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Abstract 

Atlantic salmon is a common aquaculture species that is now greatly impacted by 

sea lice and amoebic gill disease. Currently, one of the treatments uses hydrogen 

peroxide (H2O2) because it breaks down safely in water, leaving no toxic residues like 

some of the previous treatments. Hydrogen peroxide was an effective treatment 

previously, but now resistance seems to be developing amongst the disease organisms 

and, if too high a dose is used, it can harm the salmon. Antioxidants, specifically 

superoxide dismutase (SOD), catalase (CAT), and both independent and dependent 

glutathione peroxidase (GPx), are present in organisms to break down reactive oxygen 

species (ROS) like H2O2. The goal of this study was to determine if antioxidants follow a 

daily rhythm, so that an ideal treatment time and a higher dose of H2O2 can be used to kill 

harmful organisms without causing damage to the salmon, since there are clear 

indications that many physiological processes vary on a circadian rhythm.  

Three fish were sampled every four hours for fifty-two hours to determine if the 

levels of SOD, CAT, and GPx varied over time. Although this data showed some 

evidence of a daily rhythm, no statistical significance was found except in the GPx 

dependent levels. This experiment should be repeated using more than one tank and 

measuring cortisol levels to determine if stress was a possible contributing factor to the 

lack of statistical significance, or if human error caused the large amount of variance 

observed.
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Background 
Hydrogen Peroxide Treatment 
 Hydrogen peroxide (H2O2) is used throughout aquaculture for various topical skin 

and gill infections, including the treatment of various ectoparasites important in Atlantic 

salmon (Salmo salar) aquaculture today (Rach et al., 2000; Arvin & Pedersen, 2001; 

Adams et al., 2011). These diseases include sea lice and amoebic gill disease, both 

considered to be widespread diseases significant in fish health, especially farmed salmon 

(Kiemer and Black, 1997; Powell et al., 2008; Vera and Migaud, 2016; etc). Sea lice are 

(Lepeophtheirus salmonis) are currently considered responsible for multiple disease 

outbreaks and large economic losses to salmon farmers throughout the United States. The 

sea lice browse on the surface of salmon eating their mucus, epidermal cells and blood, 

which can ultimately lead to erosion on the surface of the fish. In some cases, the sea lice 

erode enough of the fish to expose underlying tissue and the skull leading to 

osmoregulatory problems, secondary bacterial infections, an increase in cortisol and 

glucose, indicative of a stress response, and ultimately death (Mustafa et al., 2000).  

 Amoebic gill disease, caused by the organism Neoparamoeba perurans, is also 

considered significant to salmon aquaculture especially because of evidence of its role in 

co-infections with other gill diseases (Powell et al., 2008). The disease first appears as 

raised white mucous patches and, ultimately, lethargy and rapid ventilation can be seen 

prior to mortality (Adams et al., 2011). In a study by Powell et al. (2008), they found that 

gas transfer limitations caused by the loss of functional lamellae and a reduced gill 

surface area can develop, which may lead to the impedance of swimming performance 

and lethargy. In a previous study, Powell et al. (2000), also found evidence of respiratory 
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acidosis occurring in fish experiencing a hypoxic condition. In chronically infected fish, 

altered heart morphology possible due to a reduction in blood flow has also been seen 

(Powell et al., 2008), although it appears that only the gills are the site of infection (Leef 

et al., 2005).  

Hydrogen peroxide is currently one of the few effective treatments for both 

diseases. It appears to work by causing a temporary paralysis in the causative organism 

by the formation of bubbles, detaching them from the fish and causing them to float to 

the water surface (Bowers et al., 2002; Bravo et al., 2010). In the past, dichlorvos and 

emamectin benzoate (SLICEÒ; Merck Animal Health) have been used for the treatment 

of ectoparasites but are not used as frequently due to an increase in resistance, possibly 

health risks and environmental effects (Kiemer and Black, 1997; Treasurer et al., 2000). 

Dichlorvos is an organophosphate that has been shown to be very toxic to fish, through 

impacting their metabolism, and can cause both sub-lethal and lethal effects, including 

erratic swimming, excess mucus secretion, and equilibrium loss. It has also been shown 

to be a neurotoxin, inhibiting AChE, the enzyme that degrades acetylcholine, causing 

nerve disruption and ultimately death. It also may be carcinogenic after repeated 

exposures (Das, 2004). Emamectin benzoate was the treatment of choice for many years 

because it was effective against all life stages of sea lice, had a prolonged effect, and was 

easy to administer in the feed. However, it has now been used to the point of increased 

resistance in the parasite, meaning that the treatment is not currently very effective. Jones 

et al. (2012) found that the abundance of sea lice present after treatment was completed 

rose between 2004 and 2008, from 0 to 16 ineffective treatments. They also found that 

the successful treatments decreased from 100% in 2004 to only 51% in 2008. In addition, 
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Saksida et al. (2013) found that sea lice on farms that had previously treated with 

emamectin benzoate required a significantly higher treatment amount to detach.  

Unlike dichlorvos, H2O2 is an environmentally safe treatment option. It is a 

powerful oxidizer but leaves behind no toxic residues (Vera & Migaud, 2016). It readily 

breaks down into water and oxygen, which are very nontoxic byproducts (Kiemer & 

Black, 1997; Bowers et al., 2002; Bravo et al., 2010; Adams et al., 2011). In fact, fishes 

naturally have antioxidants meant to break down H2O2 and other reactive oxygen species 

(ROS) (Trenzado et al., 2009; Cullen & Weydert, 2010; Barim-Oz & Yilmaz, 2016; etc). 

Antioxidants 
Since all organisms live in an aerobic environment, they are susceptible to 

damage by ROS, including superoxide (O2
-), hydroxyl radical (OH-), singlet oxygen (O2) 

and hydrogen peroxide (H2O2) (Paller, 1991), produced through oxidative metabolism 

(Trenzado et al., 2009; Clotfelter et al., 2013). If an imbalance occurs, ROS can damage 

unsaturated fatty acids in cellular membranes, lipids, proteins, and DNA leading to cell 

death and mutations (Grant et al., 1998; Cullen & Weydert, 2010; Barim-Oz & Yilmaz, 

2016). They have also been shown to contribute to postischemic renal injury (Paller, 

1991). This imbalance can occur based on the water temperature, an increase in activity 

and metabolic rate, greater oxygen availability, or even lower oxygen availability 

(hypoxia). Body condition has also been shown to have an impact on overall 

susceptibility to ROS, with fish in better body condition able to breakdown ROS more 

effectively (Clotfelter et al., 2013).   

Through evolution, antioxidant defenses have developed to keep ROS at low 

levels to prevent oxidative stress and the damages described above (Barim-Oz & Yilmaz, 

2016). The main antioxidants are superoxide dismutase (SOD), catalase (CAT), and 
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glutathione peroxidase (GPx). These antioxidants transform the ROS to protect the cells 

from oxidative damage through detoxifying ROS, which is very important when treating 

with H2O2 because it can cause a larger imbalance in ROS (Tort, 2012). Although all 

three antioxidants catalyze the decomposition of different ROS, all three work together to 

prevent cellular damage and organism death. 

Superoxide	Dismutase	
 Superoxide dismutase (SOD) consists of a family of metalloenzymes containing 

copper and zinc or manganese or iron that breaks down the superoxide radical into H2O2, 

which can then be further broken down by catalase and glutathione peroxidase (Beyer & 

Fridovich, 1987). The manganese and iron containing forms are mostly found in 

prokaryotes, although the manganese form is located in mitochondria and the iron form 

can be found in some plants. The copper and zinc SOD (CuZnSOD) , on the other hand, 

is found in the cytosol of eukaryotic cells and is, therefore, the SOD the present study is 

concerned with (Fridovich, 1989). For CuZnSOD, the copper and zinc work together to 

allow the SOD enzyme to perform catalysis, with the copper reducing superoxide (O2
-) to 

O2 and the zinc assisting by increasing the reduction potential. If copper is limiting in the 

diet, SOD does appear to still function without its cofactors, but the overall activity will 

decrease over time (Harris, 1992).  

Although present throughout cells, SOD tends to be higher in gill tissues possibly 

because of the need to destroy superoxide produced during respiration in the gills (Barim-

Oz & Yilmaz, 2016). In solution, SOD requires the formation of the superoxide radical to 

be measured (Cullen & Weydert, 2010; Flohé & ötting, 1984). In most cases, including in 

this experiment, xanthine oxidase is used to generate the superoxide radical. Cytochrome 

c is then used as an indicator because xanthine oxidase uses electron transfer mediators to 
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reduce cytochrome c. SOD competes with the cytochrome c to breakdown superoxide, 

with a 50% inhibition equal to one unit of SOD (Beyer & Fridovich, 1987). Because of 

its role in superoxide dismutation, SOD is highly conserved among vertebrates but 

requires the function of catalase and glutathione peroxidase to further breakdown the 

H2O2 produced to prevent harmful impacts to the fish (Maral et al., 1977). 

Catalase	
 Catalase (CAT) is a heme containing enzyme found in subcellular organelles, 

such as peroxisomes of liver or microperoxisomes found in various other cells (Regoli et 

al., 2012; Tort, 2012). CAT works through the reactions: CAT + H2O2 à CAT-H2O2 and 

then CAT-H2O2 + H2O2 à CAT + 2H2O + O2 (Wheeler et al., 1990). Hydrogen 

peroxide, if not detoxified, can become the toxic hydroxylradical-3-amino-1,2,4-triazole, 

so detoxification through the irreversible inactivated catalase is essential for proper 

cellular function. After forming the inactivated catalase, the CAT-H2O2 goes through an 

NADPH-dependent process to regenerate active catalase (Paller, 1991). Like SOD, it is 

found in the gills in higher amounts, especially after repeated low level exposures to 

H2O2 (Tort, 2012). For this determination, the rate of H2O2 decay is measured and is 

proportional to the amount of CAT present in the sample (Regoli et al., 2012). Although 

CAT seems to be more important in catalyzing the decomposition of H2O2, it shares this 

role with glutathione peroxidase (GPx) and GPx may be more sensitive to H2O2 in some 

cases (Grant et al., 1998; Barim-Oz & Yilmaz, 2016).  

Glutathione	Peroxidase	
 Glutathione peroxidase comes in both selenium-dependent and selenium-

independent forms, and works to protect cells from oxidative damage caused by H2O2 

and organic hydroperoxides. Specifically, the selenium-dependent form reacts with 
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hydroperoxides, including H2O2 and organic peroxides. The selenium-independent form, 

on the other hand, reacts only with organic hydroperoxides (Regoli et al., 2012). Unlike 

catalase, GPx requires co-factors, including glutathione reductase (GR) and NADPH. It 

also works through two intermediates, glutathione (GSH) and glutathione disulfide 

(GSSG) (Cullen & Weydert, 2010). The reactions are: ROOH+ 2GSH  ROH+ 

GSSG+ H2O and then GSSG+ NADPH + H+  2GSH + NADP+(Wheeler et al., 1990). 

GPx seems to be most important in membranes and preventing auto-oxidation of lipids, 

although it has also been found to be important in protecting hemoglobin from oxidative 

degradation (Cullen & Weydert, 2010; Barim-Oz & Yilmaz, 2016). There are two 

different ways to measure GPx activity, depending on if one wants to measure total GPx 

activity or only the dependent form. In both cases, the amount of GPx is measured 

through a reduction in the co-substrate NADPH as the H2O2 (for the measurement of the 

selenium-dependent form) or cumene hydroperoxide (for both Se-dependent and 

independent form) is broken down (Cullen & Weydert, 2010).  

Circadian Rhythm 
 Through the rotation of the Earth, there is a daily light and dark cycle that affects 

organisms and their internal clocks, which impacts many physiological and behavioral 

processes (Duffield, 2003; Reebs, 2011). There is still debate as to how a circadian 

rhythm functions in fish, although they have been shown to exhibit a circadian rhythm 

when in constant conditions. In mammals, there is a master clock, called SCN, but none 

has been found in fish yet. Instead, the pineal gland seems to be a major contributor to the 

circadian clock because it is directly photosensitive, even when in culture. When the 

pineal gland is removed, however, a circadian rhythm still exists so there is a possibility 
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of a complicated network of both central and peripheral clocks that may be linked to 

create the overall circadian rhythm impacting the whole body (Reebs, 2011). Melatonin, 

which is synthesized from tryptophan in the pineal glands, appears to be the main 

hormone impacting the circadian rhythm. Melatonin levels rise through the night and are 

low during the day through the activation by the pineal photoreceptor cell in low light 

situations. This melatonin is then able to circulate throughout the circulatory system to 

impact locomotor activity, thermal preference, rest, food intake, vertical migration, skin 

pigmentation, osmoregulation, and metabolism (Falcón et al., 2010). Specifically, 

melatonin seems to work through G-protein coupled receptors, which brings about a 

change in the target cell. However, there is great variance in the number and location of 

these receptors making it more difficult to determine the full extent of melatonin’s 

function in fish (Pévet, 2004).  

 Since the natural circadian rhythm can impact absorption, distribution, 

metabolism and elimination, there is evidence that the time of day of drug administration 

can have an impact on the efficacy and possibly toxicity of medications, including H2O2 

(Bruguerolle, 1998; Vera & Migaud, 2016). Bruguerolle (1998) found that “… circadian 

variations in gastric acid secretion and pH, motility, gastric emptying time, 

gastrointestinal blood flow, drug protein binding, liver enzyme activity and/or hepatic 

blood flow, glomerular filtration, renal blood flow, urinary pH and tubular resorption 

may play a role in such kinetic variations.” In a recent study, Vera & Migaud (2016) 

examined the effect of time on drug side effects, specifically H2O2, to help improve the 

treatment effectiveness. They found that in the liver, the gene expression for antioxidant 

enzymes displayed a daily rhythm, which correlated to different effects based on the time 
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of day H2O2 was given. They also found a significant difference in stress and 

toxicological response depending on the time of day, specifically an increase in sublethal 

toxic effects during the first half of the day.  

Antioxidants and Circadian Rhythm 
Although initially proven to be effective by several studies (Treasurer et al., 2000; 

Arvin & Pedersen, 2001, etc), the H2O2 treatment is beginning to lose effectiveness 

against many of the organisms originally treated. A decrease in the effectiveness 

indicates that organisms are beginning to develop resistance, possibly through genetic 

selection of resistant organisms or organisms are developing detoxifying enzymes. On 

farms that have previously used H2O2, only a 63% reduction was found at a higher 

dosage than recommended. Though the organisms are removed, many can recover from 

the treatment, some in as little as thirty minutes and then resettle on the salmon 

(Treasurer & Grant, 1997; Treasurer et al., 2000). The progeny of these organisms then 

show a reduced sensitive to H2O2, confirming the theory of genetic selection towards 

resistant organisms (Helgesen et al., 2015). To combat this problem, an increase in 

treatment dosage would be needed. However, this can cause many negative consequences 

for the fish. 

There has been evidence of toxicity effects based on temperature and the dose of 

H2O2 given, which seems consistent with the narrow safety margin typically observed 

(Bowers et al., 2002; Adams et al., 2011). There appears to be a significant correlation 

between dosage and gill damage in fish, especially when the temperature increases 

(Kiemer & Black, 1997). In addition, mortalities have been shown to occur at doses 

above 2.5g/L, with most mortalities within thirty hours of treatment (Kiemer & Black, 

1997; Gaikowski et al., 1999; Treasurer et al., 2000). So, although a higher treatment 
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dosage is needed to combat the development of resistance, these would typically result in 

an increase in fish mortality.  

The goal of this experiment is to identify whether antioxidants, specifically SOD, 

CAT, and GPx, appear to run on a diurnal rhythm. Running on a diurnal rhythm, they 

should have a time which they are at the highest level. If this time can be indicated, a 

larger dose of H2O2 could be used to treat for ectoparasites, especially sea louse and 

amoebic gill disease. To accomplish this, Atlantic salmon exposed to a 12-hour light/dark 

cycle will be sampled every four hours over a 52-hour period. There levels of SOD, CAT, 

and GPx will then be measured using spectrophotometry and averaged for each time 

point.  

Materials and Methods 
Sample Collection       
  The fish were kept in an enclosed room in one, 650-liter tank filled with fresh 

water in a flow through system. The water was kept at 10°C. The fish were fed to 

satiation with size appropriate standard salmon pellets, about 3 mm. The room was kept 

on a 12-hour light-dark cycle, with light measured 36 inches below the light source, 

directly above the water surface. Fish use was approved by IACUC.   

Sampling was done for 52 hours to have an overlap of each time point, to 

determine if there is a repeating cycle in the antioxidant amounts. Sampling was done 

every 4 hours, with the light and temperature of the tank being measured at each 

sampling point. Three fish were collected at each time point and put into a MS222 

solution with a concentration of approximately 500mg/L  for euthanasia. Each fish was 

then weighed and their length measured, which was recorded on a grid sheet. After 

measurements were taken, each fish had part of its liver and gill removed with a sterile 
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scalpel and scissors. All samples were then put into pre-weighed tubes, which were 

labeled with the time point (1, 2, 3, etc), the sample part (either l for liver or g for gill), 

and which fish it is (either a, b, or c to correspond to the measurements recorded on the 

sample sheet). The board used was wiped down with an ethanol solution and the scalpel 

and scissors put into a separate ethanol solution for sterilization. After each time point, 

the samples collected were brought into the lab and stored at -80°C to prevent 

degradation. After all samples were collected, the collection tubes were reweighed to 

determine the weight of each sample. 

Sample Storage 
         Each sample was stored in 600 microliters of potassium phosphate (KPi) buffer at 

pH 7.5 at -80°C (Regoli et al., 2012). After the addition of buffer, each sample was 

homogenized using a plastic pestle. The samples were then centrifuged to bring all solid 

material to the bottom. Each sample was then separated into three new tubes, labeled with 

the same time point, sample part, and fish but also labeled with roman numerals to 

distinguish the three tubes. Two hundred microliters of the samples were put into each 

tube. 

Total protein Assay 
         A Bradford assay was used for each sample to determine the protein content, 

which was needed for the antioxidant calculations. A deionized water (DI) blank and 

seven standards were used, with the standards having protein concentrations of 0.125, 

0.25, 0.50, 0.75, 1.0, 1.5, and 2.0µg/mL. A microplate was used for the protein assay. 

Two hundred microliters of Coomassie Brillant Blue G-250 was then put into each well 

using a multi-channel pipette. The plate was then mixed gently for 30 seconds by sliding 

the plate back and forth. Incubation at room temperature then occurred for 10 minutes 
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before the absorbance was read at 595nm using a microplate reader. The protein assay 

results were then saved in Excel and the average of the 2 recordings calculated. Each 

average was multiplied by 10, the dilution factor, to obtain the protein in µg/µL. 

Antioxidant Determination 
         The procedure for the superoxide dismutase, catalase, and glutathione peroxidase 

determination was adapted from Regoli et al’s Spectophotometric Assays of Antioxidants 

(2012). Each spectrophotometric assay was done in duplicate for a replication of all 

results. All solutions were made per Regoli et al’s results and reagent amounts used were 

adjusted as needed based on initial results. All tests were done through 

spectrophotometric analysis. Potassium phosphate (KPi) buffer was used for all three 

antioxidant measurements. Dissolving 0.680g of KH2PO4 in 50mL of distilled water 

made this buffer. The pH was then adjusted with concentrated potassium hydroxide to get 

it to the pH needed for that specific antioxidant test. 

Superoxide	Dismutase	
Superoxide dismutase (SOD) was the first antioxidant test performed. For the KPi 

buffer, the pH was adjusted to 7.8. Dissolving 3.7224g of EDTA in 100mL of distilled 

water made the 100mM EDTA solution.  Xanthine oxidase(XO) had a concentration of 

300mU/mL, and was diluted to this concentration with cold distilled water. The working 

buffer for superoxide dismutase consisted of 5 mL KPi buffer, 100µL EDTA, 0.68mg 

hypoxanthine and 12.3mg cytochrome c. This test was performed using a plastic cuvette 

at a wavelength of 550nm. First, a reference reaction was performed, which consisted of 

500µL of working buffer, 330µL of 100mM KPi buffer, and 170µL of XO. After the 

addition of XO, the cuvette was mixed and the increase in absorbance was read for three 

minutes. For the first duplicate, three different sample amounts were used, each at a 1:9 
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dilution. For the second duplicate, four sample amounts were used at either a 1:11 or 1:21 

dilution depending on the results from the first duplicate. For all readings, 500µL of 

working buffer was used and 170µL of XO was added last, followed by mixing and 

reading the absorbance. For the first duplicate, the first cuvette contained 314.5µL of KPi 

buffer, 1.5µL of sample and 15µL of DI water; the second contained 308µL of KPi 

buffer, 2.0µL of sample and 20µL of DI water; and the third contained 297µL KPi buffer, 

3.0µL sample and 30µL of DI sample. For the second duplicate, the first cuvette 

contained 319.5µL KPi, 0.5µL sample and 10µL DI water. The second cuvette contained 

309µL KPi, 1µL sample, and 20µL DI water. The third cuvette contained 288µL KPi, 

2µL sample, and 40µL DI water. The fourth sample contained 267µL KPi, 3µL sample 

and 60µL DI water. After all samples were read, the change in absorbance for each 

sample and the volume of sample was plotted. The line of best fit was used to determine 

an equation for each sample, either linear or polynomial depending on the graph. For the 

determined equation, x was the value corresponding to a 50% change in absorbance when 

compared to the reference reaction. The y-variable was the sample volume needed to 

reduce the reference by 50%, which is equivalent to 1 unit of SOD. This value needed to 

be normalized with the protein content. In order to accomplish this, the equation used 

was: SOD (units/ mg protein) = (1000/Vol)*(sample dilution)/proteins where “Vol” is the 

y-variable found above. After all these calculations were performed, the averages for 

each time point were calculated and graphed. 

Catalase	
For catalase, the KPi buffer had a pH of 7.0.  A 1.2M H2O2 solution was made by 

adding 100µL of H2O2 stock to 900µL of distilled water. To check the concentration of 
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the stock solution, prior to creating the 1.2M solution, three different dilutions of the 

H2O2 stock were made and the absorbance measured at 240nm in a UV cuvette. The 

dilutions used were 1:20, 1:40, and 1:50. They contained 50µL H2O2 with 950µL DI 

water, 25µL H2O2 with 975µL DI water, and 20µL H2O2 with 980µL DI water 

respectively. Once the absorbance was measured, each absorbance was divided by the 

extinction coefficient, 0.04mM-1 cm-1. This was then multiplied by the dilution factor and 

all three were averaged to determine the H2O2 concentration of the stock solution. To 

measure the catalase activity, a plastic cuvette was used and 970µL KPi buffer was added 

and the spectrophotometer zeroed at 240nm. Then, 10µL of H2O2 was added and the 

absorbance read, which needed to be about 0.48. This absorbance was read until it 

stabilized at this value. Finally, 10µL of sample was added and the absorbance read for 3 

minutes. Each sample absorbance was then graphed and the change in absorbance per 

minute was calculated using the linear equations for each graph. The catalase activity was 

calculated through the equation: (change in absorbance per minute/-0.04) * (sample 

dilution)/proteins. The average for each time point was calculated and the averages 

graphed. 

Glutathione	Peroxidase	
For glutathione peroxidase, the KPi buffer was at a pH of 6.97. One hundred 

micromolar EDTA solution was also used, as described above. The GSH working 

solution was also at 100mM and was freshly made by dissolving 0.0307g of glutathione 

reduced in 1mL of distilled water. NADPH working solution was also freshly prepared 

by dissolving 2mg of NADPH into 100µL of distilled water. Glutathione reductase was 

diluted to 100U/mL in cold distilled water to make the GR working solution, also freshly 
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prepared. The cumene hydroperoxide (CHP) working solution was freshly prepared by 

adding 38µL of a 5.2M CHP stock solution into 962µL of methanol. This was only used 

for the determination of Se-dependent and Se-independent forms. For the determination 

of the Se-dependent and Se-independent forms, a plastic cuvette was used at a 

wavelength of 340nm. For the blank, 946µL KPi buffer, 10µL EDTA, 20µL GSH 

working solution, and 10µL GR working solution was added to the cuvette. The 

instrument was then zeroed and then 10µL of NADPH working solution added. The 

absorbance was read and needed to be in between 0.9 and 1.2. Next, 4µL of CHP 

working solution as added and then the absorbance read for 2 minutes. For the sample, 

instead of 946µL of KPi buffer, only 846µL was added and a 1:5 dilution of the sample 

was added as well. This consisted of 20µL of sample and 80µL of DI water. Five of the 

samples (1a, 1b, 1c, 2a, and 6b) needed to be assayed at a 1:20 dilution because they 

contained too much protein and did not give linear graphs. This dilution consisted of 5µL 

sample and 95µL of DI water. Two of the samples (5a and 7b) were done at a 1:50 

dilution for the same reason as outlined above. This consisted of 2µL sample and 98µL 

DI water.  

Instead of CHP, the Se-dependent form involved sodium azide (NaN3) and H2O2. 

Sodium azide was made to 100mM by dissolving 6.5mg into 1mL of distilled water. A 

100mM H2O2 solution was made by adding 16.6µL of a 12M H2O2 stock solution into 

1983.4µL of distilled water. Into the plastic cuvette, 835µL KPi buffer (actual pH= 6.95), 

10µL NaN3 working solution, 10µL EDTA, 20µL GSH working solution, and 10µL GR 

working solution was added. For the blank, 100µL of KPi buffer was added. For the 

samples, 20µL of sample and 80µL of DI water was added. After these additions, the 
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instrument was zeroed. Then 10µL of NADPH working solution was added and the 

absorbance read, which should have been between 0.9-1.2. Lastly, 5µL H2O2 working 

solution was added and the absorbance was read for 2 minutes. As in the glutathione 

peroxidase Se-dependent and Se-independent forms above, five of the samples (1a, 1b, 

1c, 2a, and 6b) needed to be assayed at a 1:20 dilution because they contained too much 

protein and did not give linear graphs. This dilution consisted of 5µL sample and 95µL of 

DI water. Two of the samples (5a and 7b) were assayed at a 1:50 dilution for the same 

reason as outlined above. This consisted of 2µL sample and 98µL DI water. The sample 

2a was also assayed at a 1:50 dilution for the duplicate. 

         For both glutathione peroxidase measurements, the calculation was the same. 

First, each sample was graphed and the line of best fit added. The slope from the line of 

best fit corresponded to the change in absorbance of the sample. This was also done for 

the blank, and corresponded to the change in absorbance of the blank. The absorbance of 

the final sample was calculated by subtracting the change in absorbance of the blank from 

the change in absorbance of the sample. The equation to calculate the glutathione 

peroxidase activity is: (change in absorbance final sample/-6.22) * (sample dilution) 

*1000/proteins. As with the other calculations, the average for each time point was 

calculated and graphed. 

Statistical Analysis 
After all the antioxidant calculations were completed, statistical analysis was done 

using the statistical program R. Specifically, ANOVA tests were performed to examine 

for statistical significance. The test was done against the time point and values were 

considered significant if p<0.05.  
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Results 
Sample Collection 

The salmon were sampled from 12pm on 6/9/16 to 4pm on 6/11/16. The sampling 

data is given in Appendix A. The average fish length was 18.14cm with a standard error 

of 5.03cm. The average fish weight was 59.02g with a standard error of 15.77g. The 

average temperature was 9.85°C with a standard error of 2.63°C. The lights were on for 

sampling at 8am, 12pm and 4pm. They were off for 8pm, 12am, and 4am. The light level 

had an averge of 7991.84 lumens during the light cycle and 0 lumens during the dark 

cycle.  

Total Protein Assay 
A Bradford Assay was conducted for each sample in duplicate, and redone on 

9/13/16 to determine if protein degradation occurred during the experiment and storage, 

which involved freezing and thawing. The average protein content, including sample 13b 

is 14.558µg/µL. Without sample 13b, which is not included in the antioxidant averages 

due to its low protein content of 0.5915µg/µL, the average protein content is 

14.898µg/µL. Not including 13b, the protein content ranges from 7.735µg/µL, in sample 

13a, to 19.72µg/µL, in sample 5c. The median protein content is 15.71µg/µL. To see all 

protein contents, see Appendix B.  
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Figure 1: Average protein content in µg/µL as determined in the Bradford Assay with standard error shown. Dark 
squares indicate the times when lights were turned off, white squares when the lights were turned on.  

 
Antioxidants 
Superoxide	Dismutase	
 The average SOD content for each sample ranged from -3.025U/mg protein, for 

sample 12b, to 13.937U/mg protein, for sample 2c. The average SOD content is 

2.049U/mg protein and the median is 1.322U/mg protein. The average SOD content for 

each time point is displayed in Table 1. A graph of these values is showed in Figure 2.  

Table 1: Average superoxide dismutase in U/mg protein for each sample time and its accompanying standard error 

Sample Time Average SOD (U/mg protein) Standard Error 

0 0.71396667 0.15098516 

4 5.423967 5.213908 

8 3.504283333 1.331506352 

12 2.110317 0.850152 

16 1.072467 0.184768 
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20 2.19655 1.034975 

24 0.1932 0.700128 

28 3.616767 2.490278 

32 0.697933 0.643413 

36 1.49205 0.674977 

40 1.565983 1.324946 

44 -0.043133 1.877791 

48 3.082125 0.350775 

52 3.0121 1.234331 

 
Figure 2: Average superoxide dismutase activity for each sampling time, with standard error shown. Dark squares 
indicate the times when lights were turned off, white squares when the lights were turned on.  

Catalase	
 Catalase values ranged from 6.656*10—3 µmol/min* mg protein, for sample 5c, to 

3.984*10-2µmol/min* mg protein, for sample 5a. The average CAT content is 2.061*10-

2µmol/min* mg protein and the median is 2.039*10-2µmol/min* mg protein. All average 

values are shown in Table 2 and displayed in Figure 3.  
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Table 2: Average catalase in µmol/min* mg protein for each sample time and its accompanying standard error 

Sample Time Average CAT (µmol/min* mg protein) Standard Error 

0 0.02162994 0.00192135 

4 0.018203 0.005557 

8 0.013022829 0.001699263 

12 0.015434 0.003064 

16 0.022755 0.011748 

20 0.023752 0.002385 

24 0.020054 0.010039 

28 0.01277 0.001268 

32 0.02476 0.006214 

36 0.03012 0.006214 

40 0.022196 0.002663 

44 0.022905 0.003036 

48 0.021431 0.003036 

52 0.019792 0.00669 
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Figure 3: Average catalase activity for each sampling time, with standard error shown. Dark squares indicate the times 
when lights were turned off, white squares when the lights were turned on.  

Glutathione	Peroxidase	Dependent	
 GPx dependent has a minimum value at sample 7b of 8.069*10-5nmol/min*mg 

protein and a maximum at sample 2c with a value of 4.110*10-3nmol/min*mg protein. 

The average is 1.738*10-3 nmol/min*mg protein and the median is 1.640*10-3 

nmol/min*mg protein. The average value at each sampling time is displayed in Table 3 

and Figure 4.  

Table 3: Average glutathione peroxidase dependent activity, in nmol/min* mg protein, and its accompanying standard 
error 

Sampling Time Average GPx activity (nmol/ min*mg protein) Standard Error 

0 0.00040093 0.000044548 

4 0.002221 0.001345 

8 0.003967372 0.0000543436 

12 0.001285 0.000231 

16 0.000779 0.000550 

20 0.001975 0.001182 

24 0.001114 0.000634 
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28 0.00196 0.000213 

32 0.001531 0.000463 

36 0.00204 0.000217 

40 0.001786 0.000344 

44 0.002286 0.001018 

48 0.001859 0.00022 

52 0.001175 0.0000339 

 
Figure 4: Average glutathione peroxidase dependent activity for each sample time, with standard error shown. Dark 
squares indicate the times when lights were turned off, white squares when the lights were turned on.  

Glutathione	Peroxidase	Dependent	and	Independent	
 The smallest GPx dependent and independent value is 1.619*10-5nmol/min*mg 

protein, from sample 5a, and the largest is 3.603*10-3nmol/min*mg protein, from sample 

12a. The average is 1.350*10-3nmol/min*mg protein, and the median is 1.321*10-3 

nmol/min*mg protein. The average for each sample time is in Table 4 and displayed in 

Figure 5.  

Table 4: Average glutathione peroxidase dependent and independent activity, in nmol/min * mg protein, and its 
accompanying standard error 

Sampling Time Average GPx activity (nmol/ min*mg protein) Standard Error 
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0 0.00012923 0.000060291 

4 0.000834 0.000408 

8 0.001248495 0.000461554 

12 0.001186 0.000285 

16 0.000716 0.000553 

20 0.001503 0.00095 

24 0.001153 0.000765 

28 0.001579 0.00018 

32 0.001656 0.0006 

36 0.001561 0.000408 

40 0.001984 0.000596 

44 0.00213 0.000904 

48 0.001367 0.0000574 

52 0.001855 0.00031 

 
Figure 5: Average glutathione peroxidase dependent and independent activity for each sampling time, with standard 
error shown. Dark squares indicate the times when lights were turned off, white squares when the lights were turned on.  
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Statistical Analysis 
 With a series being considered significant with a p<0.05, only one sample set is 

statistically significant, GPx dependent with a p=0.02. SOD has p=0.68, CAT p=0.41, 

and GPx independent and dependent p=0.20, so none were statistically significant. 

Discussion 
 Unfortunately, the results do not appear to be statistically significant for the 

antioxidants, except GPx dependent, although viewing the graphs a rhythm does seem to 

appear. For SOD, a cycle appears to be developing for the first 24 hours, with the average 

at time 0 and time 24 similar in value with an increase after these points. The signal does 

appear to dampen out after 28 hours however, which will be discussed later. In addition, 

there is a large standard error (>2.0) present at time 4 and 28. CAT also appears to have a 

cycle that seems to repeat from time 0 to time 20. This cycle does not seem to dampen 

out but does not repeat perfectly, with the cycle not consistent after time 28. After this 

time point, the CAT levels appear to remain high. For CAT, a large standard error 

(>1.0*10-2) is present at times 16, 24, and 48. GPx dependent and independent does not 

appear to have much of a cycle, instead rising for most of the time points except for a 

slight decrease between time 8 and 12 and between time 32 and 36. A large decrease 

occurs between times 12 and 16 and between times 44 and 48. There also appears to be 

more variation, since larger standard errors (>5.0*10-4) can be seen at times 16, 20, 24, 

32, 40, and 44. GPx dependent was considered statistically significant when run against 

time point, although the cycle appears less strong after hour 28. A large standard error 

(>2.00*10-3) is apparent at time 4, 20, and 44.  

 A possible cause for the finding of no statistical significance is the variance 

within the samples. As is apparent by the occasionally large standard errors, at some time 
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points there is a larger difference between the salmon than at others, which could indicate 

that the sample average is not actually indicative of the time point average. A possible 

explanation for this is human error during testing. Inaccurate amounts could have been 

added to the cuvettes and, since the reactions are dependent on the amounts added, this 

would alter the amount of antioxidant calculated based on the spectrophotometric data 

and, therefore, alter the overall time point average.  

 As described above, the possible rhythm that can be seen in the graphs above 

appears to dampen out after a few hours. This is a common problem with fish because, as 

described by Reebs (2011), fish kept in constant conditions will only exhibit a circadian 

rhythm for typically several days, sometimes several weeks. He also found that the 

rhythm can vary based on when the animal was captured or if it is in groups or alone. In 

the wild, fish synchronize based on daily environmental cycles, which would not be 

present in an indoor aquaculture setting. This could also contribute to the dampening out 

or overall lack of a circadian rhythm.  

 Another possible contributing factor to the variation in results and lack of 

statistical significance is stress. Stress could have occurred because of the sampling 

procedure, which had all fish in one tank that was sampled every four hours. This means 

that every four hours, a net was dropped into the tank, three fish were captured and 

brought to another room where they were put into MS222 for euthanasia. Barton & 

Iwama (1991) describe stress as “…caused by physical disturbances encountered in 

aquaculture, such as handling and transport.” Stress, they found, could the alter 

physiological functions, hormones, or cellular mechanisms. Overall, the stress can alter 

the fish’s homeostatic state especially if the stress is chronic. This stress is caused by a 
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combination of cortisol, adrenocorticotrophic hormone, adrenaline, and several other 

hormones.  

 Since stress can alter hormone levels, it is possible that an increase in cortisol 

could alter the amount of melatonin or antioxidants present within the salmon. If the 

melatonin was impacted, this would cause alterations in the circadian rhythm, which as 

discussed previously is dependent on melatonin levels increasing at night. Antioxidants 

could also be impacted, although it is currently unknown if they are affected and, if they 

are, if it causes an increase or decrease in their overall levels. 

 A recent, similar study by Vera & Migaud (2016) did show a significant daily 

rhythm in antioxidant enzymes through gene expression in the liver, again leading to the 

question of why the current study did not show a significant rhythm. This is also not the 

first time that genes encoding these enzymes have been found to have a daily rhythm 

(Duffield, 2003). In the case of Vera & Migaud (2016), they treated the fish with H2O2 at 

various times of the day and determined that the time of administration did have a 

significant impact on the overall stress response in the fish. Specifically, they measured 

the level of cortisol and saw a significant daily rhythm. This leads to more questions 

about whether stress had an impact on the antioxidant levels in the current experiment or 

if something else in the current study impacted the levels of antioxidants to cause a 

change in the antioxidant levels leading to the large variation and lack of statistically 

significant rhythm.   

 If this experiment were to be repeated, more than one tank should be used to 

house the fish and the tanks cycled through to combat a possible stress response. Great 

care also needs to be taken to avoid as much human error as possible, since this could 
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have been a contributing factor to the lack of significant results. It might also be 

interesting to perform the GPx dependent experiment without the sodium azide to include 

CAT in the overall reaction. This could help confirm the CAT results since the two work 

together to breakdown H2O2. The length of the experiment could also be reevaluated to 

examine for the possible dampening affect, both increasing and decreasing the length of 

the experiment to examine if the cycle continues past 52 hours or if the results are 

statistically significant for a shorter length of time.  

 In closing, more work needs to be done to study antioxidants and their possible 

circadian rhythm to allow for a higher dose of H2O2 to be used for treatment, especially 

for sea lice and amoebic gill disease. More tanks should be used to house the fish and 

cortisol levels should be measured to account for a possible stress effect altering 

antioxidant or melatonin levels. Additional studies should focus on antioxidant times with 

increased levels to determine if a higher dose of H2O2 can be used without some of the 

negative affects currently observed in treatment.  
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Appendix A: Sample Fish Length and Weight, Recorded 
Temperature 
 
Time Fish A 

Length 
(cm) 

Fish B 
Length 
(cm) 

Fish C 
Length 
(cm) 

Fish A 
Weight 
(g) 

Fish B 
Weight 
(g) 

Fish C 
Weight 
(g) 

Temperature 
(°C) 

12pm - - - 54 31 43 10.2 
4pm 19 18.5 11.7 68 63 12 10 
8pm 19.2 19.6 16 64 73 51 9.8 
12am 20 20.8 17.9 65 81 57 9.6 
4am 17.2 14.4 18.1 60 33 45 9.9 
8am 22.5 19.7 17 92 74 59 9.8 
12pm 19 20.5 18 62 81 61 10 
4pm 16 22 20 36 96 82 9.5 
8pm 19.5 20 20.2 70 83 72 9.8 
12am 20 20.4 18.6 73 67 57 9.9 
4am 17.5 18 17.5 55 65 54 9.8 
8am 19.4 19.9 11.1 67 78 12 9.9 
12pm 14.1 12.5 18.2 24 22 59 9.9 
8pm 19 18.5 16 63 61 54 9.8 
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Appendix B: Bradford Assay 
Sample Trial 1 (µg/µL) Trial 2 (µg/µL) Average 

(µg/µL) 
Protein Content 
(µg/µL) 

1a 1.569 1.472 1.5205 15.205 
1b 1.872 2.027 1.9495 19.495 
1c 1.913 1.66 1.7865 17.865 
2a 1.346 1.971 1.6585 16.585 
2b 1.149 1.714 1.4315 14.315 
2c 1.367 1.293 1.33 13.3 
3a 0.873 1.28 1.0765 10.765 
3b 1.646 1.823 1.7345 17.345 
3c 1.129 0.864 0.9965 9.965 
4a 1.851 1.849 1.85 18.5 
4b 1.309 1.268 1.2885 12.885 
4c 1.293 1.255 1.274 12.74 
5a 0.645 1.341 0.993 9.93 
5b 1.629 1.874 1.7515 17.515 
5c 1.967 1.977 1.972 19.72 
6a 1.585 1.568 1.5765 15.765 
6b 1.907 2.000 1.9535 19.535 
6c 1.677 1.397 1.537 15.37 
7a 1.181 1.904 1.5425 15.425 
7b 0.869 1.522 1.1955 11.955 
7c 1.892 1.938 1.915 19.15 
8a 1.929 1.931 1.93 19.3 
8b 1.79 1.898 1.844 18.44 
8c 1.25 0.938 1.094 10.94 
9a 1.016 1.184 1.1 11 
9b 1.231 1.453 1.342 13.42 
9c 1.695 1.624 1.6595 16.595 
10a 1.075 0.909 0.992 9.92 
10b 1.853 1.929 1.891 18.91 
10c 1.745 1.706 1.7255 17.255 
11a 1.572 1.638 1.605 16.05 
11b 1.159 1.317 1.238 12.38 
11c 1.699 1.706 1.7025 17.025 
12a 1.706 1.801 1.7535 17.535 
12b 1.673 1.681 1.677 16.77 
12c 1.665 1.573 1.619 16.19 
13a 0.722 0.825 0.7735 7.735 
13b 0.712 0.471 0.5915 0.5915 
13c 1.242 1.309 1.2755 12.755 
14a 1.074 1.14 1.107 11.07 
14b 0.738 0.962 0.85 8.5 
14c 1.49 1.652 1.571 15.71 
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Appendix C: Superoxide Dismutase 
Sample Duplicate 1 Duplicate 2 Average 
1a 0.7747 1.1414 0.95805 
1b 0.3293 0.7942 0.56175 
1c 0.827 0.4172 0.6221 
2a 1.277 0.806 1.0415 
2b 0.908 1.6788 1.2934 
2c 0.939 26.935 13.937 
3a 1.9502 8.025 4.9876 
3b 1.2282 1.5435 1.3858 
3c 5.73 2.5489 4.13945 
4a 6.341 0.4176 3.3793 
4b 1.6934 2.2335 1.96345 
4c 0.898 1.0784 0.9882 
5a 0.6397 1.6601 1.1499 
5b 0.662 0.9004 0.7812 
5c 1.7527 0.8199 1.2863 
6a 0.7295 0.4303 0.5799 
6b 0.2661 6.5973 3.4317 
6c 4.1352 1.0209 2.57805 
7a 1.2877 1.1512 1.21945 
7b -2.6194 1.1067 -0.75635 
7c -1.5293 1.7623 0.1165 
8a 0.5842 2.06 1.3221 
8b -1.969 17.3123 7.67165 
8c 1.3593 2.3538 1.85655 
9a 1.6171 1.442 1.52955 
9b 1.7204 1.6475 1.68395 
9c -0.873 0.9458 0.0364 
10a 2.4525 2.7355 2.594 
10b 0.5847 1.3407 0.9627 
10c 1.3169 0.522 0.91945 
11a 6.09 0.9008 3.4954 
11b -0.98 0.4867 -0.24665 
11c 1.5729 1.3255 1.4492 
12a 0.4931 1.161 0.82705 
12b -7.734 1.6847 -3.02465 
12c 2.2281 1.9083 2.0682 
13a 3.4534 3.4124 3.4329 
13b 404.8 3.597 204.1985 
13c 1.8609 3.6018 2.73135 
14a 2.4711 4.1214 3.29625 
14b 3.6264 5.57 4.5982 
14c 0.7655 1.5182 1.14185 



 36 

Appendix D: Catalase  
Sample Duplicate 1 Duplicate 2 Average 
1a 0.030993094	 0.018497205	 0.02474515 
1b 0.030200051	 0.009297256	 0.019749 
1c 0.017422334	 0.023369717	 0.020396026 
2a 0.017636418	 0.012360567	 0.014998 
2b 0.036849 0.017464 0.027157 
2c 0.011278 0.013628 0.012453 
3a 0.004877 0.015676 0.010276 
3b 0.009297 0.018809 0.014053 
3c 0.01154 0.017938 0.014739 
4a 0.024865 0.015946 0.020405 
4b 0.01038 0.016492 0.013436 
4c 0.014914 0.010008 0.012461 
5a 0.043807 0.035876 0.039841 
5b 0.020197 0.023337 0.021767 
5c 0.002219 0.011093 0.006656 
6a 0.017602 0.023073 0.020338 
6b 0.023675 0.023995 0.023835 
6c 0.022528 0.031636 0.027082 
7a 0.014182 0.007131 0.010656 
7b 0.03074 0.042033 0.036386 
7c 0.01423 0.01201 0.01312 
8a 0.008484 0.017034 0.012759 
8b 0.009829 0.012134 0.010982 
8c 0.015425 0.013711 0.014568 
9a 0.016136 0.013977 0.015057 
9b 0.032787 0.031576 0.032181 
9c 0.02802 0.026062 0.027041 
10a 0.055192 0.010837 0.033014 
10b 0.028689 0.032324 0.030506 
10c 0.030354 0.023327 0.02684 
11a 0.021184 0.021573 0.021379 
11b 0.02393 0.028675 0.026303 
11c 0.020264 0.017548 0.018906 
12a 0.023168 0.023169 0.023168 
12b 0.018485 0.018485 0.018485 
12c 0.027949 0.026174 0.027061 
13a 0.042502 0.008728 0.025614 
13b 0.038039 0.054945 0.046492 
13c 0.024108 0.010388 0.017248 
14a 0.01897 0.022019 0.020495 
14b 0.007794 0.012206 0.01 
14c 0.03485 0.022915 0.028883 
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Appendix E: Glutathione Peroxidase Dependent and Independent 
Sample Duplicate 1 Duplicate 2 Average 
1a 0.00021147 0.00021147 0.00021147 
1b 0.0000412 0.0000412 0.0000412 
1c 0.000179985 0.0000899926 0.000134989 
2a 0.000194 0.000145 0.00017 
2b 0.001348 0.000898 0.001123 
2c 0.001451 0.000967 0.001209 
3a 0.001493 0.00239 0.001942 
3b 0.002225 0.0000927 0.001159 
3c 0.000645 0.000645 0.000645 
4a 0.001043 0.001043 0.001043 
4b 0.000998 0.000749 0.000873 
4c 0.001767 0.001514 0.001641 
5a 0.0000648 -0.0000324 0.0000162 
5b 0.002019 0.001101 0.00156 
5c 0.000489 0.000652 0.000571 
6a 0.002448 0.003059 0.002753 
6b 0.0000823 0.0000823 0.0000823 
6c 0.001883 0.001464 0.001674 
7a 0.000834 0.001668 0.001251 
7b 0.0000269 0.0000269 0.0000269 
7c 0.001679 0.002687 0.002183 
8a 0.001499 0.001666 0.001583 
8b 0.001176 0.001918 0.001831 
8c 0.001176 0.00147 0.001323 
9a 0.001462 0.000877 0.00169 
9b 0.002156 0.003115 0.002636 
9c 0.000969 0.001356 0.001163 
10a 0.000648 0.001297 0.000972 
10b 0.002381 0.00187 0.002125 
10c 0.001677 0.001491 0.001584 
11a 0.001262 0.001202 0.001232 
11b 0.003195 0.002597 0.002896 
11c 0.001945 0.0017 0.001823 
12a 0.004273 0.002934 0.003603 
12b 0.0014 0.001534 0.001467 
12c 0.001648 0.000993 0.001321 
13a 0.001788 0.000831 0.001309 
13b 0.47022 0.298984 0.384602 
13c 0.002092 0.000756 0.001424 
14a 0.00183 0.000871 0.001351 
14b 0.002761 0.001513 0.002137 
14c 0.002517 0.001637 0.002077 
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Appendix F: Glutathione Peroxidase Dependent 
Sample Duplicate 1 Duplicate 2 Average 
1a 0.00026434 0.00058155 0.00042294 
1b 0.000289 0.000371 0.00033 
1c 0.00035997 0.000539955 0.000449963 
2a 0.0000776 0.000533 0.00305 
2b 0.001797 0.002695 0.002246 
2c 0.001934 0.006286 0.00411 
3a 0.000896 0.00687 0.003883 
3b 0.001298 0.006674 0.003986 
3c 0.001613 0.006453 0.004033 
4a 0.001564 0.000869 0.001217 
4b 0.001747 0.00025 0.000998 
4c 0.002019 0.001262 0.001641 
5a 0.0000971 0.00013 0.000113 
5b 0.002387 0.000918 0.001652 
5c 0.000978 0.000163 0.000571 
6a 0.003059 0.001224 0.002142 
6b 0.000247 0.000206 0.000226 
6c 0.004602 0.00251 0.003556 
7a 0.001668 0.001668 0.001668 
7b 0.000134 0.0000269 0.0000807 
7c 0.001511 0.001679 0.001595 
8a 0.002499 0.001666 0.002083 
8b 0.002964 0.001395 0.00218 
8c 0.002351 0.000882 0.001617 
9a 0.002046 0.001754 0.0019 
9b 0.002156 0.001677 0.001917 
9c 0.001356 0.000194 0.000775 
10a 0.001621 0.001945 0.001783 
10b 0.00153 0.003231 0.002381 
10c 0.002423 0.001491 0.001957 
11a 0.002003 0.001202 0.001603 
11b 0.002597 0.002078 0.002338 
11c 0.002078 0.000755 0.001416 
12a 0.003851 0.003484 0.003667 
12b 0.003068 0.001726 0.002397 
12c 0.000794 0.000794 0.000794 
13a 0.002494 0.001663 0.002078 
13b 0.516426 0.190262 0.353344 
13c 0.001513 0.001765 0.001639 
14a 0.001452 0.001765 0.001639 
14b 0.001452 0.001765 0.001639 
14c 0.001637 0.000819 0.001228 
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