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The optical properties of a group of dicyanoargentates(1) and dicyanoau- 

rates(1) have been studied. The samples include K2Na[Ag(CN)2I3, Tb[Ag(CN)2]3, 

Tb[Au(CN)2I3 and a series of compounds of the form Tb,Lal-,[Ag(CN)2]3 with 

x=0.001, 0.01 and 0.1. Additionally, a novel type of silver-gold mixed- metal sample 

( L ~ [ A ~ , A u ~ - , ( C N ) ~ ] ~  with x=0.9 and 0.5) was synthesized and characterized. 

The compound K2Na[Ag(CN)2I3 has earlier been shown to exhibit a phenomenon 

known as luminescence thermochromism, whereby only one emission band is present 

a t  very low temperatures and very high temperatures, but a second, lower energy band 

is also present a t  intermediate temperatures. This prompted further investigation to 

explain this behavior. This investigation revealed the existence of an interesting struc- 

tural change which is postulated to be an example of a novel type of phase transition, 

but did not explain the luminescence thermochromism. Further study, including lu- 

minescence lifetime results, was necessary to form a model involving energy transfer 

a t  lower temperatures and back-energy transfer a t  higher temperatures. 



These dicyanoaurates(1) and dicyanoargentates(1) were also studied in the context 

of energy transfer from the M(CN), donor ion to  Tb3+ acceptor ions. The energy 

transfer is found to follow the Dexter exchange mechanism by a process of elimination 

of other possible mechanisms. The energy transfer is found to be more efficient in the 

case of the dicyanoargentate(1) donor than in the case of the dicyanoaurate(1) donor 

as the spectral overlap between donor and acceptor is greater. 

The mixed-metal samples display an anomalously strong luminescence a t  ambient 

temperatures that cannot be explained by the optical results alone. This luminescence 

is also strongly tunable in that changing physical parameters such as temperature, 

excitation wavelength or Ag/Au ratio results in changes in the emission energy of 

the sample. Results are presented which support the use of mixed-metal systems as 

tunable donors for energy transfer studies. 
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1 INTRODUCTION: BACKGROUND AND 

MOTIVATION 

This thesis seek to explores the structural and electronic properties of a small 

subset of compounds of the type R[M(CN),], (R=K2Na, Tb,  La; M=Au, Ag). Di- 

cyano complexes of Ag(1) and Au(1) have been investigated for over half a century, 

yet their photoluminescence properties are so rich that researchers have only begun 

to explore them to their full potential. Many applications have been suggested for 

a variety of Au(1) and Ag(1) compounds. For example, Ag(1)-doped zeolites show 

great potential as photocatalysts for nitric oxide decomp~si t ion .~  A recent study 

reported the discovery of an Ag(1) thiolate polymer that is a semiconductor, a fact 

that is in contrast with all other known examples of this type of c ~ m p o u n d . ~  It 

was also recently reported that there exist both Ag(1) and Au(1) polymeric materials 

that have antimicrobial properties.617 Additionally, certain Au(1) compounds exhibit 

completely reversible changes in the presence of volatile organic compounds, making 

them ideal candidates for environmental  sensor^.^ 

The goal in continuing research on dicyanoargentates and dicyanoaurates is to 

better understand their luminescence properties so that they might be considered 

for use in similar applications. This thesis describes three projects, all aimed a t  

the pursuit of this goal. The first delves into the unusual luminescence behavior 

of K2Na[Ag(CN)2I3. The second looks a t  energy transfer in dicyanoargentates and 



dicyanoaurates and the third explores a novel group of mixed-metal materials that 

exhibit characteristics considered desirable for donors in energy transfer studies. 

1.1 Luminescence T h e r m o c h r o m i s m  and K2Na[Ag(CN)2]3 

Luminescence thermochromism refers to an optical phenomenon in which changes 

in temperature result in the presence of different emission bands. This completely 

reversible phenomenon has been observed in tetranuclear Cu(1) clustersg-" as well as 

in certain dicyanoargentates.l2> l3 

In certain Cu(1) compounds, such as Cu414py4, two emission bands are present, 

which are poorly coupled, as evidenced by their widely different lifetimes and different 

excitation spectra. At room temperature, the higher energy band is very weak and al- 

most undetectable. However, as the temperature is lowered, this band becomes much 

more prominent and the lifetimes of the two bands become very similar. At the same 

time, the lower energy band first red-shifts, then blue-shifts. It is proposed that the 

higher energy state be attributed to an iodide to ligand charge transfer character while 

the lower energy state is a state of mixed character delocalized over the Cu414 core, 

which the authors refer to as "cluster centered." The luminescence thermochromism 

exhibited by this compound is then attributed to  the different temperature responses 

of the two excited states." 

In K2Na[Ag(CN)2I3, there are two emission bands: a lower energy emission a t  

410 nm and a higher energy emission a t  315 nm. The higher energy band (315 nm) 

dominates a t  very low temperature values (e.g., 10 K) and room temperature, while 
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the lower energy band increases in intensity to dominate a t  about 80 K before 

decreasing in intensity upon further increasing the temperature.13 In this thesis, 

K2Na[Ag(CN)2]3 is investigated in an attempt to explain this behavior through a 

study of its structure, vibrational spectra and luminescence decay characteristics. 

1.2 Energy  Transfer  

Under the right circumstances, excitation of one species within a sample can lead 

to emission from a different species. This phenomenon, sometimes referred to as 

sensitized luminescence, is due to the radiationless transfer of electronic energy from 

the first species (the donor) to the second species (the acceptor). In order for this 

process to take place, there must exist a spectral overlap between the emission of the 

donor and the absorption of the acceptor. In this thesis, the goal is to explore how 

the emission bands of the donor species change with changes in physical parameters, 

such as temperature and excitation wavelength. These changes can lead to changes 

in the spectral overlap between the donor and acceptor, allowing the energy transfer 

to  be switched on and off. 

1.2.1 Structure of D i c ~ a n o a r g e n t a t e ( 1 )  and Dicyanoaurate(1)  Com-  

pounds 

The structures of M(CN), (M=Ag, Au) ions in solution as well as in solid crystals 

of KAg(CN)2 and KAu(CN)~  were revealed through detailed Raman scattering and 

X-ray diffraction studies during the 1950's and 1 9 6 0 ' ~ . ' ~ - ~ ~  In all cases, the ion is 



found to be linear, in the form N-C-M-C=N. Single crystals of R[M(CN)2], (R=Tl, 

K, Tb,  Eu, Gd, La, for example; x is determined by the valence of R) grow as layered 

structures, with layers of M(CN); ions alternating with layers of RZ+ ions and waters 

of hydration.21-23 As an example, Figure 1.1 shows the structure of K2Na[Ag(CN)2I3, 

a crystal that will be discussed in great detail in Chapter 3. The layering is clearly 

present in this crystal, with layers of K+ and Na+ ions alternating with layers of 

Ag(CN), ions. 

1.2.2 Excimers a n d  Exciplexes in Dicyanoargentates 

Oligomers that form through excited state interactions are referred to as excimers 

and exciplexes. The terms were originally used to refer to dimeric excited state com- 

plexes between either two identical species (excimers) or two different species (exci- 

plexes). Exciplexes have been recognized in organic compounds for many years.24 The 

first known example of the formation of excimers was reported by Forster after discov- 

ering that increasing concentrations of pyrene in n-heptane solution caused a quench- 

ing of the monomer emission (highly- structured emission a t  about 25,000 cm-') along 

with an increase in the intensity of the excimer emission (unstructured emission a t  

about 20,000 cm-I). More recently, investigators have discovered inorganic excimers 

and e x c i p l e x e ~ . ~ ~  Excimers and exciplexes have been reported to  form as a result 

of metal-metal bonding between Pt and T1 in tetrakis(p-diphosphito)diplatinate(II) 

and -thallium(I) in aqueous solution,26 Pt and Au in solution between Au(CN), ions 



Figure 1.1: Structural model of K2Na[Ag(CN)2]3 a t  30 K. 



Table 1.1: Band assignments for dicyanoargentate emissions arising from exciplex 
formation within the crystal. 

and P ~ ~ ( P ~ O ~ H ~ ) ~ -  ions,27 as well as Cu and Ag in Cu+/Ag+ doped P " - a l ~ m i n a ~ ~  

and Cu with itself in copper(1)-doped Na+-P"- alumina.29 

In crystals of the type R[Ag(CN)2],, the M-M distances within the layers are 

quite short. In TlAg(CN),, for example, the shortest Ag-Ag distance is found to 

be 3.11 A,  shorter than any previously determined in a silver dicyanide salt. This 

excimers 
localized exciplexes 
localized exciplexes 
delocalized exciplexes 

A%, nm 
285-300 
320-360 
390-430 
490-530 

short Ag-Ag separation leads to ligand-unsupported excited state interactions, and 

consequently the formation of luminescent exciplexes, or *[Ag(CN),], 0 1 i ~ o m e r s . ~ ~  

Assignment 

*[Ag(CN);I2 
cis-*[Ag(CN);I3 
trans-*[Ag(CN);I3 

* [Ag(CN)<], 

Additionally, electronic structure calculations reveal a deeper potential well between 

silver ions in the first excited state than in the ground state.22 Typical results from 

such calculations are shown in Figure 1.2. Ground state metal-metal interactions for 

silver are not expected since Ag(1) has a closed shell in the ground state (i.e., all the 4d 

orbitals are filled). However, the presence of these excited state bonding interactions 

can be understood since in the excited state an electron has been promoted and the 

Ag(1) ion now has an open shell configuration. 

Based on theoretical calculations coupled with experimental results, four emis- 

sion bands have been attributed to  [Ag(CN);], (n 2 2). These are listed in Table 

l.l.31 Calculations such as the ones mentioned earlier have been used to show that 



2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 

Ag-Ag distance, A 

Figure 1.2: Potential energy diagram for the ground (bottom curve) and the lowest 
excited state (top curve) of [AgC(N);I2 plotted from extended Hiickel calculations. 
Optical transitions shown are: (1) excimer emission; (2) solid-state excitation; (3) 
solution absorption. ' 

the emission energies of *[Ag(CN);], decrease significantly as n  increase^.^' Exten- 

sive experimental studies and theoretical calculations have gone into the assignments 

l i ~ t e d . ~ ~ ~ ~ ~  

Since the presence of these emission bands is highly dependent on excitation wave- 

length (i.e., tunable), compounds of R[Ag(CN)2], are investigated in this thesis as 

donors for tunable energy transfer. 

1.2.3 Experiments on Energy Transfer 

The sharply defined energy levels of the lanthanide ions (see Figure 1.3) make them 

excellent acceptors for the study of energy transfer processes. For this reason, most 

energy transfer studies implement lanthanides as a c ~ e ~ t o r s ~ ~ v ~ ~  or as both donors and 
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Figure 1.3: Electronic energy levels for the lanthanide ions.2 



a ~ c e ~ t o r s . ~ ~ - ~ ~  Lanthanides are also commonly employed in studies of upconversion 

processes where excitation a t  a certain energy produces emission a t  a higher energy.38 

For example, in Dy3+-doped CsCdBr3, a yellow-green luminescence can be seen upon 

excitation in the near infrared.39 

1.2.4 Energy  Transfer i n  Dicyanoargentate(1) and Dicyanoaurate(1) 

C o m p o u n d s  

The work on dicyanoargentates and dicyanoaurates is promising because these 

donor ions provide a method of tuning the energy transfer by simply changing cer- 

tain physical parameters. For example, a study of E u [ A u ( C N ) ~ ] ~  showed that the 

Au(CN), donor emission energy red shifts with increasing pressure40 as well as with 

decreasing t e m ~ e r a t u r e . ~ ~  These shifts have an effect on the spectral overlap be- 

tween the donor and acceptor, which can result in a change in the efficiency of energy 

transfer. This is shown in an energy level diagram in Figure 1.4. The emission of 

Ag(CN), donor ions can be tuned by simply changing the excitation wavelength due 

to the presence of the aforementioned exciplexes. 

1.2.5 Development  of  Theoret ica l  Mode l s  of  E n e r g y  Transfer  

By far the most widely encountered and studied mechanism of energy transfer is 

energy transfer via multipolar interactions. This non- radiative type of energy transfer 

may occur between atoms or molecules separated by over 70 I t  depends on the 

presence of a "spectral overlap" between the emission of the donor and the absorption 
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Figure 1.4: Energy level diagram for Eu3+ acceptor ions and Au(CN), donor ions 
showing how the spectral overlap between the donor and acceptor changes as a func- 
tion of temperature and applied pressure. 



of the acceptor. One example of a multipolar interaction is an electric dipole-dipole 

interaction, in which the optical transitions of both donor and acceptor are allowed for 

electric dipole radiation. Current modeling of the multipolar interaction mechanism is 

based primarily on the theories of F ' o r ~ t e r ~ ~  and Dexter,42 which have been expanded 

and generalized many times over the last 45 years.43-46 This type of transition is 

common in organic and biological systems, as in the case of energy transfer between 

[Ru (bpy)3I2+ and [ O ~ ( b p ~ ) ~ ] ~ +  in doped metal tris-oxalate network  structure^.^^ 

While electric dipole allowed transitions are common in organic systems, energy 

transfer involving forbidden transitions in the acceptor have long been recognized in 

inorganic solids.42 When a forbidden transition is present, accompanied by a short 

donor-acceptor distance, one can consider the possibility of energy transfer via the 

exchange mechanism. This mechanism was first proposed by Dexter42 and further 

developed by Inokuti and Hiryama.43 The exchange mechanism is also non-radiative 

and depends on the overlap between the atomic orbitals of the donor and acceptor. 

The development of mathematical modeling of the multipolar interaction mecha- 

nism has significantly outpaced that of the exchange mechanism. Most modeling of 

the exchange mechanism has been purely theoretical in nature.43*48-50 The pioneering 

Inokuti-Hirayama equation for energy transfer via exchange is given by: 



where c is the acceptor concentration and co is a parameter called the critical transfer 

concentration. The first term in the exponential describes the intrinsic decay of the 

donor (rO is the intrinsic lifetime of the donor), while the second term attempts to 

describe the effect of energy transfer on the luminescence decay. This model has been 

modified by a number of  investigator^.^^-^' The modifications even sparked a debate 

in the literature about the accuracy of one version of the model over a n ~ t h e r . ~ ~ l ~ O  

Despite these numerous attempts to modify the theory, a conclusive match between 

theory and experiment has yet to  be reported.50 

The structures of layered dicyanoargentates and dicyanoaurates have been well 

s t ~ d i e d ~ l - ~ ~ ~ ~ ~  and studies indicate a direct and close coordination between the cyanide 

ligand and the lanthanide ion in single crystals. For example, in E u [ A u ( C N ) ~ ] ~  the 

Eu-N separation is 2.54 A and in T ~ [ A u ( C N ) ~ ] ~  the Tb-N separation is 2.44 A.21 It is 

not surprising, then, that the Dexter exchange mechanism is the proposed mechanism 

for transfer in systems such as E u [ A u ( C N ) ~ ] ~ ~ ~  and Tb[M(CN)2I3 (M=Au, Ag).3 

The goal in this thesis is to determine the mechanism of energy transfer between 

[M(CN),] ions and rare earth ions. 

1.3 Mixed-Metal Compounds 

The idea of studying mixed-metal compounds is not a new one. In the 1980's, 

Viswanath et al. studied mixed Pt-Pd and Pt-Ni tetracyanide quasi-one-dimensional 

chain structures and compared their results to those obtained from the pure sys- 

tems.53354 They found that there existed excited states that were delocalzzed over the 
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Pt-Pd and Pt-Ni centers. This emission has been accurately described by a three- 

level model in which two of the levels arise from spin-orbit coupling for the lowest 

electronic state. These are proposed to be self-trapped exciton states. 

Preliminary results on compounds of the type La[Ag,Aul -, (CN)2]3 are similar to 

the results of the Pt-Pd and Pt-Ni studies. Rather than seeing emission bands that 

could be attributed to either the dicyanoaurate or the dicyanoargentate, one sees 

emission bands whose energies lie between those of the pure systems. 



2 EXPERIMENTAL METHODS 

2.1 Synthesis 

Many of the samples used in these studies were synthesized by Professor George 

Shankle a t  Angelo State University in San Angelo, Texas. All others were synthe- 

sized a t  the University of Maine. Two methods were employed for crystal growing. 

The K2Na[Ag(CN)2I3 single crystals were grown in Texas by the evaporation method. 

Stoichiometric amounts of NaCN, KCN and AgCN were mixed in solution and al- 

lowed to evaporate. These crystals form according to the following equation, which 

determines the stoichiometry of the reaction: 

2KCN + NaCN + 3AgCN + K2Na[Ag(CN),I3. (2.1.1) 

The second method was used to synthesize all of the samples used in the energy 

transfer studies, as well as the mixed-metal samples. These crystals were grown in 

either commercial u-tubes or homemade glass L-shaped tubes connected by a small 

piece of Tygon tubing. A 1% agar gel solution was prepared by dissolving 1 g of 

agar powder in 100 ml of boiling water. This solution filled the bottom of the tubes. 

Stoichiometric solutions of the appropriate KM(CN)2 (M=Ag, Au) and Ln(N03)3 

(Ln=La, Tb,  Eu, Gd) were then placed above the gel on opposite sides of the tubes, 

as depicted in Figure 2.1. These crystals form according t o  the following equation, 



1% Agar gel / 
Figure 2.1: Depiction of the apparatus used to grow crystals. 



which determines the stoichiometry of the reaction: 

The solutions were placed in a hood with stoppers in both sides of the u-tubes and 

allowed to diffuse together. Usable crystals could be harvested within a month. 

2.2 Low-Temperature M e t h o d s  

Two continuous flow cryostats were employed in the studies reported herein. The 

first is a Model Lt-3-110 Heli-Tran cryogenic liquid transfer system modified to in- 

clude a T-type thermocouple and Omega model CN132 temperature process con- 

troller. This cryostat is capable of achieving temperature values between 80 K and 

room temperature, with a precision of f 1 K. The other cryostat is a Janis model 

ST-100 for which temperature control was achieved with a silicon diode thermocou- 

ple, digital voltmeter with a serial bus interface, a 25 R heater coil and a personal 

computer programmed to convert voltage from the silicon diode into temperature in 

Kelvin. The lowest temperature achieved with this cryostat is 4.4 K and the precision 

is greater than 0.5 K. In both systems, the sample was mounted on a copper holder 

using a mixture of high vacuum grease and copper dust. The copper-grease mixture 

has been tested and does not detectably luminesce in any of the regions of interest. 

Liquid nitrogen was used as the coolant for most of the low-temperature experiments. 

Liquid helium was used for measurements made below 80 K, using the Janis ST-100. 



2.3 Vibrational Spectroscopy 

Two instruments were used in collecting Raman spectra. Some of the room tem- 

perature measurements were obtained using a Renishaw Raman Imaging Microscope 

System 1000. Signal detection is achieved through the use of a sensitive charge cou- 

pled device (CCD) array detector. The excitation source is an SDL-XC3O diode laser, 

SDL Inc. It  operates a t  a wavelength of 785 nm with a maximum power output of be- 

tween 170 and 300 mW a t  the head. The aquisition software is WiRE/GRAMS/32C. 

At low temperatures and for the remaining room temperature measurements, the 

experiments were carried out using the 514.5 nm line of an Innova 90-2A Argon-ion 

laser as the excitation source. An interference filter was used to eliminate laser plasma 

lines. The scattered light was collected using a Ramanor 2000M holographic double 

monochromator and detected with a Princeton Applied Research Model 1140 water- 

cooled quantum photometer. The monochromator is computer controlled and all data 

were recorded using a simple QBasic program that both drives the monochromator 

and records intensity from the photometer as a function of wavenumber. 

2.4 Structural Analysis 

Structural analysis was accomplished by two methods: X-ray and neutron diffrac- 

tion. X-ray diffraction for La[Ag(CN)2]3 was completed through a collaboration with 

Dr. Richard Staples in the Department of Chemistry and Chemical Biology a t  Har- 

vard University. Data were collected using a Bruker SMART CCD (charge coupled 



device) based diffractometer equipped with an LT-2 low-temperature apparatus o p  

erating a t  213 K. Crystals were mounted on a glass fiber using grease. Data were 

measured using omega scans of 0.3" per frame for 10 seconds, such that a hemisphere 

was collected. A total of 2850 frames were collected with a maximum resolution of 

0.75 A. The first 50 frames were recollected a t  the end of data collection to monitor 

for decay. Cell parameters were retrieved using SMART55 software and refined using 

SAINT56 on all observed reflections. Data reduction was performed using the SAINT 

software which corrects for LP (laser plasma) and decay. Absorption corrections were 

applied using SADABS57 supplied by George Sheldrick. The structures are solved by 

the direct method using the SHELXS-9758 program and refined by a least squares 

method on F2 (the corrected experimental data) by SHELXL-97,59 incorporated in 

SHELXTL-PC V 5 . 1 0 . ~ ~  

Complementary high-resolution synchrotron X-ray and high-resolution neutron 

diffraction investigations of well crystalline powder samples of K2Na[Ag(CN)2I3 were 

performed a t  the Swiss-Norwegian Beam Lines a t  the European Synchrotron Radi- 

ation Facility (SNBLIESRF) and on diffractometer D1A a t  the high flux reactor of 

ILL, Grenoble, respectively in the temperature range from 1.5 K to 300 K. For the 

diffraction experiments crystallites of K2Na[Ag(CN)2I3 were powdered and enclosed 

under a He gas atmosphere into thin quartz capillaries or into a container of 15 mm 

diameter and approximately 5 cm height in case of X-rays and neutrons, respectively. 



2.5 Steady-Sta te  Luminescence 

Steady state photoluminescence spectra were collected using a Photon Technology 

International Model QuantaMaster-1046 spectrophotometer equipped with a 75 W 

Xenon lamp. Wavelengths were selected with two excitation monochromators and a 

single emission monochromator. The instrument is interfaced with a computer and 

software supplied by the manufacturer was used to collect and record data. All exci- 

tation spectra were corrected for spectral variations in the lamp using the quantum 

counter method. In this method, raw excitation data is divided by the excitation 

spectrum of a "perfect" emitter, or quantum counter. For the da ta  reported in this 

thesis, Rhodamine B was used as  the quantum counter. 

2.6 Time-Resolved Luminescence 

Lifetime measurements were performed using a NanoUV diode-pumped solid state 

laser manufactured by Nanolase. The laser is frequency doubled twice to  give an 

output of .43 ns pulses a t  266 nm with a repetition rate of 8.1 kHz. Each pulse outputs 

an average power of 4.6 mW. The detection system is comprised of a McPherson Model 

2051 monochromator with a Hamamatsu R1463 photomultiplier and a Princeton 

Applied Research model 115 wide band preamplifier. The data  were collected using a 

LeCroy 9310 400 MHz digital oscilloscope. The decays were averaged over 500 sweeps 

on the oscilloscope and a minimum of ten decays were recorded for each data  point. 



Time-integrated spectra were collected through an interface with a personal com- 

puter. The oscilloscope was set to obtain the area under the decay curve for the 

desired time frame and this number was transmitted to  the computer and plotted as 

a function of wavelength. 

2.7 D a t a  Analysis M e t h o d s  

All data were analyzed using Matlab 5.0.61 For some of the steady-state lumines- 

cence data and the Raman data for the K2Na[Ag(CN)2I3 sample, fits of the spectra 

were made to two or more Gaussian functions of the form: 

where i runs from 1 to the total number of Gaussians involved in the fit. The fits 

were performed using a non-linear least squares fitting program designed to run under 

Matlab.62 This method requires an initial estimate for all unknown parameters and 

will iterate until a specified degree of "goodness" is achieved. All runs return a 

covariance matrix of the parameters so that the error (standard deviation) could be 

determined. Propagation of error was performed in the usual manner. As an example, 

in section 5.2.2, an emission band was fit to  a sum of three Gaussians. Figure 2.2 

shows the raw data and the corresponding fit. The wavelengths corresponding to  

the band maxima were determined through the non-linear least squares method. 

These wavelengths were converted to  energies in em-' by inversion and simple unit 



fit to three Gaussians 

Figure 2.2: A luminescence emission band (raw data) and a fit of this data to a sum 
of three Gaussian functions. 



conversion. The error was propagated by taking the percent error in the wavelength 

values and then using the same percent error to get the deviation for the wavenumber 

values. 

To determine lifetime values, two methods were employed. The lifetime value(s) 

of an excited state can be obtained from the following equation for intensity as a 

function of time: 

where the sum runs from 1 to the total number of components. When i = 1, the decay 

is a single exponential. Simply taking the natural logarithm of both sides returns the 

equation of a line: 

and a plot of t vs. h ( I )  will have a slope of -$ .  

When i > 1, however, this method clearly fails. This is evidenced in the data 

as a nonlinear t vs. ln(I)  curve. In these instances, the non- linear least squares 

fitting method is again employed. As a general rule, no more than two components 

are expected. In cases where energy transfer plays a role, the decay does not follow 

equation 2.7.2, but rather a more complex function. This subject will be discussed in 

detail in Chapter 4. 



3 OPTICAL STUDIES OF K2Na[Ag(CN)2I3: EVIDENCE 

FOR A NOVEL TYPE OF PHASE TRANSITION 

3.1 In t roduct ion 

Single crystals of K2Na[Ag(CN)2]3 have been observed to display luminescence 

thermochromism, an optical phenomenon in which different emission bands occur a t  

different temperature  value^.'^*^^ The photoluminescence spectra of K2Na[Ag(CN)2I3 

show two emission bands: a lower energy (LE) blue emission with a maximum around 

410 nm and a higher energy (HE) ultraviolet emission with a maximum near 315 nm.13 

As shown in Figure 3.1, luminescence thermochromism is observed upon increasing 

the temperature from 10 K to room temperature. The HE band dominates a t  10 K, 

but upon increasing temperature, the LE band increases in intensity to become the 

dominant emission a t  80 K. As the temperature is further increased, the HE band 

again becomes the dominant emission while the LE band becomes again less promi- 

nent. One possible explanation for this behavior is that the system undergoes a 

structural change near 80 K, which leads to a change in the distribution of the clus- 

ters responsible for the luminescence bands. For this reason, structural studies were 

undertaken and the results will be presented in this chapter. The results did not 

indicate changes near 80 K, rather at a higher temperature, a t  about 210 K, where 

the luminescence disappears. 

Further study, including lifetime measurements, has led to  a different explanation 

for the luminescence thermochromism in this crystal. A kinetic model for energy 
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Figure 3.1: Emission spectra for K2Na[Ag(CN)2I3 showing changes in the two lumi- 
nescence bands. 

transfer between the two luminescence bands will be presented with strong supporting 

evidence from the luminescence decay results. 

The structure of K2Na[Ag(CN)2]3 has previously been determined a t  room tem- 

perature by means of single crystal X-ray diffraction, corresponding to space group 

P f  lm.64 However, since the initial luminescence data suggest structural variations, 

variable temperature Raman scattering, specific heat, synchrotron X-ray and neutron 

powder diffraction studies have been conducted to  further investigate the chemical 

structure of this compound in the temperature range from 1.5 K to  300 K. Results 

from these investigations will be presented in this chapter. 

Phase transitions in other dicyanoargentates (I) have previously been investigated 

through pressure dependent Raman scattering studies. For example, the vibrational 



spectra of KAg(CN)2 are well-documented in the l i t e r a t ~ r e , ' ~ * ' ~ * ' ~  as are pressure 

dependent ~ ~ e c t r a . ' ~ > ~ ~  However, this is the first reported temperature dependent 

Raman scattering study of structural changes in a d i ~ ~ a n o a r g e n t a t e . ~ ~  

3.2 R a m a n  Sca t t e r ing  S tud ies  

Representative Raman spectra a t  selected temperature values are shown in Figures 

3.2 and 3.3. The Ag(CN), ions are virtually linear in the crystal, with the C-Ag-C 

angle reported as 180" and the N-C-Ag angle as 176.65°.64 Approximating this as a 

linear ion, we assign it to the space group Dmh The vibrational modes of a linear 

A-B-C-B-A type molecule have been worked out previously15 and the notation used 

in that reference will be followed here. Frequency assignments are given in Table 3.1. 

phonons 

u7b n u  ~ g - c  bend 
u5a n, C-N bend 
usb no C-N bend . ~ 

u2 x i  Ag-C stretch 
ul E: C-N stretch 

Table 3.1: Assignments for the vibrational frequencies in the Raman spectrum of 
K2Na[Ag(CN)2]3. 

Examining the low frequency region of the spectrum, the splitting of the C- 

N bending mode (us, -265 cm-l) a t  low temperature values is noted. To further 

investigate this splitting, a nonlinear least squares fitting routine was applied to  fit 
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Figure 3.2: Raman shift vs. intensity for T=82 K, 181 K, 221 K,  296 K. The plots 
are offset by 40 units each for clarity. 



Figure 3.3: Raman shift vs. intensity for T=80 K, 179 K, 209 K, 289 K. Plots are 
offset by 20 units each for clarity. 



the data to  a sum of two Gaussian functions on a quadratic background, yielding 

frequencies for each of the two peaks. Figure 3.4 shows a plot of the relative frequency, 

Figure 3.4: Relative energy of the split peaks in the C-N bending mode as a function 
of temperature. 

- US*, as a function of temperature. I t  is noted that  the peaks grow closer together 

until approximately 210 K a t  which point they begin t o  grow steadily further apart. 

The error associated with each point increases significantly a t  higher temperature 

values due to  the overlapping of the peaks. Since the change is so slight and the error 



is so great, we expect there to be a fair amount of uncertainty in the point of interest, 

210 K, which is where structural changes are expected. 

Figure 3.5 shows the position as a function of temperature of the five lowest energy 

+ + + + +  + + + + + 
+ + 

X X X X  X X X  X X X X X 

Temperature (K) 

Figure 3.5: Frequencies of five low energy bands as a function of temperature. 

bands resolved, three of which we have assigned as phonon bands. One of these three 

phonon bands experiences a small, continuous increase in energy with decreasing 

temperature values. However, the highest energy band in this group (open circles in 

the figure) exhibits a discontinuous jump of 10 cm-' a t  -200 K,  with a total shift 

of -24 cm-' in going from 80 K to room temperature. This behavior has led us 



to assign this highest energy pair to the typically Raman-inactive C-Ag-C bending 

mode (v7, nu) .  This assignment is in agreement with that of Loehrlg and Bottger18 

from their studies of the similar compound KAg(CN)2. 

The C-N stretching mode (y, -2150 cm-I), however, does not exhibit any split- 

ting over the entire temperature range studied. It does undergo a small, apparently 

continuous increase in energy as the temperature decreases, with a total shift of 

-5 cm-'. 

The very weak Ag-C stretching mode (v2, -360 cm-') appears to split a t  low 

temperature values. Analysis of this splitting reveals three closely spaced peaks. 

Preliminary examination of the frequency shifts of these three peaks reveals that the 

highest energy peak (-365 cm-') exhibits behavior similar to that of the C-N stretch- 

ing mode, shifting a total of approximately 5 cm-' between 80 K and 296 K. However, 

the other two peaks, which are vanishingly weak a t  higher temperature values, behave 

in a manner similar to that of the b,ending modes, with a discontinuity in the region 

of 200-220 K. This suggests that this is not one mode split into three peaks, but 

perhaps two separate modes. Following the findings of Loehr,lg we tentatively assign 

the two lower energy peaks in this group to the typically Raman-inactive asymmet- 

ric bending mode, vg, nu and the highest energy peak to the previously mentioned 

stretching mode 4, E l .  

The discontinuous behavior in the bending modes in the region of 200-220 K 

indicates structural variations in this temperature range. I t  is suspected that the 



different patterns of behavior in the stretching and bending modes (continuous as 

opposed to discontinuous variations) is related to the changes in the lattice parameters 

as a function of temperature. 

3.3 X-Ray  a n d  N e u t r o n  Scat ter ing  Resu l t s  

Characteristic results of the neutron and X-ray diffraction experiments are illus- 

trated in Figure 3.6. Because of rather large preferred orientation effects in the D1A 

measurements with stationary sample profile matching, fits were first performed both 

for neutrons and X-rays with program F u l l P r ~ f ~ ~  to  obtain the temperature depen- 

dencies of the lattice parameters. Although the crystallinity of the powder sample 

of K2Na[Ag(CN)2I3 proved to  be very good in the synchrotron X-ray measurements, 

the small deviations from trigonal symmetry are only reflected in slightly larger peak 

widths of trigonal Bragg reflections such as (hkO) compared to (OOl), as space group 

P3lm does not impose extinction rules. This is presumably the reason why automatic 

peak indexing of the first 20 lines by programs such as DICVOL91 of e.g. the 40 K X- 

ray data was less conclusive, also suggesting the trigonal lattice as a possible solution. 

Anisotropic peak broadening was therefore also considered a possibility. However, in 

view of the optical results showing evidence for a structural phase transition in the 

region of 200-220 K, this idea was abandoned and it  is believed that  the true sym- 

metry of K2Na[Ag(CN)& is monoclinic a t  least a t  temperature values below 210 K, 

but the synchrotron X- ray data point to a t  least orthorhombic symmetry a t  room 

temperature. 
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Figure 3.6: Comparison of temperature dependent neutron and SNBL X-ray diffrac- 
tion data for K2Na[Ag(CN)2I3. 
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The high-resolution neutron diffraction and synchrotron X-ray powder data mea- 

sured a t  sample temperature values from 1.5 K to  300 K were analyzed using the 

profile constrained structural refinement computer program ZOMBIE based on the 

Rietveld refinement m e t h ~ d , ~ ~ . ~ ~  The Ag(CN), ions were constrained to  be linear 

with interatomic distances Ag-C and C-N kept constant a t  essentially those distances 

found in the previously reported single crystal X-ray diffraction study a t  room tem- 

p e r a t ~ r e . ~ ~  It was found that although the previously reported structure with space 

group P31m64 gave good agreement with the observed profile data, small but sig- 

nificantly better agreement could be obtained for a monoclinic structure with space 

group C2/m. The relationship between the P31m structure and the now proposed 

C2/m structure is shown in Figure 3.7. The pseudo-hexagonal unit cell ( Z = l )  for 

the P3 lm structure and the monoclinic unit cell (Z=2) for the C2/m structure are 

closely related. The resulting layered structure is illustrated in Figure 3.8. 

3.3.1 Monoclinic (C2/m) 

The interatomic distances between the neighbouring Ag-atoms, and unit cell di- 

mensions, are shown in Tables 3.2 & 3.3, respectively, for sample temperature values 

between 40 K and 295 K. Coordinates of equivalent (silver) positions are: 

(O,O,O; ;, ;, O)+ 

Ag(1): (0, ;, 0); site symmetry (2/m) + 2 atoms per (monoclinic) unit cell 

Ag(2): ( i ,  i, 0); ( i ,  i, 0); site symmetry (i) + 4 atoms per (monoclinic) unit cell. 



Monoclinic (C2lm) 
/ pseudo-hexagonal unit cell 

monoclinic unit cell 
(Z=2) 

(Note: c(mono) and c(hex) are almost coincident, out of page, 

beta(mono) approx. 90 degs.) 

Figure 3.7: Relationship between the monoclinic unit cell for the C2/m structure and 
the pseudo-hexagonal unit cell for the P3lm atomic structure (for clarity, only the 
Ag atoms are shown). 

3.3.2 Pseudo-hexagonal (trigonal) P3l m 

The relationship between the monoclinic unit cell (C2/m) and the pseudo- 

hexagonal unit cell is given by: 



Figure 3.8: 30 K structural model of K2Na[Ag(CN)2]3. 

It is noted that the pseudo-hexagonal (trigonal) structure would become actual hexag- 

onal (trigonal) with space group P31m, if the following relationships are satisfied: 



Table 3.2: Interatomic Ag ... Ag distances as a function of temperature for the C2/m 
structural model for K2Na[Ag(CN)2I3. 

Table 3.3: Unit cell dimensions as a function of temperature for the C2/m structural 
model, as determined from synchrotron X-ray data for K2 Na[Ag(CN)2I3. 

The two site symmetries for C2/m would both become (2/m) and 

From Tables 3.2 and 3.3, this closely occurs when T=200 K and the Ag-atom envi- 

ronments become essentially identical (Figure 3.7). 

Coordinates of equivalent Ag-atom positions are: 

Ag(l)=Ag(2); 4,0,0; 0, $,, 0; (2/m) + 3 atoms per (hexagonal) unit cell. 

Both Figure 3.6 and the corresponding lattice parameters, which are shown in 

Table 3.3 and Figure 3.9, indicate essential, continuous changes of the chemical struc- 



Figure 3.9: Temperature dependence of pseudo-hexagonal lattice parameters 
K2Na[Ag(CN)2I3, as determined by profile matching. 

ture as a function of temperature in the range from 1.5 K to 300 K .  However, the 

c-lattice parameter increases anomalously with decreasing temperature. 

Apart from a possible slight change in slope around 150 K, the specific heat data 

of K2Na[Ag(CN)2I3 do not indicate a traditional structural phase transition. 

3.4 Group Theory Analysis 

The synchrotron X-ray and neutron diffraction studies indicate that the crystal 

belongs to  space group C2/m at all temperature values except the transition temper- 

ature (approximately 220K) at which point it  belongs to  space group P s l m .  In the 

C2/m unit cell, there are six [Ag(CN2)]- ions, two of which are located at sites of 

symmetry C2h and four of which are located a t  sites of symmetry Ci. In the P z l m  



unit cell, there are three [Ag(CN2)]- ions, all of which are located a t  sites of symmetry 

C2h. 

Close inspection of the correlation diagrams (Tables 3.4 & 3.5) for the previously 

mentioned site symmetries under space group C2/m reveals several relevant pieces of 

information. There is no indication that any of the modes which are not Raman active 

under DWh would become Raman active in the lower symmetry of the unit cell (C2h). 

This clearly counterindicates the presence of the C-Ag-C bending mode, v7. Also, it is 

clear that the doubly degenerate C-N bending mode (us, ng) is no longer degenerate 

under either of the site symmetries. The splitting seen in the Raman spectra of this 

mode may therefore be attributed to the lifting of this degeneracy. The splitting of 

the C-Ag-C bending mode could also be explained in a similar manner. 

However, comparing the two Raman-active stretching modes, vl and v2, we see 

what is apparently anomalous behavior. It  is clear from the Raman scattering data 

that the C-N stretching mode (vl) does not exhibit any splitting, while the Ag-C 

stretching mode (v2) appears to have three components. Examining the correlation 

diagrams for these modes, we see that there is no splitting indicated due to site 

I Modes Ion Site I 

Table 3.4: Correlation diagram for [Ag(CN)2]- under site symmetry C2h. Raman 
active modes are underlined. Further correlation to the unit cell is unnecessary as 
the unit cell is also of symmetry CZh. 



I Modes Ion Site Unit Cell I 

Table 3.5: Correlation diagram for [Ag(CN)2]- under site symmetry Ci. Raman 
active modes are underlined. 

symmetry in either case, while the sites with Ci symmetry do show potential splitting 

due to molecular interactions within the unit cell. While this might account for the 

degree of multiplicity within the y stretching mode, it does not explain the lack of 

splitting in the vl mode. 

As this ion is not perfectly linear, it is prudent to consider the symmetry reduction 

for the C2u group, corresponding to a bent A-B- C-B-A type molecule. In this case, the 

sites have a higher symmetry than the ion. Under C2,,, the C-N and Ag-C bending 

modes are no longer degenerate as there exists in plane and out of plane bending 

modes. Only the in plane bending modes are expected to be Raman active, while the 

out of plane bending modes would be IR active. 

3.5 Lifetime Results 

Lifetimes for both the HE and LE bands were obtained as a function of tempera- 

ture between 4.4 K and 190 K and are tabulated in Table 3.6. The luminescence was 

too weak to obtain reliable results a t  temperature values higher than 150 K. 



313 nm band lifetime, us I T ,  K 1 403 nm band lifetime, DS 1 

Table 3.6: Lifetimes as a function of temperature for the two luminescence bands 
present in K2Na[Ag(CN)2I3. 

The LE (402 nm) band has a purely single exponential decay at all temperature 

values. In contrast, however, the HE (313 nm) band exhibited a dual exponential 

decay a t  40 K, but a single exponential a t  all other temperature values. All lifetime 

values were on the order of microseconds, indicating that both of the bands are the 

result of decay from triplet states to the singlet ground state. 

It is proposed that the changes in the luminescence spectra are due to energy 

transfer from the HE band to the LE band between 4 K and 60 K, followed by 

back energy transfer from the LE band to the HE band between 60 K and 190 K. 

This is supported by the lifetime data as the lifetime of the higher energy band first 

decreases (when energy transfer grows in) and then increases (when back transfer 

begins to  play a role). Figure 3.10 shows the proposed kinetic model. Part (a) shows 

the major pathway a t  4 K where only the higher energy band is present, excitation 

of the higher energy band followed by emission from a triplet state. The presence of 

only one band a t  this temperature is due to  the fact that energy transfer processes 



Figure 3.10: Kinetic model for luminescence in K2Na[Ag(CN)2I3. The parts of the 
figure are explained in detail in the text. 

are non-radiative in nature and therefore are strongly dependent on temperature. At 

lower temperature values, the energy transfer is effectively turned off. Part (b) shows 

the additional pathways present between 4 K and 60 K where forward energy transfer 

from the higher energy band to the lower energy band dominates. The symbol "kl" 

represents the rate of energy transfer from the higher energy band to the lower energy 

band. Part (c) shows the additional pathways between 60 K and 150 K (and possibly 

above), where back energy transfer (also a non-radiative process) plays a role. The 

symbol "k2" represents the rate of back-energy transfer from the lower energy band 

to the higher energy band. At temperature values above 200 K, non-radiative decay 

processes dominate and the emission is completely quenched. The rate of quenching 

is represented by the symbols "Ql" and "Q2" and is depicted in the Figure as dashed 

lines. The heavier lines indicate radiative emission. 

In the case of the back-transfer, one must consider whether the energy barrier to 

the transfer is on the order of kT so that there is no thermal barrier to the transfer. 
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Figure 3.11: Corrected excitation spectra for the two emission bands present in 
K2Na[Ag(CN)2]3. 

Since the transfer occurs between the excited singlet states rather than between the 

emissive triplet states, the excitation energies must be used to calculate AE. Figure 

3.11 shows the excitation spectra for the two emission bands. These spectra overlap 

significantly and it can therefore be inferred that the energy difference between the 

two excited states is inconsequential compared to kT. 

3.6 Discussion and Conclusions 

Raman, synchrotron X-ray and neutron diffraction as well as lifetime data have 

been presented which provide evidence for essential, gradual structural changes as a 

function of temperature in the layered compound K2Na[Ag(CN)2I3 in the temperature 

range from 1.5 K to  300 K, indicating monoclinic symmetry. 



The results in this study do not indicate the presence of any phase transitions 

in the vicinity of 80 K, the temperature a t  which we see a reversal in the trend of 

the intensity ratio of the two luminescence bands. It  is therefore concluded that the 

changes in the luminescence behavior above and below 80 K are not due to phase 

transitions near that temperature. 

Instead, it is proposed that the luminesence thermochromism is due to energy 

transfer from the HE band to the LE band a t  temperature values below 80 K and 

back energy transfer a t  temperature values above 80 K. This conclusion is supported 

by the lifetime data which showed a decrease in the lifetime of the higher energy band 

between 4 K and 60 K (where energy transfer from this band to the lower energy band 

dominates) and an increase in lifetime above 60 K (where back transfer to this band 

dominates). 

The presence of structural changes in the region of 200-220 K certainly might 

indicate changes in the luminescence spectrum in this region, just as the changes in the 

luminescence seen around 80 K led to a suspicion of a phase transition. Unfortunately, 

this sample's luminescence is vanishingly weak a t  temperature values above 200 K, 

so this aspect of the structural changes could not be explored. 

From the neutron and X-ray powder diffraction data analysis, we conclude that 

the structural changes detected differ significantly from what may be described as a 

"conventional" phase transition. In such transitions major changes normally occur in 

the atomic structure when the transition takes place, usually accompanied by rela- 



tively large energy changes in the crystalline system ( e g  the specific heat measured 

as a function of temperature shows a sharp peak a t  the transition temperature). For 

the structural changes observed here, no such peak in the specific heat curve occurs, 

the atomic structural change with temperature change seems to be one of gradual 

and continuous change with relationships that cause the positions to coincide with 

what would be the hexagonal (trigonal) P31m structure from the monoclinic C2/m 

atomic structure a t  the sample temperature of approximately 200 K. In this regard, 

the present investigation may be considered to show the possibility of a novel type of 

phase change with temperature. 



4 ENERGY TRANSFER IN R[M(CN)& (R=La, Tb; 

M=Ag, Au) 

4.1 I n t r o d u c t i o n  

It has been established in dic~anoaurates(1) and dicyanoargentates(1) doped with 

Tb3+ and Eu3+ that exclusive excitation of the M(CN), donor ions leads to  sen- 

sitized luminescence of the Tb3+ and Eu3+ acceptor ions.3t40~41 It has also been 

shown that the emission energies of the donors can be tuned by varying certain phys- 

ical parameters, such as t e m ~ e r a t u r e , ~  pressure,40 excitation wavelength31 and donor 

concentration .32 

In this chapter, the goal is to characterize the electronic properties of the donor 

ions and model the tunable, radiationless energy transfer in a series of compounds 

co-doped with both La3+ and Tb3+. 

4.2 Charac te r i za t ion  of the Donor  Ions  

It  is known that the lanthanide ion La3+ has no optically active energy levels. 

Additionally, in density functional theory calculations carried out by collaborators a t  

Universidad de Zaragoza for La[Ag(CN)2]3 during this study, it was found that the 

La3+ orbitals contribute less than 1% to  any of the occupied molecular orbitals. It  

can therefore be concluded that the La3+ ion has no effect on the energy levels or the 

luminescence decay dynamics of La[Ag(CN)2I3 and La[Au(CN)2I3. For this reason, 



excimers 4 A;:,, nm 
285-300 
320-360 
390-430 
490-530 

Table 4.1: Band assignments for dicyanoargentate emissions arising from exciplex 
formation within the crystal. 

Assignment 

* [Ag(CN),12 
cis-*[Ag(CN);I3 
trans-* [Ag(CN);l3 

*[Ag(CN);], 

these two compounds have been chosen to represent and characterize the donor ions 

Ag(CN), and Au(CN);. 

The formation of exciplexes has been demonstrated in compounds containing 

Ag(CN),  ion^,^^^^' leading to  a phenomenon referred to as site-selective excitation. 

Site-selective excitation refers to the presence of different emission bands when dif- 

ferent excitation wavelengths are used, a result of absorption by and emission from 

[Ag(CN)2], oligomers of different n. A number of different emission bands have been 

identified and assigned to exciplex emission in d i ~ ~ a n o a r g e n t a t e s . ' ~ ~ ~ ~  These bands 

are listed in Table 4.1. 

Site-selective excitation is observed in La[Ag(CN)2I3, as shown in Figure 4.1. 

Two of the bands listed in Table 4.1 are found in La[Ag(CN)2I3. The fact that the 

higher energy band has two components is attributed to  the presence of [Ag(CN),], 

oligomers of different n. This theory is supported by the fact that  the two individual 

bands are selectable by excitation wavelength. This phenomenon provides a method 

of tuning the emission by selection of excitation wavelength. 



Figure 4.1: Emission spectra for La[Ag(CN)2]3 a t  80 K for a variety of excitation 
wavelengths. 

The luminescence decay dynamics were studied using an excitation wavelength of 

266 nm, so the steady-state emission properties will be explored with this wavelength 

as well. There exists a significant spectral overlap between the 320 nm emission 

and the 350 nm absorption at room temperature values when the sample is excited 

with a wavelength of 266 nm (see Figure 4.2). This spectral overlap decreases as 

the temperature is lowered to 80 K. Comparison with the excitation spectrum for 

the 320 nm band (see Figure 4.3) shows a very similar profile with the exception of a 
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Figure 4.2: Emission (Xe,=266 nm) and excitation (Xe,=348 nm) spectra a t  room 
temperature (top) and 80 K (bottom) for La[Ag(CN)&. 
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strong band a t  305 nm. This indicates that the presence of the 350 nm band is a result 
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kex and kern, nm 

of energy transfer from the higher energy 320 nm band and that the 350 nm band 

does not otherwise absorb a t  266 nm. This theory is further supported by the fact 

that the relative intensity of the 350 nm band (under 266 nm excitation) decreases as 

the temperature is decreased, gradually disappearing as the temperature drops below 



Figure 4.3: Comparison of the excitation spectra for the 320 nm band and the 350 nm 
band. 



Luminescence decay data have been obtained for the 320 nm band at all tem- 

perature values and the 350 nm at  temperature values greater than 80 K. The lower 

energy 470 nm band is not present under an excitation of 266 nm, so lifetime data 

could not be obtained for that band. As discussed above, the 350 nm band is not 

observed under this excitation wavelength below 80 K, so lifetime data in that range 

could not be obtained. 

The lifetime of the 320 nm band was determined to have a single exponential 

character for temperature values below 80 K. This lifetime is quite short, increasing 

from 325 (15) ns a t  60 K to 355 (15) ns a t  10 K. This would indicate that this is a 

singlet-singlet transition (fluorescence). Above 80 K, the decay was non-exponential, 

further indicating the presence of energy transfer to the 350 nm emission band. At 

80 K, the 350 nm band has a relatively long lifetime of 2.3 (0.4) ps, indicating that 

this is a triplet-singlet transition. The luminescence intensity drops off rapidly as 

the temperature goes above 80 K, so lifetime values were not determined in this 

temperature range. 

The structure of La[Ag(CN)2]3 has been determined a t  room temperature by 

means of single crystal X-ray diffraction. The structure was solved in the space 

group P%l. Three waters of hydration were found to be coordinated with the La3+ 

ions. The Ag(CN), ions were found to be linear with a C-Ag-C angle of 180" and a 

N-C-Ag angle of 179.5". The crystal structure is layered, as expected, with layers of 



Figure 4.4: Crystal structure of La[Ag(CN)2]3. 

Ag(CN), ions alternating with layers of La3+ ions and waters of hydration. Figure 

4.4 shows this layered structure. 

4.2.2 L ~ [ A U ( C N ) ~ ] ~  

While site-selective excitation is not observed in L ~ [ . ~ U ( C N ) ~ ] ~ .  the emission hands 

do red shift with decreasing temperature. This result is in a c m d  uith plxb\.iou5 



results for E u [ A u ( C N ) ~ ] ~ . ~ '  There exist two emission bands in this compound, a t  

low temperature values (about 80 K), one appears a t  approximately 430 nm and the 

other a t  approximately 490 nm. These bands are red-shifted by approximately 1550 

cm-' and 850 cm-' respectively from their positions a t  room temperature. Inspection 

of the excitation spectra in Figure 4.5 for the 490 nm band reveals a small spectral 

overlap between the 430 nm emission and the 490 nm absorption which increases with 

increasing temperature (bottom to top in figure). The fact that the relative intensity 

Aex and kern, nm 

Figure 4.5: Excitation spectra (left) monitoring the emission at 490 nm and emission 
spectra (right) for X,=337 nm a t  room temperature values (top) and 25 K (bottom). 
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Figure 4.6: Lifetime values as a function of temperature for the 490 nm emission band 
of La[Au(CN)&. 

of this band increases with increasing temperature coupled with the fact that there 

exists this spectral overlap indicates that its presence is a t  least partially a result of 

energy transfer from the higher energy 430 nm band. This hypothesis is supported 

by the fact that the 430 nm (donor) band lifetime values are non-exponential, while 

the 490 nm band lifetime values are single exponential. 

A plot of the 490 nm band lifetime as a function of temperature is shown in 

Figure 4.6 along with a straight line fit to the data. Extrapolation to T=O K gives 

rrd=1320 ns. The lifetime for this band decreases only slightly as the temperature 

is increased, indicating that the non-radiative decay rate is quite small. 



The 430 nm band's luminescence decay will be discussed and analyzed in Section 

4.5. 

An X-ray crystallographic structural study of this compound is currently under- 

way. Preliminary results indicate that the structure is essentially the same as that 

of La[Ag(CN),I3 and the space group is P62m. As in the silver compound, there are 

three waters of hydration. 

4.3 Varia t ion  of t h e  Donor  Ion: E n e r g y  Transfer  i n  Tb[M(CN),I3 

An energy level diagram for Tb3+ is shown in Figure 4.7. Also included are the 

emission energies for the Ag(CN); and Au(CN); donor states. Arrows indicate the 

spectral overlap between the donor and acceptor. 

Following the transfer of energy from the Ag(CN), donor, the Tb3+ ions will be 

excited into the upper levels and will rapidly decay (non-radiatively) to the 5D3 level. 

At this point, decay will proceed to  the 7FJ levels either by direct decay or via the 5D4 

level, which is reached by either non-radiative decay or cross-relaxation with other 

Tb3+ ions. In the dicyanoargentate(I), the highest energy phonon is approximately 

2150 cm-'. Since the difference in energy between the 5D3 and 5D4 levels is approxi- 

mately 6000 cm-', the non-radiative process is quite favorable and it is unlikely that 

transitions from the 5D3 level will be observed. 

In the case of the Au(CN), donor, the energy transfer occurs directly to the 5D4 

level, as can be seen from the spectral overlap in Figure 4.7. 
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Figure 4.7: Tb3+ energy levels. Also shown are energy levels for the Ag(CN), and 
Au(CN); donor ions to demonstrate the spectral overlap between donor and acceptor. 
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Figure 4.8: Emission spectra as a function of temperature for Tb[Ag(CN)2]3. Repro- 
duced with permission.3 

There exists a significant spectral overlap between the Ag(CN), donor and Tb3+ 

acceptor, as seen in Figure 4.7. It is significant enough that the energy transfer is 

so efficient that the donor emissions (325 nm and 350 nm) are almost completely 

quenched a t  all temperature values studied, as shown in Figure 4.8. Also noted is the 

decrease in the relative intensity of the Tb3+ emissions (491 nm and 545 nm) with 

decreasing temperature. 



Table 4.2: Lifetime values for the Tb(II1) emission a t  491 nm as a function of tem- 
perature for Tb[Ag(CN)2I3 and Tb[Au(CN)2I3. 

Tb[Ag(CN)2]3 

Lifetime values have been obtained for the Tb3+ emission a t  491 nm at  several 

temperature values and are shown in Table 4.2. The acceptor lifetime increases from 

320 (20) ps to 380 (10) ps upon heating the sample from 80 K to 200 K. This result is 

in agreement with the steady-state luminescence data, which show an increase in the 

relative intensity of the Tb3+ emissions with increasing temperature. As the donor 

emission was almost completely quenched a t  temperature values > 80 K, it was not 

detectable for the purposes of lifetime measurements. Unfortunately, this prevents 

a conclusive determination of the mechanism of energy transfer. This issue will be 

further addressed in Section 4.4. 

As can be seen in Figure 4.7, in this compound, the spectral overlap between the 

donor and acceptor is much less significant than in the corresponding silver compound. 

In fact, only the lower energy 490 nm level will act as a donor state. It  has already 

been shown that the 490 nm band exists a t  least partially as a result of energy transfer 

from the higher energy 430 nm band. In order to  characterize the energy transfer 

between the Au(CN), and the Tb3+ ions, the decay of the donor state must be 
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analyzed. Unfortunately, as can be seen in Figure 4.9, this donor state is completely 

quenched (although the 430 nm band is present) a t  all temperature values. This figure 

also shows that the relative intensity of the Tb3+ emsission decreases with increasing 

temperature. 

The Tb3+ acceptor decay is single exponential, with a lifetime of 500 (40) ps 

a t  80 K. This lifetime decreases upon heating to 370 (20) ps a t  170 K (see Table 

4.2). The luminescence was not detectable a t  temperature values above 170 K. This 

decrease in the Tb3+ lifetime with an increase in temperature is in agreement with the 

steady-state luminescence data (Figure 4.9), which show a decreased relative intensity 

for the Tb3+ emissions with increasing temperature. 

4.4 Further S tudy :  E n e r g y  Transfer  i n  Tb,Lal-,[Ag(CN)& 

It is clear that energy transfer is more efficient in Tb[Ag(CN)2]3 due to the greater 

spectral overlap between the donor and acceptor species. However, in order to more 

definitively model the energy transfer, the dynamics of the donor decay must be 

obtained. As shown in Sections 4.3.1 and 4.3.2, the donor emission is completely 

quenched and undetectable for the purposes of obtaining lifetime values. To overcome 

this problem, a series of dicyanoargentates co-doped with both La3+ and Tb3+ have 

been investigated. As stated previously, La3+ has no optically active energy levels 

and will therefore not participate in the dynamics of the energy transfer. 

While definitive structural data exists for La[Ag(CN)2]3 (see Section 4.2.1), the 

structures of the co-doped compounds have yet to be determined. In order to show 
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Figure 4.9: Steady-state emission spectra for T ~ [ A U ( C N ) ~ ] ~  as a function of temper- 
ature. Reproduced with permission.3 
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Figure 4.10: Raman data for Tb,Lal-,[Ag(CN),I3, with x=O, 0.001, 0.01, 0.1. 

that substituting Tb3+ for La3+ does not significantly change the structure (and the 

electronic properties), Raman scattering data was obtained. Fig 4.10 shows this Ra- 

man data for Tb,Lal-,[Ag(CN)2]3 for x=O, 0.001, 0.01, 0.1. No significant differences 

(shifts in energy or splitting of the bands) are noted in any of the vibrational modes, 

indicating that the Ag(CN), ion environments have not changed. 

Steady-state luminescence results a t  80 K for the donor in Tb,Lal-,[Ag(CN)2]3 

are shown in Figure 4.4. It is noted that the intensity of the 325 nm band relative to 

that of the 350 nm band decreases with increasing x. That is, increasing the amount 



Figure 4.11: Steady-state luminescence for x=0.1, 0.01. 0.001 (bottom to top) in 
Tb,Lal-,[Ag(CN)2]3. 

of Tb3+ doped in the sample decreases the relative intensity of the higher energy 

325 nm band. This would indicate that the 325 nm band plays a role in the transfer 

of energy to the acceptor ions. 

As mentioned in Section 4.2.1, the lifetime of the 350 nm emission in La[Ag(CN)2I3 

is single exponential a t  80 K, with a value on the order of 2.3 ps. Figures 4.12 and 

4.13 show semilog plots of this 350 nm emission decay as a function of x. It is clear 

that the decay is not a simple exponential in the co-doped samples, but does approach 



the same lifetime as the pure sample a t  long times. At short times, the increased rate 

of decay (increased slope) and non-exponential character clearly indicate the presence 

of energy transfer, as expected. I t  is also observed that  in the sample with greatest 

x, the rate of decay a t  short times is the greatest (greatest slope a t  short times). 

The presence of energy transfer between the 320 nm band and the 350 nm band 

was already discussed for La[Ag(CN),],. Comparing the decay of the 320 nm band for 

this case with that  of the co-doped, x=0.1 case (Figure 4.14) shows that  the decays 

are similar a t  long times. At short times, however, the co-doped sample follows a 

less rapid decay indicating the presence of an additional pathway for the transfer of 

energy from this energy level. 

4.5 M e c h a n i s m  of  E n e r g y  Transfer  

A scheme for the transfer of energy in Tb,Lal-,[Ag(CN)2]3 is shown in Figure 

4.15. As shown previously, UV excitation results in emission from two closely spaced 

bands (320 nm and 350 nm). I t  has also been shown that  the lower energy (350 nm) 

band exists a t  least partially as a result of energy transfer from the higher energy 

(320 nm) band. Due to the great spectral overlap between these emissions and the 

Tb3+ absorption, energy transfer is also present between both of these bands and the 

acceptor ion, followed by fast non-radiative decay to  the 5D4 Tb3+ level and emission 

is observed from this energy level. 

A rough idea of the rate of energy transfer can be obtained from the decay of 

the 350 nm donor state. I t  was noted in the previous section that  the decay of 
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Figure 4.12: Semilog plot of the luminescence decay of the 350 nm band in both 
La[Ag(CN)& and the co-doped case with x=0.1. 
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Figure 4.13: Semilog plot of the luminescence decay of the 350 nm band in the 
doped samples with x=0.1, 0.01 and 0.001 as marked. 
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Figure 4.14: Semilog plot of the luminescence decay of the 320 nm band in both 
La[Ag(CN)& and the co-doped case with x=0.1. 
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Figure 4.15: Scheme for the transfer of energy in Tb,Lal-,[Ag(CN)&. 



the doped system is the same as that of the pure system at  long times, but is non- 

exponential a t  short times. This indicates that there is another pathway with a 

fast rate constant. This rate constant can be estimated by subtracting off the long 

component and analyzing the short component. This process was completed for 

each of the three co-doped systems. The lifetime for the short decay increased from 

285 (25) ns for the x=0.1 sample to 485 (40) ns for the x=0.01 sample and 525 (50) ns 

for the x=0.001 sample. This increase in lifetime translates to a decrease in rate of 

energy transfer, as is expected when the percentage of dopant decreases. These values 

are plotted in Figure 4.16, along with a least squares fit to a straight line. Although 

three values of x are not enough to conclusively determine a relationship between 

percentage of dopant and rate of energy transfer, the preliminary results do indicate 

a linear trend. 

In cases such as this one where the donor's luminescence decay is nonexponential 

and it is known that the intrinsic donor decay in the absence of any acceptors is 

single exponential, two possible mechanisms should be suspected. The multipolar 

(dipole-dipole, dipole-quadrupole, or quadrupole-quadrupole) interaction mechanism 

and the Dexter exchange mechanism are both indicated when the donor decay is 

non-exponential (these mechanisms are described in the Introduction, Section 1.2.5). 

Other possible mechanisms, including simple kinetic rate equation models, such as 

the one proposed by Kambli and Giide168 are only indicated in such cases where the 

donor's luminescence follows an exponential decay. 



Fraction of dopant (x) 

Figure 4.16: Plot of the short lifetime component for each of the three co- doped 
samples TbzLal-z[Ag(CN)2]3, with x=0.1, 0.01 and 0.001. 



Time-resolved measurements can be used to rule out several mechanisms of en- 

ergy transfer that occur via multipolar interaction. Energy transfer via multipolar 

interaction can be described by the following equation: 

where TO is the intrinsic lifetime of the donor, c is the acceptor concentration, co is 

a parameter called the critical transfer concentration, and s=6, 8 or 10 for dipole- 

dipole, dipole-quadrupole or quadrupole-quadrupole interactions respectively. After 

some m a n i p ~ l a t i o n , ~ ~  a graph of ln[I(t)] + t / ~ ~  vs. ( t / ~ ~ ) ~ / ~  should be a straight line 

if the transfer mechanism occurs via a multipolar interaction. 

Such graphs have been constructed for the three co-doped samples (Figure 4.17). 

None of these graphs with s=6, 8, and 10 has resulted in a straight line for the 350 nm 

emisson (donor decay) in any of the three samples, suggesting a mechanism other than 

multipolar interaction (in agreement with the conclusion above that the mechanism 

is the Dexter exchange mechanism). 

Graphs have also been made for the 430 nm decay (Figure 4.18) for L ~ [ A u ( C N ) ~ ] ~ .  

In Section 4.2.2 it was proposed that this decay is non- exponential due to the presence 

of energy transfer to the lower energy state. It is clear from the figure that energy 

transfer must occur by a mechanism other than a multipolar interaction. 

On the other hand, the Dexter exchange mechanism is suspected in systems that 

have a short donor-acceptor separation because it assumes the occurrence of a bi- 



Figure 4.17: Plots of ln[I(t)] +t/to vs. ( t / t ~ ) ~ / ~  for the three co-doped samples, 
TbzLal-z[Ag(CN)2]3 with x=0.1 (bottom line in each graph), 0.01 (middle line), 
0.001(top line). The parameter s=6, 8, 10 from top to bottom in the figure. 



Figure 4.18: Plots of ln[I(t)] +t/to vs. (t/to)3/s for the 430 nm decay in L ~ [ A u ( C N ) ~ ] ~ .  
The parameter s=6, 8, 10 from top to bottom in the figure. 



molecular encounter (collision) between the donor and the acceptor.42 Also, theoret- 

ical calculations of the energy transfer rate between organic ligands and lanthanide 

ions under the exchange mechanism show that this rate can be very high.69 

It  is proposed that the mechanism of energy transfer in all cases studied is the 

Dexter exchange mechanism. This hypothesis is supported by several experimental 

facts. First, the crystal structures of various Ln[M(CN)2]3 (M=Au, Ag) have been 

determined and show that Ln3+ ions such as Tb3+ are directly bonded to the cyanide 

ligands of [M(CN),] with short Ln-N d i s t a n ~ e s . ~ ' * ~ l  For example, a Tb-N distance of 

2.45 A is present in T ~ [ A u ( C N ) ~ ] ~ . ~ ~  The crystal structure of Tb[Ag(CN)2I3 has not 

been determined yet but the electronic factors that govern the Tb-N interactions are 

similar to those in the analogous gold compound. This short donor-acceptor distance 

is consistent with the Dexter exchange mechanism. Also, no risetimes were observed 

in the acceptor decays, while in systems where multipolar interaction mechanisms 

are suspected, long risetimes are often seen in the decays of the acceptors.37 This 

lack of risetimes indicates a very fast rate of energy transfer, also characteristic of 

the exchange mechanism. For the sake of comparison, it  has also recently been sug- 

gested that energy transfer in the similar compound Eu[Au(CN)2I3 follows the Dexter 

exchange mechanism.40 

4.6 Summary and Conclusions 

This study has identified interesting trends for energy transfer processes in crystals 

of dicyanoaurates(1) and dicyanoargentates(1) doped with Tb3+ as well as dicyanoar- 



gentates co-doped with both Tb3+ and La3+. The efficiency of energy transfer in these 

systems is strongly dependent on the extent of the spectral overlap between the donor 

emission and the acceptor absorption, and also on temperature. It was also found 

that there exists energy transfer within the dicyanoargentate(1) and dicyanoaurate(1) 

energy levels. 

While energy transfer is present in both Tb[Ag(CN)2I3 and T ~ [ A u ( C N ) ~ ] ~ ,  result- 

ing in Tb3+ sensitized luminescence in both compounds, the energy transfer is more 

efficient in Tb[Ag(CN)2]3 than in Tb[Au(CN)2I3. This is a result of the much greater 

spectral overlap between the donor and the acceptor in this case. Since this spectral 

overlap exists a t  all temperature values, increasing the temperature leads to  a more 

efficient energy transfer. The reason is that energy transfer in the systems studied is a 

radiationless process that occurs by the Dexter exchange mechanism. Consequently, 

the efficiency of this nonradiative (thermal) process is enhanced by a temperature 

increase. In the case of the Tb[Au(CN)2I3, however, the donor emission that overlaps 

with the acceptor absorption shifts to  higher energies upon a temperature increase, 

causing a decrease in the spectral overlap with the acceptor absorption. Consequently, 

the energy transfer is switched off by increasing the temperature. 

The luminescence decay of the donor, which was completely quenched in the purely 

Tb3+ doped compounds was obtained by studying compounds co- doped with both 

La3+ and Tb3+. The data supports the conclusion that the energy transfer occurs 

via the Dexter exchange mechanism, through a process of deduction and elimination 



of other possibilities. While it has not been possible to directly model the Dexter 

exchange mechanism, circumstantial evidence is strong that this is the correct energy 

transfer mechanism. 



5 ELECTRONIC PROPERTIES OF SILVER-GOLD 

MIXED-METAL COMPOUNDS AND THEIR 

SUITABILITY AS DONORS FOR ENERGY 

TRANSFER 

5.1 Introduction 

The motivation behind studying compounds of the type L ~ [ A ~ , A U ~ - , ( C N ) ~ ] ~  is 

to investigate their potential as donors for energy transfer as discussed in Chapter 

4. Four compounds of this type were synthesized and studied: x=0, 0.5, 0.9, 1.0. 

Content analysis of the x=0.5 and x=0.9 samples will be carried out in the future 

to confirm the Ag/Au ratios. For the purpose of this thesis, the x reported will 

correspond to the (stoichiometric) ratio present in the mother solution. A detailed 

description of the crystal growing process is given in Section 2.1. 

Qualitative observation reveals strong luminescence a t  room temperature for the 

mixed-metal (x=0.5 and x=0.9) samples, a property which is not observed in the pure 

metal (x=0,1.0) samples. This gives these compounds great potential for success in 

practical applications where room temperature luminescence is desirable. It is also 

noted that the mixed-metal samples each display properties characteristic of each of 

the pure samples. These properties lead to the tunability of the emission, a desirable 

property for energy transfer donor species. 



This study has a two-fold goal. First is to determine the underlying mechanism for 

the unusually strong luminescence of the mixed-metal samples a t  room temperature. 

Secondly, a detailed analysis of their suitability as donors for energy transfer will be 

presented with specific recommendations for compounds to  synthesize and study. 

5.2 S t e a d y - S t a t e  Luminescence  R e s u l t s  

5.2.1 T h e  P u r e  Metal C o m p o u n d s  

The luminescence properties of these compounds were discussed in detail in Sec- 

tion 4.2. Relevant points and additional information will be summarized in this 

section. 

Emission spectra for La[Ag(CN)2]3 and L ~ [ A u ( C N ) ~ ] ~  are shown in Figure 5.1 

a t  both room temperature and 80 K. Comparison of these spectra clearly reveals a 

significant decrease in luminescence intensity with increasing temperature for these 

pure metal samples. In fact, in the case of the silver sample, the luminescence is 

barely detectable a t  room temperature. 

As discussed in Chapter 4, the silver sample displays site- selective excitation, or 

tunability of emission with changes in excitation wavelength. While the gold sample 

does not exhibit site- selectivity, its emission energy does red-shift with decreasing 

temperature values, providing tunability of its emission with changes in temperature. 



Figure 5.1: Emission spectra a t  room temperature and 80 K for La[Au(CN),], (top) 
and La[Ag(CN),], (bottom). Intensities are comparable for individual samples, but 
not between different samples. 
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Figure 5.2: Emission spectra a t  room temperature and 80 K for the mixed-metal 
samples La[Ago.gAuo.l(CN)2]3 (top) and La[Ago.5Auo.5(CN)2]3 (bottom). Intensities 
are comparable for individual samples, but not between different samples. 

5.2.2 The Mixed-Metal  C o m p o u n d s  

Figure 5.2 shows emission spectra for both of the mixed-metal compounds. I t  is 

noted that the luminescence intensity a t  ambient temperature values is comparable to 

that  a t  low temperature values for both compounds, in stark contrast to the behavior 

of the pure systems. 

In the La[Ago.gAuo.l (CN)2]3 crystals, there are two closely spaced emission bands 

(380 nm and 400 nm) which lie in energy between the emission energies of the silver 
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Figure 5.3: Emission spectra as a function of excitation wavelength, showing the 
site-selectivity of La[Ago.9Auo. (CN)&. Spectra taken at  80 K. 

and gold pure compounds and can be selected by excitation wavelength, as shown in 

Figure 5.3. Since this particular compound has significantly more silver than gold, it is 

not surprising that a property characteristic of the pure silver compound is observed. 

As the temperature is increased from 40 K to 290 K,  an excitation wavelength of 

337 nm produces first only the 400 nm band, then as the temperature rises both bands 

are present, then finally at  room temperature, the 380 nm band is predominant (see 

Figure 5.4). One possible explanation for this is that a t  higher temperature values 

back-energy transfer (a radiationless process that is strongly temperature dependent) 



Figure 5.4: Emission spectra as a function of temperature for La[Ago.9Auo.l(CN)2]3 
using an excitation wavelength of 337 nm. Intensities are not comparable between 
spectra. 

from the lower energy band to the higher energy band dominates, while a t  lower 

temperature values either direct excitation into the 400 nm band or forward energy 

transfer from the 380 nm band dominate. This hypothesis unfortunately can not 

be explored without obtaining lifetime values as a function of temperature for an 

excitation wavelength of 337 nm. 

In La[Ago.5Auo.5(CN)2]3, there exists both site-selectivity and a red-shift of the 

emission wavelength. At room temperature, the site- selectivity is not apparent and 

only one band a t  about 400 nm is observed, however a t  low temperature values, there 



Figure 5.5: Emission spectra as a function of excitation wavelength, showing the 
site-selectivity of La[Ago.5Auo.5(CN)2]3. 

exists a low energy band (430 nm) with a completely different excitation profile. This 

band blue-shifts with increasing temperature until it is indistinguishable from the 

higher energy band, as can be seen in Figure 5.5. The red-shift is shown in Figure 

The higher energy (400 nm) band has been decomposed into three Gaussian func- 

tions. The relative positions of these bands (labelled a,  b and c) are detailed in Table 

5.2.2 and plotted in Figure 5.7. It is noted that AEab is on the order of 400-500 



Figure 5.6: Emission spectra as a function of temperature showing the red- shift of 
emission in La[Ago.5Auo.5(CN)2]3. Intensities are not comparable between spectra. 



Table 5.1: Variation with temperature of the three closely spaced emission bands in 
La[Ago.sAuo.s (CN)2]3. 

T, K 
4.4 
19 
40 
59 
77 
295 

cm-' a t  all temperature values while AEbc decreases from over 2000 cm-' a t  room 

temperature to about 1200 cm-' a t  4 K. 

5.3 Luminescence Lifetime Resul ts  

A,, nm 
403.8 (0.1) 
403.9 (0.1) 
403.6 (0.1) 
402.5 (0.2) 
401.4 (0.4) 
395.4 (0.1) 

As mentioned in Chapter 2, all lifetime values were obtained using an excitation 

wavelength of 266 nm. At this excitation wavelenth, this sample displays only one 

emission band, a t  approximately 400 nm and the lower energy band observed a t  

430 nm a t  low temperature values is not present and it's lifetime could therefore not 

be studied. 

The lifetime for this sample is single exponential and on the order of 100 ns or less 

from room temperature down to  80 K. Below 80 K, the lifetime begins to increase 

significantly and is no longer single exponential. In the last section, this band was 

decomposed into three closely spaced, overlapping components. This change in the 

lifetime would indicate that the two higher energy bands now have distinctly different 

lifetime values instead of very similar values. It  is assumed that  the third, lower energy 

E,, cm-' 
24764 (6) 
24759 (6) 
24777 (6) 

24845 (12) 
24913 (25) 
25291 (6) 

Ab, nm 
410.3 (0.1) 
410.3 (0.1) 
411.0 (0.1) 
410.7 (0.1) 
410.4 (0.3) 
403.0 (0.1) 

Eb, cm-' 
24372 (6) 
24372 (6) 
24331 (6) 
24349 (6) 
24366 (18) 
24814 (6) 

A,, nm 
431.4 (1.7) 
433.0 (2.0) 
439.2 (2.4) 
442.0 (3.0) 
443.8 (4.4) 
435.5 (3.8) 

E,, cm-l - 

23180 (90) 
23095 (106) 
22769 (125) 
22624 (154) 
22533 (223) 
22962 (200) 
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Figure 5.7: Variation with temperature of the three closely spaced emission bands in 
La[Ago.sAuo.s (CN)z]3 



Table 5.2: Lifetime values as a function of temperature for La[Ago.5Auo.5(CN)2]3. 
Lifetime values were obtained a t  an  emission wavelength of 400 nm. 

band does not contribute in the lifetime analysis, as all lifetime values were obtained 

a t  400 nm and there is only a very insignificant overlap of this component a t  400 nm. 

The decay can be decomposed into two components a t  62 K and below (see Table 

5.3.1), one with a significantly longer lifetime. 

The  90/10 sample's luminescence decay follows a single exponential a t  all tem- 

perature values increasing from 225 ns to 1390 ns as the temperature is lowered from 

room to liquid helium temperature values. The lifetime values are tabulated in Table 

5.3.2. 

5.4 Discussion of  Theoretical Model fo r  Results 

The  question of why these samples exhibit such strong luminescence a t  room 

temperature is expected to  be answered through a detailed analysis of the structure. 

X-ray diffraction studies are currently underway to investigate whether structural 
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Table 5.3: Lifetime values as a function of temperature for La[Ago.9Auo.l (CN)2I3. 
Lifetime values were obtained a t  an emission wavelength of 397 nm. 

differences between the pure samples and the mixed-metals could account for this. 

Preliminary results indicate that the 50-50 sample belongs to  the same space group as 

L ~ [ A u ( C N ) ~ ] ~  (P62m), but there is only one water of hydration in this sample, while 

the pure samples have three waters of hydration coordinated with the La3+ ions. It  is 

suspected that this could be responsible for this effect as fewer waters leads to  fewer 

non-radiative decay pathways for the system. In addition, density functional theory 

calculations have begun on both the pure samples and the mixed-metal systems so 

that the compositions of the orbitals involved in the relevant transitions may be 

compared to  see if metal- metal interactions are important. 

The results obtained for this sample are similar to  those obtained for a series of 

quasi-one-dimensional mixed Pt-Pd and Pt-Ni tetracyanide systems and their corre- 

sponding pure Pt and pure Pd tetracyanides by Viswanath et a1.53*54*70 The authors 

observed that  one of the emission bands observed in the mixed system did not match 



Figure 5.8: Scheme fc Ir the emissio In from the mixed-metal delocalized excited states 

with any observed in the pure systems and concluded that this emission band was 

due to a delocalized excited state, that is, delocalized over the P t  and Pd  sites. 

A two level system is proposed, where the emission arises from two closely spaced 

states that arise from splitting of a single triplet state due to spin-orbit coupling. 

This splitting is dictated by the symmetry of the site the ion is in. It  is assumed that 

these states are in thermal equilibrium. Since the excitation source is a pulsed laser, 

one might wonder whether the high power involved would force the system into a 

non-equilibrium state. This possibility could be tested by obtaining lifetime values as 

a function of excitation power. Unfortunately, the current experimental set-up does 

not allow for such a study. However, the layered structure of these compounds and the 

close metal-metal contacts within the layers allows for very rapid communication of 

the excitation energy along the M(CN); layers. This lends support to the assumption 

that equilibrium is rapidly attained. This scheme is shown in Figure 5.8. In this 

scheme, the observed lifetime can be described as a function of temperature by the 
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Figure 5.9: Lifetime data as a function of temperature along with a fit to equation 
5.4.1. 

following equation:71172 

A similar model was proposed for this type of situation in bis(4- chlorothiophenol)(1,10- 

phananthroline)zinc(II) by Crosby et and applied successfully for T ~ [ A u ( C N ) ~ ] ~ ~ ~  

and C S [ A U ( C N ) ~ ] ~ . ~ ~  A comparison of these results with previous results will be given 

in the next section. 

The lifetime values from Table 5.3.2 have been fit to equation 5.4.1 with results 

shown in Figure 5.9. The parameters obtained from the fit are given in Table 5.4. 



Table 5.4: Parameters obtained from a fit of the lifetime values as a function of 
temperature to equation 5.4.1 for La[Ago.9Auo.l(CN)2]3. 

AE, cm-' 
25.2 (1.5) 

Table 5.5: Parameters obtained from a fit of the lifetime values as a function of 
temperature to equation 5.4.1 for La[Ago.5Auo.5 (CN)2I3. 

k l ,  s-* 
6.07 (0.02) x lo5 

long lifetime component 
short lifetime component 

Examining the excitation and emission spectra as a function of temperature, it is 

clear that the two closely spaced energy levels are coupled at high temperature values, 

but not at lower temperature values (below 60 K).  This is evident in the lifetime data 

k2, S-I 

5.97 (0.05) x lo6 

in that a single lifetime component is found a t  higher temperature values, while a t  

AE, cm-' 
23.1 (1.9) 
12.0 (1.3) 

lower temperature values two components are resolved. 

Both components of the decays have been individually fit to the same model 

applied for the 90/10 sample in the previous section with results given in Table 5.5. 

This fit now assumes that each of the two bands has two energy levels split by different 

energies AE. 

The values obtained for AE can be compared with values obtained for similar 

compounds. For T~[Au(CN)~] ,  a AE of 36.0 (0.4) cm-' was obtained,72 and for 

CS[AU(CN)~], a value of 45.22 (0.03) cm-I was obtained.71 The smaller values ob- 

tained for the mixed-metals in this study can be understood using the fact that the 

kl, s-' 
4.12 (0.02) x lo5 
7.87 (0.03) x lo5 

k2, s-' 
1.20 (0.02) x lo7 
1.83 (0.05) x lo7 ' 



spin-orbit coupling energy is proportional to Z2. Since ZAu > ZAg, it is reasonable to  

expect that AE will be smaller in compounds containing Ag. 

5.5 Analysis of the Suitabil i ty of Mixed  Silver-Gold C o m p o u n d s  a s  

Donors  for  Energy  Transfer  

These samples have a room temperature luminescence intensity that is comparable 

to the low temperature intensity, a fact that makes them promising for photolumi- 

nescence applications. Furthermore, these. samples have tunable emission energies, 

which could lead to a variety of choices for acceptors in the energy transfer study, 

due to changes in the spectral overlap. It  was found that the energies are tunable by 

site-selective excitation and in one of the samples that site- selectivity was turned on 

by decreasing the temperature. Clearly the emission is also selectable by changing the 

Ag/Au ratio present in the sample. All of these characteristics make these samples 

good candidates for donors in energy transfer studies. 

The short lifetime values are not a concern in the context of energy transfer 

efficiency, as it was shown in Chapter 4 that energy transfer from dicyanoaurates and 

dicyanoargentates occurs very rapidly. 

Figure 5.10 shows an energy level diagram for three of the lanthanide ions. Also 

shown are the full-width half-maximum emission bands for the mixed-metal systems 

that have been studied. These lanthanide ions have been selected for the degree of 

spectral overlap between their absorptions and the donor's emissions. 



Figure 5.10: Energy levels for the two mixed-metal samples as well as three lanthanide 
ions chosen for the degree of spectral overlap between their absorptions and the mixed- 
metal samples' emissions. 



5.6 Summary and Conclusions 

It  has been shown that these mixed-metal samples display luminescence properties 

characteristic of each of the pure metal compounds, notably site-selective excitation 

and a red-shift of emission wavelength with decreasing temperature. In addition, they 

exhibit ambient luminescence that is comparable with the low-temperature lumines- 

cence, a property not observed in the pure samples that is very desirable. This strong 

luminescence a t  room temperature has been attributed to the fact that there are fewer 

waters of hydration in the mixed samples, leading to less potential for non-radiative 

decay. 



6 SUMMARY, CONCLUSIONS AND FUTURE 

DIRECTIONS 

The purpose of this chapter is to provide a summary of the important conclu- 

sions made in this thesis in regard to each of the three project areas. In addition, 

suggestions for future follow-up work will be made. 

6.1 Luminescence  Thermochromism and K2Na[Ag(CN)2]3 

The interesting photoluminescence properties of this compound have been probed 

extensively in an attempt to explain the presence of a phenomenon known as lumi- 

nescence thermochromism. There exist two luminescence bands, a high energy band 

(HE) and low energy band (LE) that show an interesting trend as a function of tem- 

perature. The HE band dominates a t  very low temperature values (4 K) and very 

high temperature values (200 K), while a t  intermediate temperature values (60 K) 

the LE band dominates. 

A structural study was undertaken with the premise that a phase transition a t  an 

intermediate temperature might explain the changes in the luminescence. However, 

X-ray diffraction results, which have been corroborated with Raman scattering data, 

show a structural change a t  a much higher temperature than expected (210 K). 

Further study, including luminescence lifetime data, lends support to a new hy- 

pothesis. At 4 K, non-radiative processes are highly unlikely, so emission is seen only 

from the HE band. Between 4 K and 60 K, energy transfer from the HE band to the 



LE band grows in and begins to be the dominant process. However, as the temper- 

ature is further increased, back-energy transfer begins to play a role and LE band 

begins to grow out. 

Further work on this system will likely involve mathematical modeling of the be- 

havior of the lifetime results as a function of temperature in order to more completely 

understand the role of energy transfer and back-energy transfer on its luminescence. 

6.2 Energy  Transfer  i n  Dicyanoargenta tes  a n d  Dicyanoaurates  

It has been shown that in dicyanoargentates and dicyanoaurates doped with Tb3+, 

exclusive excitation of the dicyanoargentate or dicyanoaurate donor ion leads to sen- 

sitized luminescence from the Tb3+ acceptor ion. It  was also observed that the energy 

transfer efficiency is so high that the donor luminescence is effectively quenched in 

the singly doped samples Tb[Au(CN)2I3 and Tb[Ag(CN)2I3, to the extent that the 

dynamics of the decay process could not be studied. To circumvent this problem, a 

series of samples co-doped with both Tb3+ and La3+ (which has no optical activity) 

was studied. It  was noted that increasing the percentage of Tb3+ dopant increased 

the rate of energy transfer. The Dexter exchange mechanism has been proposed as 

the mechanism of energy transfer and other mechanisms have been ruled out through 

mathematical modeling. 

One area in this field that has yet to be explored is that of dicyanoargentates(1) 

and dicyanoaurates(1) doped with multiple acceptors, such as Tbo.5E~o.5[Ag(CN)2]3. 

The tunability of the donors that was explored in detail in this thesis could give rise to 
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the possibility of tuning off the emission of one acceptor while tuning on the emission 

of a second acceptor. 

6.3 Novel Mixed-Metal  C o m p o u n d s  as Donors  for  E n e r g y  Transfer 

The results for mixed-metals is novel and exciting in that they display the de- 

sirable tunability of the pure metal compounds studied, but in contrast to the pure 

compounds, their luminescence a t  room temperature is strong. It is hypothesized that 

their room temperature luminescence intensity is comparable to the low temperature 

luminescence intensity is related to the fact that the structure shows fewer waters of 

hydration and therefore fewer radiationless decay pathways. A complete temperature 

dependent structural study is proposed to further understand this observation and 

support or refute this hypothesis. 

Future study will include a conclusive determination of the Ag/Au ratio in each of 

the studied samples. A full determination of the structure as a function of temperature 

as well as completion of the density functional theory calculations (to be compared 

with similar studies on the pure metal samples) will help to explain the strong ambient 

luminescence. 

A logical extension of this study would be the synthesis of mixed- metal compounds 

doped with optically active lanthanide ion acceptors. The luminescence of these 

mixed-metals is well understood and a number of lanthanides with good spectral 

overlap have been suggested for use as acceptors. 
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