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In some statistical analyses, researchers may encounter the problem of analyzing
correlated 2x2 table with a structural zero in one of the off diagonal cells. Structural zeros
arise in situation where it is theoretically impossible for a particular cell to be observed.
For instance, Agresti (1990) provided an example involving a sample of 156 calves born
in Okeechobee County, Florida. Calves are first classified according to whether they get a
pneumonia infection within certain time. They are then classified again according to
whether they get a secondary infection within a period after the first infection clears up.
Because subjects cannot, by definition, have a secondary infection without first having a
primary infection, a structural void in the cell of the summary table that corresponds with
no primary infection and has secondar,y infection is introduced. For discussion of this
phenomenon, see Tang and Tang (2002), and Liu (1998).

The risk ratio (RR) between the secondary infection, given the primary infection,

and the primary infection may be a useful measure of change in the pneumonia infection



rates of the primary infection and the secondary infection. In this thesis, we will first
develop and evaluate the large sample confidence intervals of RR. Then we will
investigate the tests for RR and the power of these tests. An example from the literature
will be provided to illustrate these procedures. Simulation studies will be carried out to

examine the performance of these procedures.
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Chapter 1

INTRODUCTION

In order to compare two groups, statistical inference of the risk ratio, under
independent binomial sampling, has been extensively discussed in the literature (Gart and
Nam, 1988). However, there are situations in which the assumption of independent
binomial sampling is not valid. Agresti (2002) has given an example in which calves
were first classified according to whether they got primary infection and then reclassified
according to whether they developed a secondary infection within a certain time period
after the first infection cleared up. In this case, when assessing the risk ratio between a
secondary infection, given a primary infection and the primary infection, the responses
are taken from the same group of subjects and are not independent. Therefore, the
statistical procedures, under independent binomial sampling are not appropriate. So the
data can be summarized as

Table 1.1. Probability of Each Cell.

Secondary Infection
Yes No Toral
Primary Yes P P2 Ple
Infection No 0 P2 P22

Notice that calves having no primary infection cannot have secondary infection

and hence the frequency of such event is zero in the above table. This is known as




structural zero as opposite to sampling zero. See Agresti (2002, page 392) for discussion
and for the explanation.

In order to analyze such bivariate tables, Lui (2000) discussed the interval
estimation of the simple difference between the proportion of the primary infection and
the secondary infection, given the primary infection. He developed three asymptotic
interval estimators using Wald’s test statistic, the likelihood ratio test and the basic
principle of Fieller’s theorem. The simulation studies concluded that the asymptotic
confidence interval using likelihood ratio test consistently perform well in all the
situations.

On the other hand, Lui (1998) discussed the estimation of the risk ratio (RR)
between a secondary infection, given a primary infection, and the primary infection. He
developed three asymptotic interval estimators using Wald’s test statistic (Agresti, 2002;
Casella and berger, 2001) the logarithmic transformation, and Fieller’s theorem (Casella
and berger, 2001). On the basis of his simulation studies, he concluded that when the
underlying probability of primary infection is large, all three estimators perform
reasonably well. When the probability of primary infcction is small or moderate, the
interval estimator using the logarithmic transformation outperforms the other two
estimators when the sample size does not exceed 100. In addition, the coverage
probability of this estimator consistently exceeds the nominal value in all situations.

In addition to the references cited above, Tang and Tang (2002) studied small
sample statistical inference for RR in a correlated 2 X 2 table with a structural zero in one

of the off diagonal cells.



The purpose of the present investigation is to further study the statistical inference
in the case of 2 X 2 correlated table with a structural zero. In section 2, we review the
three confidence intervals of RR studied by Liu (1998) and derive a fourth confidence
interval based on Rao’s score test. An example 1s provided to compare the results.
Simulation studies are carried out in section 3 to compare the performance of these four
confidence intervals in terms of the coverage probability and the length of the confidence
interval. The length of confidence interval estimated by Rao’s score method is always
shortest. However, the coverage probability of confidence interval by Rao’s score method
is low.

In section 4, we derive the Rao’s score test for testing Hyp: RR = 1 and compare
the four tests with respect to the power by means of extensive simulation studies. The
simulation studies suggest the Rao’s score method is more consistent than the other three
methods although it is not the most powerful test. Actually, there is no consistent most
powerful test in this study.

Finally, in Chapter 5, we present some conclusion and comments.



Chapter 2

DERIVATION OF CONFIDENCE INTERVALS

In this chapter, we will first give some notations used throughout this research and
briefly introduce the delta method that are needed to develop asymptotic confidence
interval estimators of RR. Then we will illustrate the detailed steps to derive four
asymptotic estimators of RR. Three of these were proposed by Liu (1998), and are based
on Wald’s test statistic, the logarithmic transformation, and Fieller’s theorem. In addition

to these, we propose a Rao’s score test statistic to construct confidence interval of RR.

2.1. Notation

Consider a sample of n subjects, who are first classified according to whether they
get a primary infection. After the primary infection clears up, subjects are reclassified
according to whether they get a secondary infection within a certain time. Then possible
results are as following:

Table 2.1. Observed Frequencies.

Secondary Infection
Total
Yes No
Primary Yes ny ns n.=np+nx»
Infection No 0 N2> M27
Total | R+ 1y n




The corresponding probabilities are:

Table 2.2. Corresponding Probabilities.

Secondary Infection
Yos No Total
Primary Yes pPn P12 Ple= P11+ P12
Infection No 0 P2 D2
Total P P2+ pn 1

Note that the estimators of the probabilities are p,, =n,,/n, p, =n,,/n,
and p,, =ny, /n. Alsopre=pii+pi2, pri+pia+pre=1,ne=ny+npand nyy +nj +
n2> = n. The risk ratio (RR) between a secondary infection, given a primary infection and
the primary infection is defined as RR = (p1i/ p1s)/ p1. = pi |/p|.2.

Suppose that we take a random sample of n subjects. Then the random vector (n,,

12, n22) follows the trinomial distribution

n!

My ma

flnyn,,n,)= Py Py Py

1, sy,

Given n, if we know n|| and n; then n»; = n —ny — nj2. Given RR and p,y, then pj» = p).

|p Ip -
-pu = R_IIIQ_ —Phs P2=1l-p=1- »1%% . Therefore, in the terms of parameters RR

and p,, the above trinomial distribution can be expressed as follows:
n! ! P Ny ¢ P Nt —
n,,n ,RR, ): ”( Ll U ) 12(1_ i) Ty =1
fny,ny, P ”llgnlz!(”_”n_nu)!pll \’RR Pu RR

2.2. Delta Method

If a function g(x) has derivatives of order r, then for any constant a, the Taylor

(x-a)" .

: r g (a)
polynomial of order r about a is T, (x) = Zi:() .

l



The remainder from the approximation by the Taylor polynomial, g(x) — 7T)(x) always

tends to zero faster than the higher-order explicit term, that is,

¢W-T,W
(x—a)

Lim

X

For the statistical application of Taylor’s Theorem, we are most concerned with the first-
order Taylor polynomial, that is, an approximation using just the first derivative.

Let X, ..., X; be random variables with means &, ..., &, and define X = (X, ...,
X and 8=(6,, ..., 6,). Suppose there is a differentiable function g(X) (an estimator of
some parameter) for which we want an approximate estimate of variance.

Define

: %)
g:(0)= gc_ g(x) Ix,=€, Xy =0

The first-order Taylor polynomial expansion of g about 8is
g(x)=g(@)+ Zf:] g.(0)(x, —8,) + Re mainder.
For our statistical approximation we approximate g(x) as
g =g+ 8 (O)x, -6).
Now, we take expectations on both sides of above approximation to get
Ey(8(X) = g@)+> . 8. (O)E,(X, ~6,)=(6)
We can now approximation the variance of g(X) by

Var,(g(X)) = E,[g(X)—g(@)]’

= B,(Y" 2,/(0)X, -6,



Z [g. (&) VarX, +2Z 8:(0)g(6)Covy(X,, X))

This approximation is very useful because it gives a variance formula using only simple

variance and covariance.

2.3. Variance-Covariance Matrix of the Estimators

The risk ratio (RR) in our problem is given by RR = P(Secondary Infection |
Primary Infection) / P(Primary Infection) = ( pii/p1s)/ pie = pilpret = pii/(pr +pi2)>.
Let RR = ¢ for the purpose of typing convenient.

Since @ is a function of p; and p|., we shall derive the variance-covariance
matrix of pi; and pi..

Var(p,,) =Var(n, /n)=Var(n)/n’> =np, (1- p”)/n2 =p,d=p,)/n

Similarly, Var(p,,) = p,.(d—p.)/n.

Cov(py,, pr) = Cov(py,, Py, + Pr) = Var(p,) + Cov(py,, py)

=pnl-pn)n-pnpi/n

=pyy puln.

Hence the variance-covariance matrix of p,,, p,.is given by

Z={P1|(1_PH) PinPxy ~'

PiPn Pl-(l_Pl-)u

2.4. Confidence Interval by Wald’s Test Statistic

Letg = =§2,thenE<X>—p,,—9andE(X)—p, =0,.

’U)

:tp



X
Let g(x) = Y;— then

2

: |
g](x):_ 2

2

2x,

g,(x)=

x; 2 lx=6,,x,=6, P

The variance of RAR 1s as follows:

P —2p
. —)Cov(X,,X,)

pl- plo plo p]o

LPH(I_PH) 4P11 p.=p.) 4p, PPy

p(4- n p] n pf. n
l [71, 4p|21p22—|
(=p ) +—(1-p,)——L2
S A
= 14 {p,,(l [7”)"'&(1— pn)_4p1_l(l_p1|"17|2)I—|
i) Pre Pu. |
_puld=p)
n(py)

Thus, the variance of (n)"?(RR— RR) is , denoted as var,. We can

estimate this variance by using var, = p,, (1— p,,)/ p,. .
The asymptotic (1-01)100% contidence interval for RR is then

pn=p,))

PF ~
n(py)

/2"

(1-)100% confidence interval is (d), d,), where



pu(=Dpy)
”%A‘”Zrm,o)
n(p.)

'/\ |- ~
(111 :¢+ szl/2
n(p]o)

2.5. Confidence Interval by Logarithmic Transformation

d, = Max(p—

When 7 is small, the normal approximation of the sampling distribution of RAR
may not be accurate enough to allow the interval estimator by the above method to
perform well. To alleviate this problem, Liu (1998) applied logarithmic transformation on
RR, which had been successfully applied in interval estimation of the risk ratio for cohort
studies (Katz et al., 1978; Liu, 1995).

Define f,(X,, X,)=log(X,/X,?) Notethat f>(P,p,)=l0g(RR)

In RR = In ¢ = In(20)

p]o
l ~ o ﬁ” —_ ~ ~
n(p—ln(A—T)—lnplI =2In p,,
Pi.

Lg(X)=lng=Inp, -2Inp, =InX, -2InX,

E(X))=p, =0, E(X,)=p. =0,

- 1
g](x):_

)C] {,\] =6, .x =8, p”

_-2

: -2
gz(x):_
Pie

Xy

=6 .3, =0,

The variance of RAR is as follows:



Var(g(X)) =( Iz )zVar(Xl)+i2Var(X2) + 2(_1_)(__2)C()\;(Xl ,X5)

P P Pn o Py

:Lpll(l_pll)_'__i_plo(l_p]-)_ 4 PubPxy
pion P on pup.

ZL(l_pll)+i(1_1)1-)_i(1_1)|-)
P n Pie n P n

var, = (1= p,)/n(p,)
sovar, =(1=p,))/n(p,)
Jr(In(@) - In()) ~N(O, vary)
In(@) — In(¢) ~N(O, var,/n)
Therefore, the C.I. for In({RR) is

1-py,
’7(ﬁ|r)

In(@) ¥ Z,

l_ﬁHZ
”(.ﬁn)

=3
r :ln(¢)+ ¢Za/2
Vn(pll)

C.I for In(RR) is (ry, ), and C.I for RRis (€",€" ).

Thus, r, =1In(Q) —

ol2?

2.6. Confidence Interval by Fieller’s Theorem

Following Fieller’s theorem (Casella and Berger, 2001), Liu (1998) defined that

Z=p, —RR(np. —p,)/(n—1

10



Then +/nZ has asymptotic normal distribution with mean = 0 and variance = var; by use

of the delta method and the central limit theorem again.

npl = p.. 1 52 5
E P ~ P |_ [nE(p,.) - E(p)]
n—1 n—1

| ~ ~ 2
= 1[n{Var(p,,)+(E(PI.))'}_Pl-]

| —
_ 1 [n{p[.( p.)

+p,2.}—[),.]
n—1 n

]
:ﬁ[pl-(l _pl.)+np|2. —PLl= p12-

Z = py, = @npy, = p)(n=1)
E(Z)=p, -¢p. =0

Let p,, =X,, p. =X, and g(x,,x,)=Z =x, —@(nx, —x,)/(n—1), then
g(x0)=1

- ¢(2nx, —1) _—o(2np,, —1)

n—1 P n—1

g, (x) =

2 2
Var(g(X)) = (l)ZVar(X,)+¢—(E2”p’l')—;l)Var(X2)

n-—

+2(1)(—

2 -
—@(—np'l'—l))COV(X, X))

= (2 Var(pyy+ L =Dy 50
(n—1)

—p(2np,. — 1)

+2(1)¢ YCov(pyy, 1)

11



_pul=py) , 9*Qp =" p(=po)
n (n—1)° n

B 20(2np,, = 1) p,, Py
n—1 n

@2(2”}7“ _1)2[71.(1_ pl.)
(n—1)?

l[Pn(l_Pn)"'

n

_20QCnp,, —Dpy Py
n—1

]

Thus, the variance of \/ZZ , vars, 1s as follows:

o’ Q2np, -1’ p.(1-p.) _290Cnp,, =D py Py

1= +
punl=p)) (n—l)2 1
Thus, for large n
7 —
PlZ,,, < —O< ~Z,,1=1-x

Jvar(g(X))
P[Z%< var(g(X)Z un] = 1- o

P{[(p,, — o) = p)(n—=DT° < var(g(XNZ.,,}=1-«

A . N . @2np,, =D p,.(1- p,.
P{[(P” —¢(npl_-_p1-)/(n_l)]~ S;[p“(l—])”)'{‘(p ( L (n_)l)pzl ( & )
_2(P(2n131.‘l)13|1f722]22 l=l—a
al?2

n—1

2

2 Pl = P) Cnp =D’ P (= pu) o

w2l
(n—1)> n(n—1)>2 2
. npr.—p. 22np. ~Dp,p
—pl2p,, Pre = P P Pulxn Zé/z]
n—1 nn—1)
L

+[17A7|1 _;pll(l_ﬁn)zs/z]}zl_a

12



The above can be written as a quadratic inequality: A(RR®) + B(RR) + C < 0, where

A= (nﬁjz. _ﬁ]-)z _ (2”13]. _1)2151.(1_ [51.)22
(n=1)" n(n-1)° @z

npi. — P _ 2Q2np, =D PPy

ZZ
n—1 n—1 alt

R | - )
C= plzl —;pll(l_pll)za/’z

If both A > 0 and B> = 4AC > 0, then the asymptotic 1- o confidence interval of
RR for large n is given by [f;, f,], where f; = max [(- B — (B> = 4AC)"*)/(2A),0] and f, =

[(- B+ (B> = 4AC)")/2A).

2.7. Confidence Interval by Rao’s Score Test Statistic
Suppose that X/, ..., X, are a random sample from a distribution with p.d.f. f(x;

&), where 8= (6, ..., ¢9k)' is a vector of unknown parameters taking on value in a set S.

Let L(@) be the likelihood function for @, then 1(8) = Hf(x,.;ﬁ) .Let 6 be a point in

i=|
set S at which L(@) is maximized; then @ is the maximum likelihood estimate of @. It is

usually obtained by solving the following maximum likelihood equations.

dlog L(6)

=0,wherei=1, ..., k.
20,

U,' (8) =

The U;(6)’s are called scores, and the k x 1 vector U(6) = [U,(09), ..., Uk(éb]T is called the
score vector (Lawless, 1982). U(6) has mean 0 and covariance matrix I(6), with entries

-0’ log L(8)

[,(8)=E
N TYT)

) wherei,j=1, ..., k.

k]

13



The matrix I(6) is called the Fisher information matrix. The matrix Iy, with entries

~9° log L(6)

Loy (&) =—523

6=6
is a consistent estimator of I(#) under mild conditions (Lawless, 1982).
In addition, U(6) is asymptotically distributed as Ng[0, I(8)]. Therefore, under the

hypothesis Ho: 8= &, U' (6,)1(8,)"'U(8,) is asymptotically distributed as ka) . We can

use it to test Hy: @= 6 and to obtain confidence interval of 6.

In our case, the p.d.f. f{x; ) is as follows:

. n! n” P i P =ty =1y,
f(”h.,”,z;(ﬂypn): | ' [7” ¢_pn) _(1"‘ i) e
nytnp(n—ny —np)! \ @ V @

The likelihood function for RR is

InL(@, p,)=C+n, Inp, +n,In( ’%— p)+(n—n, —n,)In(l- f—%l—)

aln L(e) ” pll nll an (1 '
Pu Pn

U(p,p,)=

_ —np (n - ”12)\/17_11
200 —Ja)  200e—p)

dln L(@) _n

U2(¢,p“)— L Pu ll)+ IR TRRLT) (1- D )
P pn ( " [7” \‘

_ I’l]] nl7(l 2\/¢pll) n—= n1| n]?

T Jo 20 o=

14



The entries of the Fisher information matrix are as follows:

- 0% log L(6) .
[1.(0)=E(—————>),wherei,j=1,..., 2.
i (0) ( 86’,8j0_, ) J
1,(0) = E(—a' log L((/),pn))

I’

o (2=-3{epy ) (n=ny —np)GNepy —2py)

_4(P2(I_\/(P/711)2— 4402(\/5—\//711)2

-9’ log L(p, p),)
Jdgop,,

1,,(6) = E( )

n—n,—hp

_ BRLY 4 !
4. op;, (1_\/(/)1711)2 4. op,, (\/5_\/17_”)2

— 0’ log L(¢, p,,)
op,,0¢

1,,(8) = E( )=1,(6)

-9’ log L(@, p\,)
az1711

_ n,(2-3yep),) _(”—”11 —n,)By e, —2py,)
497 (1= gp,))’ 49’ o —p)’

Thus, the information matrix is given by

122((9):E( )

[, 1,0)]
1(6) =
1,(8) 1,(6)

I

and its inverse matrix is given by

1@ 1"
176 =

[2[(9) [22 (H)J

| 1,(0) 1,
(015 (0) = 1, (0)],,(6) |

—[,2(9) 111(6)

15



Therefore, for testing the hypothesis Hy: RR = RRy,
U, (g, P;l)TI((/7= pll)_lUl (@, p),)

is asymptotically distributed as ¥ .

The Chi-square test statistic is
T, :U](Cpo,ﬁn)rl(?’o’IA)H)_IUl((/)mlA?H)

where,

U ((po’.Dn kE il —’112)\{[3_”
20,(1 - J b)) 2%«@%-&55

177(9) ( _1’}”)(020
T L OO -1, np,

111(400’/ n)

Therefore, the test statistic is given by

2

B —n, (” ny= ”17)\/1711 7( D)9,

T =( -
‘ 2¢,(1- \/(Popn) 2@)(\/50\ \/Pn) npy

To obtain the CI of RR, we will solve the following equation for RR.

— 1y, —n, —n .7)\/E 2 (L= py)e? <yl
o 2wJ— R

or
”12(\/_ \/p_n)+(” ny = )= gp H)\/p_ll > (1= D)) < 5
2(] _‘\j 11 )(\/_ \/E) npll i
or
{—\/—[H12+(I’l n” ’117)P|1]+(’7 nll)\/E 2(1 p1|)<22
\W)P“)(f \/P—H) np, S
or
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{_\/5[”12 +(n—ny, _”12)P|1]+(”‘nn)\/‘5_n}2

_4(1_\/%)2(\/5_\/;:)2 ket o

(]_ﬁll) -

or

(1 - /—@H)z(ﬁ_m)z WX

(1_/311)

—(=plny, +(n=n, =n,)p, 1+ (=, )\py ) 20

This leads us to solve the following two quadratic equations for ' RR as forms

Ap+Bp+C =0 and Ap+B,\Jp+C,=0

) fnz,i, f4nﬁ Kot o0
2¢p,, l—ﬁ] _\/5{ _(l—_lil}—)l(l+p1|)+”|2+(”_”n_”lz)Pn}
1 "

................... 2.1
ny’
+215!1 ri.l +(n—ny,) /3” =0
I=py,
~ nZ‘-'a 4”1,\7 Zl’f’ ~
2gp,, aA - _\/5{ ”A - I+ py)—ny,—m—n,—ny)p,}
1-py, (I=py)
.................. (2.2)
”/1’;,1

+2p, I—A“(”_”H) P, =0

U
Suppose there are four distinctive roots as RR; > RRy > RR3 > RR4, then CI of RR
will be RR; — max(RR3, 0). If there are only three distinctive roots, then CI of RR is 0. Tt
1s impossible that there are only two distinctive roots or one roots since A; = A, >0, B, >
B,, and C| < Cy unless nnyy = n or ny; = 0. In the case nyy = n, Rao’s score method cannot

apply to obtain CI of RR because the denominators of above expressions will be zero. In
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the case nj| = 0, all the methods are not applicable. Therefore, we apply the commonly
used adjustment for sparse data in the contingency table analysis by adding 0.5 to each n;

to avoid this [imitation.

2.8. Example

To illustrate above four methods, we consider the calves’ example again (Agresti
2002). 156 calves were born in Okeechobee County, Florida. Calves are first classified
according to whether they get a pneumonia infection within 60 days after birth. They are
then classified again according to whether they get a secondary infection within 2 weeks

after the first infection clears up. We have n, = 30, nj2 = 63, and ny, = 63. With these

given data, the estimate of risk ratio RR is 0.541. Applying interval estimators developed

previously, we obtain the 95% confidence intervals of RR as in Table 2.1,

Table 2.3. 95% Confidence Intervals of RR for Four Methods in Calves Example

Method C.IL Length of C.1.
Wald [0.367,0.715] 0.342
Log [0.392, 0.746] 0.354
Fieller [0.381, 0.746] 0.365
Score [0.464, 0.660] 0.196
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From this table we can see that score method gets the shortest length. Since all
upper limits of resulting confidence intervals are less than 1, the primary infection does

generate a natural immunity to reduce the likelihood of a secondary infection.
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Chapter 3
SIMULATION STUDIES TO EVALUATE

THE PERFORMANCE OF THE FOUR CONFIDENCE INTERVALS

3.1. Generation of the Data

In order to evaluate and compare the performance of the four methods, described
earlier, in constructing confidence intervals of RR, we have written SAS programs to
generate data sets with different parameter combinations. Then, for each method, we
calculate the average length of the confidence intervals and the coverage probability.

We selected three sample size n = 50, 100, 200, four primary infection rate p, =
0.2, 0.3, 0.5, 0.8, and four values of the risk ratio RR = 0.25, 0.5, 1.0, 1.5 for generating
data.

Notice that having p;. and RR (¢) one can obtain p;,. Thus the parameters of the

model become p;; and ¢. We generate data set according to the following trinomial

distribution:

. n! nyy P s p R
Pl i RR, pyy) = 1 ! ‘pll (-‘}—”—pll) a- JJ) ‘
n,'n,l(n—n, —n,)! ) 0

For each parameter combination (n, p;, and RR), 10, 000 data sets were
generated. Then we can estimate p;; for each data set. Next, we calculate the lower bound
and upper bound of 95% CI for each data set. The length of 95% CI is the upper bound

minus the lower bound.
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The coverage probability of confidence interval is determined by the following
way. First, calculate confidence interval. Then check whether the parameter RR was
covered by the confidence interval. If the parameter RR equal or greater than the lower
bound and equal or less than upper bound, then we say that RR was covered by the
confidence interval. Otherwise, RR was not covered by the confidence interval. Count the
number that RR was covered by the confidence interval for all generated data sets for
each parameter combination. Then the coverage probability is number of RR was covered
by the confidence interval divided by simulation times for each parameter combination.

In this study the simulation times are 10,000.

3.2. Results of Simulation

The primary results of the simulation study are displayed through Figure 3.2,
Figure 3.3, and Table 3.1. From Figure 3.2 we can see that the lengths of confidence
interval of Rao’s score method is lowest among the four methods. However, the coverage
probability (Figure 3.3) of Rao’s score method is too low when comparing with other

three methods.
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Trinomial Distribution

A 4

Parameters: n, pi., RR

T R

Different Parameter Combinations

/J ! \\

n =50 n =100 n =200
pre=0.2 P.=05 P1.=0.38
RR =0.25 RR=1 RR=15

Length of CI Does CI cover RR?
\\ l / v
Mean: Coverage probability:
Average over all The number of RR was covered
100,00 data sets. by CI divided by 10,000.

IFigure 3.1. The Flow Chart of Simulation Study.
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Figure 3.2. The Length of Confidence Interval of the Simulation Study.
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Figure 3.3. The Coverage Probability of the Simulation Study.
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Table 3.1. The Coverage Probability and Length of the 95% Confidence Intervals for

the Risk Ratio between a Secondary Infection, Given a Primary Infection, and the

Primary Infection.

Coverage Probability Length of Ci
n ple | RR | score | Wald | Log | Fieller | Score | Wald | Log | Fieller
025 | 0.475| 0.999 | 0.951 | 0.999 | 0.751 | 1.602 | 5.159 | 5.716
02 | 05 | 0495] 0976 | 0.951 | 0.995 | 1.243 | 2.011 | 5179 | 6.575
1 0.702 | 0.926 | 0.956 | 0.987 | 2.150 | 2.771 | 5.147 | 10.091
B 1.5 | 0.806 | 0.900 | 0.957 | 0.989 | 2967 | 3.582 | 5.501 | 14.254
0.25 | 0.360 | 0.982 | 0.959 | 0.991 | 0.330 | 0.821 | 1.912 | 2.767
03 | 05 | 0524 0915 | 0.961 | 0.972 | 0.713 | 1.210 | 1.995 | 4.150
50 1 0.801 | 0.916 | 0.965 | 0.970 | 1.434 | 1.828 | 2.241 | 7.218
| 1.5 | 0.915]| 0.928 | 0.966 | 0.976 | 1.943 | 2.298 | 2.576 | 10.315
0.25 | 0.364 | 0.904 | 0.969 | 0.933 | 0.173 | 0.505 | 0.691 | 0.684
05 | 05 | 0640] 0926 | 0.961 | 0.950 | 0.426 | 0.743 | 0.831 | 1.039
1 0.904 | 0.938 | 0.952 | 0.949 | 0.838| 0.989 | 1.032 | 1.465
1.5 | 0.930 | 0.947 | 0.953 | 0.919 | 0.894 | 1.121 | 1.148 | 1.816
0.25 | 0.282 | 0.928 | 0.962 | 0.937 | 0.067 | 0.313 | 0.337 | 0.330
08 | 0.5 | 0.576| 0946 | 0.956 | 0.947 | 0.194 | 0.404 | 0.416 | 0.429
1 0.956 | 0.949 | 0.955 | 0.933 | 0.344 | 0.419 | 0.422 | 0.457
| 0.25 | 0.331] 0.991 | 0.963 | 0.998 | 0.267 | 0.869 | 2.116 | 2.042
02 | 05 | 0.456| 0.930 | 0.962 | 0.982 | 0.579 | 1.259 | 2.210 | 3.036
B 0.719 [ 0.910 | 0.967 | 0.971 | 1.296 | 1.939 | 2.496 | 5.320
1.5 | 0.830 | 0.916 | 0.956 | 0.964 | 1.960 | 2.449 | 2.809 | 7.355
0.25 | 0.316 | 0.908 | 0.962 | 0.953 | 0.171] 0.580 | 0.935 | 0.812
03 | 05 | 0.555| 0.908 | 0.964 | 0.951 | 0.418 | 0.889 | 1.081 | 1.270
100 1 0.829 | 0.942 | 0.961 | 0.958 | 0.965| 1.287 | 1.386 | 1.931
1.5 | 0.924 | 0.943 | 0.947 | 0.938 | 1.380 | 1.554 | 1.626 | 2.470
0.25 | 0.358 | 0.920 | 0.963 | 0.936 | 0.107 | 0.376 | 0.423 | 0.421
05 | 05 | 0.665] 0943 | 0.955 | 0.953 | 0.278 | 0.523 | 0.549 | 0.590
1 0.916 | 0.942 | 0.950 | 0.952 | 0.605 ]| 0.692 | 0.707 | 0.801
1.5 | 0.933 | 0.950 | 0.953 | 0.936 | 0.670 | 0.775 | 0.784 | 0.923
0.25 | 0.271| 0.937 | 0.953 | 0.944 | 0.044 | 0.224 | 0.232 | 0.229
08 | 05 | 0.565]| 0.947 | 0.953 | 0.946 | 0.128 | 0.285 | 0.289 | 0.293
B 1 0.950 | 0.954 | 0.952 | 0.942 | 0.262 | 0.295 | 0.296 | 0.307
0.25 | 0.230 | 0.918 | 0.965 | 0.954 | 0.137 | 0.604 | 1.080 | 0.775
;o_g 0.5 | 0.414] 0.901 | 0.967 | 0.940 | 0.341] 0.942 | 1.190 | 1.226
. 1 0.717 | 0.927 | 0.955 | 0.954 | 0.830 | 1.378 | 1.505 | 1.830
: 1.5 | 0.868 | 0.946 | 0.958 | 0.959 | 1.333| 1.701 | 1.797 | 2317
l 0.25 | 0.289 | 0.904 | 0.967 | 0.925 | 0.105| 0.442 | 0.535 | 0.502
' 03 | 05 | 0542 0933 | 0.959 | 0.951 | 0.272 | 0.642 | 0.692 | 0.735
000 | 1 0.825 | 0.940 | 0.953 | 0.952 | 0.660 | 0.898 | 0.929 | 1.045
1.5 | 0.924 | 0.941 | 0.952 | 0.947 | 0978 | 1.075 | 1.099 | 1.273
025 | 0.382 | 0.934 | 0.957 | 0.944 | 0.071 | 0.268 | 0.281 | 0.281
05 | 05 | 0.655| 0950 | 0.956 | 0.954 | 0.188 | 0.368 | 0.377 | 0.389
1 0.923 | 0.955 | 0.955 | 0.950 | 0.428 | 0.484 | 0.489 | 0.517
| 1.5 | 0.932 | 0.946 | 0.948 | 0.937 | 0.491 | 0.542 | 0.545 | 0.586
| 0.25 | 0.280 | 0.950 | 0.956 | 0.955 | 0.030 | 0.158 | 0.161 | 0.160
08 | 05 | 0.586| 0.952 | 0.954 | 0.953 | 0.087 | 0.202 | 0.203 | 0.204
| 1 0.952 | 0.953 | 0.953 | 0.946 | 0.194 | 0.208 | 0.208 | 0.212
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Chapter 4

HYPOTHESIS TEST

4.1. Wald Test Statistic
We have proved in Chapter 2 that «/Z((/A)— @) is asymptotic normal distribution
with mean = 0 and variance = var, for large n. For the null hypothesis test Hy: ¢ = ¢, the

test statistic is:

£ = gy =gy [
P P

A

A2
:\/;( ?112_400)/ Py

P prl=py)
iy (n11+”|2)2
=gy
n
TRELTRG ”A(l_,'_l)
n n n

2
_nny —@y(ny, +ny,)

nn, (n—mn,,)
If 7 > Zyp, or Tt < -Zgp, we will reject Hy and accept H,. Otherwise, we will

accept Hy,.

4.2. Logarithmic Transformation Test Statistic
For large n, \/;(,ln(@ ~In(g)) is asymptotic normal distribution with mean =0
and variance = var, (see Chapter 2). For the null hypothesis test Hy: RR = RRy, the test

statistic is:
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T, = Vn(In(p) — In(¢)) / fvar,

= Vntn iy inggyys L2 B0

A

P P

3 Jngn(n(an,) —21n(n, +n,)~In(g,))

1,1’1—1’111

If T > Zyp, or Ty < -Zypn, we will reject Hy and accept Hy: RR # RRy. Otherwise,

we will accept H,.

4.3. Fieller’s Test Statistic
Once again, we have proved that «/;[13” —p(np,’ - P (n=D]/ 4/ var, is

asymptotically normal distributed with mean = 0 and variance = var; for large n in

Chapter 2. For the null hypothesis test Hy: RR = RRy, the test statistic is

T, =~nlpy, =@y (np," = p)) l(n— D1/ var,

e =g )t My gy Far . where
n 0 n I 3

var, = p, (1- [3“)"'(%2(2”,13“ —1)2ﬁ|,(1_ ﬁl.)/(n_l)z
=2@,(2npy, =) Py, pyy l(n=1)

n,(n—n,) P , (ny, +n,)n—n, —n
— 1t - 11 +¢0 (2],[]] +2n]2_1>7 11 I_:_,, 121 IZ)
n-(n-1
n,(n—n, —n,)2n, +2n,-1)

-2
Py nz(n—l)

It T > Zyp, or T3 < -Zop, we will reject Hy and accept Hy: RR # RR,. Otherwise,

we will accept Hy.
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4.4. Score Test Statistic

It is showed that U7 (¢, p, ) (@, p,,)" U (@, p,,) is asymptotically distributed

as ,1/5 .- For testing the hypothesis Hy: RR = RRy, the test statistic is

T, :UT((po’13!1)1(@0’1311)_1(/((%’1311)

where,
Ulp,, p —n, (”_”11_”12)\/1511
O At | 20090 )
~ — I'n 9 1 - p :
](gaovpu)lz 2(©) :( PA”)CDO
1, ()1, (0)—~1,,()],,(6) npy,
Therefore,
_ (” ny — 17)\/171 , (L= p)@%
T, =(

— Ny
20,(1 =@y P11 2¢()(\/(/)_0 \/PH) np,,

—-nl, (” ny, — ”m)\/ﬁz(l P)
\/(popu) 2(\/(/)_0 \/E) npyy

If 74> )((f. .» we will reject Hy and accept Hi: RR # RRo. Otherwise, we will

accept Hy.

4.5. Example

For the calves example, we have n = 156, nj| = 30, nj, = 63, and n2, = 63. For the

hypothesis test: Hy: RR =1 vs. Hy: RR # 1, the four test statistics are as in Table 4.1.
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Table 4.1. Test Statistic of Four Methods in Calves Example.

P D’ pu-M
Method
Test Statistic p-value Test Statistic p-value
Wald -5.169 1.18x10-7 N/A™
Log -3.743 9.10x10-5 N/A
Fieller -3.607 1.55x10-4 N/A
Score 19.706 9.03x10-6 26.714 2.36x10-7

* We have two ways to estimate nuisance parameter pyy. One is direct estimate p;; by
p=n,ln symbolized by py\-D. Another way is Maximum Likelihood Estimation (MLE) of
1 1

pn (Tang and Tang 2002), symbolized by p,-M.

used. Since [7“ is obtained by solving maximum likelihood equation. Then we use the formula

RR = P1?1 to estimate p,., f?,, = w/ﬁn I RR,, . Therefore,

le

T, = Jn(RR = RR)/ Jvar, =/n(

Py _RR,)/\fvar, =0
P

iy~ In(RR, )/ fvar, =0
Py

T, = /n(In(RR) = In(RR))/ yJvar, =+/n(In(

T, =In[p,, — RR,(np,” — p,,) /(n— 1)1/ Jvar,
:\/;[[7“—RRO(n%—ﬁ“)/(n—l)]/ var, =0 when RR,=1.
0

Thus, no matter what kind of data, T, Ty, and T; are always be zero if RRy = 1.
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Chapter 5

POWER OF THE TESTS AND SIMULATION RESULTS

5.1. Introduction
The power of a statistical test is the probability of rejecting the null hypothesis Hy

when the alternative hypothesis is true (Montgomery, Runger and Hubele. 2004).

We know that for any estimator of 6 of @ which satisfies

n'*(0-6)— N(©0.5(6)")
An approximate o level Neyman-Pearson test can be constructed based on the critical

region {z:n'?| 0- 6,1/ g(8,) 2 c}, where a satisfies

a=pPn? =05 gy S oi- (e

g(6,)"
and ®() is the standard normal distribution function.

Welsh (1996) showed that under the local alternative hypotheses of the form H,: 8

=6,=6+ E_,/n'/z, the power of test with critical region {z:n'"* | 6 - O,1/g(8,)=c} is

llzle_go|2C,HI}:P{HI/28—011> 5 +g(6())c,

) L vH]}
g(6,) g(,) g@,) g,

P{n

l/?.é—an & _ g _g(HO)C

+ P{n < ;
g(8,) g, g@,)

H,}

provided n''* | - 0, 1/g(8,) is asymptotically normal under H, and g is continuous and

positive at go.
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From this, we can develop the formula for calculating the power of first two tests

in Chapter 4.

5.2. Power of Wald Test
We know that «/;((?) — @) is asymptotic normal distribution with mean = 0 and
variance = var,. For the hypothesis test Hy: RR = RRy vs. Hi: RR = RR, = RRy + E;l/nl/z,

where &; = n"*(RR, - RRy), according to Welsh (1996), the power of this test is:
P{n'"? lp—@, ] > H, )= P{n'"? 2 ZC;H,}-!-P{I’[”Z -, <—cH,)

\ vart, \ var, \var,

n[/'l ¢_¢n+¢n—¢0 1/2 ¢_¢n+(on_¢0

= P{ >c,H,)+ P{n <—cH,)
/ ! 1
var, var,,
A 112 _ " 2 _
:P{”I/’.’ q) (pn +I’l (¢n (/)o) EC;Hl}‘i‘P{I’Z”z ¢ (0” +f’l ((Dn ¢O) S_C’Hl}
,[ VaI'IO Val‘lo lvarlo ,varlo
A ar -
= f’{)rfll/2 P (/)” var, + é:l > C;Hl } + P{nl/2 % ¢n V var,, + f] < _C;Hl}
\/V'dl']” \/Vﬂl'lo \/V'dl'm \/VZJ.I'IO \/VZH']O \/Vﬂl'lo
R ALER k. T R ALY It RPN TR AR

var, Jvar, qfvar, ~var, Jvar, +fvar,
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S cyfvar, —¢& Vi P(Z < _c,/varm +¢& }
JJvar,, \var,

cfvar, — & cqfvar, + &
— T TOy | o N0 T
, ( Varln ) i ( varln )

5.3. Power of Logarithmic Transformation Test

«/;(]n((ﬁ) —In(@)) is asymptotic normal distribution with mean = 0 and variance =
var,. The hypothesis test Hy: RR = RRy vs. Hi: RR = RR, is equivalent to the hypothesis
test Ho: InRR = InRRg vs. Hy: InRR = InRR, = InRRy + £,/n'"?, where & = n"*(InRR, -
InRRy). The power of this test is:

2l In@-Ing, |

4/ Vly,

:P{nl/’l Ing—-Ing, >(c— gz Bt ) g
Jvar,

eppueNOING (& NV
Jvar,, \/var,o \/varz,l

V1 P(Z < cf vary, +§2}

P{n >c H,}

—p(z> NN =2 £
2= \var,, \var,,
L (D(c,/varzo -¢, ) (- Cf VAL, + &, )

N var,,
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5.4. Power of Fieller Test and Rao’s Score Test

Exact expressions for power of Fieller and Rao’s score tests are difficult to obtain.
We will use empirical power calculation instead of exact power calculation in these two
cases in our simulation study for the power of the tests.

To compute empirical power with o = 0.05, we first generate many data sets for
each sample size and parameters combination. For each data set, we will calculate
Fieller’s and Score’s test statistic under H,. The proportion of test statistic great than
Z(1.96) or less than - Ze»(-1.96) for Fieller test, and the proportion of test statistic great
than y*e. 1) (3.81) for Rao’s score test represents the empirical power of these two test

with type T error o = 0.05, respectively.

5.5. Simulation Study

To compare the power of the four tests about RR in the Chapter 4, we will
generate large number and variety of data sets according to trinomial distribution with
different sample size and parameter combinations. We have selected three sample size n
(50, 100, 200), four primary infection rate p; (0.2, 0.3, 0.5, 0.8), and four risk ratio RR
(0.25, 0.5, 1.0, 1.5) with four methods (Score, Wald, Log, and Fieler), two estimations of
pii (D and M) and two kind of power calculation methods (empirical power (E) and exact
power(X)).

We first generated 10, 000 data sets for each combination of sample size and
parameters. Then we will estimate py; in two ways (p;;-D and p,,;-M) for each data set.
By using pi1-D we will calculate the empirical power for all four tests and exact power

for Wald’s test and logarithmic transformation test. Since we do not have the expression
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for power calculation for score test and Fieller’s test, we can not calculate the exact
power for these two tests. By using p;-M we can only calculate the empirical power of
score test because all other three tests are not applicable in p;;-M situation. We have
shown that why all other three tests not applicable in M situation in the end of Chapter 4.

See the process of simulation study (Figure 5.1).

5.5.1. Comparison Between Empirical Power and Exact Power

Figure 5.2. shows that empirical power and exact power are general match each
other, especially for Wald test, those two power are very close to each other in most
points. For the Log test, although the trend is same, the difference is also obvious.
5.5.2. Comparison Between Score-M-E and Score-D-E

Score-D-E does not perform well because it has unexpected high power at point
H, =1 (Figure 5.3.).
5.5.3. Comparison of Four Methods

The empirical power simulation study indicates that the power of score-M-E test
is consistent than these of the other tests although it is not the most powerful test

(Figure.5.4.-6.).
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Trinomial Distribution
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Parameter Combinations

AL Lo

n=50 n=100 n =200
]7].20.2 pl.:O.S
RR=05 RR=15

Generate data sets

Empirical Exact Empirical
Power Power Power

Fieller-D-E ] l Wald-D-X I Log-D-X ‘ l Score-M-E 1
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s ~ = \
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Figure 5.1. The Flow Chart of Simulation Study.
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Figure 5.7. Empirical Power at the Points Hy: RR =1 vs. H;: RR=1.
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Table 5.1. The Power of the Tests---Simulation Results.

n=>50

RR Score- Wald- Log- Fieller- Wald- Log-
P | inH1 M-E D-E D-E D-E D-X D-X
0.2 0.25 0.438 0.031 0.492 0.126 0.223 0.198
0.2 0.5 0.162 0.014 | 0237 0.040 0.125 0.115
0.2 0.75 0.062 0.027 0.101 0.023 0.079 0.066
0.2 1 0.043 0.081 0.045 0.021 0.094 0.050
0.2 1.25 0.055 0.174 | 0.020 0.044 0.157 0.066
0.2 1.5 0.135 0.260 | 0.022 0.048 0.243 0.115
0.2 1.75 0.178 0.309 | 0.032 0.113 0.337 0.198
0.3 0.25 0.721 0.273 0.752 0.454 0.389 0.381
0.3 0.5 0.274 0.079 | 0.347 0.199 0.177 0.201
0.3 0.75 0.079 0.038 0.131 0.077 0.084 0.087
0.3 1 0.053 0.086 | 0.038 0.032 0.089 0.050
0.3 1.25 0.097 0.193 0.047 0.034 0.180 | 0.087
0.3 1.5 0.210 0316 | 0.091 0.056 0.311 0.201
0.3 1.75 0.373 0.448 0.168 0.092 0.445 0.381
0.5 0.25 0.991 0.950 | 0.992 0.974 0.922 0.838
0.5 0.5 0.691 0.531 0.750 0.701 0.544 0.531
0.5 0.75 0.169 0.113 0.235 0.272 0.136 0.179
0.5 I 0.048 0.059 | 0.052 0.054 0.069 0.050
0.5 1.25 0.191 0.266 | 0.134 0.08 0.247 0.179
0.5 1.5 0.467 0.549 | 0.389 0.210 0.518 0.529
0.5 1.75 0.715 0.763 0.644 0.408 0.727 0.837
0.8 0.25 1.000 1.000 1.000 1.000 1.000 1.000
0.8 0.5 1.000 1.000 1.000 1.000 1.000 0.991
0.8 0.75 0.661 0.684 | 0.756 0.772 0.701 0.660
0.8 | 0.045 0.056 | 0.051 0.071 0.054 0.050
0.8 1.25 0.556 0.648 0.579 0.456 0.637 0.660
0.8 1.5 0.947 0.971 0.959 0.893 0.972 0.991
0.8 1.75 0.998 0.999 | 0.999 0.988 0.999 1.000
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Table 5.1. The Power of the Tests---Simulation Results (continued).

n =100
RR Score- Wald- | Log- Fieller- | Wald- | Log-

P inH1 | M:-E D-E D-E | D-E D-X D-X

0.2 0.25 0.673 0.211 0.675 0.296 0.344 | 0.331
0.2 0.5 0.258 0.054 | 0.315 0.122 0.168 0.177
0.2 0.75 0.091 0.046 | 0.116 0.056 0.082 0.081
0.2 1 0.047 0.091 0.037 0.032 0.077 0.050
0.2 1.25 0.084 0.181 0.026 0.048 0.157 0.081
0.2 [.5 0.172 0.316 | 0.070 0.077 0.277 0.176
0.2 1.75 0.288 0.407 0.132 0.122 0410| 0.331
0.3 0.25 0.929 0.724 | 0.940 0.807 0.700 | 0.636
0.3 0.5 0.497 0.269 | 0.560 0.429 0.320 | 0.348
0.3 0.75 0.128 0.057 0.165 0.143 0.101 0.124
0.3 ] 0.049 0.069 | 0.043 0.047 0.071 0.050
0.3 1.25 0.141 0.200 0.080 0.066 0.195 0.124
0.3 1.5 0.335 0.419 0.234 0.145 0.401 0.349
0.3 1.75 0.537 0614 | 0416 0.281 0.589 0.636
0.5 0.25 1.000 1.000 1.000 1.000 0.999 0.983
0.5 0.5 0.939 0.894 | 0.953 0.941 0.895 0.809
0.5 0.75 0.319 0.257 0.390 0.404 0.260 0.305
0.5 ] 0.051 0.056 | 0.050 0.049 0.060 0.050
0.5 1.25 0.311 0.349 0.252 0.176 0.344 ) 0.305
0.5 1.5 0.716 0.754 0.663 0.514 0.721 0.810
0.5 1.75 0.924 0.939 0.902 0.805 0904 | 0.983
0.8 0.25 1.000 1.000 1.000 1.000 1.000 1.000
0.8 0.5 1.000 1.000 1.000 1.000 1.000 1.000
0.8 0.75 0.942 0.944 | 0.960 0.962 0.960 0.908
0.8 I 0.051 0.049 | 0.051 0.062 0.052 | 0.050
0.8 1.25 0.827 0.861 0.833 0.775 0.871 0.908
0.8 1.5 0.999 1.000 0.999 0.997 0.999 1.000
0.8 1.75 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5.1. The Power of the Tests---Simulation Results (continued).
n =200
RR Score- Wald- | Log- Fieller- | Wald- | Log-

pie in H1 M-E D-E D-E D-E D-X D-X

0.2 0.25 0.892 0.614 | 0.897 0.688 0.612 | 0.565
0.2 0.5 0.452 0.205 | 0.495 0.312 0.283 | 0.302
0.2 0.75 0.129 0.054 | 0.155 0.093 0.097 | 0.112
0.2 | 0.049 0.071 | 0.044 0.046 0.065 | 0.050
0.2 1.25 0.113 0.196 | 0.063 0.080 0.171 | 0.112
0.2 1.5 0.267 0.372 | 0.188 0.170 0.363 | 0.302
0.2 1.75 0.480 0.566 | 0.357 0.300 0.549 | 0.563
0.3 0.25 0.997 0.982 | 0.998 0.990 0.967 | 0.896
0.3 0.5 0.784 0.632 | 0.816 0.744 0.634 | 0.596
0.3 0.75 0.219 0.129 | 0.262 0.229 0.167 | 0.200
0.3 [ 0.051 0.062 | 0.048 0.048 0.060 | 0.050
0.3 1.25 0.200 0.260 | 0.157 0.128 0.254 | 0.200
0.3 1.5 0.514 0.589 | 0.430 0.353 0.568 | 0.597
0.3 1.75 0.779 0.826 | 0.718 0.629 0.780 | 0.895
0.5 0.25 1.000 1.000 | 1.000 1.000 1.000 | 1.000
0.5 0.5 0.999 0.998 | 1.000 [.000 0.999 | 0.978
0.5 0.75 0.590 0.538 | 0.642 0.655 0.537 | 0.532
0.5 l 0.049 0.049 | 0.049 0.055 0.056 | 0.050
0.5 1.25 0.507 0.538 | 0.458 0.376 0.524 | 0.532
0.5 1.5 0.938 0.947 | 0.921 0.874 0.914 | 0978
0.5 1.75 0.998 0.998 | 0.996 0.990 0.989 | 1.000
0.8 0.25 1.000 1.000 | 1.000 1.000 1.000 | 1.000
0.8 0.5 1.000 1.000 | 1.000 1.000 1.000 | 1.000
0.8 0.75 0.999 0.999 | 0.999 1.000 1.000 | 0.996
0.8 I 0.048 0.049 | 0.049 0.055 0.051 | 0.050
0.8 1.25 0.987 0.991 | 0.987 0.979 0.987 | 0.996
0.8 1.5 1.000 1.000 | 1.000 1.000 1.000 | 1.000
0.8 1.75 1.000 1.000 | 1.000 1.000 1.000 | 1.000
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