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ABSTRACT 

Ruffed grouse (Bonasa umbellus) occupy a wide distribution in North America, 

from Georgia in the south to Alaska in the north, as well as southern and central Canada. 

Color phases in ruffed grouse range from red to gray with gray phase birds found more 

frequently at higher latitudes than red birds. Gray and red morphs become exclusive at 

northern and southern range margins, respectively. This pattern is generally attributed to 

increased ability of gray morphs to survive northern winters. Although a number of 

mechanisms have been proposed for these relationships, recent studies on tawny owls 

have suggested that increased feather barb density and proportion of plumulaceous 

material in gray morphs may provide an adaptive advantage in northern climates due to 

increased insulation. Our objective for this study was to evaluate if ruffed grouse exhibit 

similar relationships between insulating feather characteristics and color phase. We 

collected dorsal and ventral body feathers from live-caught ruffed grouse and 

supplemented these with samples collected from harvested birds. We quantified feather 

length, plumulaceous length, and two barb density measurements for each feather using a 

dissecting microscope. We used generalized linear models to evaluate differences of 

feather barb density and proportion of plumulaceous material among color phases. We 

concluded that the models of color phase, as a predictor of barb density and 

plumulaceous feather material, were not significant. Our results suggest gray phase and 

red phase individuals have similar feather barb density and proportion of plumulaceous 

material, inconsistent with the findings for tawny owls, and that insulating characteristics 

of feathers likely do not contribute to latitudinal gradients of color phase in ruffed grouse.
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INTRODUCTION 

Polymorphism is defined as the occurrence of more than one distinct, heritable 

morph within a population, of which the least common cannot be conserved by frequent 

mutation (Ford 1945). Several processes may drive the persistence of multiple morphs 

within a species, including sexual selection, environmental variability, and reversible 

frequency-dependent predation (Blows et al. 2003, Shigemiya 2004, Gray and McKinnon 

2006). Geographic variation is the result of these factors working separately or together 

on a large geographic scale, and many studies consider geographic variation in a variety 

of taxa (Hoekstra et al. 2004, Rosenblum et al. 2004). Latitudinal gradients, or clinal 

variations, are common patterns of such geographic variation, especially for species that 

exhibit color polymorphism (Bailey 1978, McLean and Stuart-Fox 2014). 

Gloger’s Rule, a proposed pattern for geographic variation of color, states that 

within polymorphic species, individuals with greater pigment concentrations persist in 

more humid climates than individuals with lower pigment concentrations (James 1991). 

Aside from the use of melanin in the bearded vulture for thermoregulatory purposes, 

there have been few exceptions to this rule (Margalida et al. 2008). While the 

mechanisms behind Gloger’s Rule are still poorly understood, some have suggested 

cryptic benefits, thermoregulatory benefits, or defense against parasites (Caro 2013). By 

definition, polymorphism is heritable and genetic studies have confirmed that the 

melanocortin-1-receptor (MC1R) locus is the determining genetic marker for melanic 

polymorphisms in a wide variety of taxa (Hoekstra et al. 2004, Rosenblum et al. 2004, 

Mundy 2005).  
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Other studies have compared fitness among individuals of different color morphs. 

It has been suggested that color polymorphism plays a role in sexual selection and can 

have an effect on reproductive success (Roulin 2004). The bearded vulture exhibits 

geographic variation in color polymorphism as an adaptation in response to 

environmental variability (Margalida et al. 2008). The puffer Takifugu niphobles exhibits 

reversible frequency-dependent predation when feeding on polymorphic prey and, as a 

result, probability of prey being consumed because of their color phase depended on 

color phase distribution of the prey population (Shigemiya 2004). Fitness varies among 

color morphs in almost all cases (Goldstein et al. 2004, Karell et al. 2013, Koskenpato et 

al. 2016, Svobodová et al. 2016), however in some cases, there are fitness trade-offs 

among color phases including differences in mate selection, pathogen vulnerability, and 

offspring survival (Blows et al. 2003, Burtt and Ichida 2004, Greenberg et al. 2006). 

Latitudinal gradients of color polymorphism are especially prevalent in avian 

species (Anthornis melanura [Bartle and Sagar 1987], Turdus migratorius [James 1991], 

Passerculus sandwichensis [Rising et al. 2009], multiple [Bailey 1978]). Screech owls 

(Megascops asio) exhibit a latitudinal gradient in color phase with gray birds farther 

north and red birds farther south (Mosher and Henny 1976). Mosher and Henny (1976) 

suggest thermoregulatory structure differences are genetically linked with color phase 

and lead to differential overwinter survival. The fine structures of body contour feathers 

are important for insulation, and therefore thermoregulation (Koskenpato et al. 2016). 

Koskenpato et al. (2016) conducted a study to compare the fine structures of body 

contour feathers between brown and gray color morphs of tawny owl (Strix aluco), which 

also exhibit latitudinal variation. Their study indicated that gray tawny owls had denser 
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feather barbules and had feathers with a larger proportion of plumulaceous material 

relative to contour feather material. These authors suggested that gray tawny owls were 

more adapted to colder climates in northern latitudes by virtue of the insulation 

characteristics of their feathers. 

Latitudinal variation of ruffed grouse (Bonasa umbellus) color morphs has been 

documented extensively (Aldrich and Friedmann 1943, Snyder and Shortt 1946, Rusch et 

al. 2000). Ruffed grouse exhibit a wide variety of plumage colors, but these are generally 

considered to fall within two distinct color phases: red and gray. Gray phase birds tend to 

be found more frequently at higher latitudes than red birds, and gray and red morphs 

become exclusive at northern and southern range margins, respectively (Aldrich and 

Friedmann 1943). Aldrich and Friedmann (1943) and Snyder and Shortt (1946) both used 

taxidermy specimens of ruffed grouse collected from throughout their range in attempts 

to explain this latitudinal variation. Aldrich and Friedmann (1943) concluded that 

distribution of color phase was related to distinct biomes, suggesting that it was 

correlated with precipitation, humidity, and temperature. Snyder and Shortt (1946) found 

that color phase frequency was correlated with local climatic conditions, but did not 

elaborate as to what these conditions were. Gutiérrez et al. (2003) hypothesized that 

winter weather conditions affect the probability of predation on ruffed grouse of different 

color phases where red morphs have a cryptic color advantage in the absence of snow and 

may have evaded predation more successfully than gray morphs. It has also been 

suggested that ruffed grouse follow Gloger’s Rule, but that the likely reason for ruffed 

grouse color phase distribution has not been empirically supported (Atwater and Schnell 
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1989). There has not been a study that considers the thermoregulatory feather structure 

differences among color phases of ruffed grouse similar to those conducted for owls. 

Our objective for this study was to evaluate if ruffed grouse exhibit similar 

relationships between insulating feather characteristics and color phase as demonstrated 

by tawny owls (Koskenpato et al. 2016). In doing so, we have attempted to fill this gap in 

ruffed grouse research and add to the literature on color polymorphism. Similarly to 

Koskenpato et al. (2016), we evaluated two feather structure variables; the proportion of 

the feather comprised of plumulaceous material and feather barb density (count/cm), 

which we consider characteristics of feather insulation. We used generalized linear 

models to examine covariance between color phase and barb density and color phase and 

proportion of plumulaceous material. We considered covariates that we anticipated would 

be sources of variability including color phase, sex, age, position of feather on bird, 

month of collection, collection site, and mass at time of collection. We hypothesized that 

gray morphs would have greater barb density and greater proportion of plumulaceous 

material than red morphs, and we predicted color phase would be the strongest predictor 

of insulating feather characteristics.  
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METHODS 

 

Field Methods 

We collected body feathers from ruffed grouse that were live-caught as part of an 

ongoing study (Davis et al. 2016). We captured birds in central Maine at the Frye 

Mountain Wildlife Management Area and the Stud Mill Road commercial forest during 

April, May, August, September, and October 2014-2016. The Frye Mountain study area 

was owned by the Maine Department of Inland Fisheries and Wildlife and was located in 

Waldo County. The Stud Mill Road study area was located in Hancock County and 

Penobscot County. Both areas were at comparable latitudes (44.482064 for Frye 

Mountain and 44.97922 for Stud Mill Road). We distributed modified lily traps (Gullion 

1965) at these study areas in forests along secondary roads in places where ruffed grouse 

presence was likely. Because we needed to increase the sample size for red and gray 

morphs, we supplemented our sample with feathers collected from birds that were 

harvested by hunters from locations throughout Maine during the annual ruffed grouse 

hunting season (October-December). We sampled evenly among color phases for 

harvested birds. We determined age of captured or harvested grouse as adult (>1 year of 

age) or juvenile (<1 year of age) and sex based on plumage characteristics (Davis 1969), 

and used a spring balance to record individual mass (g). Ruffed grouse color phase was 

determined based on the color of the tail fan. We classified ruffed grouse into five color 

phase categories in the field: red, intermediate, gray, split, and brown, but chose to only 

use the former three because they were the least subjective and also fit the gray to red 

continuum most closely (Figure 1). One representative body feather was sampled for 
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each individual. All capture and handling of ruffed grouse was approved by the 

University of Maine Institutional Animal Care and Use Committee (protocol number 

A2014-03-06). 

 
Figure 1. Example depicting three categories of ruffed grouse color phase: gray (A), 
intermediate (B), and red (C). Feathers were used to evaluate the relationship between 
color phase and insulating feather characteristics, and were collected from live-caught 
and harvested ruffed grouse during April, May, August, September, and October 2014-
2016. 
 

Lab Methods 

We measured feather length (mm) and length of the plumulaceous section (mm) 

along the rachis of each feather, excluding the calamus (Koskenpato et al. 2016; Figure 

2). We marked each feather at the midpoint of the plumulaceous section using a felt tip 

pen and used a dissecting microscope to count the number of feather barbs within 0.5 cm 

of this midpoint in each direction; a total feather length of 1 cm (Figure 3). We took two 

barb counts, one on either side of the rachis, and used the lines on a fixed ruler for 

guidance to stay within 0.5 cm of the midpoint. We considered the left edge of the 

leftmost mark on the ruler the start of the 1 cm window and the left edge of the rightmost 

mark on the ruler the end of the 1 cm window. This precision was necessary to determine 

whether to count barbs positioned near the edges of the 1 cm window. We processed 

C B A 
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feathers in a random order to avoid any bias and classified feathers as dorsal or ventral 

based on their appearance compared with a reference specimen. 

 

 
Figure 2. Sections of a ruffed grouse body feather. Feathers were used to evaluate the 
relationship between color phase and insulating feather characteristics of ruffed grouse. 
 

 
Figure 3. Microscopic view of ruffed grouse feather barbs and point on rachis to mark 
center of plumulaceous feather material. Feathers were used to evaluate the relationship 
between color phase and insulating feather characteristics of ruffed grouse. 
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Statistical Analysis 

We used feather measurements to create two continuous response variables that 

were representative of feather insulation: barb density and proportion of plumulaceous 

material. We defined barb density as the count of feather barbs per centimeter along one 

side of the rachis, averaged for our two measurements of each feather. We calculated the 

proportion of plumulaceous material as the length of plumulaceous material without the 

calamus (mm) divided by the total feather length without the calamus (mm).  

We predicted that color would be the strongest predictor of insulating feather 

characteristics and that gray ruffed grouse would have greater barb density and greater 

proportion of plumulaceous material than red birds. We anticipated additional sources of 

variability might affect insulating feather characteristics and we sought to control for 

those measures to the extent possible. We considered the effects of age, sex, and mass of 

the bird, the position of the feather on the bird, and the month and site of capture in both 

analyses. We also considered length of plumulaceous material as a covariate for barb 

density because we expected that longer feathers may have inherently lower barb density, 

but we did not consider barb density as a covariate for proportion of plumulaceous 

material because barb density is not a predictor of feather length or the length of 

plumulaceous material.  

We predicted the results of some of the potential sources of variation that might 

have obscured effects of color phase. Adult birds and birds of greater mass are more 

likely to have body reserves to invest in feather production, so we expected these birds to 

have longer feathers and, therefore, lower barb density. We anticipated birds caught later 

in the season would have lower barb density because they would have had more time to 
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lose barbs from wear. We expected no effect of site on barb density because the main 

collection sites were at similar latitudes, nevertheless we used site as a covariate in our 

analysis to test this assumption. Similar covariates were tested for the proportion of 

plumulaceous material for similar reasons.  

We used program R (R Core Development Team 2011) to run generalized linear 

models (GLMs) with these covariates and contrasted these against an intercept-only null 

model for both of the insulating feather characteristics. We assessed model support using 

AIC, where we considered models with AIC scores at least 2.0 less than the null model to 

be competitive and interpreted beta coefficients as measures of effect size.  
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RESULTS 

We used measurements of one feather from 153 individual birds in our analysis, 

including 39 feathers from red birds, 68 feathers from intermediate birds, and 46 feathers 

from gray birds (Table 1). Exploratory analysis of the data suggested an apparent 

difference in barb density among color phases that was consistent with our predictions 

(Figure 4), where the mean barb density for gray morphs was 0.7 barbs/cm greater than 

that of red morphs, and intermediate morphs fell in between. However, the model that 

included color phase as a predictor of barb density was not considered competitive, with 

an AIC score 2.6 greater than that of the null model (Table 2), and with beta coefficients 

indistinguishable from one another. We found that the model with length of 

plumulaceous material as a predictor of barb density was competitive with an AIC score 

45.11 less than that of the null (Table 2). Barb density was negatively related to the 

length of plumulaceous material (Figure 5). 

Dorsal feathers had greater proportions of plumulaceous material than ventral, 

and feathers from adult birds had greater proportions of plumulaceous material compared 

with juveniles (Figure 6). We did not consider the models with month and mass as 

covariates to be competitive because they had AIC scores of only 1.49 and 0.85 less than 

the null, respectively (Table 3). We also concluded that the model of color phase as a 

predictor of plumulaceous feather material was not competitive with an AIC score 3.1 

greater than that of the null model (Table 3). For both analyses, inclusion of supported 

variables as additive effects with color phase did not influence support for the color phase 

effect. 
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Table 1. Sample sizes for ruffed grouse feathers used to evaluate the relationship between 
color phase and insulating feather characteristics. Feathers were collected from live-
caught and harvested ruffed grouse during April, May, August, September, and October 
2014-2016. 
Color Phase Gray 46 

 
Intermediate 68 

 
Red 39 

Sex Female 50 

 
Male 103 

Age Juvenile 72 

 
Adult 81 

Position on Bird Dorsal 34 

 
Ventral 119 

Site Frye Mountain 57 

 
Stud Mill Road 47 

 
Telosa 36 

 
Western Mainea 13 

Total   153 
aSamples collected from harvested ruffed  grouse. 
 
Table 2. Model selection results for generalized linear models of ruffed grouse feather 
barb density. Models were built separately for each of the predictor variables. Feathers 
were collected from live-caught and harvested ruffed grouse during April, May, August, 
September, and October 2014-2016 (n=153). 
Model Degrees of freedom AIC Δ AIC 
Plumulaceous Length 3 703.3 0.00 
Null 2 748.4 45.11 
Position on Bird 3 749.7 46.43 
Month 6 749.9 46.60 
Age 3 749.9 46.64 
Sex 3 750.3 47.04 
Mass 3 750.5 47.18 
Color Phase 4 751.0 47.68 
Collection Site 5 752.3 49.07 
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Table 3. Model selection results for generalized linear models of proportions of 
plumulaceous feather material of ruffed grouse. Models were built separately for each of 
the predictor variables. Feathers were collected from live-caught and harvested ruffed 
grouse during April, May, August, September, and October 2014-2016 (n=153). 
Model Degrees of freedom AIC Δ AIC 
Position on Bird 3 -363.6 0.00 
Age 3 -334.8 28.78 
Month 6 -329.3 34.28 
Mass 3 -328.7 34.92 
Null 2 -327.8 35.77 
Sex 3 -325.8 37.80 
Collection Site 5 -325.8 37.80 
Color Phase 4 -324.7 38.87 

 
 

 
Figure 4. Apparent differences in feather barb density (barbs/cm) among ruffed grouse 
color phases. The model that included color phase as a predictor of barb density was not 
considered competitive because its AIC score was greater than that of the null model and 
the beta coefficients did not vary greatly from one another. Feathers were collected from 
live-caught and harvested ruffed grouse during April, May, August, September, and 
October 2014-2016 (n=153). 
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Figure 5. Relationship of plumulaceous length (cm) and feather barb density (barbs/cm) 
for feathers collected from live-caught and harvested ruffed grouse during April, May, 
August, September, and October 2014-2016 (n=153). 
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Figure 6. Distribution of the proportion of plumulaceous feather material of each ruffed 
grouse feather by age (A= >1 year; J= <1 year) and feather position on body. Feathers 
were collected from live-caught and harvested ruffed grouse during August, September, 
and October 2014-2016 (n=153). 
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DISCUSSION 

We found that adults had greater proportions of plumulaceous material than 

juveniles. This result agreed with our predictions, and these findings may be explained 

because longer feathers had greater proportions of plumulaceous material and larger 

individuals may have had more energy reserves to invest in growing feathers. The great 

tit (Parus major) also exhibits intraspecific variation in feather coloration as well as 

variation in proportion of plumulaceous material among individuals, but for the great tit, 

these differences occur among populations rather than within populations (Gamero et al. 

2015). Gamero et al. (2015) found no relationship between coloration and proportion of 

plumulaceous material for the great tit. We also found that dorsal feathers had greater 

proportions of plumulaceous material than ventral, potentially because the dorsal side of 

a ruffed grouse is more likely exposed to the elements. 

Although the model of color phase as a covariate for barb density was not 

competitive, we did find an apparent difference in barb density among color phases of 

ruffed grouse, and the mean barb density of gray birds was 0.7 barbs/cm more than the 

mean barb density of red birds. The biological implications of having one additional barb 

per centimeter of plumulaceous material might be dramatic despite the small effect size 

of color phase in our study. A ruffed grouse has approximately 4,342 feathers, 557 of 

which are dorsal body feathers and 595 of which are ventral body feathers (Bump et al. 

1947). The average length of plumulaceous material in our study was 2.56 cm. One more 

barb per centimeter of plumulaceous material on each body feather would accumulate to 

approximately 2,950 additional barbs over the entire bird. 
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We did not find a meaningful difference of feather barb density or plumulaceous 

material among color phases. Despite similar patterns of color phase with respect to 

latitude between tawny owls and ruffed grouse, our results do not support the hypothesis 

that color phase of ruffed grouse is related to insulating feather structures similar to the 

relationship found for tawny owls (Koskenpato et al. 2016). This could be because we 

lacked sufficient power to detect a relationship even though there was one, or because 

there is no relationship and other mechanisms are involved. 

If there were a relationship between color phase and insulating feather 

characteristics, we may not have detected it due to insufficient sample sizes. We used 

simulations to determine the sample size that would be required to detect a difference in 

barb density among color phases, but even a simulated sample size of 220 feathers per 

color phase was not always sufficient to identify support for a difference among color 

phases. Koskenpato et al. (2016) found that proportion of plumulaceous material and 

barbule density differed between color phases of tawny owls. We considered the 

proportion of plumulaceous material for this study, but we did not measure barbule 

density due to time and budget constraints and, as a consequence, may have overlooked a 

relationship between color phase and insulating feather characteristics, if one existed. 

Although we found apparent differences in barb density among color phases, based on 

our data, we cannot conclude that insulating characteristics differed among ruffed grouse 

color morphs. 

The other possibility is that there is no relationship between color phase and 

insulating feather characteristics and that other mechanisms drive the latitudinal pattern 

of color phase in ruffed grouse. Thermoregulation from insulating feather characteristics 
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was one possible explanation for this pattern (Koskenpato et al. 2016), but other 

explanations include differential success with regards to crypsis (Gutiérrez et al. 2003), 

thermoregulation related to degree of melanism (Margalida et al. 2008), defense against 

parasites (Goldstein et al. 2004), and reproduction (Rising et al. 2009). Gutiérrez et al. 

(2003) hypothesized that winter weather conditions, including snow depth and 

temperature, affect the probability of predation on ruffed grouse of different color phases 

where red morphs have a cryptic color advantage in the absence of snow and may have 

evaded predation more successfully than gray morphs. The bearded vulture exhibits 

geographic variation in color polymorphism as an adaptation in response to 

environmental variability with darker birds found in colder areas because the greater 

pigment concentrations absorb more heat (Margalida et al. 2008). Concentration of 

melanin was positively correlated with humidity in song sparrows (Melospiza melodia) 

most likely because the concentration of feather-degrading bacteria (Bacillus 

licheniformis) was greater in areas of greater humidity and melanin increases feather 

resistance to these bacteria (Burtt and Ichida 2004; Goldstein et al. 2004). It has also been 

suggested that color polymorphism plays a role in sexual selection and can have an effect 

on reproductive success (Roulin 2004). 

If an environmental variable is the primary driver of ruffed grouse color phase 

distribution, a changing climate will surely change this distribution (Møller 2010). We 

suggest the need for a study that takes color phase into account when comparing fitness 

of ruffed grouse in a variety of environmental conditions. Our study highlights a gap in 

the current literature on the understanding of ruffed grouse color phase distribution. 
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