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In epidemiological studies, we are often interested in comparing the mortality rate 

of a certain cohort to that of a standard population. A standard computational statistic in 

this regard is the Standardized Mortality Ratio (SMR) @reslow and Day, 1987), given by 

where 0 is the number of deaths observed in the study cohort from a specified cause, E 

is the expected number calculated from that population. 

In occupational epidemiology, the SMR is the most common measure of risk. It is 

a comparative statistic. It is frequently based on a comparison of the number0 in the 

cohort with the expected value E in a standard population. Our goal is to estimate the 

value of SMR. Since the expected value E is assumed to be fixed for a certain standard 

population, what we need to do is to estimate the observed number 0 ,  which is 
-. 

traditionally assumed to be Poisson distributed. We are primarily interested in confidence 

limits for the Poisson parameter. 



Many authors have discussed methods for constructing confidence intervals for 

the Sh4R. These confidence intervals amount to obtaining more accurate confidence 

intervals for the Poisson parameter. 

In this thesis, by using classic normal approximations, exact confidence intervals 

based on the chi-square distribution, binomial approximations and shortcut methods, we 

investigate more accurate methods for the statistical analysis of Poisson distributed data 

and carry out some simulation studies in order to obtain and compare better estimates of 

the Sh4R. These methods will be employed to develop an improved analysis of the Sh4R 

with missing death certificates. 
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Chapter 1 

INTRODUCTION 

In epidemiological studies, interest often lies in comparing the mortality rate of a 

certain cohort with that of a standard population. The size of the study cohort, for 

example, members of a certain profession, factory workers or patients, is likely to be 

relatively small compared to the size of the general population of a state, a province or a 

country in which the cohort arises. For this, there is a need for a summary measure, or a 

summary type of rate which can enable us to compare the two populations. Such a rate 

should be adjusted or standardized. For example, crude adjusted death rate (number of 

deaths in an area in a yearlaverage population in the area in that year) presents a summary 

figure for a total population. Since the death rate varies according to the age, age is the 

variable for which adjustment is most often required because of its marked effect on 

mortality. So are sex and race. 

There is a basic method for holding constant the age composition of a population. 

The method is used to compare the mortality rate of a certain cohort with that of a 

standard population. In this method the more stable rates of the larger population are 

applied to the smaller study group. Comparison of the expected deaths, thus obtained, 

with the number actually observed in the smaller population yields a standard 

computational statistical measure known as the Standardized Mortality Ratio, or SMR 

(Breslow and Day, 1987), given by 



where 0 is the total number of deaths observed, in the study population, from a specified 

cause, and E is the total expected number of deaths calculated from that population. An 

SMR value greater than 1 indicates higher mortality in the study population than in the 

standard population, and conversely for an SMR value less than 1. In reality, however, 

the situation is not always so simple. 'AS with other summary studies, the SMR depends 

on the age distribution as well as on mortality patterns in both populations. 

In this thesis, our goal is to study several methods for estimating the value of the 

SMR. Since the observed number of events is traditionally assumed to have a Poisson 

distribution, and the expected value E is assumed to be fixed for a certain standard 

population, what we need to do is to estimate the observed number 0 .  That is, we need 

to estimate the parameter of the Poisson distribution. This will be achieved by 

investigating different confidence intervals for the Poisson parameter. 

Many authors have discussed methods for constructing confidence intervals based 

on different types of confidence limits for the Poisson parameter. Most of these methods 

depend on the classic normal approximations. Thus, normal approximations for the 

Poisson distribution have received some attention in the literature, but to a much lesser 

extent than the binomial approximation (Molenaar (1973)). In addition, the exact 

confidence interval for the Poisson parameter can be obtained by using a chi-square 

Yo e-& (nl) 
distribution based on the relationship P L ~ ( ~ ~ + , ,  > 2nl) = . However, for 

k=O k! 

comparatively large degrees of freedom, the required critical values for the chi-square 

distribution may not be readily available, but the excellent approximate values are 

available. Recently, Schwertman et al. (1993) examined the accuracy of various binomial 

approximations for the confidence limits for the Poisson parameter. These simple 



approximations enable statisticians to make a quick evaluation with minimum table 

values. For use in epidemiological studies, Vandenbrouck (1982), Ury and Wiggins 

(1985) proposed some shortcut methods for estimating the SMR by using the variance 

stabilizing square root transformation of a Poisson variable. Ury and Wiggins (1985) 

claim that their method is quite simple and tends to be more accurate. The confidence 

intervals for the Poisson parameter enable us to calculate the 95 % confidence interval of 

the SMR derived by the division of the upper and lower limits of the observed number by 

the expected number. 

As has been said earlier, the evaluation of epidemiological follow-up studies is 

frequently based on the ratio, SMR. The usual way to follow up persons is to identify the 

vital status in population registers, which provide precise information on the date and the 

place of death for the deceased persons with a high degree of completeness. And then, the 

responsible health offices are asked for the death certificates to obtain the official causes 

of death. Generally, this works with a high degree of completeness. However, study 

participants may have died many years or even decades back, and it is an open matter 

whether the health offices still have death certificates in their files. It is a long-term 

storage problem. Legally, the health offices are obliged to keep death certificates for 5 or 

10 years. In practice, the certificates are usually stored for much longer. But inevitably, 

the greater the time elapsed, the lower the degree of completeness of the cause of death. 

This information is needed for historical follow-up studies. 

Rittgen and Becker (2000) used the data of a historical follow-up study among 

foundry workers. In this study, the employees of 37 foundries in Germany were traced 

back to the 1950s (about 17,700 persons). However, the death certificates could be 



obtained for only about 70% of all deaths. They used this incomplete data of missing 

death certificates to create the statistical model, and obtained some confidence intervals 

for the SMR. 

In chapter 2 of this thesis, we review various existing methods of estimating the 

Poisson parameter, such as classic approximation methods, exact confidence limits by 

using a chi-square distribution, and binomial approximations. We perform simulation 

studies to compare some of these confidence intervals in terms of their average length 

and coverage probability. In chapter 3, we investigate some shortcut methods which are 

often used in epidemiological studies, and we propose three other new methods for the 

statistical analysis of Poisson distributed data. Simulation studies are carried out to 

compare the existing methods and the proposed methods in terms of their average length 

and coverage probability. It turns out that one of the newly proposed methods 

outperfoms the others. The missing death certificate problem is investigated in section 4. 

The procedure given by Rettgen & Becker (2000) is modified to accommodate different 

rates, of the availability of the death certificates, in the disease of interest and otherwise 

(eg. cancer and noncancer death). The data given in Rettgen & Becker (2000) is 

reanalyzed using our modification, and the effect of introducing different rates is 

examined. Finally, some conclusions and remarks are presented in chapter 5. 



Chapter 2 

REVIEW THE PROPOSED CONFIDENCE INTERVAL 

FOR POISSON PARAMETER 

2.1 Poisson Distribution 

Because the observed number of events is assumed to have Poisson distribution, 

inference procedures for the SMR can be formulated based on those for the Poisson 

distribution. Now, let's recall the Poisson probability model. 

2.1.1 Definition 

A random variable X is said to have a Poisson distribution if for some A > 0 ,  the 

e - q X  
probability mass function is p(x;  A)  = - , 

x ! 

Here, A is the parameter of the Poisson distribution. The value of A is frequently a rate 

per unit time or per unit area. 

2.1.2 An Im~ortant Pro~erty 

If X has a Poisson distribution with parameter A ,  then 

E ( X )  = V a r ( X )  = A 

Thus, the Poisson distribution has property that the mean and the variance are 

equal to a common value A .  This important property of the Poisson distribution is, in 

fact, a characteristic property in a very broad class of discrete distributions; see Gupta 

(1977). This property is used to obtain classic confidence intervals for A .  



2.1.3 Classic Poisson Confidence Interval 

Method 1. Let X,, X2 ,...., X, be independent, identically distributed (i. i.d) 

1 " 
Poisson random variables, and define X = -z X, . We have E(X) = I ,  and 

n i=l 

I I I x-I 
~ a r ( 2 )  = - . Then 2 - N(I ,  -) for large n , and the statistic Z = ---- - rn N(0,l). Since 

n n 

we don't know the value of I ,  we replacel,  in the denominator, by its unbiased 

estimator. Therefore, by the above normal approximation the confidence interval for I is 

a 
where <D(z,)=P(z<z,)=l-- .  

- - 
2 2 

2 

- 
Example 1: Suppose a =0.05, x = 50, n = 25. Sincez, = 1.96, the 95% 

- 
2 

confidence interval for I is (47.23, 52.77). 

Method 2. Instead of replacing I by its unbiased estimator, as in Method 1, we 

proceed as follows. 

We have 



/ 

Rewriting the previous inequality as P 

\ 

2 

I z ,  = 1 - a ,  we form the quadratic - 

inequality n t 2  - ( 2 n X  + I: )A + n X 2  i = 1 - a for t . Solving this quadratic 
- 

2 1 

inequality, yields 

Hence, the confidence interval for t is 

Example 2: If we choose the same values of a ,  ;, n , as in Example 1, Method 

2 gives the confidence interval as (47.3, 52.84). 

Note that the confidence intervals obtained by Method 1 and Method 2 are quite 

close. Actually, these two classic confidence intervals for the Poisson parameter are 

derived by using normal approximations. Such approximations have received substantial 

attention in the statistical literature. In the next section, we will present exact confidence 

intervals for the Poisson parameter by using the Chi-square distribution. 



2.2 Exact Confidence Interval Based on Chi-square Distribution 

Exact confidence interval limits for the Poisson can be computed using the Chi- 

square distribution based on the following relation between the Poisson distribution and 

the Chi-square distribution: 

Proof Assuming a random variable Y - Poisson(A) , the probability mass fimction is 

And another random variable i s X  - x : ( ~ ~ + ~ )  with 2(y0 +I)  degrees of freedom. The 

probability density hnction (pdf) is 



This proves the interesting relationship ( 1 )  between the Poisson and Chi-square 

distributions. 

We now present the following theorem which enables us to construct an exact 

confidence interval for the parameter of a discrete random variable. 

2.2.1Exact Confidence Interval 

Theorem: Let T be a discrete statistic with cdf FT(t18)= P(T 5 t (8) .  Let 

0  < a < 1 be a fixed value. Suppose that for each t  E T ,  if F, (118) is a decreasing function 

of 8 ,  define 0, ( t )  and 0,  ( t )  by 

a a 
P(T 5 @ ,  (I)) = - , and P(T 2 t l0,  ( t ) )  = - . 

2 2 

Then the random interval [a, (T),  0 ,  (T)]  is a 1 - a confidence interval for 8 .  (Casella 

and Berger ( 1  990)) 



Applying the above theorem, we can obtain the exact confidence interval for the 

Poisson parameter as follows. 

2.2.2 Exact Confidence Interval for The Poisson Parameter 

Let XI ,  X 2  ,... .X, be a random sample from a Poisson population with parameter 

1 ,  and define Y = X,. Y is a sufficient statistic for 1 and Y - Poisson(n1) . By the 
i 

above theorem, if Y = yo is observed, we are led to solve the following equations for 1 : 

9 Wk a - and (nl)k - a .-&---. 

k=O k! 2 k=yo k! 2 

Combining (1) and (2), we have 

and 

2 2 
where X2(y0+l) , XzyO are Chi-square random variables with 2(y0 +I), 2y0 degrees of 

freedom, respectively. 

We now solve equations (3) and (4). 

The upper bound 1, of the confidence interval is obtained as follows. 

From equation (3), we have 



On the other hand, the lower bound of the confidence interval is obtained by solving 

equation (4). 

a 
We have 1 - p(xiy0 > 2n1,) = - 

2 

Therefore, the 1 - a confidence interval for 1 is 

At yo = 0 ,  wedefine x 2  , = O .  
0,l-- 

2  

Now, we are taking a numerical example. 

Examole: Let n = 10 and yo = xi = 6 . A 95% confidence interval for 1 is 
i 

However, if yo is large, say yo > 50, then the required critical value for the Chi- 

square distribution may not be readily obtained. Nevertheless excellent approximate 



values are available. As an alternative, however, it may be convenient to use a simple 

highly accurate binomial approximation that is not based on the Chi-square critical value. 

In the next section, we present some confidence limits of the Poisson parameter which 

are based on the approximation of the binomial distribution by the Poisson distribution. 

I 

2.3 Binomial A~proximate Confidence Limits 

The Binomial approximate confidence limits of the Poisson parameter are based 

on the following basic principle. 

2.3.1 Princi~le 

The binomial can be approximated by the Poisson. In other words, suppose 

X - Binomial(n, p )  . Let n + oo and p + 0 in such a way that np = 2 > 0 remains 

fixed. Then Binomial(n, p )  + Poisson(2). 

We now present six Binomial approximated confidence intervals for the Poisson 

parameter. 

2.3.2 Binomial ADDroximate Confidence Limits 

(1-El 

Let p , , p  be the respective lower and upper confidence limits for p . Then 
(I-$ 

the corresponding confidence limits for the Poisson parameter 2 are ( Blyth 1986): 

Lower: 2 , = limnp , 
"+" (I--) 

2 

Upper: 
n+m 

We now present six methods of constructing confidence limits for a Poisson 

parameter based on binomial approximate confidence limits. 



Method 1 For a binomial random variable X with probability of success p , we 

X -np 
have E(X) = np , Var(X) = np(1- p )  . Thus for large n , the statistic Z = 

a approximately normally distributed N(0,l) . Assuming p is unknown, we replace p in 

I X 
the denominator of Z by its unbiased estimator p = - and obtain 

n 

The confidence limits for p are then given by 

The corresponding confidence limits for iZ are 

and 



Method 2 The second binomial approximated confidence limits are the same as 

those in Method 1 except that they include the continuity correction factor 

The confidence limits for p are 

and 

The corresponding confidence limits for L are therefore given by 

Method 3 The third binomial approximated confidence limits are based on the 

lower and upper limits obtained by solving a quadratic equation in p . 

Specifically, suppose X - Binomil(n, p) . For large n , X - ~ ( n ~ ,  np(1- p)), and 

Since ~ ( 1 ~ 1  I za - ) = 1 - a ,  i .e  P(Z2 < z: - ) = 1 - a ,  we have the following process: 



Therefore the solutions for p are 

whence 

and 

The confidence limits for I are 

I a =limnp a = X + A - z a J ~ + ~  
( I - )  n+m 

2 2 7  4 

2 
'a 

(I--) 
- 

and ~ ( l - q ) = l i m n ~  n+m ' = X + L + ~ ,  
2 T  

Method 4 This method is as the same as the above method but includes the 

correction factor. That are 

and p ' = 
2 n + za 
- 



Then the confidence limits for A are given by 

+a) ' a - 'a 

and A('-:)=lirnnp 2 = x + o s + ~ + z ,  
n+m 5 4 

Method 5 The fifth approximated confidence limits are based on the 

Molenaartype approximation for the binomial. The lower bound and upper bound are 

obtained from Blyth (1986) equation C. They are 

where c = z, . 
- 
L 

Then the corresponding confidence limits for A are 

2+z: 7 - z, 2 
(I--) 

- - 

and 2 g-:)=limnp ; = ~ + 1 + -  
n+m 3 

2 



Method 6 The final binomial approximated confidence limits that we wish to 

present are based on the Pauson-Camp-Pratt approximate confidence limits for the 

binomial, see equation D in Blyth (1986). These are 

The corresponding confidence limits for L are: 

L , = lim np = ' 2 1 
( I - ~ )  n (I-:) 729X2 

Schwertman N.C. et.al (1994) gave us some examples to display the confidence 

limits for each approximation (1) through (6). 

2.3.3 Exarn~le 

Let a = 0.05, x = 25. Using the above methods, we get the confidence intervals 

for L : 

Method 1: (15.2, 34.8) 

Method 2: (14.8,35.4) 

Method 3: (16.9, 36.9) 



Method 4: (16.53, 37.5) 

Method 5: (16.18, 36.907) 

Method 6: (1 6.174, 36.906) 

All of these results are very close. In order to study the performance of the above 

six methods, we conduct a simulation study in the next sub-section. 

2.3.4 Simulation 

The simulation study is carried out as follows: 

(1) Generate 1000 samples. 

(2) For each sample, we set a sample size of n = 25. 

(3) We repeat the above process for several different values of the parameter A .  

Normally, average length and coverage probability are used as scales to measure 

the goodness of a confidence interval. The length of the interval is the difference between 

the lower and upper confidence limits, and coverage is the probability that the random 

interval covers the actual value. Naturally, we want small average length and large 

coverage probability. In our case, we want a smaller length and 95% coverage 

probability. 

The results are presented in the following table. 



TABLE 2.1 Simulation Results for Binomial Approximations 

M E T H  O D s  
1 2 3 

A. =2 
avg length 
coverage 

A. =3 
avg length 
coverage 

A. =4 
avg length 
coverage 

A. =5 
ave length 
coverage 

A. =6 
avg length 
coverage 

A. =7 
avg length 
coverage 

A. =8 
avg length 
coverage 

Since the coverage probability in all these cases does not conform to 0.95, the 

above confidence interval methods are not of much use in terms of coverage. Therefore, 

we need to find other ways to obtain the confidence interval for the Poisson parameter A.. 



Chapter 3 

CONFIDENCE INTERVALS IN EPIDEMIOLOGICAL 

LITERATURE 

In this chapter, we study fhe shortcut methods which are often used in 

epidemiological studies. In addition to these methods, we propose some new methods for 

estimating the Poisson parameter. 

3.1 The Sauare Root Transformation Theorem 

Before proceeding further, we present the square root transformation of the 

Poisson random variable on which these methods are based. We present the following 

square root transformation theorem which stabilizes the variance of the Poisson random 

variable. 

The Sauare Root Transformation Theorem 

For the Poisson distribution, it can be shown for "reasonably large A", say 

A 2 30, that if X - Poisson(A) , then ~ a r ( f i )  = 0.25 . 

Proof If a fbnction f has continuous derivatives up to (n + I ) ' ~  order at a point a ,  then 

by Taylor's theorem, a can be expanded about a 

where R, , remainder after n + 1 terms, is given by 



where 

f ("+I) ( O ( x  - a)"" 
lim Rn = lim = O  
n+m n+m ( n  + I ) !  

In general, we will not be concerned with the explicit form of the remainder. 

Since we are interested in approximations, we are just going to ignore the remainder. 

Therefore, the hnction f ( x )  has the following Taylor's approximation: 

For the statistical application of Taylor's Theorem, we are most concerned with the 

firs t -orde r Taylor series, that is, an approximation using just the first derivative: 

k 

f ( x )  = f (a)  + A' (a)(xi - a,  ) + Re mainder 
i= l  

a 
In our case, we have just one parameter A ,  f ' (A )  = - f (x)lI=, , then 

ax 

f ( x )  = f (A)  + f ' (A)(x - A) + Re mainder 

We can re-write this by using approximation: 

f ( x )  -- f(4 + f '(W - 4 .  

As we know, if X is a Poisson random variable with the parameter A,  we have 

E ( X ) = A  and V a r ( X ) = A .  

This gives 

~ ( f  ( X I )  = f (4 + f ' (4(W) - 4 = f (A)  7 and 

v a r w x ) )  = ~ ( f  ( X I  - El f (x )DI  

= EW) - f ( A V  



If we set f ( X )  = &f, we havt 

1 
Var X = -1 = - = 0.25. Cs) 6, 

Therefore, for reasonably large 1 , f i  is approximately normally distributed. 

That is - ~ ( & , 0 . 2 5 ) .  

3.2 Shortcut Methods in E~idemiolo~ical Studies 

In epidemiological studies, two shortcut methods have been proposed to construct 

the confidence intervals for the Poisson parameter. 

Shortcut Method 1 

This method was given by Vandenbroucke J.P. in 1982. 

By using the Square Root Transformation Theorem, we know 

0.25 - , and the statistic Z = 77-& - N(0, l ) .  Therefore the 

confidence interval for is given by 

Exam~le  E l :  Let X = 23, and a = 0.05 .  Then the 95% confidence interval for 

1 is (14.56, 33.64). 



Shortcut Method 2 

This shortcut was given by Ury H.K. and Wiggins A.D. in 1985. Actually, it is a 

quick and simple normal approximation by adding 1 to the lower limit and 2 to the upper 

limit of the classic 95% confidence interval obtained earlier. See Method 1 of the section 

2.1.3. Thus, the shortcut 95% confidence interval is given by 

( k - - + 1, k + 2:E + 2 ) With the same data as in Example E l ,  the 
2 

confidence interval for A is (14.6, 34.4). 

In the following section we obtain some new shortcut methods for estimating the 

Poisson parameter. 

3.3 Some New Methods for Estimatin~ The Poisson Parameter 

Shortcut Method 3 

We combine the Square Root Transformation and Vandenbroucke's method as 

follows: 

Suppose the random variables X,: s have i.i.d. Poisson distribution with parameter 

n 

A, i = 1, 2, . . . . . . n and Y = Xi . Then Y also has Poisson distribution but with 
i=l 

parameter nA 

By the Square Root Transformation, = \IF- - ~ ( ~ , 0 . 2 5 ) ,  and the 

95% confidence interval for n l  is given by ( x Xi - 0.52, )2, ( Xi + 0.52, )' . 
( d i  - 2 4 i - I  2 



Hence, the corresponding confidence interval for 1 is 

Here, using the data as in example E l ,  the confidence interval is (14.56, 33.64). 

Shortcut Method 4 

In this case, we add the correction term1 to the statistic involved in the upper limit 

of Method 3.3.a and obtain the following second confidence interval 

With the same data as in Example El ,  the confidence interval is (14.56, 34.57). 

Shortcut Method 5 

In this case, we modify the Ury-Wiggins shortcut method, presented in the 

previous section. 

Since Y - Poisson(nA), the confidence interval for n 1  is given by 

Y - z, f i  + 1, Y + z, f i  + 2 . This gives a confidence interval for 1 as 
- 
2 

The above confidence interval can be written as 



The confidence interval for the same data in Example E l  is (14.6, 34.4). 

We find that the confidence intervals obtained in our examples are very close. 

3.4 Comparison and Simulation Studies 

We next compare the above five methods (methods in section 3.2 and 3.3) by 

carrying out some simulation studies. For this purpose we generate 1000 samples of size 

25 for different values of the parameter and examine the lengths of the 95% confidence 

intervals and their coverage probabilities. Results are presented in the following table. 



TABLE 3.1 Simulation Results for Shortcut Methods 

V J P  U-W G B 1 G B 2  G B 3  
a =so 

avg length 5.511 6.533 5.533 5.575 5.573 
coverage 0.885 , 0.91 0.94 0.94 0.94 

A =51 

avg length 5.568 6.591 5.591 5.632 5.631 
coverage 0.878 0.903 0.941 0.943 0.943 

A =52 

avg length 
coverage 

a =53 

avg length 
coverage 

a =54 

avg length 
coverage 

a =55 

avg length 5.775 6.798 5.798 5.839 5.838 
coverage 0.875 0.908 0.91 5 0.921 0.921 

a =56 

avg length 5.832 6.855 5.855 5.896 5.895 
coverage 0.881 0.928 0.935 0.936 0.936 

Where VJP and U-W present the shortcut method 1, 2, respectively. GBi (i=1,2,3) 

represent the newly proposed shortcut Methods. 



From the Table 3.1, we notice that in terms of the coverage probability, GBl, 

GB2, GB3 are closer to the 95% nominal value than VJP and U-W in all cases. In terms 

of the average length, VJP outperforms the other procedures. Comparing the lengths of 

VJP and GBl, we notice that GBl is Alightly longer than VJP, but has appreciably closer 

coverage probability to the nominal value of 0.95 than the VJP. 

Overall the new method GBl gives the best result in terms of the average length 

and coverage probability. 



Chapter 4 

THE PROBLEM OF MISSING DEATH CERTIFICATES 

4.1 ~e t tben  &Becker Model 

4.1.1 Background 

The comparative statistic can be used for the SMR evaluation of epidemiological 

follow-up studies. In epidemiological studies, the usual way to follow up persons is to 

identify the vital status in population registers, which are compulsory and provide precise 

information on date and place of death for deceased persons with a high degree of 

completeness. In a second step, the responsible health offices are asked for the death 

certificates to obtain the official causes of death. In practice, the certificates are usually 

stored for much longer. But inevitably, the greater the time elapsed, the lower the degree 

of completeness of cause-of-death information. 

4.1.2 Problem of miss in^ Death Certificates 

As an example, we use the data of a historical follow-up study among foundry 

workers. In this study, the employees of 37 foundries were traced back to the 1950's 

(approximately 17,700 persons). The vital status could also be traced sufficiently 

completely over the decades by means of the population registers (loss to follow-up of 

6.2%). However the death certificates could only be obtained for about 70% of all deaths, 

Table 1 shows selected SMRs from a preliminary evaluation of these data (Adzersen et 

al. 1997). 



TABLE 4.1 

SMR calculated with empirically observed numbers 

of deaths 0 and confidence limits 

Cause of death 

All causes 

All known causes 

Malignant neoplasms 

Lip, oral cavrty, and pharynx 

Liver and intrahepatic bile ducts 

Larynx 

Trachea, bronchus, lung 

Respiratory system 

SMR 

115.4 

CL=95% confidence limits caculated with methods described in Breslow and Day (1987). 



We can just think about one disease: Malignant neoplasms, and simply call it 

"cancer". So we get a 2 x 2 table which is easier to analyze. 

TABLE 4.2 

cancer& Noncancer Data (1) 

Total 

Death Certificate 

Available 

Cancer 

4.1.3 The Statistical Model 

Now we are setting up the statistical model for the problem of missing death 

certificates. First, we like to introduce several parameters, which can be identified by the 

follow-up in the population registers and can be observed. 

K : the Poisson-distributed random variable with parameter k,, which presents the total 

number of deaths from the disease of interest in the cohort, which we call "cancer" in the 

following. K is unknown because some death certificates are not available. 

L : the Poisson variable with parameter Arepresenting the number of all noncancer 

deaths, which is also unknown. 

Z : Z = K + L , the Poisson random variable with parameter k, +A . It represents the 

total number of deceased persons in the cohort. 

Death Certificate 

not Available 

Noncancer 

Total 

83 1 

2065 

2896 

? ? 

? ? 

3 972 



As we know, a particular cause of death can be identified by an obtainable death 

certificate can be considered by a series of i.i.d. Bernoulli random variables. Let (X,) be 

the i.i.d. Bernoulli random variables that represent the cancer deaths for which the death 

certificate is available, with the probability p , i.e., P(Xi = 1) = p , P(X, = 0) = 1 - p . 

Similarly, let (r ) be the i.i.d Bernoulli random variables, independent of (x,) and 

having the same parameter p ,  which represents the noncancer deaths for which the 

death certificates are available. Now, we observe: 

K 

M = z X, , where Xi = 1, then M - Poisson(p = pk,), and 
i=l 

L 

N = z Y, , where Y,  = 1,  then N - Poisson(v = pA) 
]=I 

we may present the above notations in the following table, Table 4.3. 

TABLE 4.3 

Cancer & Noncancer Data (2) 

Total 

Death Certificate 

not Available 

Cancer 

Noncancer 

Total 

Death Certificate 

Available 

M(83 1) - 
Poisson(p = pk,) 

N(2065) - 
Poisson(v = pA) 

M + N(2896) 



The probability distribution of the observed numbers M and K is given by 

P(M = m,K = k )  = P(M = m l ~  = k)P(K = k )  

- - k ! e-'": 
pm (1 - - 

m!(k - m)! k ! 

Similarly, the probability distribution of the observed numbers N and L is given 

by 

P(N = n, L = I )  = P(N = n l ~  = I)P(L = I )  

- - I! e -' A' 
Pn( l -p ) l -n  - . 

n!(l - n)! I! 

Therefore, the probability distribution of the factually observed numbers 

M,Nand Z is 

P(M = m , N = n , K + L = z )  

z-n = x  P ( M = m , N = n , K = k , L = z - k )  
k=m 

z-n = x  P(M = m , K = k ) P ( N = n , L = z - k )  
k=m 

=z k ! pm (1  - p)k-m - e-kok: I!  pn(l-p)l-" - e-'A1 
k=m m!(k - m)! k! n!( l -n)!  I!  

- - pmko p n Z  - p)z-m-n e-(~o+') -- E k p  a=-k-n 
m! n! ,=, (k  -m)! ( z -  k -n ) !  (4.3) 



- - I 
(k, + A)Z-m-n. 

(z-m-n)! 
(4.4) 

Now, we are defining likelihood function with unknown parametersp, k, and A : 

L(p, k,, A)= P ( M = m , N = n , K + L = z )  

In the terminology used before, the number of empirically observed cases is just 

m , i.e., 0 = m , but the actually relevant number is K , the unknown true number of 

cancer cases in the cohort. 

4.1.4 Maximum Likelihood Estimation 

From the probability model, or likelihood fimction (4.9, we get the log likelihood 

function: 

1nL =mlnp+mlnk,  + n l n p + n l n A + ( z - m - n ) l n ( l - p ) + ( z - m - n ) l n ( k ,  +A)-(k, +A) 

- ln(m!n!(z - m -n)!). 

The likelihood equations are 



a m  n  Z - m - n  -lnL= -+-- = 0, 
ap P  P  1 - P  
a m  Z - m - n  

-lnL=-+ - 1  =0,  
aka k,  k, + 2 
a n  Z - m - n  -InL=-+ - 1  = 0. 

8 2  2 k 0 + 2  

The maximum likelihood estimators (MLE) for the parameters are 

The information matrix, J , is given by 

As we know, J-' is variance-covariance matrix. Next, we find J-' . 

f z3  

- - 

0 0 
(m +n)(z  - m  - n )  

0 
z m + m n + n 2  z - m - n  

mz z 

0 
z - m - n  z n + m n + m 2  

z 2  nz 1 



(m + n)  
The determinant of J is Det(J)  = 

m n ( z - m - n ) '  

The cofactor matrix of J is 

and the transpose matrix of J ,  , Jb = J ,  , since J ,  is symmetric. Hence, the inverse matrix 

of J i s  

J b  J- '  = P 0 
mz(zn + mn + m2 ) zmn(z - m - n) = I  - 

Det ( J )  (m + n)3 (m + n) 

In particular, we have the variance of k, , which is (J- ' ) ,  . 

(m + n)  n z - m - n  
( ~ ) ~ ~ = v a r ( ; ) = ' i [  m + n  (m+n)' +- m + n  m + n  

For large sample, k, is approximately normally distributed. That is 

Then the (1 - a ) ]  00% confidence interval for k, is 



4.1.5 The Confidence Interval for SMR 

0 
SMR* = - x 100, where SMR* is the calculation of a corrected SMR , 0* is the 

E 

total number of cancer deaths. Then 

and 

(1). Denoting by k,, k, , the lower and upper confidence limits for k, respectively, the - 

first confidence interval (CLl) for SMR* is (SMR*, SMR* ) = =, . [: ;) 
(2). The second confidence interval (CL2) for SMR* is based on the binomial parameter 

p . We have already got the confidence interval for this parameter in section 2.3.2 

(&a= ( ;-Ia - d '(l- ;+ za \j '(l- ') ) , then the corresponding confidence 
Z - 

2 2 Z 

limits for SMRe(CL2) are 

0* ko 0 P O *  Lowerbound: SMR ======= -= 
E E pE p E  

- - 
3 ko 0 p? Upper bound: SMR = - = - = - = -- . 
E E pE p E  

where @, 2) = (to, - 6). 

For the data presented in Table 4.2, the results are 



TABLE 4.4 

SMR'calculated with estimated numbers of deaths O* and confidence limits 

Cause of death i 0' SMR* 

Malignant neoplasms 1139.8 129.3 

Lip, oral cavity, and pharynx 49.4 161.1 

Liver and intrahepatic bile ducts 38.4 308.6 

Larynx 27.4 192.1 

Trachea, bronchus, lung 441.6 174.4 

Respiratory system 272.9 146.8 

CL1 =95% approximate confidence limits calculated with formula 1 

CL2=95% approximate confidence limits calcutaled with formula 2 

From the above table, it is very clear that CLl is performing better than CL2 in 

terms of lengths of the confidence intervals. 



4.2 Modification of Ritt~en & Becker Model 

In this section, we modify the model presented earlier. In the original model, it 

was assumed that the probability of the availability of the death certificates, in both 

cancer and noncancer deaths, is the same, p . However, we feel that this assumption is too 
I .  

restrictive. Hence we assume that the probability of availability of death certificate in the 

noncancer deaths is up, where a can be less (more) than 1. The modified model is 

exhibited in the following table. 

TABLE 4.5 

Cancer & Noncancer Data (3) 

Cancer L 
Noncancer 

Available I not Available I 
Death Certificate 

M(83 1) - 
Poisson(p = pk,) 

Death Certificate 

For cancer case, 

P(M = m,K = k) = P(M = mlK = ~ ) P ( K  = k) 

- - k ! e-kO k i  
pm (1 - p)k-m - . 

m!(k - m)! k ! 



For noncancer case, 

- - I! e-'1' 
(up)" (1  - up)'-" - . 

n!(I - n)! I! 

Therefore, the probability of the factually observed numbers of deaths M ,  N ,  and 

z-n =z P ( M = m , N = n , K = k , L = z - k )  
k=m 

z-n =z P ( M = m , K = k ) P ( N = n , L = z - k )  
k= m 

= E  k ! pm(l - p y  - e-koki I! e-'2' 
(up) " ( I  - up)'-" - 

k=m m!(k - m)! k! n!(I-n)!  I!  

- - pmk; a n p n R  e-(ko+*) 
ki-mlz-k-n 

( 1  - up) z-k-n ( 1  - k-m E m ! n ! ,=, (k - m)!(z - k - n)! 

- -- pmk," anpn2 e-(ko+l)  
k 3 - k - n  

( 1  - ap)z-k-n ( 1  - p) k-m ( 1  - up) k-m E m ! n ! ,=, (k - m)!(z - k - n)! ( 1  - up) k-m 

k-rn 

z-n k0 [ ) I  A ~ - ~ - ~  
- - pmk," a l p n R  e-(ko+L)( l  - ap)a-m-n z 

m ! n ! ,=, ( k - m ) ! ( z - k - n ) !  

z-m-n 

pmk; a "p" - ( k o + ~  - ap)a-m-n 1 -up - - e (4.1 1 )  
m ! n ! ( z - m - n ) !  



For a = 1,  the model (4.1 1)reduces to the original model. 

Then the new loglikelihood function is 

The likelihood equations are 

We get the MLE by solving the above equations for the parameters as 

A amz 
ko =- 

a m + n 7  

A n 
Note that the estimation of a is not feasible because of the relationship - = - 

ko ma 

between the parameters. So we assume that a is known. 

The information matrix for the MLE is given by 



2 (am+n) (z-m-n)+m(za-zm-n)  2 nz(1- a )  (az-am-nXz-am-n)  
2 az m(z -m-n)  (am+nXz-m-n)  2 az ( a - m - n )  

(am + n)(z - m - n) (am+n) 2 ( z - m - n )  (am+nXz-m-n)  

(az-am-n)(z-am-n)  amz(a - 1 )  2 (z-m-n)(am+n) +n(z-am-n)  
2 az ( z - m - n )  (am+nXz-m-n) 2 nz ( z - m - n )  

Therefore, var(a0) = [B,, - B12B;.B2, r, 
( a m + n ) 2 ( z - m - n ) + m ( a z - a m - n ) 2  

where B,, = 
az2m(z - m - n)  

, 

nz(1- a)  ( Z  - am - n)(az - am - n)  
4 2  = (am + n)(z - m - n) az2(z - m  -n )  

i 
a2z3 (m + n)  amz(a - 1 )  

(am + n ) 2 ( ~  -m-n )  (am + n)(z - m - n)  
B22 = amz(a - 1)  ( Z  -m-n)(am+n)' + n ( ~ - a m - n ) ~  

(am + n)(z - m - n)  nz2(z  -m  -n)  

n[nz(l- a)2 (am + n)  + (az(m + n)  - (am + n)2 kaz - am - n)(a - zm - n)] 
B12B321 = a2z2  ( z  - m - n)(a2m3 + 2anm2 + mnz + mn2 + zn2)  

The confidence limits for the parameter ko are 

Lower Bound: ko - = Lo- z ,  - JYor(k,) , Upper Bound: 6 = I;,+ z ,  
- 

2 2 

- 
ko k 

The corresponding confidence interval for SMR is ( =,L ) . 
E E  



In this case assuming that a is known, the length of the confidence interval for 

SMR would vary with a .  Thus, we have the following conclusions: 

(1). The minimum value of a is around 0.66 for malignant neoplasms, because for 

a < 0.66, p is greater than 1. For other cases, the minimum values of a are around 0.725. 

(2). For neoplasms, when a increases, the length of the confidence interval for SMR 

goes up to a maximum value, and then goes down. The following graph shows the effect 

of varying 'a' in the case of neoplasms. It is evident that the maximum value of the 

length of the confidence interval occurs for a = 1 . Thus, in this case, by assuming a # 1, 

we are led to shorter confidence intervals for SMR. For other cases, the behavior of the 

length of confidence interval is different. 

FIGURE 4.1 

The Graph of The Confidence Interval for SMR (Malignant Neoplasms) 



Chapter 5 

CONCLUSIONS AND REMARKS 

The discussion in this thesis shows that to estimate the Standardized Mortality 

Ratio, we have to estimate the observed value, which is assumed to be Poisson 

distributed. There are several ways to estimate the Poisson parameter: 

(1). Normal approximation 

(2). Exact confidence interval by using chi-square distribution 

(3). Binomial approximation 

(4). Shortcut methods used in epidemiological studies 

Our simulation studies demonstrate that the binomial approximation methods are 

not of much use because the coverage probability for every one of them is 1, while the 

nominal value is 0.95. Comparing the shortcut methods and the newly proposed methods, 

we notice that one of our methods performs better than the others in terms of the length 

of the intervals and the coverage probability. 

The problem of missing certificates is quite natural in follow-up studies. The 

problem can arise with the nonaccessibility of the causes of death of all the deceased 

study participants. In this thesis, a statistical model for this situation is developed to 

derive a maximum likelihood estimator (MLE) for the true unknown number of death 

fiom a specified cause. The model assumes that the probability of the availability of the 

death certificate in both the disease of interest and otherwise is the same. 

In addition to the procedures presented in this thesis, we tried to develop a new 

statistical model by not assuming that the probability of the availability of death 



certificate is the same for the disease of interest and otherwise. The probability for the 

noncancer is modified to up,  where a can be different from 1. We re-estimate the true 

(but unknown) number of death from a specified cause. We find that the length for the 

confidence interval of SMR would change when avaries. In the case of neoplasms, the 

maximum value of the length of the confidence interval occurs when a = 1 . Thus, in this 

case, by assuming a # 1,  we get shorter confidence intervals for SMR. For other cases, 

the behavior of the length of confidence interval is different. 

As has been noticed before, we could not estimate the value of a due to certain 

constraints. In hrther work, we would like to find ways to estimate the value of a instead 

of assuming that a is known. By means of simulation studies, we would like to compare 

the estimates of SMR obtained by the original method and the modified procedure. 
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