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Selection on traits related to trophic ecology is recognized as an important 

contributing factor in adaptive divergence and speciation.  For several freshwater fish 

species, including Arctic charr (Salvelinus alpinus), such selection is commonly reflected 

in relationships between diet, habitat use and phenotypic divergence.  Trophic 

specializations that emerge have been extensively studied among sympatric forms, but 

much less is known of the extent of this type of divergence in allopatry.  Trait differences 

among these forms are also thought to reflect thousands of years of evolution, making it 

difficult to examine root causes of such divergence in natural populations.  Here, I 

address the hypotheses that selection on trophic characters is important to incipient stages 

of divergence and the maintenance of specialized forms in allopatry, using indigenous 

and recently translocated populations of Arctic charr in Maine.  To address this, I 

compared aspects of body shape, gill raker morphology, growth, and diet among six 

populations, including one transplant and its ancestral source.  This examination revealed 

the presence of at least three trophic forms among Maine charr, including a benthic 

  



 

specialist not previously identified in this region.  Differences observed among these 

populations were analogous to those typical of trophic forms found elsewhere in 

sympatry, though perhaps less extensive in scale.  Divergence between a translocated 

population and its source suggest some aspects of specialization are labile in 

contemporary time.  In combination, these results indicate trophic ecology may play an 

important role in all stages of adaptive divergence, and niche stability may be important 

in maintaining trophic specializations over longer periods of time.  In light of this new 

information, I also suggest that management plans for this species in Maine should seek 

to incorporate more information about such specialized forms, and should employ 

ecosystem based management to preserve forms within the unique contexts of their 

respective lake systems.  Management approaches that fail to preserve lake community 

structure in situ are likely to result in either extinctions or revisions of specializations.   
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CHAPTER 1 - GENERAL BACKGROUND 
 
 
 
ADAPTIVE DIVERGENCE AND TROPHIC POLYMORPHISM 

The process by which speciation occurs is perhaps one of the most debated 

topics in evolutionary biology, and the theory of “ecological speciation” is currently one 

of the most frequently investigated concepts in this field (see TREE special issue: 

Speciation, 2001).  This theory suggests reproductive isolation could arise as a 

consequence of divergent natural selection on resource use (Dobzhansky 1946; Schluter 

1996).  According to this concept, divergent selection acts primarily on ecologically 

important traits as individuals exploit different niches within contiguous or separate 

ecosystems.  Over time, populations adapt to the unique aspects of their environment 

and reproductive isolation builds as phenotypic and genotypic variation between groups 

increases (Schluter 2001).  When reproductive isolation is complete, these ecologically 

distinct forms would fit the description of separate species as defined by the biological 

species concept (Mayr, 1942).  

The study of ecological speciation has ultimately come to be dominated by 

studies of populations diverging in sympatry over postglacial time scales (reviewed by 

Schluter 2001).  These cases do draw attention to the roles resource use and incipient 

reproductive isolation play in such divergence; however, there is little reason to suspect 

adaptive divergence is predominantly a sympatric process.  Allopatric populations 

should theoretically also specialize on different resources because they are isolated in 

systems likely differing in many ecological factors.  In addition, it is difficult to infer 

rates and mechanisms of incipient speciation in populations that have diverged over 

1 



 

postglacial time scales.  In this thesis I suggest much can be learned from revisiting 

adaptive divergence in allopatric populations, and through examining this process over 

contemporary time scales. 

Among the most widely recognized examples of adaptive divergence related to 

resource use are those of trophic polymorphisms associated with finding, capturing, and 

consuming specific prey items (reviewed in Skulason & Smith 1995).  Again, most 

documented examples of trophic polymorphism are found among sympatric 

ecologically distinct “morphs” or “forms,” presumed to represent diverging populations.  

For example, variation in beak size and shape found among Darwin’s finches (Geospiza 

spp.) has been shown to be related to the size and hardness of seeds they consume 

(Grant 1986), and the amazing diversity seen among cichlids found in the African rift 

lakes can be correlated with their equally diverse diets (Greenwood 1984; Sage & 

Selander 1975).  Trophic polymorphisms have also been noted in a wide variety of 

fishes found in recently glaciated northern lakes, including threespine stickleback 

(Gasterosteus aculeatus) (Schluter & McPhail 1992, Lavin & McPhail 1986), 

pumpkinseed sunfish (Lepomis gibbosus) (Robinson et al. 1993), lake whitefish 

(Coregonus clupeaformis) (Bodaly 1979;  Bernatchez & Dodson 1990), rainbow smelt 

(Osmerus mordax) (Taylor & Bentzen 1993) and Arctic charr (Salvelinus alpinus) 

(reviewed in Jonsson & Jonsson 2001).    

The results of trophically related selection are often manifest in morphological, 

life history, and behavioral differences among forms (Skulason & Smith 1995; Schluter 

1996; Webb 1984).  For freshwater fish, as in many other species, these patterns are 

strongly related to both the type of food in their diet as well as the area in which prey 
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are found.  Fish feeding on larger or harder prey items tend to have larger, more robust 

jaws, and fewer, stubbier gill rakers.  Other features are associated with the habitat and 

method by which a particular form forages.  For example, fish seeking prey in open 

water tend to have more streamlined bodies, pointed snouts with terminally oriented 

mouths, and shorter fins.  Finally, life history characters also tend to diverge in 

association with availability, energy content, and size of a particular prey type.  For 

instance, piscivores often exhibit a faster growth rate and are older and larger at 

maturity than planktivores.  Such trophic-related differences in morphology, ecology, 

and life history are well characterized in the Arctic charr (reviewed in Jonsson & 

Jonsson 2001).   

Trophic polymorphism in charr is typified by the coexistence of a “normal” 

benthivorous or piscivorous form and a “dwarf” planktivorous form residing in the 

same lake (Jonsson and Jonsson 2001, Schluter, 1996, Skulason & Smith 1995).  

Researchers have repeatedly demonstrated a strong link between phenotypic differences 

found among these forms and their trophic specializations (reviewed in Jonsson & 

Jonsson 2001).  Benthic forms typically feed on macroinvertebrates (usually mollusks), 

have a subterminal mouth, and larger fins.  Pelagic forms tend to have a terminal mouth, 

smaller paired fins and a more streamlined body.  Life history traits also appear to 

reflect these specializations, with piscivorous forms typically exhibiting larger size at a 

given age as well as higher reproductive investment than their benthic or planktivorous 

counterparts, (a presumed result of the higher energy content of their prey).   

The prevalence of polymorphism in Arctic charr (and other freshwater fishes) is 

often attributed to the availability of open niches and lack of interspecific competition 
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in recently deglaciated lakes (Robinson & Wilson 1994, Skulason & Smith 1995, 

Jonsson & Jonsson 2001).  By exploiting these open niches, specialists are able to 

escape intraspecific competition for limited food resources.  Lake Thingvallavatn, 

Iceland, provides an extreme example of potential sympatric divergence attributable to 

just such processes (Sandlund et 

al. 1992).  Here piscivorous, 

planktivorous, and two 

benthivorous, forms coexist 

within Iceland’s largest lake, 

(figure 1.1), where the 

availability of alternative 

habitats in such a large 

ecosystem could have favored 

the coexistence of so many 

forms.  Is intraspecific 

competition necessary to 

promoting and maintaining 

these specialist forms?  A study 

of adaptive divergence among allopatric populations may partly address that question, if 

these specialized forms develop in the absence of competition from one another.   

Figure 1.1.  Four trophic forms of Arctic charr in 
Thingvallavatn, Iceland, (from Sandlund et al. 
1992).  From top:  small benthivore, large 
benthivore, small planktivore, large piscivore. 
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EVOLUTION IN CONTEMPORARY TIME 

Addressing the root causes of evolution in wild populations is often an indirect 

exercise, because data are usually available only from populations thought to have 

diverged over many thousands of years.  As a result, it is frequently presumed factors 

that drove divergence in the past are comparable to those reinforcing divergence in the 

present.  Likewise, a resolution of thousands of years may be too coarse to appreciate 

the rates at which such diversity arises.  Yet situations do exist for more directly 

studying the initial mechanisms behind adaptive divergence.  One such opportunity is 

afforded as an interesting byproduct of the centuries-old legacy of intentional and 

accidental translocation of organisms by humans.   

When records of sources and times of introductions are available, one has the 

ability to examine both the tempo and mode of evolution over very short time scales 

(e.g. Reznick et al. 1997; Hendry et al. 2000; Kinnison et al. 2001; Stockwell & Weeks 

1999).  Since translocation records are usually only available from the recent past, these 

populations are likely to be in the beginning stages of divergence.  Changes observed 

between a transplant population and its source, or among transplant populations, can be 

documented and studied nearly as they occur, and need not be inferred from later 

morphological or genetic reconstruction.  In addition, because time of separation is 

known, rates of divergence can be estimated directly (Hendry and Kinnison 1999).  This 

information may provide some insight into the processes involved in adaptive 

divergence that cannot otherwise be observed in many wild populations.  Although 

there have been many studies of the evolution of exotic fish populations, (Kinnison and 
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Hendry 2001), I am not aware of such a study involving the rapid evolution of trophic 

specializations in wild fish populations.   

 

ARCTIC CHARR IN MAINE 

Landlocked Arctic charr populations can be found throughout northern Europe, 

Asia and North America.  Mitochondrial DNA work conducted by Brunner et al. (2001) 

identified 5 genetic lineages within the species, the geographically most restricted of 

which is the Acadian.  This lineage is 

comprised of populations from southern 

Quebec, New Brunswick, and Maine.   

Currently, only 12 indigenous 

populations of this species can be found 

in Maine (figure 1.2), and they represent 

both the southern-most populations of 

the species in North America, and the 

only indigenous Arctic charr found in 

the United States outside of Alaska 

(Kircheis 1989; Frost 2001).  This 

species was formerly found in Vermont 

and New Hampshire, but disappeared in 

the late nineteenth century along with at least one Maine population (Kendall 1914).  

This extirpation was most likely due to the introduction of other predatory and 

competitor species in these systems.   

Gardner Lake

Wadleigh Pond

Rainbow Lake
Penobscot Lake

Floods Pond

Deboullie Lake
Pushineer Lake Black Lake

Green Lake

Bald Mountain Pond

Wassataquoik Lake

Big Reed Pond

Gardner Lake

Wadleigh Pond

Rainbow Lake
Penobscot Lake

Floods Pond

Deboullie Lake
Pushineer Lake Black Lake

Green Lake

Bald Mountain Pond

Wassataquoik Lake

Big Reed Pond

Figure 1.2.  Maine lakes containing 
indigenous Arctic charr populations. 
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Little has been published on the evolution and ecology of Maine’s Arctic charr 

(Everhart 1950; Waters 1952; Kircheis 1976; Kircheis 1980).  Nonetheless, anecdotal 

evidence suggests trophic divergence may exist among these populations.  Anglers and 

biologists historically distinguished between local charr populations, and recognized 

two subspecies of Arctic charr in Maine (Kendall 1914):  the “blueback trout,” 

Salvelinus oquassa, (Bean 1887) and the “Sunapee” or “Silver trout,” Salvelinus 

aureolus (Girard 1854).  Traditionally, bluebacks were typified by populations in 

northern and western Maine, and named for the dark-bluish color of their backs during 

spawning.  They were regarded as relatively small, planktivorous forage fish for the 

much larger eastern brook trout (Salvelinus fontinalis) with which they commonly 

coexist.  The Sunapee form was characterized as a larger, piscivorous fish sought in its 

own right as a game species, especially in Sunapee Lake, New Hampshire, for which 

the form is named.  Unfortunately, such a form is now thought to remain only in Floods 

Pond, Maine (Kircheis 1976).   

Interest in protecting the rare Sunapee form led to several genetic studies of 

divergence among Arctic charr in Maine.  These studies were conducted primarily to 

address the question of whether the blueback and Sunapee forms represented unique 

genetic lineages that perhaps invaded lakes in Maine from different glacial refugia.  A 

study examining variation in mitochondrial DNA by Kornfield and Kircheis (1994) 

included samples from the Sunapee population in Floods Pond as well as two blueback 

populations from northern Maine.  Each population was found to have a different 

restriction fragment phenotype, which did not support the hypothesis of monophyletic 

Sunapee and blueback lineages.  Following this, Bernatchez et al. (2002) published the 
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results of a study comparing six microsatellite loci among samples from all twelve 

indigenous populations of Arctic charr in Maine, including Floods Pond.  Highly 

significant differences in allelic frequencies were found among most samples (mean 

pairwise Fst = 0.092, range 0.032-0.171), but again, no evidence was found to suggest 

bluebacks were monophyletic relative to the charr in Floods Pond.  In fact, no clear 

patterns of genetic divergence related to drainage or overall geography (with the 

exception of populations in two physically connected lakes) were uncovered, suggesting 

most populations have been isolated from each other for thousands of years.   

Prior to these genetic studies, Arctic charr from Floods Pond were translocated 

into several other lakes as part of the Sunapee trout conservation effort (Kircheis 1989).  

Floods Pond, which is the water supply for the greater Bangor area, experienced severe 

water draw-downs in the 1970’s.  During these periods, water levels dropped below the 

primary spawning area used by the Arctic charr.  As the threat to this rare fish became 

apparent, the Maine Department of Inland Fisheries and Wildlife responded by 

transplanting these charr into 7 other systems throughout Maine.  Of these, naturally 

reproducing populations persist in only two lakes; Long Pond and Enchanted Pond 

(Frost 2001).  Although these fish have not been examined in great detail since their 

introduction, other studies of translocated organisms suggest these fish have the 

potential to diverge from the ancestral form they were meant to conserve (Sockwell & 

Leberg 2002).   

Arctic Charr populations in Maine thus present the rare opportunity to study 

adaptive divergence in allopatric populations over both glacial and contemporary 

periods.  Anecdotal information on differences in body shape, color, and diet from 
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biologists and anglers indicate Maine populations may indeed exhibit a variety of 

trophic specializations like their sympatric counterparts.  If so, examining such 

divergence may provide insight into the relative importance of sympatry as a driving 

factor in trophic polymorphisms and speciation.  Moreover, well-documented 

translocations of the species may help address the lability of such specializations, as 

well as the incipient tempo and mode of trophic polymorphisms and ecological 

divergence. 

 

OBJECTIVES   

The main goals of this thesis are: 1) to determine whether indigenous Arctic 

charr populations in Maine differ in morphology and life history phenotypes; 2) to 

assess whether such patterns of divergence are correlated with trophic specializations; 

3) to determine if translocated Arctic charr exhibit phenotypic divergence over 

contemporary time periods; and 4) to determine whether contemporary divergence 

follows patterns of trophic specialization consistent with those described for longer, 

postglacial, time scales. 

The second chapter of this thesis focuses on the first and second objectives, 

which address the general question of whether postglacial divergence in allopatry 

follows patterns previously described for sympatric forms of this species.  This includes 

an evaluation of the aforementioned anecdotal evidence for trophic related trait 

variation among Arctic charr in Maine, which will allow us to determine if two forms 

do exist and to better quantify differences between them.  Chapter three addresses the 

third and fourth objectives, which are aimed at further refining the question of 
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ecological divergence to consider the rate at which trophic specializations might arise in 

the wild.  Combined, these chapters are largely targeted at the academic goal of 

understanding the role of trophic specialization in divergence and speciation.  However, 

many of the results of this work are also important for refining management plans of 

this rare species in Maine.  Therefore, the final chapter of my thesis addresses the 

management and conservation implications of this research.  
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CHAPTER 2 - ECOLOGICALLY DRIVEN DIVERGENCE AMONG 
INDIGENOUS ARCTIC CHARR POPULATIONS IN MAINE 

 
 

ABSTRACT 

Selection on traits related to trophic ecology is recognized as an important factor 

in adaptive divergence and speciation.  For freshwater fish species, trophic 

specializations have been extensively studied among sympatric forms, but much less is 

known of the extent of this divergence in allopatry.  Anecdotal descriptions of two 

Arctic charr forms in the state of Maine, USA, suggested divergence among these 

allopatric populations may parallel trophic specializations observed for sympatric 

forms.  I addressed this hypothesis by examining aspects of body shape, gill raker 

morphology, growth, and diet for five of these populations.  Comparisons indicate 

significant diet differences and trait divergence among populations, and revealed the 

presence of at least 3 trophic forms analogous to those typical of sympatric systems.  

The scale of divergence appears to be less extreme among these populations than 

previously documented for other systems, perhaps due to reinforcing processes found 

only in sympatry.   

 

INTRODUCTION 

Trophic ecology is thought to be an important factor in the generation of 

intraspecific and interspecific diversity (Skulason & Smith 1995; Schluter 2000).  This 

form of adaptive divergence is driven by selection on characteristics related to finding, 

capturing, and consuming specific prey items, and is commonly cited as a factor in 

models of ecological speciation (Schluter 1996, 2000).  Perhaps some of the best known 
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examples of this type of divergence are represented by trophic polymorphisms, in which 

ecologically distinct “morphs” or “forms” coexist in the same lake (Skulason & Smith 

1995).  Such polymorphisms have been widely noted among fishes found in recently 

deglaciated northern lakes, including threespine stickleback (Schluter & McPhail 1992, 

Lavin & McPhail 1986), pumpkinseed sunfish (Robinson et al. 1993), lake whitefish 

(Lindsey 1981; Bernatchez & Dodson 1990), rainbow smelt (Taylor & Bentzen 1993) 

and Arctic charr (reviewed in Jonsson & Jonsson 2001).  Models for the origins of such 

specialists often emphasize the role of intraspecific competition in favoring the 

evolution of these polymorphic populations from generalist ancestors (Robinson & 

Wilson 1994; Skulason & Smith 1995; Schluter 2000).  In this study I consider trophic 

specialization in allopatric populations of Arctic charr and the broader role of trophic 

ecology in the evolution of diversity outside of sympatry. 

Comparisons of trophic specialization in allopatry and sympatry may help 

address the root causes and maintenance of such adaptations.  For example, release 

from intraspecific competition is often cited as a major factor favoring sympatric 

divergence (Robinson & Wilson 1994; Skulason & Smith 1995; Schluter 2000), 

however, this type of competition would not play a role in divergence among allopatric 

populations.  If trophic specializations are very similar in pattern and scale in allopatry 

and sympatry, then one might look toward other factors favoring specialization, such as 

patterns of resource availability or the effects of interspecific competitors.  Likewise, 

studies of allopatric divergence could provide insight into the scope for alternative 

models of coexistence involving elements of ancestral allopatry and secondary contact. 
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Typical trophic specializations extend well past differences in foraging behavior.  

For freshwater fishes, the morphology of different trophic specialists is strongly 

correlated with the food items they consume as well as the habitat in which their prey is 

found (Skulason & Smith 1995; Schluter 1996; Webb 1984).  In direct relation to prey 

size and hardness, divergent forms commonly differ in jaw shape and size, as well as 

the shape and number of their gill rakers.  Other morphological features, such as overall 

body, head, and fin proportions, are commonly associated with the habitat and style in 

which a particular form forages for food (Webb 1984).  Finally, life history characters 

such as growth, age, and size at maturity are also commonly associated with the 

availability, energy content, and relative size of dominant prey items.  Such differences 

are very well documented among sympatric forms of Arctic charr (reviewed in Jonsson 

& Jonsson 2001), yet very little is known of the scope of allopatric specialization in this 

species. 

Anecdotal evidence suggests trophic specializations may have evolved in 

allopatry among the 12 remaining indigenous populations of Arctic charr found in 

Maine, USA (Kircheis 1989; Frost 2001).  Historically, biologists and anglers 

recognized two distinct forms in the state; the “blueback” and “Sunapee” or “silver 

trout” (Kendall 1914), even attributing them species status (Bean 1887; Girard 1854).  

Charr in northern and western Maine waters are commonly referred to as blueback trout 

because of the dark-bluish color of their backs during spawning (Kircheis 1980).  These 

fish were generally regarded as relatively small, planktivorous, forage fish for the 

piscivorous brook charr with which they commonly coexist.  The Sunapee trout is 

characterized as a larger, piscivorous fish, once sought after as a game species in its 
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own right.  Currently, the only remaining indigenous population of this form is thought 

to occur in Floods Pond, located in central Maine (Kircheis 1989).  However, 

mitochondrial DNA (Kornfield & Kircheis 1994) and microsatellite (Bernatchez et al. 

2001) evidence suggest the blueback form is not monophyletic with respect to the 

Sunapee form in Maine.  This suggests the forms are conspecific, though nearly all 

charr populations in Maine are genetically distinct (mean pairwise Fst = 0.092, range 

0.032-0.171) (Bernatchez et al. 2001).   

I propose, based on this evidence, that the blueback and Sunapee forms 

represent trophic specialists that have evolved postglacially in allopatry.  The specific 

objectives of this study are: 1) to formally determine whether variation in morphology 

and life history exists among indigenous Arctic charr populations in Maine; 2) to assess 

whether such patterns of divergence are correlated with trophic ecology; and 3) to 

qualitatively compare the divergence among these allopatric populations with patterns 

of divergence previously described for sympatric populations of this species. 

 

METHODS 

Sample Collection 

Arctic charr were sampled from Floods Pond, Gardner Lake, Penobscot Lake, 

and Wadleigh Pond during July of 2003 and 2004 (table 2.1, figure 2.1).  Fish were 

captured using monofilament gillnets (mesh size ½”-1” stretch) set at depths between 

14 and 30m for 12-24 hours.  Also included in this study is a sample of charr collected 

from Rainbow Lake, captured by hook and line during March of 2004 and 2005.  These 

samples include four nominative blueback populations as well as the Sunapee 
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population from Floods Pond.  In each case, fish were placed on ice immediately after 

capture and photographed within 12 hours.  The left side of each fish was digitally 

photographed at a fixed focal length, with a ruler included for size reference.  Caliper 

measurements, including head  

width (measured as interorbital distance) 

and head depth (measured at the 

posterior edge of the skull), as well as 

weight, were also recorded at this time.  

After initial processing, individuals 

were frozen until they could be 

dissected.  After thawing, gill arches, 

sagittal otoliths, and stomach contents 

were removed from each fish.  Sex and 

maturity status were also assessed by 

gonadal examination.  Morphological 

analyses used only fish identified as 

females, in order to avoid confounding 

trophic divergence with differences in sex ratios and the pronounced secondary sexual 

trait development observed in mature males. 

Gardner Lake

Wadleigh Pond

Rainbow Lake

Penobscot Lake

Floods Pond

Gardner Lake

Wadleigh Pond

Rainbow Lake

Penobscot Lake

Floods Pond

 
Figure 2.1.  Map showing locations of 
Arctic charr populations included in this 
study 
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Table 2.1.  Sample locations of Sunapee and blueback forms, with abbreviations, 
drainages of origin, lake area and depth, and sample sizes of both females and males 
obtained. 

Lake Abb. Drainage Area 
(hectares) 

Mean (max) 
Depth (m) Sample Size 

Sunapee      
   Floods Pond FLP Union 257 12 (45) 28♀  15♂ 

Blueback      

   Gardner Lake GDL St. John 115 12 (37) 18♀  18♂ 
   Penobscot Lake PNL Penobscot 470 10 (32) 46♀  39♂ 
   Rainbow Lake RBL Penobscot 658 12 (40) 19♀  22♂ 
   Wadleigh Pond WDP Penobscot 65 6 (14) 25♀  24♂ 
 
 
 
Trophic Ecology 

Stomach contents were removed from all sampled individuals and examined 

under a dissecting scope to determine the presence of zooplankton, insect larvae or 

pupa, benthic invertebrates (including gastropods, bivalves, and amphipods), and fish.  

Differences in the frequency with which prey items were found in stomach contents 

among populations were assessed using a Pearson chi-squared test for each prey 

category. 

 

Gill Raker Morphology 

The most anterior, left gill arch was extracted from each fish sampled (both 

males and females), rinsed, and placed in ethanol to prevent decay.  Individual arches 

were pressed flat between sheets of plexiglass, and photographed at a fixed focal length 

along with a ruler for size reference.  From these images, measurements of mean gill 

raker length, width at the base, and spacing (measured from the edge of one raker to 

another at the base), were obtained for the first three rakers below the apex on the 

ventral side of the arch, using the program ImageJ version 1.32 (Rasband 2004).  The 

16 



 

number of gill rakers per arch was also counted by examining these images.  The mean 

number of gill rakers per arch, gill raker length, width, and spacing were compared 

among populations using analysis of variance. 

 

Growth 

Sagittal otoliths were removed from each fish for age determination.  To 

facilitate reading of annuli under a dissecting scope, each otolith was placed whole in a 

small glass dish containing 50% glycerin solution and illuminated from the side using a 

fiber optic light source.  Annuli were counted on both left and right otoliths (when 

available), and age was determined based on agreement between these counts.   

Population growth curves were estimated using the Von Bertalanffy growth 

function (VBGF):  Lt = L∞(1-e-k(t-t0)) where Lt is the length at age t, L∞ is the asymptotic 

length for the population, k is the Brody growth coefficient, and t0 is the age at which 

length = 0 (Ricker 1975).  This model was fitted to length at age data for each 

population using a combination of the best fit model approach and biological criteria, 

because there were so few data points for very young fish.  These growth curves were 

compared among all populations using the analysis of residual sums of squares method 

(Chen et al. 1992).     

 

Morphological Analysis 

Standardized digital images of each fish were used to examine variation in body 

shape.  Eighteen homologous landmarks were placed on each image (figure 2.2) using 

the program tpsDig, version 2.0 (Rohlf 2004).  Individuals were analyzed in random 
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order within site by the same person.  The coordinates of these landmarks were then 

uploaded into tpsRelw, version 1.42 (Rolf 2005) to calculate relative warp scores for 

each fish.  This program first aligns each specimen to a generalized orthogonal least-

squares Procrustes consensus configuration to remove isometric effects of body size 

from the analysis.  Next, orthogonal partial warps are computed using a thin-plate spline 

technique to explain shape deformations in the x and y planes.  The variation in shape is 

then summarized in relative warps, which are essentially calculated as principal 

components based on the partial warp scores.  Relative warp scores were obtained using 

warp functions derived from a larger database of Arctic charr collected in Maine 

(n=335), including both males and females, to provide a maximally robust assessment 

of shape variation in Maine charr.  An additional population (Long Pond) was also 

included in this database to ensure comparability with a related study on trophic 

specializations in translocated populations (see chapter 3).  Relative warp scores for 

females from the five populations considered here were then included in a discriminant 

functions analysis to assess the full multivariate divergence in shape among 

populations.  The resulting discriminant functions were regressed back onto the 

principal warps, using tpsRegr (version 1.31 - Rohlf 2005), to aid interpretation.   

In addition to relative warp scores, our analysis of morphology also included a 

series of linear measurements, including fin lengths (with the exception of the adipose 

fin), body length (measured from the anterior of the eye socket to the posterior most 

point of the caudal peduncle), eye width, maxilla length, and interorbital distance.  

Interorbital distance was measured using calipers and will also be referred to as head 

width.  All other measures were derived from digital photos and adjusted to a common 
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body size of 188.96 mm across all populations using ANCOVA.  Size corrected 

measures were then subjected to a principal components analysis to reduce the data to a 

set of factors that best describe variation relative to body shape. 
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Figure 2.2.  Anatomical landmarks used for morphological analyses.  These include:  
1) tip of snout; 2) left of eye socket; 3) posterior edge of skull; 4) top of operculum; 
5) most posterior point of operculum; 6) bottom of operculum directly below lower 
most point of preoperculum; 7-13) fin insertions; 14) point on lateral line directly 
below insertion of dorsal fin; 15) posterior center point of caudal peduncle; 16&17) 
narrowest part of caudal peduncle; and 18) insertion of last anal fin ray. 
 

All statistical analyses presented here were run using SYSTAT, version 11 

(2004) unless otherwise noted. 

 

RESULTS 

Trophic Ecology 

The majority of fish from each lake consumed insect larvae, but each population 

differed significantly in the inclusion of other prey items in their diet (table 2.2).  

Organisms identified as zooplankton included mainly cladocerans and copepods; the 

insect category was comprised almost entirely of diptera larvae; benthic prey items 

included amphipods, gastropods and bivalves; and fish that could be identified included 

rainbow smelt, threespine stickleback, pumpkinseed sunfish, and small charr.  
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Generally, items from all four prey categories were found among the stomach contents 

of fish from each lake, with 

the exception of fish in 

Wadleigh Pond, benthic items 

in Floods Pond, and 

zooplankton in the Rainbow 

Lake sample.  It should be 

noted this lack of zooplankton 

in the diet of Rainbow Lake 

charr may be due to the decreased abundance of this prey item during the winter 

months, when these fish were captured.  Nevertheless, the frequency with which 

individuals included prey items other than insect larvae in their diet still varied 

significantly among populations (table 2.2).   

Table 2.2.  Percent individuals from each population 
with a given prey category present in its stomach 
contents.  Numbers in parentheses represent the 
number of individuals from which stomach contents 
was obtained for each population.  P-values were 
obtained from Pearson’s chi-squared test. 

 plankton Insect benthic fish 
FLP  (38) 3% 76% 0% 50% 
GDL  (40) 3% 75% 95% 5% 
PNL  (82) 2% 98% 6% 23% 
RBL  (31) 0% 81% 42% 10% 
WDP  (45) 13% 98% 7% 0% 

P-value ** < 0.001 < 0.001 < 0.001 
** insufficient data for significance test 

 
 
Gill Raker Morphology 

All measured aspects of gill raker morphology differed among populations.  The 

number of gill rakers differed significantly among populations (p = 0.011), with 

Penobscot lake averaging the fewest (15.23 ± 0.45) and Wadleigh Pond the most (16.39 

± 0.5).  Floods and Penobscot fish had the longest mean gill raker length, while those in 

Gardner had the smallest (p < 0.001).  The average width of gill rakers also differed 

among populations (p < 0.001), with Floods, Penobscot, and Rainbow Lake charr 

having the widest gill rakers and Gardner the thinnest.  Gill rakers of charr from 
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Penobscot Lake exhibited the largest mean spacing, while those from Gardner Lake 

averaged the most densely packed rakers (p < 0.001) (figure 2.3).   
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Figure 2.3.  Population means for mean gill raker length, width, and spacing, with 
95% confidence intervals.   
 
 
 
Growth 

Overall, samples from these populations overlapped in sizes and ages.  Only 

Gardner Lake was smaller on average than Floods Pond (p=0.001), Penobscot Lake 

(p=0.002), and Rainbow Lake (p=0.012), while 

fish from Wadleigh Pond were younger than 

all other populations on average (p<0.001).  

Even so, the VBGF curves varied significantly 

among populations (F14,120 = 102.533; 

p<0.001) (figure 2.4).  Charr from Floods Pond 

had the largest asymptotic length (L∞) and the lowest k value, or the slowest growth 

towards L∞.  In contrast, the asymptotic length for Gardner Lake fish was the smallest,  

Table 2.3.  Von Bertalanffy Growth 
Function parameters for each 
population.   

 L∞ k t0

FLP 810.30 0.033 -1.869 
GDL 182.23 0.880 2.483 
PNL 776.23 0.036 -2.555 
RBL 457.99 0.077 -1.137 
WDP 353.96 0.153 -2.021 
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and this population had the 

largest growth coefficient 

value (table 2.3).  It should be 

noted, however, that the 

values of L∞ may be 

overestimated, and the values 

for k underestimated due to 

lack of very young and very 

old individuals in these 

samples.  
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Figure 2.4.  Growth curves for each population 
generated by the Von Bertalanffy model.  (see 
Appendix for individual population size-at-age 
data)  

 
 
Morphological Analysis 

Linear measures included 

in this analysis were best 

summarized using three varimax 

rotated principal components.  

The variation explained by the 

first component was mostly 

accounted for by upper and lower 

caudal fin lengths (21% of total 

variation).  The second component explained 26% of the total variation, which was 

mostly due to variation in anal, dorsal, pectoral, and pelvic fin lengths.  Head width, eye 

width, and maxilla length all loaded highly on the third principal component, which 

Table 2.4.  Correlations between principal 
components and morphometric traits.  Characters 
most highly correlated with each principal 
component are noted with an asterisk. 
 PC1 PC2 PC3 
Anal Length 0.046 0.847* 0.057 
Dorsal Length 0.078 0.530*  0.471 
Eye Width 0.285 0.331 0.588* 
L. Caudal Length 0.869* 0.158 0.227 
Maxilla Length 0.088 0.188 0.871* 
Pectoral Length 0.430 0.696* 0.252 
Pelvic Length 0.179 0.783* 0.156 
U. Caudal Length 0.881* 0.170 0.177 
Head Width 0.227 0.023 0.722* 
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explained 22% of the total variation (table 2.4).  Combined, these three components 

explained 69% of the total variance in the data.  Analysis of variance on these 

components revealed that only PC2 and PC3 significantly differentiated between 

populations (PC1: p = 0.1065, PC2: p < 0.001, PC3: p < 0.001).  Charr from Gardner 

Lake had the longest fins and those from Wadleigh had the shortest, while Floods and 

Gardner charr had the largest head features and those from Rainbow and Wadleigh had 

the smallest (figure 2.5). 
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Figure 2.5.  Mean principal component (PC) scores and relative warp (RW) scores 
for each population (± 95% CI).  Interpretations of high negative and positive 
principal component scores are indicated at each end of the axis.  Transformation 
grids show extremes of the shape variation associated with each relative warp 
function (relative warp two is not shown as it is associated with variation due to 
positioning of fish in photos).  These visualizations have been exaggerated three-
fold to aid interpretation. 
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Discriminant analysis on all relative warps produced four functions that 

significantly differentiated among the populations (Wilks Λ = 0.008, Approximate F(128, 

400) = 7.467, p < 0.001).  The reclassification rate also indicates strong differences in 

body morphology exist among groups (overall jackknifed classification rate = 82%), 

with charr from Wadleigh having the highest reclassification rate (96%), and Rainbow 

the lowest (58%).  Variation along discriminant function one appears to be related to 

variation in overall head size, length and width of the caudal peduncle, body depth, and 

position of fin insertions, as visualized by the thin-plate spline depictions of the 

discriminant functions (figure 2.6).  This function is highly correlated with relative warp 

one (r=0.763) which describes variation in head size and body depth, as well as distance 

between the anal and adipose fin insertions and the caudal fin insertions (peduncle 

length) (figure 2.5)  Discriminant function two revealed differences in overall body 

depth and location of fin insertions.  This was correlated with relative warp three 

(r=0.309), which explains variation in head size, body depth, as well as the relative 

length of the body anterior of the dorsal fin to length posterior to the dorsal fin.  

Combined, the first two discriminant functions explain 72% of the total dispersion of 

the populations.   
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Figure 2.6.  Shape variation among populations of arctic charr.  Plot shows mean 
discriminant function scores for each population with 95% confidence intervals.  
Axis labels indicate features strongly associated with each discriminant function, and 
the direction of this relationship is indicated by a “+” or “-“ sign.   Transformation 
grids show extremes of the shape variation associated with each function, created by 
regressing each discriminant function back on the partial warp scores.  These 
visualizations have been exaggerated three-fold to aid interpretation. 
 
 
 
DISCUSSION 

The results of this study indicate substantial phenotypic divergence exists among 

the five allopatric Arctic charr populations considered here.  Significant differences in 

diet, body shape, gill raker design, and growth were detected.  In combination, these 

phenotypic differences appear to be comparable to the trophic specializations of 

sympatric forms noted elsewhere (Jonsson & Jonsson 2001).  Surprisingly, our data 

25 



 

suggest the existence of at least three specialized forms of Arctic charr in the state of 

Maine:  a large pelagic piscivore, small benthivore, and small pelagic 

insectivore/planktivore.   

There is clearly substantial evidence to corroborate the hypothesis that the 

“Sunapee” population in Floods Pond represents a piscivorous specialist.  Consistent 

with their diet, these charr have relatively large, widely spaced gill rakers, a design 

noted elsewhere for piscivores (Snorrason et al. 1994; Alekseyev et al. 2002).  

Morphologically, these fish exhibit the large head and wide gape commonly associated 

with piscivore, as well as the shorter fins and large eyes of a pelagic predator that 

cruises the water column in search of quick moving prey (Webb1975; Walker 1997).  

These charr also grow to a relatively large asymptotic size, perhaps as both a 

consequence and adaptation for feeding on larger prey. 

Anecdotal descriptions of the blueback form suggested it would be a small, 

pelagic, planktivore.  However, not one of the purported blueback populations sampled 

here utilized zooplankton as a primary adult food source during the time they were 

captured.  Furthermore, significant differences in diet and several trophic related 

characters were noted among these populations, with the greatest axis of divergence 

found between apparent pelagic insectivores and benthivores.   

The discovery of a blueback population of benthic specialists in Gardner Lake 

was particularly unexpected, because this form was not previously reported among 

charr in Maine.  Diets of Arctic charr from this population were clearly dominated by 

benthic food sources, including small bivalves, gastropods, and amphipods, which was 

apparent not only from stomach contents but morphological differences as well.  These 
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charr had much smaller gill rakers, and a relatively large mouth gape compared with 

other populations.  Such characteristics are consistent with the observation that 

mollusks were apparently dislodged from the substrate and swallowed whole by these 

fish.  This strategy would be different than that employed by other molluskivores, such 

as sunfish (Lepomis spp.) or certain cichlids (e.g. Cichlasoma spp.) that crush their prey 

and sort edible parts, shell fragments and substrate through better developed and spaced 

rakers (Lauder 1983; Meyer 1989).  Gardner Lake charr also had large eyes, which 

could be useful in spotting cryptic invertebrates against substrates in the littoral zone.  

These fish exhibited the relatively large fin size and thick caudal peduncles typical of 

benthic or littoral forms, which may improve maneuverability in a structurally complex 

environment (Webb 1984; Snorrason et al. 1994; Walker 1997).  Finally, this 

population of Arctic charr has an initially faster growth rate, and reaches a smaller 

asymptotic body size than observed in the other lakes.  This may be attributed to the 

relative abundance of this prey source in a very unproductive lake with such a narrow 

littoral zone. 

Though all populations consume aquatic insect larvae and pupae, Wadleigh 

Pond charr do not appear to include fish or benthic items as frequently as other 

populations do, indicating they may specialize on this resource.  Their phenotypic 

characters are typical of those observed for small pelagic forms in other populations of 

Arctic charr (Fraser et al. 1998; Snorrason et al. 1994; Alekseyev et al. 2002).  These 

fish have long, closely spaced gill rakers typically associated with a higher degree of 

planktivory and reliance on smaller food particles (Magnuson & Heitz 1971; Sanderson 

et al. 1991).  Charr from Wadleigh Pond also have the typical pelagic body form, with 
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smaller fins, a slender body, and thinner caudal peduncle thought to increase efficiency 

during sustained cruising through open water in search of patchily distributed prey 

(Webb 1975; Walker 1997).  Finally, they also reach a smaller asymptotic length and 

have a faster initial growth rate than populations that include fish in their diet (eg. charr 

from Floods Pond and Penobscot Lake).   

The remaining two populations, Penobscot and Rainbow, appear to have more 

mixed diets; neither showing evidence of a clear ontogenic niche shift.  Both included 

insect larvae, fish, and benthic macroinvertebrates in their diet, with Rainbow Lake 

charr feeding more heavily on mollusks and Penobscot Lake charr feeding more often 

on fish.  Consistent with this, these populations showed intermediate traits with respect 

to the more specialized forms.  In general, their body morphology was somewhat 

analogous to fish from Wadleigh Pond, with relatively small heads, streamlined bodies, 

and thinner caudal peduncles.  However, Rainbow Lake fish had relatively longer fins 

and a body shape approaching the design of benthivores from Gardner (figures 2.5 & 

2.6.).  This is consistent with the observation that these fish consumed more benthic 

invertebrates than any other population studied besides Gardner.  Likewise, Penobscot 

charr consumed more fish than any population other than Floods, with which they 

overlapped in gill raker size and spacing. 

The specific traits that differ among trophic specialists appear to be very similar 

in both allopatry and sympatry.  This supports the hypothesis that aspects of trophic 

ecology play a primary role in driving adaptive divergence among populations in this 

species, regardless of other ecological factors involved.  However, the scale of 

divergence between specialized forms appears to be greater in a number of sympatric 
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systems than what I observed for Maine charr (e.g. no divergence approached the scale 

found in Thingvallavatn – figure 1.1).  This would be consistent with models 

emphasizing a role for intraspecific competition in favoring specialization on alternative 

resources (Robinson & Wilson 1994; Skulason & Smith 1995).  Likewise, in sympatry 

there are more opportunities for reinforcement of divergence if some of these same 

traits are also involved in sexual selection and mate choice (e.g. McKinnon et al. 2004).  

There is no risk of breeding with alternative forms in allopatry, but in sympatry this 

could result in reduced offspring fitness. 

This study does show that adaptive divergence in Arctic charr tends to follow 

the same evolutionary lines in both allopatry and sympatry.  The similarities between 

the polymorphic forms that result in each situation indicate niche availability, above all, 

plays the leading role in evolution of trophic specializations this species.  The next 

chapter addresses the question of whether these trophic specializations are labile in 

contemporary time.    
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 CHAPTER 3 – ECOLOGICALLY DRIVEN TROPHIC DIVERGENCE  
OVER CONTEMPORARY TIME SCALES 

 
 
ABSTRACT 

Selection on traits related to trophic ecology is thought to be an important 

contributing factor to adaptive divergence and speciation in many taxa.  For several 

freshwater fish species, including Arctic charr, such selection is reflected in 

relationships between trophic ecology and phenotypic divergence.  It is difficult, 

however, to examine the root causes of such divergence, as many of these populations 

have coexisted for thousand of years.  Here, I address the hypothesis that selection on 

trophic related traits plays an important role in the beginning stages of divergence by 

comparing a recently translocated population with its source.  Differences observed 

between the populations were analogous to those typical of trophic forms observed 

elsewhere, including divergence in head, body and gill raker morphology.  I suggest 

these differences reflect contemporary shifts in trophic specialization in response to a 

human induced alteration of the lake community structure experienced by these charr.  

The results reported here support the idea that trophic ecology plays an important role in 

initiating divergence, and potentially, speciation. 

 
 
INTRODUCTION 

Divergence in characters related to trophic ecology has been noted in a wide 

variety of taxa, from birds, including the Galapagoes finches (Geospiza spp) (Grant & 

Grant 2002) and the African seedcracker (Pyrenestes ostrinus) (Smith 1987), to 

amphibians such as the tiger salamander (Ambystoma tigrinum) (Collins et al. 1993), to 
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freshwater fishes, especially pumpkinseed sunfish (Robinson et al. 1993), threespine 

stickleback (Schluter 1995), lake whitefish (Lindsey 1981), and Arctic charr (Jonsson & 

Jonsson 2001).  The correlation between trophic ecology and certain traits suggests that 

selection driven by resource use plays a major role in adaptive divergence, and 

potentially speciation.  However, it is difficult to directly examine the tempo and mode 

of the initial stages of this process in populations that have already diverged over 

thousands of years.   

Arctic charr represent a classic study system for trophic specialization (Jonsson 

& Jonsson 2001). Much of the research done in this species has explored 

polymorphisms in sympatric populations (e.g. Saundland et al. 1992; Adams et al. 1998; 

Alekseyev 2002), but recent work demonstrates allopatric populations can also show 

substantial trophic specialization (see chapter 2).  In either case, the results of trophic 

mediated selection pressures are manifest as variation in morphological, life history, 

and behavioral characters among forms (Skulason & Smith 1995).  The patterns of 

divergence for these traits are strongly correlated with the size and hardness of a 

preferred prey type, as well as the limnological region in a lake where that particular 

prey is found (Jonsson & Jonsson 2001).  The variety of trophic specializations that 

developed in this species over postglacial time scales has impressed evolutionary 

ecologists for some time, but I hypothesize it may not have taken thousands of years for 

some of these differences to develop. 

A growing body of literature suggests measurable evolutionary change can arise 

in populations over humanly observable time scales (Hendry and Kinnison 1999; 

Kinnison and Hendry 2001). Likewise, extensive literature on phenotypic plasticity and 
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reaction norms demonstrates certain genotypes can produce a range of potentially 

adaptive phenotypes in response to altered environmental conditions (Robinson & 

Parsons; e.g. Trussell & Etter 2001; Conover 2003).  In combination, these bodies of 

evidence suggest trophic divergence may arise over very short time scales in the wild.  

Indeed, trophic specializations evolve in Galapagos finches (Grant & Grant 1995) and 

phytophagous insects (Carroll et al. 1997) over just a few generations.  However, 

contemporary trophic evolution has not been previously reported for wild fish 

populations. 

Though the histories of most indigenous populations are unknown, there are a 

few opportunities for studying the initial stages of adaptive divergence in the wild.  

Human perturbations of ecological community structure, such as the introduction of 

exotic species, can serve as semi-natural experiments for directly examining 

evolutionary processes as they unfold (e.g. Carroll 1997; Stockwell and Weeks 1999; 

Streelman 2004).  When records are sufficient to indicate sources and times of 

introductions, translocated populations sharing a common ancestry can be compared 

with each other or back to their ancestral source (e.g. Kinnison et al. 2001).  This 

situation provides the opportunity to not only examine differences that develop between 

groups, but also the tempo and mode by which these specializations arise (Kinnison and 

Hendry 2001).  Such information could shed some light onto the earliest processes 

involved in population divergence and speciation that must otherwise be inferred from 

long divergent populations. 

Among freshwater fishes, translocations and introductions are common 

occurrences (Lever 1996), but a relatively small number of these have been well 
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documented.  However, recent translocations of Arctic charr in the state of Maine are 

very well documented (Kircheis 1989).  These actions were the result of conservation 

efforts aimed at preserving the endemic “Sunapee” form of Arctic charr thought to be 

found only in Floods Pond, Maine.  The Maine Department of Inland Fisheries and 

Wildlife initially transplanted charr from this population into seven other systems 

throughout Maine.  Of these, naturally reproducing Arctic charr persist in only two 

systems; Long Pond and Enchanted Pond (Frost 2001).  Although this effort was made 

to preserve the particular characteristics of the “Sunapee” form, it is likely these 

translocated populations were subject to different environmental conditions in their new 

habitats, providing the impetus for potential change to their trophic specializations. 

 

OBJECTIVES   

This research considers the rate at which trophic specializations may change in 

the wild.  The specific goals of this study are to determine 1) if trait divergence can be 

detected between the translocated population of Arctic charr in Long Pond and its 

ancestral source in Floods Pond; 2) if divergence observed in phenotype can be 

correlated with trophic ecology; and 3) whether the patterns of divergence observed 

here are similar to those described elsewhere for populations that diverged over much 

longer time periods. 
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METHODS 

Fish Collection and Processing 

Arctic charr included in this study were sampled from Floods Pond and Long 

Pond during both the summer and fall (table 3.1).  Fish collection was attempted at 

Enchanted Pond, but only 5 individuals were obtained, so this population was not 

included in the analyses.  During summer, fish were caught using monofilament gillnets 

(mesh size ½”-1” stretch), each set at a depth of approximately 30m for 12-24 hours.  

Charr obtained during the fall spawning season were captured using an Oneida style 

trapnet set over the primary spawning shoal in Floods Pond, and at several locations 

along the shoreline in Long Pond.   

Live-caught individuals (fall samples) were anesthetized using MS-222 for 

processing, and all mortally sampled fish (summer samples) were placed on ice 

immediately after capture and photographed within 12 hours.  Digital photographs were 

taken of the left side of every fish using a camera set at a fixed focal length, with a ruler 

included in each picture for size reference.  Measurements that could not be obtained 

from these photographs, including head width (measured as interorbital distance), head 

depth (measured at the posterior edge of the skull), and weight, were also recorded at 

this time.  Sex was determined for spawning individuals based on body shape and the 

presence of an everted ovipositor in females, or expression of milt in males.  Live-

caught fish were returned to the water after processing, and mortally sampled 

individuals were frozen to preserve them until they could be dissected.   

During dissection, gill arches, sagittal otoliths, and stomach contents were 

removed from each fish.  Sex and maturity status were also assessed at this time by 
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examining gonadal development.  Morphological analyses presented here use only 

mature females caught during summer to avoid confounding trophic related divergence 

with disparate sex ratios and secondary sexual trait development. 

 
 
Table 3.1.  Sample locations with abbreviations, primary drainage, lake area and depth, 
and sampling dates.   

Lake Abb. Area 
(hectares) 

Mean (max) 
Depth (m) 

Oxygen 
(mg/L) 

Average 
Secchi (m) 

Sampling 
Dates 

Long Pond LNP 107 12 (35) 10 @ 
27m 

8.3 7/2003  
10/2003 
10/2004 

Floods Pond FLP 257 12 (45) 7 @ 
39m 

7.3 10/2002 
8/2003 
10/2003 
7/2004 

 
 
 
Stocking History & Lake Characteristics 

Approximately 100 mature Arctic charr (roughly 50 males and 50 females) were 

translocated from Floods Pond to Long Pond during the fall of 1977, and again in 1979.  

In each case, fish were transported by plane and stocked in an area of the lake that 

appeared to be suitable spawning habitat. 

Information on the morphometry, limnology, and community composition of 

both lakes was obtained from the Public Educational Access to Environmental 

Information (PEARL) database, and by direct assessment during field sampling.  

Overall, both lakes are highly oligotrophic and relatively deep for lakes in Maine (table 

3.1).  They also exhibit saturated oxygen profiles throughout the entire depth of the lake 

during summer months.  In addition to Arctic charr, Floods Pond supports populations 

of eastern brook charr, rainbow smelt, pumpkinseed sunfish, threespine stickleback, 
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ninespine stickleback (Pungitius pungitius), white sucker (Catostomus commersoni), 

and several other minnow species.  Long Pond contains rainbow smelt, Arctic charr, a 

few minnows, and is stocked annually with eastern brook charr.  Given these 

similarities, one might expect that charr in both lakes have access to a similar range of 

potential prey and face similar potential competitors.  However, it is likely that the 

relative availability of different food items and pressure from potential competitors, 

such as smelt or brook charr, varies between the systems. 

 

Shape Analysis 

Relative warp scores were obtained from homologous landmarks placed on 

standardized digital images of each fish as described in chapter 2.  The relative warp 

scores were then put into a discriminant functions analysis to test for and summarize the 

morphological divergence between populations.  The resulting discriminant functions 

were regressed back onto the partial warps using tpsRegr, version 1.31 (Rohlf 2005) to 

aid interpretation.   

Several linear measurements that could not be included in the relative warps 

analysis were also compared between populations.  These were pectoral, dorsal, pelvic, 

anal, and caudal fin lengths, eye width, maxilla length, and body length (measured from 

anterior eye socket to posterior most point on the caudal peduncle), all derived from 

digital photos.  One caliper measurement, interorbital distance, was also included as a 

metric for head width.  All measurements were adjusted to a common body length of 

185.00 mm using analysis of covariance.  Principal components analysis was then used 
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to summarize the variation in these traits, and group differences were assessed using 

analysis of variance.   

 

Rate of Divergence 

The rate of change in body morphology occurring between the transplant 

population and its ancestral source was quantified in terms of haldanes, as described in 

Hendry & Kinnison (1999).  This was calculated using the formula h = [(x2/sp)-

(x1/sp)]/g.  In this case, x1 and x2 are the mean discriminant function or principal 

component scores for each population, g is the estimated number of generations since 

the populations were separated, and sp is the pooled standard deviation:  

√([SS1+SS2]/[(n1-1) + (n2 – 1)]).  Since the actual generation time for these populations 

is unknown, I used an estimate of g=6.25 generations, which is expected to provide a 

conservative rate estimate as it is based on age of first maturation (age 4 for Floods 

Pond charr - Kircheis 1976). 

 

Growth 

Sagittal otoliths were examined to determine the age of individuals.  To 

facilitate the reading of annuli under a dissecting scope, otoliths were placed whole in a 

small glass dish containing 50% glycerin solution and illuminated from the side using a 

fiber optic light source.  Annuli were counted on both left and right otoliths (when 

available), and age was determined based on agreement between these counts.  Mean 

size-at-age was compared between populations using analysis of covariance. 
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Population growth curves were also estimated using the Von Bertalanffy growth 

function (VBGF):  Lt = L∞(1-e-k(t-t0)) where Lt is the length at age t, L∞ is the asymptotic 

length for the population, k is the Brody growth coefficient, and t0 is the age at which 

length = 0 (Ricker 1975).  This model was fitted to the length at age data for each 

population using a combination of the best fit model approach and biological criteria, 

because there were few data points for very young fish.  These growth curves were 

compared between populations using the analysis of residual sums of squares method 

described by Chen et al. (1992). 

 

Gill Raker Morphology 

The most anterior, left gill arch was extracted from each individual, and the gill 

filaments removed.  These were placed in ethanol to prevent decay, and allowed to dry 

before being photographed.  Individual arches were pressed flat between two sheets of 

plexiglass, and photographed along with a ruler for size reference using a digital camera 

mounted at a fixed focal length.  From these images, measurements of gill raker height, 

width, and spacing of the first three rakers below the apex on the ventral side of the arch 

were obtained as described in chapter 2.  The total number of gill rakers, mean gill raker 

height, width, and spacing, were compared between populations using analysis of 

variance. 

 

Diet 

Stomach contents removed from all mortally sampled individuals were 

examined under a dissecting scope to determine the presence of zooplankton, insect 
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larvae, and fish in their diet.  The differences in stomach contents between populations 

were then assessed using a chi-squared test for each prey category. 

 

Isotope Analysis 

Analysis of carbon and nitrogen isotopes was conducted to further explore the 

trophic status of the recently transplanted population of Arctic charr in Long Pond with 

respect to its source, Floods Pond.  Littoral and pelagic reference samples were obtained 

in each location during September 2005.  Zooplankton were collected by multiple 

subsurface (1-2m) tows of a 250μm plankton net across each lake.  The material 

collected from each tow was combined into one sample per location to account for 

spatial heterogeneity, and later sorted to remove any debris or algae present.  Unioid 

mussels were collected to serve as a reference for the pelagic carbon signature, and were 

either gathered by snorkeling or using Ekman grabs in deeper water.  Gastropods were 

used to approximate the littoral signature, and were removed from the substrate along 

the shoreline.  Mollusk samples could not be obtained from Long Pond, so amphipod 

samples from Ekman grabs in this zone served as the littoral reference, while 

zooplankton was used for the pelagic reference.  Arctic charr samples were comprised 

of dorsal muscle tissue removed just anterior of the dorsal fin.  Both male and female 

Arctic charr were included in the analysis, and individuals from each population were 

specifically chosen to represent the range of age classes in each sample.   

All samples were placed in a drying oven at 50°C for 48 hours.  Charr samples 

were then ground using a mortar and pestle, while all other samples were left whole for 

shipment.  All samples were placed in dry glass scintillation vials, which had been 
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soaked in deionized water for 24 hours, and capped with foil-lined lids.  These were 

stored in a desiccator until they were shipped to the Environmental Isotope Laboratory 

at the University of Waterloo, Waterloo, Ontario, for analysis.  Here, the remaining 

samples were ground to a fine homogenate powder using a Retsch MM301 (Retsch 

GmbH, Haan, Germany).  Approximately 1mg of tissue was then used in the 

simultaneous analysis of stable carbon and nitrogen isotopes for each sample.  All 

analyses were performed on a Micromass VG Isochrom continuous-flow isotope ratio 

mass spectrometer connected to a Carlo Erba elemental analyzer with an analytical 

precision of ± 0.2‰ for carbon and ± 0.3‰ for nitrogen determined by repeat analysis 

(n = 20) of the International Atomic Energy Agency standards CH6 for δ13C and N1 and 

N2 for δ15N.   

  All stable isotope values are reported in conventional δ notation, where δ13C or 

δ15N = (Rsample – Rstandard)/Rstandard · 1000 and R = 13C/12C or 15N/14N.  The standards used 

for carbon and nitrogen analysis, respectively, were carbonate rock from the Peedee 

Belemnite formation (Craig 1957) and nitrogen gas in the atmosphere (Mariotti 1983).  

By convention, all international standard isotope values are set at 0‰.   

Mean trophic position of charr in each lake was calculated using a two-end-

member-mixing model to take into account omnivory in the diet:  λ + [δ15Ncharr – 

(δ15Npelagic base • α + δ15Nlittoral base • (1 – α))] / 3.4, where λ is the trophic position of the 

organism used to estimate the δ15N base of each food chain; 3.4 is the δ15N enrichment 

approximated for each trophic level (Post et al. 2000); and α is the proportion of carbon 

in an organism ultimately derived from the base of the pelagic food web: α = (δ13Ccharr - 

δ13Clittoral base) / ( (δ13Cpelagic base - δ13Clittoral base) (Post et al. 2000).  For Floods Pond, 
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mussels and snails were used to estimate the base nitrogen isotope signature for the 

pelagic and littoral food chains, respectively, while zooplankton and amphipods were 

used for Long Pond.  The λ value assigned to all the organisms used to estimate the base 

of each food chain was 2.  However, 3.4‰ was subtracted from the δ15N of the pelagic 

base in Long Pond to account for expected trophic enrichment (e.g. Post 2002), and 

known differences in the mixed assemblage isotopic signature of zooplankton and filter 

feeding mussels found in Floods Pond.  Correlations between α and forklength, as well 

as trophic position and forklength, were calculated to evaluate changes in diet with size 

(and age) of fish in each population. 

 
 
RESULTS 

Shape Analysis 

Discriminant functions analysis revealed significant differences in body 

morphology between the transplant population and its ancestral source (Wilks Λ = 

0.2851, approximate F(32, 53) = 4.152, p<0.001).  With only two populations included in 

the analysis, the single discriminant function revealed a gradient defined mainly by 

head depth and overall body depth (figure 3.1).  Floods Pond charr cluster towards the 

deeper bodied, larger-headed end of the spectrum, while those from Long Pond appear 

to have a thinner, more streamlined, overall body shape.  The reclassification rate of 

individuals from both groups also indicates strong divergence in form between 

populations (overall jackknifed classification rate = 85%). 
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Figure 3.1.  Mean discriminant function and principal component scores for each 
population (± 95% CI).  Interpretations of high negative and positive scores are 
indicated at each end of the axis.  Images show thin-plate spline transformations 
depicting body shapes at the extremes of the discriminant function.  These 
visualizations have been exaggerated three-fold to aid interpretation. 

 

 

There are also significant differences 

between populations for the linear measures  
Table 3.2.  Correlations between 
principal components and 
morphometric traits, and the percent 
of total variance explained by each 
component.  Characters highly 
correlated with a principal 
component are noted with an 
asterisk. 

included in this analysis of shape.  These 

differences were best summarized by two 

varimax rotated principal components, which 

together explained 49% of the variation in the 

data set (table 3.2).  The first principal 

component mainly explained variation in  

 PC1 PC2 
Head Width -0.322  0.687*
Maxilla Length 0.608* -0.055 
Eye Width 0.784* 0.009 
Anal Length 0.021 0.565*
Dorsal Length -0.036 0.237 
Pectoral Length 0.373 0.651*maxilla length, eye width, and caudal fin length.  

An ANOVA on PC1 revealed a significant 

difference between Long and Floods Pond 

Pelvic Length -0.119 0.696*
U. Caudal Length 0.811* -0.139 
L. Caudal Length 0.838* -0.040 
Variance 
Explained 29% 20% 
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individuals along this gradient, with the translocated population having smaller eyes, 

shorter maxilla, and shorter caudal fins (p<0.001).  Head width and paired fin lengths 

all loaded high on principal component two, which also significantly differentiates 

between populations (p=0.007), with Long Pond fish having somewhat wider heads and 

longer fins (figure 3.1).   

 
 

 Rate of Divergence 

The rate of change in body morphology between Long and Floods Pond was 

estimated to be 0.534 haldanes using the mean discriminant function scores, 0.313 

haldanes for PC1 (maxilla, eye, and caudal fin size) and -0.103 for PC2 (head width and 

paired fin lengths). 

 

Size-at-age 

The two populations also exhibited differences in mean size at age (p<0.001).  

This was supported by differences in the Von Bertalanffy growth function between 

groups (F5,79 = 2.31; p=0.052) (figure 3.2).  Although Floods Pond had the larger 

asymptotic length value, it also had a smaller growth coefficient than Long Pond.   
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Figure 3.2.  (A) Plot of mean size at age (± 95% CI) for individuals collected from 
Floods and Long Pond.  (B) VBGF for both populations (note: k may be 
underestimated due to the lack of very young individuals in the data set). 

 

Gill Raker Morphology 

Two aspects of gill raker 

morphology, spacing and width, differed 

between populations (p=0.017 and 

p=0.013 respectively), but length 

(p=0.328) and number (p=0.247) did not.  

On average, Floods Pond charr have 

thicker, more widely spaced gill rakers 

than those from Long Pond (figure 3.3). 
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Figure 3.3.  Mean gill raker width and 
spacing (± 95% CI). 
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Diet 

Analysis of stomach contents 

revealed differences in the frequency 

with which prey items were consumed 

between populations.  Although the 

majority of individuals from both 

populations included insect larvae, 

mainly diptera, in their diet, a larger 

proportion of individuals from Floods 

Pond also fed on fish (table 3.3).   

Table 3.3.  Percent individuals from each 
population with a given prey category 
present in its stomach contents.  Numbers 
in parentheses represent the number of 
individuals from which stomach contents 
were obtained for each population.  P-
values were obtained from Pearson’s chi-
squared test. 

 plankton Insect fish 
FLP  (38) 3% 76% 50% 
LNP  (91) 1% 90% 14% 
P-value ** 0.006 < 0.001 

** insufficient data for significance test 

 
 
Isotope Analysis  

The differences in diet observed for stomach contents are supported over longer 

time scales by analysis of carbon and nitrogen stable isotope ratios in the muscle tissue 

of these fish (figure 3.4).  The average proportion of diet obtained from a pelagic 

source, α, for Long Pond was 0.272 (95% CI = ±0.018), while Floods Pond fish fed 

almost entirely on pelagic food sources (α = 0.953 ±0.015).  Calculation of trophic level 

using the two-end-member-mixing model, indicated that charr from Floods Pond are 

also feeding at a significantly (p<0.001) higher average trophic position (4.701 ±0.046) 

than those from Long (4.057 ±0.088).  This divergence in diet was consistent for all fish 

included in this analysis, as individuals from each population did not overlap at all in 

the proportion of diet obtained from the pelagic food web.   
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Figure 3.4.  Isotope plots for Arctic charr and organisms representative of the 
respective pelagic and littoral food webs of each lake.  Taxa means (± 95% CI) are 
reported for both stable isotopes (no error bars were calculated for the zooplankton and 
amphipod signatures from Long Pond because organisms were combined into one 
homogenous sample; error bars for charr samples are present, but very small). 
 
 
 

Trends associated with α and trophic position with length indicate charr from 

Floods Pond feed on fish from a relatively small size, while those from Long undergo a 

clear ontogenic niche shift at larger sizes (figure 3.5a).  The relationship between 

trophic position and length was analogous to that of trophic position and age.  There is a 

strong positive correlation (r=0.832, p<0.001) between trophic position and length for 

individuals from Long Pond, but no significant trend associated with those from Floods 

(r=0.113, p=0.9).  There is also a significant negative correlation between α and body 

size for Long Pond charr (r=-0.433, p=0.076), but not for those from Floods (r=-0.582, 

p=0.003) (figure 3.5b).   
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Figure 3.5.  (A) Calculated trophic position vs. length for all individuals.  (B) Plot of α 
(proportion of diet obtained from the pelagic food web) vs. length for all individuals 
analyzed. 
 
 
 
DISCUSSION 

The results presented here demonstrate significant divergence in charr 

phenotypes can develop over only a few generations.  It also appears that these 

differences reflect a shift in trophic ecology experienced by the transplanted population, 

as evidenced by stomach contents, stable isotope signatures, and (as will be discussed) 

some correspondence between observed trait divergence and known patterns of trophic 

specialization in this species.  Overall, these results support the hypothesis that trophic 

specializations in Arctic charr, which typify population divergence or even incipient 

speciation, can change over very short time scales in response to likely changes in niche 

space. 

Although some individuals in Long Pond do consume fish as part of their diet, 

there is clearly a much smaller percentage of the population that does so when 

compared to Floods Pond charr.  Only 14% of the charr sampled from Long Pond with 

47 



 

food in their stomachs consumed fish, compared to 50% of charr from Floods Pond.  

Trends found in this small snapshot of the diet of these individuals are consistent with 

those associated with the stable isotope signatures of the populations.  Long Pond charr 

appear to derive a much greater proportion of the 13C in their muscle tissue from the 

littoral food web, and they feed at a lower trophic position than charr from Floods Pond.  

This is exactly what one would expect for fish that prey predominantly on littoral insect 

larvae and pupae and less extensively on pelagic fish like smelt. 

The differences in morphology observed for Arctic charr in Long Pond show a 

clear trend of divergence away from the trophic related features of their ancestors.  As 

described in a previous study of trophic specializations among indigenous Arctic charr 

populations in Maine, Floods Pond charr represent a clear piscivorous specialist (see 

Chapter 2).  Comparatively, the morphology of charr from Long Pond indicates they 

may be diverging more toward traits consistent with a form that picks smaller prey 

items such as migrating insect larvae and pupae from the water column.  Shape analysis 

shows these fish have thinner bodies overall and shorter caudal fins.  This is consistent 

with a pelagic form, but still more streamlined and thus better suited for cruising in the 

water column than the larger piscivores (Webb 1975).  Individuals from the translocated 

population also tend to have smaller heads with shorter maxilla, which is indicative of a 

smaller gape size.  The gill rakers of fish in this population also tend to be thinner and 

more closely spaced than those of fish from the ancestral population.  The changes in 

these features are all associated with Arctic charr forms that utilize smaller prey items 

(Jonsson & Jonsson 2001; Alekseyev 2002).   
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Charr from Long Pond also appear to grow faster early in life, but reach a 

smaller asymptotic size than charr from Floods.  This may be a consequence either of 

feeding on a food source that does not put as much of a premium on size to be an 

effective predator, or one that does not provide as much nutrition per prey item 

(Wootton 1998).  One might presume a correlation between diet and asymptotic size is 

reflective of growth advantages associated with shifting to a more energy rich prey item 

like fish, or the requirement that piscivores be relatively large in order to capture and 

consume these larger food items (e.g. Snorrason et al. 1994).  Both populations of charr 

show a relationship between fish size and age and diet, however they differ in their 

ontogenic patterns.  Trends associated with proportion of diet obtained from the pelagic 

food web (α) and trophic position with length indicate charr from Floods Pond feed on 

fish from at a relatively small size, while those from Long undergo a clear ontogenic 

niche shift to feeding at a higher trophic level at larger sizes (figure 3.5a).  This is 

evident by a strong positive correlation (r=0.832) between trophic position and length 

for individuals from Long Pond, but only a very slight positive trend associated with 

those from Floods (r=0.113) since even the youngest charr sampled were already 

feeding on fish.  Although fish from Long Pond shift to feeding at a higher trophic 

level, α calculations indicate they are not doing so by including planktivorous fish in 

their diet, because they are including a higher percentage of their diet from the littoral 

food web at this stage.   
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Figure 3.6.  Shape variation among indigenous and translocated populations of Arctic 
charr in Maine.  Plot shows mean discriminant function scores for each population with 
95% confidence intervals.  Axis labels indicate features strongly associated with each 
discriminant function, and the direction of this relationship is indicated by a “+” or “-“ 
sign.   Transformation grids show extremes of the shape variation associated with each 
function.  These visualizations have been exaggerated three-fold to aid interpretation.  
(FLP=Floods Pond, GDL=Gardner Lake, PNL=Penobscot Lake, RBL=Rainbow Lake, 
WDP=Wadleigh Pond, and LNP=Long Pond). 

 
 

In combination, the trends in divergence observed for diet, body shape, gill raker 

design, and life history of these populations suggest a broad spectrum shift in trophic 

specialization.  However, the population of charr in Long Pond exhibits a mosaic of 

specialization traits.  The mean head size of these fish is not smaller in all dimensions 

when compared to Floods Pond, as one would anticipate for a pelagic feeding 

insectivore (Jonsson & Jonsson 2001; Chapter 2).  Likewise, their average fin size is a 
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bit larger than Floods Pond fish, rather than the smaller size observed for another 

insectivorous population in Maine (see Chapter 2).  This would provide more 

maneuverability, and may indicate these fish are spending more time in the littoral zone.  

It should also be noted that these populations, while clearly divergent, are still more 

similar to each other in many traits than either is to any of the indigenous populations in 

Maine examined in chapter 2 (figure 3.6).  Nonetheless, the calculated rates of 

morphological divergence between these populations in haldanes for traits like body 

shape, fin lengths, gape and eye size (from DF and PC1&2 results), indicate not only 

that these rates are comparable to some of the fastest rates of phenotypic change 

estimated for other organisms over comparable time scales (see Kinnison & Hendry 

2001).  By that standard, contemporary trait changes observed in Maine charr can 

justifiably be considered “rapid” (Hendry & Kinnison 1999). 

It is perhaps surprising that such a shift in specialization occurred despite the 

availability of similar prey items in both lakes.  Highly specialized piscivorous charr 

from Floods Pond could have continued to feed primarily on smelt in Long Pond, but 

this does not appear to have been the case.  Hence, simply the availability of a forage 

item is not sufficient to fully retain this specialization.  Rather, it appears that a more 

complicated interaction exists with the relative benefits of utilizing a particular food 

resource in a given lake system.  Charr introduced to Long Pond may have encountered 

an especially abundant and high quality invertebrate resource and relatively fewer 

forage fish, or a larger population of piscivorous competitors in the more abundant 

brook trout population in this lake.  In addition, the smelt population may have declined 

in response to the increased predation pressure.  These factors could work alone or in 
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synergy to favor a diet with more reliance on insect larvae and pupae.  Likewise, there 

is no reason to presume piscivory is a universally superior diet strategy.  Instead, it is 

feasible that such a specialization in Floods Pond reflects necessity rather than 

opportunity.  I do not have direct estimates of relative insect abundance, but the fact that 

Floods Pond charr may grow more slowly than those from Long Pond during their early 

years, when insects would comprise the bulk of their diets, provides indirect evidence 

that this may not be a particularly abundant food source.  A switch to piscivory might 

therefore be critical for fish to attain a suitable size for reproduction in Floods Pond, but 

may be less important for charr in Long Pond.  In a sense, a paucity of alternative food 

resources in Floods Pond may be more important to maintaining its piscivorous charr 

form than the abundance of smelt.  

The apparent association between the phenotypic differences detected and 

trophic ecology suggests the divergence detected here is indeed adaptive and not solely 

the result of founder effects or drift.  It is also likely that some component of 

contemporary trait divergence is due to phenotypic plasticity.  Recent diet and habitat 

manipulation studies in Arctic charr have evidenced a degree of plasticity in similar 

traits (Adams et al. 2003, Peres-Neto & Magnan 2004; Andersson et al. 2003, 2005), 

but this study was not designed to distinguish the relative contributions of these two 

mechanisms.  Nonetheless, it seems reasonable to suggest the process of divergence 

examined here is analogous to that which led to trophic specializations in other 

allopatric and sympatric populations of charr.  If so, then considerable incipient steps 

toward such long term divergence can indeed arise very quickly in populations subject 

to shifts in relative community structure.   
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It also appears unlikely that specific trophic specializations can be maintained 

outside of the complex set of habitat conditions that foster them.  Clearly, this has 

implications for the use of translocations in the preservation of endemic specialists.  I 

will consider such conservation implications for Maine charr and other organisms in my 

final chapter. 
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CHAPTER 4 - MANAGEMENT IMPLICATIONS 
 
 

The objectives presented in the current Arctic charr management plan for the 

state of Maine (Frost 2001) include maintaining the 14 self-sustaining populations of 

Arctic charr in the state, as well as maintaining the genetic integrity of these 

populations.  However, due primarily to lack of funding and support, little is known 

about the general ecology of these populations, making it difficult to make informed 

management decisions.  I am therefore hopeful the work I presented in this thesis will 

provide useful insights into conserving Maine’s Arctic charr.  In particular, I believe my 

research can provide insight into habitat requirements and uniqueness of these 

populations, as well as information that may be useful in developing conservation 

strategies. 

Learning more about the general ecology and distinctive features of Arctic charr 

in Maine is becoming increasingly important as populations are being threatened by 

changing environmental conditions and human perturbations to their ecosystems.  In 

fact, there are indications that at least two populations are currently at risk of local 

extinction.  A month of efforts to capture charr in Big Reed Pond by the Department of 

Inland Fisheries and Wildlife during the fall of 2005, recovered only a single fish.  Our 

own efforts to trap charr in Green Lake during the same period were also unsuccessful.  

These failed collection attempts are worrisome, particularly for the population in Green 

Lake, which has been described as unique among charr in Maine (a very small form that 

lives at extreme depths) (Kircheis 1985). 
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DIET AND HABITAT 

According to the current Arctic charr management plan, the state describes 

bluebacks as primarily planktivorous at all ages, but recognizes they may supplement 

their diet with other prey items (Frost 2001).  The results of this research, however, 

suggest bluebacks in Maine are not primarily planktivorous as adults and vary widely in 

the items they incorporate into their diets.  Although zooplankton was found among 

stomach contents of individuals in each lake, a much higher proportion included insect 

larvae and pupae.  This pattern could be an artifact of sampling populations in mid-

summer, although insect larvae were still found in a majority of fish sampled during late 

winter in Rainbow Lake.  It is also interesting to note the large proportion of individuals 

that included larger prey items in their diets, as well as the variation in the type of prey 

each population fed on most heavily.  Charr from Floods Pond, Penobscot Lake, and 

Long Pond, all included fish in their diets.  While a large proportion of individuals from 

Gardner Lake and Rainbow Lake included benthic organisms such as amphipods and 

mollusks.  Ultimately, a more varied diet makes sense given that the lakes containing 

charr in Maine tend to be very oligotrophic and probably produce a relatively low 

biomass of zooplankton. 

Results of the stable isotope analysis conducted on tissue samples from Floods, 

Long, and Wadleigh Pond provide long term support for trends seen in stomach 

contents.  Charr from Floods Pond do obtain a very high proportion of their diet from 

the pelagic food web (0.95 ± 0.01), and the relative amount of nitrogen-15 in their 

tissues suggests they feed at an average trophic level of 4.7 (± 0.05).  This suggests 

Arctic charr are a top predator in this system.  In Long Pond, it is again very unlikely 
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these fish rely on plankton as a primary food source as adults because these fish obtain 

only a small proportion of their diet from the pelagic food web (0.27 ± 0.02).  Instead, it 

appears that charr in Long Pond rely more heavily on the littoral food web, most likely 

diptera larvae.  Arctic charr in Wadleigh Pond are probably more reliant on zooplankton 

as a food source than any of the other populations examined in this study.  Results of 

the stable isotope analysis suggest they obtain a significant portion of their diet (0.68 ± 

0.14) from the pelagic food web, while feeding at a lower trophic level than noted for 

the other two populations (3.26 ± 0.11).  However, there is a strong correlation between 

age and trophic level (r = 0.73), as well as a trend towards a decreasing proportion of 

food coming from pelagic sources as fish from Wadleigh Pond age.   

 

UNIQUENESS OF CHARR WITHIN MAINE 

As noted in my introductory chapter, Maine’s charr represent the only 

indigenous populations of this species in the United States outside of Alaska.  It should 

also be noted that Arctic charr in Maine and Alaska represent very divergent lineages, 

with Maine charr being part of the putative Acadian lineage identified by Brunner et al. 

(2001) that also includes populations of charr in Quebec and New Brunswick.  Among 

the five global lineages of Arctic charr identified by this study, this Acadian group is by 

far the most restricted in its distribution.  Being part of this distinctive clade, which also 

includes the southernmost indigenous populations of charr in North America, should 

convey some unique status that warrants conservation.   

Work with mitochondrial DNA (Kornfield & Kircheis 1994) and microsatellite 

variation (Bernatchez et al. 2002) suggested Maine charr have nearly all been isolated 
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from one another for thousands of years.  At the same time, this genetic work provided 

no evidence that the blueback and Sunapee forms of charr represent separate, 

monophyletic lineages.  This finding eliminated the separate subspecies status of these 

forms, and as a consequence interest in the special nature of the Floods Pond charr 

declined.  My work on the phenotypic specializations of these forms suggests that 

abandonment of the unique status of this population was perhaps premature. 

Arctic charr in Maine show considerable evidence of trophic specializations 

developed over postglacial time.  While these specializations may not warrant 

subspecies status for these populations, they do represent important variation within the 

species.  Diet differences among these populations are reflected by the broad spectrum 

of variation in morphological and life history features.  The traits showing most 

divergence among these groups include head size, body depth, gape size, fin lengths, 

gill raker morphology, and size at age; all characters strongly correlated with trophic 

ecology in this species (Jonsson & Jonsson 2001).  It is almost certain many of these 

same features provided early taxonomists and anglers with a perception of divergence 

between the blueback and Sunapee form; my work suggests considerable diversity also 

exists among these putative blueback populations.   

 

CONSERVATION STRATEGIES 

My work indicates the diversity in form seen among Arctic charr in Maine can 

be attributed to differences in their diet and habitat use.  Though introductions of 

salmonid predators (e.g., lake charr, Salvelinus namaycush or landlocked Atlantic 

salmon, Salmo salar) and changes in lake water quality (e.g. eutrophication and loss of 
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oxygen in deep water refuges) pose obvious direct threats to charr populations, 

conservation of Maine’s specialized charr forms may also require preservation of the 

trophic communities and habitats that support those specializations.  Management 

actions that threaten community structure, such as introductions of competitor species 

or extinctions of forage species, may lead to local charr extinctions.  Certainly, loss of 

smelt from Floods Pond would be disastrous for conserving the Sunapee form, but at 

the same time stocking of smelt into other lakes may be just as damaging.  For example, 

competition by introduced smelt may have been a factor in the extinction of bluebacks 

in the Rangeley Lakes system in the early 1900s.  Likewise, declines in charr in Big 

Reed Pond have coincided with establishment of an illegally introduced smelt 

population.   

My results also suggest that conservation of Maine’s charr forms requires 

consideration of more than just extinction effects.  Specializations found among Maine 

charr populations may be unstable in response to different trophic opportunities, even in 

contemporary time.  Long Pond charr already exhibit changes in some of the features 

that typify the Sunapee form a mere twenty-five years following translocation.  

Interestingly, these changes have occurred in a system where similar forage species are 

available to those in Floods Pond.  This suggests that the specializations of Maine’s 

charr are dependent on complex interactions that shape the relative costs and benefits of 

utilizing different diet items in different lake systems.  Ultimately, Floods Pond may be 

the only lake in the state capable of maintaining the specialized Sunapee form that is 

such an important part of Maine’s fish fauna.  The same may be true of the 
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benthivorous specialists in Gardner Lake, or the small pelagic form found in Wadleigh 

Pond. 

This is not to say that translocated populations cannot thrive. The Arctic charr 

populations in Long and Enchanted Ponds are testimony enough to show that 

persistence is possible in a new lake system (although they do represent only two 

successes out of 11 attempts).  However, these newly established populations should 

probably be regarded as their own evolutionary entities (Stockwell et al. 2003).  In this 

respect, translocations may serve a role in preserving the evolutionary process and 

genetic lineage of the species, if not its full diversity.  On the other hand, divergence 

between translocated and source populations may limit the value of translocated 

populations for use in recovery or supplementation of a collapsed source (e.g. Stockwell 

& Weeks 1999).   

Although the Arctic charr faces many threats to its persistence in Maine, one of 

the biggest may simply be lack of information.  Even with the scope of data presented 

here, there are many unknowns concerning the general ecology and life history of most 

Arctic charr populations in Maine.  For example, the spawning sites of these fish are a 

mystery in all lakes other than Floods Pond.  With a sample of just six populations I 

uncovered an unexpectedly wide range of trait variation and diet specialization, but the 

remaining eight populations have yet to be examined.  Characterizing all of Maine’s 

charr populations should be a research priority, given that additional populations may 

contain other specialized forms that would merit their own management considerations.   
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APPENDIX – INDIVIDUAL POPULATION VON BERTALANFFY  
GROWTH FUNCTIONS AND SIZE-AT-AGE DATA 
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Figure A.1.  Individual population VBGF curves with size-at-age data for each Arctic 
charr population included in this thesis. 
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