms
(denoted as NRT) and the coefficient for each case are in the following table.

All cases NRT CFC
k-1 \ k-1
CUO +3222k—1
0 } 0
k-1 \ k-1
CLO 3292k-2
0 / 0
k-1 \ k-1
CUul1 —3292k—3
1 ) 1
k-1 k-1
CL1 +3292k—4
1 1
. k-1 k-1
CU(k-2) 3223(—1)k-2
k-2 k-2
k-1 k-1
CL(k-2) 3222(-1)k-1
k-2 k-2
k-1 k-1
CU(k-1) 3221 (—1)k-!
k-1 k-1
k-1 k-1
CL(k-1) 32(-1)k
k-1 k-1

Table 2.4. NRT and CFC of Case 1-1
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Let us prove the following statement to prove the pattern: The NRT in the
k-1 k-1
table CUl for kis , and the NRT in the table C Ll for k is
l l

Let us think about the Part B; let us denote one of aab, AAB, (alJ A)b, and

(a U A)B as a unit. CUI for k starts with the following form in Part B:

2l units

N\ ———
aabaab---aab(auA)B(aUA)b---(aUA)Q.

~

N
2k—1 units

In the 2! units of aab, (aab)™, for m even, can shift with an even number of
(a U A)b(or B), which means that if m is odd or m is even and odd shifting,

then the terms are cancelled. For example,

2l—1 units

e
wy =aab---aabla) A)BAAB(alJ A)b---(aU A)B.

21:—;;7::‘:;
is cancelled with w, =
211 units
A,
aab---aab(al) A)B(a U A)baablaUt A)B---(alU A)B,
2k—1 units

for w, is in Sgyi—2 and wq is in Sgyy—;.

2i—1 units
i,
w3 = aab---aablaU A)B(aU A)b---(alU AYBAAB.

~
2k-1 units .

is cancelled with wy =

2l—-1 units

pr—
aab---aabla ) A\ BAABAAB(alJA)b---(al A)BJ,

~

2k—1 units

for w3 is in Sgyy—2 and wy is in Skqq—3.

33



Therefore to remain in the formation of a word, (aab)™ can take the k —{
k-1
{

locations with repeats. Hence the number of remaining terms is

On the other hand, CL! for k starts with the following form in Part B:

2141 units

prm—— N ——
aabaab - - -aablaU A)B(a U A)b--- (a U A)b.

2k—1 units

In the 2/ + 1 units of aab, (aab)™, for m even, can shift with even number of
(a4 A)b(or B), which means that if m is odd or m is even and odd shifting,

then the terms are cancelled.

For example,

2l units

Y e N
w) = aab---aabla i A\ BAAB(aU A)b---(a U A)Ii
2k—1 units
is cancelled with w, =
2] units

prm— —
aab- - -aabla U A)B(aU A)baab(a Ll A)B---(aU A)Iz,

~
2k—-1 units

for w is in Sk+1_2 and we is in Sg+1._1 w3

2l—1 units

pr— e,
adb---aabla U A)B(aU A)b--- AABAAB(aU A)b.
2k—1 units
is cancelled with wy =
2l—1 units
pr—
aab---aab(aU A)B(aU A)b--- AAB(a U A)baab,
2k—1 units

for w3 is in Sk+z_3 and yggjg j}lﬁSfIH.[_zﬁ
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Hence (aab)™, for m even, can shift with even number of (aU A)b(or B) and
can take the k —{ locations with repeats. Hence the number of remaining terms
k-1
l

is

Since the sum of CFC from the table is 2- 3¥+!, from the following compu-

tation,

2. 32[p%-1 k-1 _ 922 k-1 — 92k-3 k-1
0 0 1
k-1 k-1 k-1
4+ 92kt Fm— e (=1)k 121 + (—=1)k2°
1 k-1 k-1
k-1 k-1 k-1
= 2.3%p-2 o + = (=1)k2° ]
0 1 k-1
k-1 k-1
= 2.3%4+! — 42 + ot (SR
k-1 k-2 0
e Y N
= 2.3} N GV

= 2-323%1 = 2.3k
we can complete the pr(ﬁ;Jf of Case 1-1: The coefficient of a®b(a®b)?*abab? is
3k+223.

Case 1-2: The coeficient of a‘bab(a?b)?*a®b? is 3¥+223,

Our strategy is equal to that of the proof of Case 1-1. Let us investigate

- subcases for Case 1-2.
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If k = 0, then the coefficient of a*baba3b? comes from the following:

Part A

Part B

CFC

(aaU AA)baB | (aU AA)(bU B)

by a symmetric case

1

{

x2

6

6

3223

If k = 1, then the coefficient of a?bab(a?b)2a3b? comes from the following:

Table 2.5. atbaba®b?

—

Pat A | PartB Part C CFC
U A)B(aU AA)(BU B
(aal Ad)baB | @u Ayp | | @UAB@UADEUE) L] o,
or aab(A Uaa)(bU B)
ol AdboB | A4B (aU A)b(aa U A)(bU B) .
or AAB(AAUa)(bU B)

Therefore the sub-total of the coefficient is 3322. By symmetry, the coeffi-

Table 2.6. a'bab(a?b)?a3h?

cient of a*bab(a2b)?a3h? is 3323.
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If k = 2, then the coefficient of a*bab(a?b)*a®b? comes from the following:

Part A , Part B Part C CFC
(aaU AA)BAb | (aUA)B(aU A)b(aLi A)B { (atl A)blaa Lt )L B) } 3295
or AAB(AAUa)(buB)
(aa U AA)BAb aab(aU A)B(a U A)b { (aUAB(AAUa)(BUY) } +3224
or aablaall A)(B U b)
(aaUAA)BAb | (aU A)BAAB(aL A)b { (at A)B(AdUa)(BUY) } 3204
or aablaa U A)(B U Db)
(aaLl AA)BAb |  (au A)B(aL A)bagd { (al A)B(AA La)(BUY) } +324
or aab(aa U A)(B U b)
(aaU AA)BAb aabaab(aU A)B { (alt A)b{aa LI A)(B L) } -3223
or AAB(AAUa){BUYD)
(aa U AA)BAb aab(aLl A)BAAB t" U 4)b(aa Ll A)(BLID) } +3293
or AAB(AAUa)(BUD)
(aaUAA)BAb |  (aU A)BAABAAB { (alt A)b(aats A)(BLID) } 3293
or AAB(AAUa)(BUYD)
(aa L AA)BAb aabaabaab { (el B(A4Ua)(BLb) } 3292
or aab(aa U A)(B U b)

Table 2.7. a*bab(a®b)*a®b?

Therefore the sub-total of the coefficient is 3422. By symmetry, the coeffi-

cient is 3423.
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Let us compare Case 1-1 and Case 1-2: The differences between Case 1-1 and

Case 1-1 occur in Part A and Part C, which changes CFC. Here are the changes:

Case 1-1 Change Case 1-2
Part A (aa L A)b — (aa U AA)BAb
CFC 3 — 3-2
Part (aU A)bAB R (aU A)b(aa L A)(B U b)
or AABab or AAB(AAUa)(BUDb)
(a U A)Bab (aWA)B(AAUG)(BUD)
Or —
or aabAB or aablaa Ll A)(B UD)
CFC 3 — 3-2

Table 2.8. Changes Case 1-1 to Case 1-2
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These changes make us get the following table from the table of Case 1-1:

All cases NRT CFC
k-1 k-1
Ccuo +329292k~1
0 0
k-1 k-1
CLO +322292k—2
0 0
\
k-1 k-1
CU1 —329292k~3
1 ) 1
k—l\ k-1
CL1 ~329292k—4
1 ) 1
(k-1 ) k=1 )
CU(k-2) 329293(—1)k~2
\k—2/ k-2)
(k-1 k-1 )
CL(k-2) \ 322222(—1)%-2
\k—2} k—2/
/k—l k—l\
CU(k-1) 322291 (—1)k-1
\k—l k—l/
k-1 k-1
CL(k-1) B 3222(~1)k-!
k-1 k-1

Table 2.9. NRT and CFC of Case 1-2

In addition, the sum of CFC is

9332[p2k-1 k-1 + 251:-2 k-1 _ 92k-3 k-1 _ 92k—4 k-1
0 0 1 1
- k-1
SO W (_l)k-lzl + (_l)k—120 ]
-1 k-1



= 2332 [3{22k—2

0
- 2333{4&—1 k-1
k-1
= 2333
k-1-1

—_ 23333&—1 — 233&-{-2.

_ 22&—4

4k

k-1
k-2

4E-1-1(_)!

Hence the proof of Case 1-2 is completed.

A i Y

k-1
+—(—1)F140 }

Case 2-1: The coefficients of a3b(a?b)?*~1a3b? is 344122,

If we compare Case 2-1 and Case 1-1, then we can see that the difference

occurs in Part C. Here is the change:

Case 1-1 Change Case 2-1
( (aU A)b(aU A)B(aa s A)(BUY), ]
Part C (aU A)bAB 82 _ (a U A)baab(aa L A)(B U b),
or AABab AAB(A Ua)b(aa U A)(BUD),
or AABAAB(AAua)(BUb) |

[ (auA)B(aL A)b(AL aa)(BUB), |

(aU A)Bab (aL A)BAAB(a U AA)(B U b),

Or a'b? —

or aabAB aab(a U A)B(AA U a)(BUD),

| or aabaab(A U aa)(bU B)
CFC 3222 — 322

Table 2.10. Changes Case 1-1 to Case 2-1
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If we put s as k + 1, we can obtain the coefficient of a3b(a?b)?*~1a3b® as

32+122 except for the subcase s = 1 from Case 1-1.

a®ba®ba®b? comes for s = 1 from the following:
(aa U A)b(aU A)B(a U AA)(bU B) or (aaU A)baab(aa U A)(bU B).

Then, by symmetry, the coefficient is 3222. Thus, we have completed the proof
of Case 2-1.

Case 2-2: The coeflicient of a*bab(a?b)?*~lab is 3°+122,

If we compare Case 2-2 and Case 1-2, then we can see that the difference

occurs in Part C. Here is the change:

Case 1-2 Change Case 2-2
[ (aU 4)B(aU A)b4B), ]
alU A)B(aU AAYBUb alU A)BAABab,
Pact C ( )B( )( ) | ( )
or aab(AUaa)(BUD) aab(A U a) Bab,
or aabaabAB )
S
- [ (aU A)b(aLs A)Bab,
(a U A)b(A Uaa)(B U b) (a U A)baabAB,
Or - — $
or AAB(aU AA)(BUb) AAB(aU A)bAB,
or AABAABab )
CFC 3-2 — 3

Table 2.11. Changes Case 1-2 to Case 2-2
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If we put s as k + 1, then we can obtain the coefficient of a*bab(a?b)?*~1ab

as 3°+122 except for the subcase s = 1 from the Case 1-2.

a*bababab comes for s = 1 from the following:
(aaU AA)baB(a L A)bAB or (aaLl AA)baBAABab.

Then, by symmetry , the coefficient of the subcase s = 1 is 3222. Hence we have

completed the proof of Case 2-2.

By the Lemma, we have shown that the only remaining terms on the left

hand side are those on the right hand side and the coefficients of every term

2n -1 .
are 3"27. Hence we complete the proof of Theorem.

2n—j

2.4.2 Formula from identity 4.

In Theorem 7, if we let a = 4 ~ and b = d’ , then we can get the following

results relating nested harmonic sums:

Let us look at the left hand side.

”’ Z( l)n-r 2b U(a2b)2n—r]

= l unit
2n
- 1" . 2b
( ) g( ) / r units / 2n r units
= (=" EC({3}'; {1} - ¢({3y* 5 {1y )
r=0

by taking integrals over the interval [0,1] and using the definition of nested har-

T monic sums.
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Similarly, we can obtain the right hand side in a the form involving nested

harmonic sums if we take an integral over the interval [0,1]-

2n—1
Before giving the formula of the right hand side, we define by
2n—j

(2n ~ j) transpositions between ‘b’'s and their closest ‘a’ on the base

1 unit
1 1 e
/ (a*b®)™ =/ ath? ath®---a'h?.
0 0 -
n unils
2n—-1 n-1
Then the number of words on is
2n—j 2n—j
2n-1
Let us look at the examples used in the explanation of
2n —j
Ezample 2.4.2.1. In case n = 3, denotes one transposition between

1

w and its closest  on the base (a*b?)?, that is,

5 1 1
/ a*babab?atd?® + / atbaba®biatb?
0 1}

1 1
+ / a*b?a®baba’h’® + / a*b2a’babadbh?
0 0

+ /0 la4b2a4b2a3bab
= ¢(4,2,5,1,5,1;1,1,1,1,1,1) +¢(5,2,4,1,5,1;1,1,1,1,1,1)
+ ¢(5,1,4,2,5,1;1,1,1,1,1,1) + ¢(5,1,5,2,4,1;1,1,1,1,1,1)
+ ¢(5,1,5,1,4,2;1,1,1,1,1,1).

5
Ezample 2.4.2.2. Let us look at the case , the number of multiple zeta
2




5 5
values is =10 and denotes two transpositions between bs and their
2 2

closet a on the base (a*b?)3, respectively. That is,

5 1 1
/ a3ba’badb?ath? + / a3baba’babah?
0 0

1 1
+ / a3baba4baba3b2+/ a’baba*b?a®bab
0

0

1 1
+ / a*baba’babath? + / a‘baba®baba3h?
0 0

1 1
+ / a‘baba®b?a’bab + / a*b?a®ba’ba’b?
0 0

+ /01 a*b*ababa’bab + /; a*b’ababa’bab
= ((4,3,4,1,51;1,1,1,1,1,1) +{(4,2,4,2,5,1;1,1,1,1,1,1)
+ ¢(4,2,5,2,4,1;1,1,1,1,1,1) + {(4,2,5,1,4,2;1,1,1,1,1,1)
+ ((5,2,3,2,5,1;1,1,1,1,1,1) +((5,2,4,2,4,1;1,1,1,1,1,1)
+ ¢(5,2,4,1,4,2;1,1,1,1,1,1) +((5,1,4,3,4,1;1,1,1,1,1,1)

+ C(5’ 1’ 4’ 2’ 4’ 2; 1’ 1’ 1’ 1’ 1’ 1) + C(s’ 1’ 51 2’ 37 2; 1) 1’ 1’ 17 17 1)'

Hence we get the following formula from Theorem 7:

Formula 8 .
2n n n—1 ____VN
S DB {3 {1y = 30 Y 2 :
r=0 =1 2n - ]
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Appendices

Appendix A. Inclusion of multi-sets.

In the following lemmas, we can see the inclusions of multi-sets as the result

of the shuffle operation LI.

A.1l Inclusion of multi-set 1.

Lemma 6 . Let Si be the multi-set of all words as the result of (a; ---a,)* U

(ag -+ ar)?" % Then Sg_; C Sx for1 <k <m.

Proof. To make the formation of a word in S clear, let us put (a, - - - a,)2"~*

as (A; - A;)2" %, then
S = {(a1--a)*U(4r---4,)" k)
= {mar--au U A1 Ay Appn_iyr}

where Gjyr = a5 = Aj+r = Aj for allj > 1.

Let w € Sg~;. Consider the location of @, in the formation of w. If a;
is located after A,, then A;--- A, can be changed for ap(k—1)+1 ' - @rx, which
means w € S;. In addition, the number of choices that ay,---,a,4-y) can
choose positions at A,,1, -+, Apan—k+1) i exactly same the number of choices
that ay,---,a,k—1) can choose positions at A, -+, Ar(2n—), Which means the

multiplicity of w € Sg—; is equal to that of w € Si.

Suppose a, is located before A,. Consider the location of az. If a3 is located
after A,41, then
(Ar---AryUay)ArArs
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can be changed for

(@r(k=1)+1 """ @rk—1 U A1)arcay,

which means w € Si. In addition, the number of choices that ag, - -, a,(k—1) Can
choose positions at Ary2,- -, Ar(2n—k+1) i exactly same the number of choices
that a3, ---,a,(x—1) can choose positions at Az,---, A,(2n—x), Which means the

multiplicity of w € S_ is equal to that of w € Sk.
Assume q; is located before A,4;-1. I a;4 is located after A,4y, then
(@1 arUA - Aryy2)Arpi-14r 1
can be changed for

(Ar---ArUay -+ Grp1-1)8rp1-1Gr 41,

which means w € Si. In addition, the number of choices that a;4;,- -, ar(k-1)
can choose positions at Ay, -+, Ar(2n~k+1) is equal to that of choices that
141, "+, 8r(k—1) can choose positions at Ay, - - -, Ay(2n—&), which means the mul-

tiplicity of w € Sk_, is equal to that of w € S;.

Assume a(x_1)-) is located before Arx_s. If a,(k_1) is located after Arx—1,
then

(@1 -@r(k—1)—1 UAy -+ Ark_3)Ark—24rk—1
can be changed for
(A1 Apk—1)—1 U @1 8rk_3)8rk—28rk_1,

which means w € Si. In addition, the number of choices that a,(;_,) can choose
positions at Arg_1,-- -, Ar(2n—k+1) i equal to that of choices that a,(x_;) can

choose positions at A,x_1)-1, ", Ar(2n—k), Which means the multiplicity of
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w € Sk, is equal to that of w € S;.

If a,(x—1) is located before A,i_,, then there exists unbroken tail

A(2n—k)r+1 Tt A(2n—k+1)rs
since k < n. Since
U= A(2n—k)r+1 t 'A(2n—k+1)r
can be changed for
A(2n—k)r+1 * " B(2n—k+1)ry

then w € S;. In addition, the number of occurrences of w € Si_; is exactly
equal to the number of occurrences of w € Si, which means the multiplicity of
w € Sk, is equal to that of w € S;. If we can switch u at other locations after

Ari—-1, the multiplicity of w € Sk is less than that of w € Si.

Hence every words in Si_; is in S; and its multiplicity is less than or equal

to the multiplicity in Si, which shows that S;_; C S;.

A.2 Inclusion of multi-set 2.

Lemma 7 . Let S be the set of all words as the result of (a; :--a,)*a; -+ a; U
(a1+--ar)> *a;---a,, where 0 < I,m < r, 1 < m. Then Sx_; C Si for

1<k<n.

Proof. To make the formation of a word in S clear, let us put (a; - - -a,)?"*

a1+ -G as (Ay---A)2" kA, - A, then

Sk = {(a1---ar)ka;---aqiU(A;--A)2" R A - ARY

= {0z @rppU A1Ay--- A(2n-k)r+m}
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where Qjry = Q5 = AJ'+,- = Aj forall j > 1.

Let w € Sk—;. Consider the location of a; in the formation of w. If a; is lo-
cated after A,, then A, --- A, can be changed for a,(x_1)+1 * * - @rk, which means
w € Si. In addition, the number of choices that a;,---,a,(k-1)+i can choose
positions at Apt1, -, Ar(2n-k+1)+m iS exactly same the number of choices that
ay, -+ ,ark—1)+: can choose positions at A, --, Ar(2n—k)+m, Which means the

multiplicity of w € Si_; is equal to that of w € S;.

Suppose a, is located before A,. Consider the location of as. If a; is located
after A,+1, then
(A1---Arm1Ua)ArArn

can be changed for

(@rk—1)+1 """ Grx—1 U Ay)arra,
which means w € Si. In addition, the number of choices that a - -+, a,(x—1)4+1
can choose positions at A,4+2,"+, Ar(2n—k+1)+m i8S exactly same the number of
choices that a2, - -, a,(k—1)41 can choose positions at A, - -, Ar(2n—k)+m, Which
means the multiplicity of w € Si_; is equal to that of w € Si.
Assumgﬂaz ‘is located before A, ;. If a;4; is located after A,4+;, then

(a1---aU Ay Arp1-2)Aryic1Aru
can be changed for

(A1---ArUa) - Gr1-1)8rp1-18r 41,

which means w € S;. In addition, the number of choices that a;41, -, ar(k—1)4

can choose positions at Ar4i,- -+, Aran—k+1)+m i equal to that of choices that
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G141, 5 Gr(k—1)41 Can choose positions at Ay, - - -, Ar(2n—k)+m, Which means the

multiplicity of w € Si_; is equal to that of w € 5.

Assume a,(x_1)—14: is located before Ark_o41. If a,(k_1)41 is located after

Ark-1+1, then

(@1 ap(k—1)—14+1 U A1+ Arp—341) Ark—241 Ark 141
can be changed for

(A1 Ar(k-1)—141 U @1 - - - Qrk—3+1)Grk—2+1Grk~1+1)

which means w € Sg. In addition, the number of choices that a,(t—1)4: can
choose positions at Ark—141," ", Ar(2n—k+1)+1 1S equal to that of choices that
@, (k—1)+1 can choose positions at Arx_1)-141,**» Ar(2n—k)+1>» Which means the

multiplicity of w € Sk_; is equal to that of w € S;.

If a,(x—1)+: is located before A,x-14:, then there exists unbroken tail

A@n-kyr+1+1 *  A@n—k+1)r+1 "  A@n—k+D)r+m>
éince k < n. Since
U= A(Zn-k)r+1+l " 'A(zn—k+l)r+l
can be changed for

Q(2n—k)r+1+ " G(2n—k+1)r+is

then w € Sg. In addition, the number of occurrences of w € Si_; is exactly
equal to the number of occurrences of w € S, which means the multiplicity of
w € Sk, is equal to that of w € Sk. If we can switch u at other locations after

Ark—141, the multiplicity of w € Si_; is less than that of w € Sj.
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Hence every words in Si_; is in Si and its multiplicity is less than or equal

to the multiplicity in Si, which shows that Si_; C S;.

A.3 Inclusion of multi-set 3.

Lemma 8 . Let Si be the multi-set ofl all words as the result of (araz)* U

(aga1)®>**. Then Si_; C Sk, for 1 < k<n.

Proof. To make the formation of a word in Sj clear, let’s put (aza;)?"*

as (Az4;)?*, then

Sk : = {(alaz)" u (0201)2n—k}

= {(a1a2---a2) U (AoA1 - Az(zn—t)—1)}

where aj12 =aj = Aj = Ajyp forall j > 1.

Let w € Si_;. Consider the location of a; in the formation of w. If a, is
located after A;, then AgA, Az can be changed for Agask—1a2x, which means
w € Si. In addition, the number of choices that a,, - -, azx_1) can choose posi-
tions at As,-- -, A2i—1 is exactly same the number of choices that a1, - -, a2(k-1)
can choose positions at A, - - -, A2x—3, which means the multiplicity of w € Sk,

is equal to that of w € Si.

Suppose a; is located before A,. Consider the location of az. If as is located
after A3, then
(AoA1 Uar)AzA;

can be changed for

(Ao A1 U age)azk+101,
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which means w € Si. In addition, the number of choices that az,---, 8201
can choose positions at A4, - -, Az(2n—k+1) is exactly same the number of choices
that @z, -, @n(k~1) can choose positions at A, -, Az(2n—_&), which means the

multiplicity of w € Sk_ is equal to that of w € Si.

Assume q; is located before A;y). If aiy, is located after A;12, then
(a1 artUAg- - A)Ai1 4142

can be changed for

(@1 a1UAg - Ar)azk-1a2k,
if 1 is even

(a1---a1U Ag - - - Af)aak@ak+1,
if 1 is odd, which means w € Si. In addition, the number of choices that
ai41,° " »G2(k—1) can choose positions at Aiia,- -+, Ag(zn—k+1) is equal to that
of choices that @11, - -, @3(k—1) can choose positions at A;, -+, A2(2a—k), which

means the multiplicity of w € Sk, is equal to that of w € S;.

Assume ay(x_1)-; is located before Azx—. If ay(x_1) is located after Az,
then

(a1---agk—1)y-1 U Ao --- Azk—3) A2k —2 A2k 1

can be changed for

(@1 -+ agk—1)—1 U Ag - - - A2k-3)a26Q2k+1,

which means w € Si. In addition, the number of choices that ayk—1) can choose
positions at Azg—1,- -, A2(2n—k+1) i equal to that of choices that az(x—1) can
choose positions at A2(k—l)—l;"'aA2(2n—;k), which means the multiplicity of

w € Sk—; is equal to that of w € S;. e s
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If ay(k—1) is located before A;_1, then there exists unbroken tail

A20n-k)-142@2n-k)42(2n-k)+1>

since k < n. Since
4 := Agan—k)-142(2n-k)
can be changed for
G2(2n—k)—132(2n—k)»
then w € S;. In addition, the number of occurrences of w € Sk is exactly
equal to the number of occurrences of w € Si, which means the multiplicity of

w € Sk, is equal to that of w € Si. If we can switch u at other locations after

Agi_1, the multiplicity of w € Si_, is less than that of w € S;.

Hence every words in Si_; is in Si and its multiplicity is less than or equal

to the multiplicity in Sk, which shows that Sk_.; C Sk.
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Appendix B. Binomial coefficients.

B.1 Binomial coefficient 1.

2n 4n
Lemma 9 . Y 2, (-1)"" = 4",
2r

Proof. Since

4an ( 4n
A+t + Q- = Y 4")1"‘4»2(4")(—1')"
k

k=0\ k k=0
2n ( 4 2n 4

=3 ")(-1)'+Z( ")(—w
r=0 \ 2r r=0 2r

2n
= 22 ( i ) (‘l)rv
r=0 2r

2n 4n
PG Vi
r=0 2r

then

S @i+ @ -

= Eam 407

= 4"

B.2 Binomial coefficient 2.

4n +1
Lemma 10 . 327 (-1)"-" ( ) = 4",

2r+1
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Proof. Since

& an+1 & an+1
(1 + i)4n+l - (1 - i)4n+l = 2 ‘ik - Z (_1)k
k=0 k k=0 k
2n 2n
- an+1 i2'+1+z 4n+1 24t
=0\ 2r+1 =0\ 2r+1
2n n+1
= 2 (_1)1',
=0\ 2r+1
then
n n+1 —-1)"
z (__1)11—1' = '(_2-_)_{(1 + i)4n+l _ (1 _ 1-)4n+1}
r=0 2r+1 b
-1
= Elcayrara-oa-)
= 4",
B.3 Binomial coeflicient 3.
in+2
Lemma 11 . 327 (-1)»—" =2.4"
2r+1
Proof. Since
& 4n+2 & m+2
(1 +i)4n+2 -1~ i)4"+2 = 2 ik - E (—i)"
k=0 k k=0 k
2 2
- z" in +2 i2r+l+2": n+2 e
r=0\ 2r+1 r=0 \ 2r+1
& an+1
= 2 Z (_l)rr
r=0 27' + 1



then

2n ap | 4n+2
(=1

r=0

2r+1

B.4 Binomial coefficient 4.

Lemma 12 . ¥

Proof. Since

o (-

(1 4+3)4n+3 (1 — j)4nt3

then

2n+1

Z (_1)n—r

r=0

4n+3
2r+1

= (_21)" {(1 + i)4n+2 - (l - i)4"+2}

- i‘_li)—"{(-4)"2i +(~4)"2i)

2
= 2-4",
n+3 P
2r+1
wis 4ot ) " 4§3 dn +3 v
i — -1
k=0 k ) k=0 k
2n+1 in+3 \ et 2n+1 4ﬂ+3 21
] )
r=0 2r+1 / r=0 2r+1
Wt f 4n+3
2 Y (-1,
=0 2r +1

- ("211)’1{(1 + i)4"+3 _ (1 - i)4"+3}

(—'Elil'i{(—‘;)"(l +14)2i + (—4)"(1 — 9)24}

= 2-4".

56



B.5 Binomial coefficient 5.

Lemma 13 .
n 6n n n—
S (~nk =3 2 =2.3%"L
k=0 3r j=1 n—-j

Proof. By the binomial theorem, we get the following;:

6n \
(_1)n33n = (1 - w)ﬁn = Z("l)j ( 6n wj

=0 \ 7 }
6n \
(__1)113311 — (1 - U)G" = Z(-l)j ( 6n mj
=\
6n

0=(1-1%"=3 (-1

=0 J

where w = cos(4F) + i sin(3F).

From these equations, we can obtain the following:

2n [ 6n
2(-1)"8%" =3 (-1
j=0 3j
—= Hence
2n | 2n-1
(RHS) = 3"y 2
i=1 2n—j
n [ 2n-1
= 3"y o
i=1 ] -1
I 2n—1 —
= 3" 2i+1 2n -1
=0 j
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2. 33n—1

2n . 6n
(-1 Y (=1 ( ,
j=0 3

58
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= (LHS).
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