12-23-2013

IDEAS: Inquiry-based Dynamic Earth Applications of Supercomputing, Seeing the Big Picture with Information Technology

Bruce E. Segee
Principal Investigator; University of Maine, Orono, segee@maine.edu

Yifeng Zhu
Co-Principal Investigator; University of Maine, Orono, yifeng.zhu@maine.edu

Peter O. Koons
Co-Principal Investigator; University of Maine, Orono, peter.koons@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports

Part of the Science and Mathematics Education Commons

Recommended Citation
Segee, Bruce E.; Zhu, Yifeng; and Koons, Peter O., "IDEAS: Inquiry-based Dynamic Earth Applications of Supercomputing, Seeing the Big Picture with Information Technology" (2013). University of Maine Office of Research and Sponsored Programs: Grant Reports. 324.
https://digitalcommons.library.umaine.edu/orsp_reports/324

This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Accomplishments

* What are the major goals of the project?
The goals of the project were to increase the level and volume of information technologies in the classroom and to promote inquiry-based learning. The project was tightly integrated with the Maine Learning Technology Initiative that puts a laptop computer into the hands of every 7th and 8th grade student and teacher. It was also tightly integrated with the University of Maine Supercomputer. Through the use of technology, students were able to ask “what if” questions and find and visualize the answers to their questions. The focus of the inquiry was dynamic Earth modelling. This included geological evolution of the earth as well as weather and climate changes over time.

* What was accomplished under these goals (you must provide information for at least one of the 4 categories below)?

Major Activities: The major activities involved interacting with multiple cadres of middle school teachers. Interactions included day-long face to face meetings, video conferencing, and multiple day retreats. Teachers were trained in various age-level appropriate technologies and concepts and developed lesson plans and modules to go with these activities. In the final year we focused on sustainability, and focused on partnerships with the Maine Department of Education, 4H, the Advanced Computing group at the University of Maine, and the Foster Center for Student Innovation. We played major roles in the annual Maine Learning Technology Initiative Student Tech Team Conference, with over 1200 students and teachers attending, and the Annual State Invention Convention, with over 400 students participating.

Specific Objectives:

Significant Results:

Key outcomes or Other achievements:

* What opportunities for training and professional development has the project provided?

The activities have been primarily geared toward professional development for middle school teachers with the goal of training the trainers. Professional development directly to students has been through activities beginning in the classroom and culminating at events at the University of Maine. These include the Annual MLTI laptop conference and the State of Maine Invention Convention.

* How have the results been disseminated to communities of interest?

Our work has been disseminated through publications, conference presentations and numerous classroom visits, both in person and via video conference. Our teachers are sharing knowledge, tools and techniques with other teachers in their schools as well as with their students. A major technology that we have exploited is the google collaboration tools, such as Google Docs and Google Sites. Particularly with large-scale adoption of Google for Education, this allows the tools to be easily disseminated.

Products

Books

Book Chapters

https://reporting.research.gov/rppr-web/rppr?execution=e1s23
Conference Papers and Presentations

Inventions
Nothing to report.

Journals
Nothing to report.

Licenses
Nothing to report.

Other Products
Nothing to report.

Other Publications

Patents
Nothing to report.

Technologies or Techniques
Nothing to report.

Thesis/Dissertations

Websites
IDEAS Inquiry Based Dynamic Earth Applications of Supercomputing
https://sites.google.com/site/itestum/

A repository of resources for teachers.

The Climate Reanalyzer
http://ecm.um.maine.edu/

With Climate Reanalyzer, one can explore state-of-the-art climate reanalysis, general circulation and weather forecast models, and a global archive of daily station data all within one intuitive framework. Climate is average weather, and therefore it is instructive to bring climate and weather datasets together in one place. Go ahead and browse the site. You will see how easy it is to jump from historical climatology to the current 7-day weather forecast. All with publication quality maps and graphs.

Participants/Organizations

What individuals have worked on the project?

<table>
<thead>
<tr>
<th>Name</th>
<th>Most Senior Project Role</th>
<th>Nearest Person Month Worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segee, Bruce</td>
<td>PD/PI</td>
<td>2</td>
</tr>
</tbody>
</table>

https://reporting.research.gov/rppr-web/rppr?execution=e1s23
Full details of individuals who have worked on the project:

Bruce E Segee
- **Email:** segee@maine.edu
- **Most Senior Project Role:** PD/PI
- **Nearest Person Month Worked:** 2

Contribution to the Project: Coordinated activities, scheduled events, planned for food, parking, etc. Additionally, Segee led workshops involving computer visualization and in-classroom visualization.

Funding Support: None (University salary)

International Collaboration: No
International Travel: No

Peter O Koons
- **Email:** Peter.Koons@maine.edu
- **Most Senior Project Role:** Co PD/PI
- **Nearest Person Month Worked:** 1

Contribution to the Project: Koons provided geodynamics expertise for the development of climate models and activities. He led training sessions on the same.

Funding Support: None (University salary)

International Collaboration: No
International Travel: No

Yifeng Zhu
- **Email:** zhu@eece.maine.edu
- **Most Senior Project Role:** Co PD/PI
- **Nearest Person Month Worked:** 1

Contribution to the Project: Zhu has led multiple workshops related to programming, and computer modeling.

Funding Support: None (University salary)

International Collaboration: No
International Travel: No

What other organizations have been involved as partners?

<table>
<thead>
<tr>
<th>Name</th>
<th>Type of Partner Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foster Student Innovation Center</td>
<td>Other Nonprofits</td>
<td>Orono, ME</td>
</tr>
<tr>
<td>Maine Department of Education</td>
<td>Other Nonprofits</td>
<td>Augusta, ME</td>
</tr>
</tbody>
</table>
Full details of organizations that have been involved as partners:

Foster Student Innovation Center
Organization Type: Other Nonprofits
Organization Location: Orono, ME
Partner's Contribution to the Project:
Facilities
Collaborative Research

Maine Department of Education
Organization Type: State or Local Government
Organization Location: Augusta, ME
Partner's Contribution to the Project:
Collaborative Research

Maine International Center for Digital Learning
Organization Type: Other Nonprofits
Organization Location: Lewiston, ME
Partner's Contribution to the Project:
Collaborative Research

The Mathworks
Organization Type: Industrial or Commercial Firms
Organization Location: Cambridge, MA
Partner's Contribution to the Project:
In-Kind Support
Collaborative Research

What other collaborators or contacts have been involved?
Impacts

What is the impact on the development of the principal discipline(s) of the project?
Nothing to report.

What is the impact on other disciplines?
The use of technology as a tool for connecting with teachers and students as well as a topic of education has had a significant impact through collaborations that we have formed with the Maine Department of Education, as well as 4H and the Foster Center of Student Innovation.

What is the impact on the development of human resources?
We believe that through the use of inquiry-based learning and technology in the classroom will have a significant positive impact when these students reach college and ultimately the job market.

What is the impact on physical resources that form infrastructure?
Nothing to report.

What is the impact on institutional resources that form infrastructure?
Our work has had significant impact on the institutional infrastructure related to supercomputing and visualization. The current supercomputing and visualization systems at the University of Maine have been significantly impacted by the ITEST project. Similarly, collaborations have been formed that span the University and the State. These include interactions with 4H, Hour of Code, Invention Convention, Maine Learning Technology, Maine International Center for Digital Learning, Discovery Museum, Challenger Learning Center of Maine, and many others. The network of K-12 outreach has been significantly strengthened as a result of this project.

What is the impact on information resources that form infrastructure?
Our work has had significant impact on the institutional infrastructure related to supercomputing and visualization. The current supercomputing and visualization systems at the University of Maine have been significantly impacted by the ITEST project.

What is the impact on technology transfer?
This project has significantly improved technology transfer from the University to the K-12 schools, but more significantly has provided the framework for K-12 teachers to share technology and technology know-how with one another.

What is the impact on society beyond science and technology?
The use of inquiry-based learning is an engaging way to bring science to the non-scientist. By providing the tools for people to answer their own questions it is possible to create a more science-based population. Rather than a list of facts to memorize, answers can be intuitively, and quite literally seen and hence more deeply understood.

Changes/Problems

Changes in approach and reason for change
Nothing to report.
Actual or Anticipated problems or delays and actions or plans to resolve them
Nothing to report.

Changes that have a significant impact on expenditures
Nothing to report.

Significant changes in use or care of human subjects
Nothing to report.

Significant changes in use or care of vertebrate animals
Nothing to report.

Significant changes in use or care of biohazards
Nothing to report.

Special Requirements

Responses to any special reporting requirements specified in the award terms and conditions, as well as any award specific reporting requirements.