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ABSTRACT 

Saprolegnia is an aquatic pathogen with a fishy appetite—it develops on farmed and wild 

fish populations as a notoriously destructive ‘water mold’. The etiologic agent of 

Saprolegniasis, Saprolegnia is an opportunistic oomycete that is of significant interest in 

the aquaculture industry due to its financial impact and widespread effect. Previously, 

infection models studying the effects of Saprolegnia utilized methods that were injurious 

to fish and did not mimic a natural outbreak, thus making it difficult to use to evaluate 

new treatments for the disease. By developing a novel zebrafish (D. rerio) egg infection 

model, a new insight into the pathogenesis and progression of the disease in vivo is 

possible. Once completed, the model could serve as a platform to quickly identify and 

test alternative treatments to formalin. This study compared existing culture techniques of 

Saprolegnia and developed a novel staining method to view the pathogen during host 

invasion. Zebrafish eggs were infected with zoospore suspensions and monitored 

carefully. It was found that in all treatments, the zoospore concentrations were too low to 

infect healthy zebrafish eggs reproducibly. However, almost all zebrafish that were 

exposed to Saprolegnia colonized hemp seeds developed an infection within 24 hours. 

Different concentrations of Fluorescent Brightener 28 were assessed to develop an 

efficient staining protocol to visualize the disease progression. This staining technique 

could potentially be utilized to help quantify and track the infection in fish eggs. Future 

studies should consider the use of zebrafish as model organisms in Saprolegnia research. 
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INTRODUCTION 

Saprolegnia is an aquatic oomycete that affects many organisms, particularly 

freshwater salmonids in the aquaculture industry. Although oomycetes (commonly 

referred to as ‘water molds’) appear to have fungal characteristics, they are classified as 

Stramenopiles and are more closely related to chromophyte algae (van West 2006; 

Sarwowar et al. 2013). Oomycetes are some of the most destructive pathogens 

responsible for diseases in freshwater fish, crustaceans, amphibians, and insect larvae 

(van West, 2006). However, the role and impact of Saprolegnia and other oomycete 

pathogens is often overlooked due to the paucity of data on the pathobiology of water 

molds in fish (van den Berg et al. 2013).  

Saprolegnia is the etiologic agent of Saprolegniasis, a disease characterized by 

white or gray patches of mycelium growing on the body and into the epidermis of fish, 

with severe cases covering the entire body of the fish. Saprolegnia is also responsible for 

‘winter kill’ in catfish (Ictalurus punctatus) raised in the aquaculture industry (Quiniou et 

al. 1998).   

Aquaculture is a growing industry, and currently accounts for over 50% of the  

seafood supply within the United States (NMFS, 2016). Fungal infections of freshwater 

fish eggs, particularly salmonids, are a major economic problem in the aquaculture 

industry, causing millions of dollars in losses annually (Fregeneda-Grandes et al. 2007; 

Jiang et al. 2012). These pathogens pose a significant threat to food security worldwide 

(Van den Berg et al. 2013).  

Saprolegniasis is usually a secondary infection incited by the fish’s depressed 

immune system, due to sickness, poor water quality, or change in temperature, and causes 
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large wounds on the skin (Sarowar et al. 2013). When Saprolegnia invades the gills, it 

impairs respiration and osmoregulation as well as causing hemodilution; extensive gill 

infections can cause acute respiratory failure leading to death (Sarowar et al. 2013).  

Previously, Saprolegnia infections were treated successfully with the alanine dye 

Malachite Green (4-{[4(dimethylamino)phenyl](phenyl)methylidene}-N, N-

dimethylcyclohexa-2,5-dien-1-iminium chloride) until the substance was banned in many 

countries including the US for its known carcinogenic, mutagenic, and teratogenic 

properties (Culp & Beland 1996). No fully effective alternative treatment to Malachite 

Green has been found (Pottinger & Day 1999). Other substances such as formalin and 

hydrogen peroxide are used to treat the pathogen, but the safety and environmental 

impacts of these chemicals are questionable (Pottinger & Day 1999). That leaves us with 

the question of ‘how do we effectively combat Saprolegniasis in a safe and cost-effective 

way?’  

To answer this important question, it is proposed to develop an in vivo zebrafish 

model to test the pathogenesis of Saprolegnia using a fish model organism susceptible to 

natural infections with Saprolegnia. Zebrafish (D. rerio	   (Hamilton, 1822)) are being 

increasingly used to assess the effects of chemical compounds in the biomedicine and 

chemical industries (Kanungo et al. 2014). Zebrafish are perfect research animals for this 

investigation for several reasons. The first is that zebrafish take a relatively short time to 

culture in comparison to salmonids allowing research to progress quickly. D. rerio is also 

a natural host of Saprolegnia (Ke et al. 2009). The embryos and eggs are used because of 

their microscopic size and optical transparency, which allows for non-invasive 

visualization of the development of disease in vivo. The genome of D. rerio has been 
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sequenced, which makes for easier identification and genomic work (Kanungo et al. 

2014), as well as the fact that several transgenic lines are available to be able to study 

host-pathogen interactions. The use of zebrafish eggs and embryos also exemplifies the 

principles of the three R’s in animal research: reduce, replace and refine (Goodman, 

Chanda, and Roe 2015). By replacing adult animal with the egg and yolk sack larvae and 

refining the experiments by providing a standardized challenge method, a more humane 

infection model can be used to study the pathobiology of water molds in fish.   

It is imperative that an alternate treatment for Saprolegnia be developed since 

Saprolegniasis is not only the leading cause of freshwater fish kills but a significant cause 

of economic loss in the aquaculture industry. With global food demand on the rise, 

aquaculture is becoming increasingly important to the world food supply. With the 

development of a safe and cost-effective treatment of Saprolegniasis, not only will profits 

increase but also, more importantly, the aquaculturists employing the treatment, as well 

as the environment, will be safer.  

In this study, the pathobiology of several species of Saprolegnia was investigated 

by the optimization of in vitro culture methods, and by developing an in vivo zebrafish 

model to study the progression of the disease in real-time. This infection model may 

serve as a new platform to rapidly screen chemical agents for anti-fungal properties 

against Saprolegnia infections in the future.  
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METHODS 

Obtaining and purifying cultures 

The American Type Culture Collection (ATCC) wild type strain of Saprolegnia 

parasitica (Coker, ATCC® 200233™ strain NMJ8761) was acquired and cultured per 

the distributor’s instructions, then subsequently cultured onto 2% Peptone Yeast agar 

(Atlas, 2004), 3% V-8 (ATCC medium 2040), or 2% Glucose Yeast agarose plates 

(Atlas, 2004). Infected zebrafish eggs (Zebrafish facility, University of Maine, Orono, 

ME) and infected juvenile salmonids (Cooke Aquaculture) were obtained to isolate 

Saprolegnia.  Dead D. rerio eggs were disinfected in 70% ethanol, and one or two eggs 

were plated onto low-nutrient water agar (2%) (12g BD bacto agar, 1L Nanopure water). 

Plugs of agar (~5mm²) were excised from the leading edge of the mycelia and 

subsequently placed onto fresh agar plates, and this process was repeated until pure 

isolates were obtained. Sterile cotton swabs were aseptically rubbed over the gills, the 

dorsal fin, or other afflicted areas on juvenile salmonids and either plated onto water agar 

or inoculated into sterile distilled water baited with hemp seeds. Samples taken from fish 

were initially treated with Gentamicin, Trimethoprim, and Sulfamethoxazole-

trimethoprim antimicrobial Sensi discs (BBL). After subculturing Saprolegnia isolates 

several times, antibiotic use was discontinued. This was to ensure that antibiotics did not 

inhibit vegetative growth and to prevent microbial antibiotic resistance.  Additionally, 

lake water was obtained and seeded with hemp seeds (Willoughby, 1962; Willoughby & 

Pickering, 1977) and grown on water agar until pure isolates were obtained.  

Water samples from the Penobscot River and Pushaw Lake (Orono, ME) were 

obtained, filtered, and sterilized for culture media. The Saprolegnia cultures were 
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incubated at room temperature (~22º C) on Glucose Yeast Agar, V-8 agar, and a 

modified  Peptone Yeast Agar for several days. Different media were utilized to 1) ensure 

that there were plenty of viable samples to use for the experiment and 2) determine which 

medium is optimal for survival and growth. Single spore isolations (Ho & Ko, 1997) 

were conducted to further isolate Saprolegnia from other aquatic fungi and bacteria in 

cultures before genomic identification. Spore suspensions were plated onto agar plates 

subdivided into 100 marked sections. The agar plates were then closely monitored under 

a dissecting microscope, and when a single germinated spore was identified, a 5mm agar 

plug was excised with sterile needles and plated onto a new LNA plate and incubated at 

22ºC.  

Samples of Saprolegnia were also prepared for long-term preservation by 

following established protocols for the preservation of Phytophthora and Pythium (Dr. J. 

Hao lab protocols kindly provided by N. Marangoni, 2016). Colonized plugs of agar were 

excised from cultures and placed into 2mL bijous (Sterilin) and incubated at 4ºC for up to 

several months. Additionally, colonized hemp seeds were placed into sterile Nanopure 

water and incubated at room temperature (22ºC). Table 1 provides a description of 

Saprolegnia  

isolates.  

Identification of cultures 

Morphological identifications were made where possible; not all Saprolegnia 

cultures produced sexual structures in vitro. Cultures were allowed ample time (at least 

three days) to grow in GY broth (10g glucose, 2.5g yeast extract, 1L Nanopure water) 

before portions of mycelia were extracted aseptically with sterile forceps. Approximately 
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40mg of fresh mycelia was harvested and lysed with 3mm glass beads and nuclei lysis 

solution (Promega) on a tissue lyser (Qiagen) at 28Hz for 2 minutes.  

The gDNA was then extracted following a plant and yeast gDNA extraction 

protocol (Promega). The concentration of gDNA for each sample was measured with a 

Nanodrop 8000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). 35 cycles 

of polymerase chain reaction (PCR) were then performed utilizing International 

Transcribed Spacers (ITS) 4 (5’-TCCTCCGCTTATTGATATGC-3’) and ITS 5 (5’-GGA 

AGTAAAAGTCGTAACAAGG-3’) with a denaturation temperature of 95ºC for 0.5min, 

annealing at 57ºC 0.5min, and extension at 73ºC for 5min with a final hold at 4ºC (Eissa 

et al., 2013). The purified PCR products were then visualized on a 1.5% agarose 

electrophoresis gel with ethidium bromide. Singular bands were excised and purified with 

a gel extraction kit (Qiagen), and then they were sent to the University of Maine DNA 

sequencing lab for sequencing and editing. Sequences were then analyzed and compared 

to an online nucleotide database (BLAST). 

 

Optimization of staining techniques 

 Wild-type (AB strain) zebrafish eggs were collected and treated with methylene 

blue for several hours and then washed in 1x E3. The eggs were then divided into five 

different Petri dishes with n=50 eggs in each dish (2 controls, 3 infected with 

Saprolegnia) and inoculated accordingly. Either a single autoclaved hemp seed or a 

colonized hemp seed was washed three times with autoclaved well water and placed in 

the petri dish, incubating at 26ºC overnight. Infected eggs were then collected and 
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euthanized in a lethal dose of tricaine (0.4g/L) buffered with tris base (pH 9) for 10 

minutes and then fixed in 10% neutral buffered formalin (NBF) at 4ºC overnight.  

Eggs were then subjected to different staining conditions for the optimization of 

the fluorescent staining techniques. Eggs were either treated with PBS, 25µM CW, 

2.5µM CW, or 0.25µM CW and 1.5% DMSO for a given time point (15min, 30min, 1hr). 

After the time point had passed, eggs were rinsed three times with PBS and mounted with 

80% glycerol in a 24-well glass viewing plate for fluorescent microscopy and imaging. 

The stain was qualitatively assessed for its efficacy by the clarity of images, the 

brightness of the stain, and whether the mycelia were stained or not.  

 Lactophenol Cotton Blue (LCB) stain droppers (BD) were utilized to identify 

Saprolegnia samples in vitro morphologically. Small bundles of mycelia were aseptically 

removed from colonized hemp seeds and placed onto a glass slide. A drop of LCB was 

added to each slide to stain the Saprolegnia. Samples were viewed with an inverted 

compound light microscope (Zeiss).  

 

Zebrafish egg infection model development 

 Wild-type strain zebrafish (D. rerio) eggs were obtained from the University of 

Maine zebrafish facility (Orono, ME). Eggs were placed into 150mL sterile Petri dishes 

containing 1x E3 media (5mM NaCl, 0.17mM KCl, 0.33mMCaCl!, 0.33mM MgSO!, 1L 

water, pH 7.0) and 0.013% methylene blue to disinfect the water. In each container that 

zebrafish eggs were kept, egg densities did not exceed one egg per mL of E3 media to 

ensure proper oxygenation of eggs (Dr. Remi Gratacap and Dr. Sarah Barker, personal 

comm., 2014). Eggs were incubated at 26ºC and kept no longer than 48 hours post-
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fertilization (hpf) per IACUC regulations. The W-4 strain Saprolegnia was utilized for all 

infection assays (Table 1). 

 After at least 6 hours of disinfection with methylene blue, eggs were washed with 

fresh 1x E3 media three times, and the culture media was then replaced. Eggs were 

portioned into 50mL Petri dishes and incubated overnight at 26ºC, which is close to the 

natural temperature at which zebrafish live (circa. 28º C). The next day, unfertilized or 

dead eggs were removed.  

Eggs were portioned into 12-well plates (n=6 per well), and for each infection 

assay, one plate was designated for mortality assessments alone, and one plate was 

designated for staining and viewing eggs. This was to ensure that eggs did not die due to 

handling stress or staining. The eggs were monitored over two days for mortalities and 

the presence or absence of the pathogen as well as its dissemination.  

To determine the concentration of zoospores necessary to cause an infection of 

Saprolegniasis at a prevalence of 60-70%, a preliminary infection assay utilizing 

zoospores was performed. Motile zoospores were obtained following established 

sporulation protocols (Diéguez-Uribeondo, Cerenius, & Söderhäll, 1994). Spores were 

isolated by gently pipetting from the top of sporulating samples and then pooled into 

20mL portions and enumerated on a cell counter. Spore concentrations were adjusted by 

diluting with zebrafish media (1x E3 media) for infection trials.  

Wild-type zebrafish eggs were collected and disinfected with methylene blue and 

washed as described previously. The eggs were then plated into 12-well plates containing 

different dilutions of zoospore suspensions (10 spores/mL, 100 spores/mL, 500 

spores/mL, and 1000 spores/mL E3) and a negative control of E3. The eggs were then 



	  

9	  
	  

incubated overnight at 26°C and then washed again in the morning. The eggs were 

monitored for visible signs of infection characterized by white or gray mycelia as well as 

mortalities.  

Interpretation of results 

 Zebrafish mortalities and infection prevalence were quantified over the course of 

two days post-infection. An ANOVA test was conducted (GraphPad Prism 6 software) 

for the different zoospore concentration treatments to assess if there was any significant 

difference between mortalities in treatments. Additionally, mortality curves were plotted 

for the infection trial to evaluate how the disease progressed over time. 
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RESULTS 

Obtaining and purifying cultures: culture method efficacy 

 Most Saprolegnia samples were not very selective about growth medias (apart 

from the PL-1 isolate) and achieved growth rates of approximately 10mm per day on 

agarose plates under the culture conditions used there. Low nutrient water agar (LNA) 

allowed for sparse mycelial growth, but bacteria did not grow readily on it. LNA was best 

suited for sub-culturing Saprolegnia directly from the fish and preventing bacterial 

contamination without the use of antibiotics. Peptone yeast glucose (PYG) broth 

supplemented with salmon sterols facilitated vegetative growth, but GY broth had similar 

effects.  

V-8 agar plates were optimal for preserving cultures for long-term, as the 

mycelium did not penetrate the agarose as quickly as in other medias. Colonized plugs of 

agar stored in 2mL bijous were viable for up to 6 months and could be revitalized by 

adding 1mL sterile water and split hemp seeds and subsequently subcultured onto fresh 

agar plates. Samples stored in sterile ddH₂O with split hemp seeds remained viable if the 

mycelia remained moist (an excess of 6-8 months, ongoing). After some time, samples 

stored in the ddH₂O sporulated spontaneously. Some isolates were more viable than 

others after long-term storage; PL-1 and ZF-1 isolates did not recover well after being 

stored at 4ºC but remained viable after storage at room temperature (23ºC).  
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Identification of cultures 

The Mystic Aquarium isolate was a species of Ceratobasidium, an opportunistic 

fungus (Table 1). It was found that Floyd’s baitfish farm isolates contained a minuscule 

amount of Saprolegnia parasitica mixed with Phoma ascomycetes, a freshwater fungus 

(Table 1). It was also found that the W-4 Cooke Aquaculture isolate was a pure strain of 

Saprolegnia salmonis (Table 1). The W-4 and ATCC-2 isolates were kept for studies of 

pathogenicity of Saprolegnia, as well as for the development of the zebrafish model.  

The PL-1, H1-L, and ZF-1 isolates morphologically appear to be Saprolegnia sp. 

However, molecular identification of those samples was not assessed yet (Table 1). The 

unidentified samples were cultured and preserved as previously described for future 

identification and use in pathogenicity studies.  

The W-4 and ATCC-2 strains had pyriform primary zoospores with two subapical 

flagella, and reniform, laterally biflagellate secondary zoospores. Both isolates grew 

luxuriantly on sterile hemp seeds in water at room temperature (~23°C). Some 

zoosporangia had formed on W-4 isolates, and zoospores were discharged between 12-

16h after incubating in GY broth. In both isolates, hyphae were sparingly branched, stout, 

and aseptate. Sporangia were straight, fusiform, and terminal for both W-4 and ATCC-2 

strains. No other strains produced sporangia or zoospores in vitro.  
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Table 1: Molecular identification of Saprolegnia cultures. 

 

Optimization of staining techniques 

It was found that the hyphae stained with CW fluoresced brightly and was visible 

at most concentrations of CW utilized. Calcofluor White effectively distinguished 

mycelia from the egg chorion, but in some eggs, the yolk and chorion auto-fluoresced. In 

the negative control treatments, CW did not fluoresce (Fig. 1).  It was found that 25µM 

CW was the minimum concentration that fluoresced adequately to distinguish different 

Isolate Location Source gDNA ID 

Cooke Cooke Aquaculture, 
Bingham, ME 

Juvenile Atlantic Salmon 
(Salmo salar) dorsal fin 

S. parasitica, 
Aspergillus sp. 

    
W-4 Cooke Aquaculture, 

Bingham, ME 
Juvenile Atlantic Salmon 
(Salmo salar) dorsal fin 

Saprolegnia salmonis 

Floyd’s Floyd’s Baitfish Farm, 
ME 

Rainbow smelt (Osmerus 
mordax) dorsal fin 

Phoma ascomycetes, S. 
parasitica 

ATCC-2 Miyagi, Japan Coho salmon 
(Oncorhynchus kisutch) 

S. parasitica 

PL-1 Pushaw Lake, Orono, 
ME 

Lake water (hemp seed 
bait) 

NA 

ZF-1 Zebrafish facility, 
University of Maine, 

Orono, ME 

Zebrafish eggs (D. rerio) NA 

H1-L Cooke Aquaculture, 
ME (raised at 

University of Maine, 
Orono, ME) 

Juvenile Atlantic Salmon 
(S. salar) 

NA 

Mystic Mystic Aquarium, 
Stonington, CT 

Newt food pellets Ceratobasidium sp.  
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Fig. 1: Zebra fish 24hpi at 10x magnification. The 
mycelia were stained for 15min with 250µM 
fluorescent brightener 28 (CW).  
	  

mycelia and fluoresce brightly (Fig. 2). 250µM of CW was also found to stain the 

mycelia well (Fig. 3), but it was not necessary as the 25µM CW concentration also 

worked efficiently but used less stain.  

Eggs that were infected with Saprolegnia died overnight and appeared ‘fluffy’ 

and overwhelmed with dense mycelia. By the time infected eggs were imaged, much of 

the embryonic tissues had been 

degraded by Saprolegnia (Fig. 2). 

There was an infection prevalence of 

approximately 60%, and of those eggs 

that were infected, 100% of them died 

within 24 hours post-infection (hpi). 

The nature of the rapid and 

widespread infection indicates that 

zebrafish are indeed susceptible hosts 

to Saprolegnia at early life stages and 

that zebrafish eggs can be used in future studies for Saprolegnia infection trials.  

 

 

 

 

 

 

 Fig. 2: Zebra fish egg infected with S. parasitica 24hpi 
at 10x magnification. The mycelia were stained for 
15min with 25µM fluorescent brightener 28 (CW). 
Scale bar is 200µM.   
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Fig. 3: Zebra fish egg infected with S. parasitica 24hpi at 10x magnification.  
The mycelia were stained for 15min with 250µM fluorescent brightener 28 
(CW). Scale bar is 200µM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

The LCB stained mycelia 

effectively (Fig. 4), but should be 

tested on the oogonia and antheridia 

of Saprolegniales. However, no 

sexual structures formed on any of 

the Saprolegnia cultures, making a 

morphological identification 

difficult. Any traces of hemp seed 

that remained in the subsample of 

Saprolegnia were stained with LCB (Fig. 4). Despite efforts to prevent pieces of hemp 
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from being mixed with the sample, we were unable to extract all the hemp seed material 

from the sample.  

Zebrafish egg infection model development 

 In preliminary zebrafish infection trials, infection prevalence was 0% for all 

treatments (0, 10, 100, 500, 1000spores/mL E3). There were no mortalities within any 

treatment (Fig. 5, 6). There was no significant difference between the mortalities in 

Saprolegnia zoospore treatments (ANOVA, p>0.05).  

 

 

 

 

 

Figure 5: Zebrafish egg mortality assessment curve. Eggs were treated with different 
concentrations of spore/cyst suspension and incubated overnight. N= 144 eggs. Eggs 
were infected at 6-8hpf.  

Figure 6: Zebrafish egg mortality assessment curve. Eggs were treated with different 
concentrations of spore/cyst suspension and incubated overnight. N=288 eggs (72 eggs per 
plate). Eggs were infected at 6-8hpf.  
 



	  

16	  
	  

 

DISCUSSION 

Most of the Saprolegnia samples were not selective of their growth media (except 

for the PL-1 isolate, which grew very sparsely on almost all medias), and demonstrated 

similar radial growth rates. Long term storage of Saprolegnia isolates yielded variable 

results for the viability of cultures. W-4, ATCC-2, and H1-L isolates remained viable 

after storage at both 4ºC and at 23ºC, whereas the ZF-1 and PL-1 isolates were not viable 

at 4ºC. This may be indicative of the isolates’ natural habitats, though Saprolegnia is 

found in nearly every temperate freshwater environment globally.  

None of the Saprolegnia strains produced sexual structures (oogonia, antheridia) 

in vitro, and as such, molecular identification of samples was necessary for the project. 

ATCC-2 and W-4 samples produced primary zoospores and cysts, but did not produce 

secondary spores and cysts, and did not exhibit repeated zoospore emergence (RZE). 

Saprolegniales are primarily identified by morphological features, typically sexual 

structures (i.e. oogonia, antheridia, oospores), despite the variability of the morphology of 

these structures (Coker, 1923; Seymour, 1970). However, morphologically identifying 

Saprolegniales can be problematic, as many isolates do not form sexual structures in vitro 

(Stueland, Hatai, & Skaar, 2005; Diéguez-Uribeondo et al. 2007). Moreover, some 

species of Saprolegnia appear similar at the gross morphological level and even produce 

similar zoospores (Ke, Wang, Gu, Li, & Gong, 2009).  

The Mystic and Floyd’s baitfish farm samples were not pure strains of 

Saprolegnia (Table 1) and were subsequently not used in this study. W-4 samples were 

identified as Saprolegnia salmonis (Table 1), a part of the S. parasitica/S. diclina species 

complex (clade III; parasitic Saprolegniales) (Diéguez-Uribeondo et al., 2007). ATCC-2 
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isolates were pure strains of S. parasitica (Table 1) and were used to compare to DNA 

samples of Saprolegnia sp. The W-4 samples infected zebrafish eggs via co-incubation 

readily, and produced zoospores in vitro, unlike the ATCC-2 strain, which produced few 

spores.  

 The hyphae of Saprolegnia isolates stained readily with both LCB and CW stains 

(Fig. 2-4). CW effectively distinguished individual hyphae from the egg chorion despite 

some minor auto-fluorescence in the fish ova (Fig. 2). Additionally, LCB was an 

effective stain for viewing Saprolegnia cultures in vitro (Fig. 4). Calcofluor White is a 

stain that binds to chitin primarily but also binds to cellulose (Ali et al. 2013). 

Structurally, oomycete hyphae are comprised of cellulose (Seymour, 1970; Ali et al. 

2013). LCB staining techniques have also been previously utilized for preparing samples 

of preserved Saprolegnia for viewing (Seymour, 1970). Although none of the cultures 

produced sexual structures in vitro, LCB stain should be utilized to study Saprolegnia 

morphology in the future. Additionally, CW stain may have a novel application in the 

future to qualitatively assess the effectiveness of chemical treatments against Saprolegnia 

in a zebrafish infection model. Given how CW effectively distinguishes hyphae from the 

transparent zebrafish chorion, there is a potential for computer applications to quantify 

hyphal growth and density from images rapidly. Additionally, CW allows an observer to 

track the progression of Saprolegniasis in vivo.  

 Zebrafish eggs that were infected via co-incubation for the staining optimization 

died rapidly and suffered a high infection prevalence (approximately 60%). The nature of 

the rapid infection indicates that zebrafish are susceptible hosts to S. salmonis at early life 

stages and that zebrafish eggs can be utilized to study Saprolegnia infections in future 
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research. However, it should be noted that co-incubation may not be a suitable method of 

infecting fish ova. This is because when colonized hemp seeds are left in fish aquaria for 

extended periods of time, the actual infectious dose of Saprolegnia administered to the 

fish cannot be quantified. Saprolegnia has been shown to exhibit RZE (Diéguez-

Uribeondo, Cerenius, & Söderhäll, 1994a), form secondary zoosporangia (Seymour, 

1970), and form biofilms (Ali et al. 2013), which may enable the pathogen to continue 

infecting hosts continuously while the hyphae remain in the aquaria and long after its 

removal. The lack of a quantifiable inoculum in previous infection models necessitates 

the utilization of an inoculum that can be quantified and optimized for the study.  

In the zebrafish infection model (via zoospore inoculation), it was surprising that 

S. parasitica (ATCC-2) did not infect any zebrafish eggs in a reproducible manner; 

however, it is important to note that the culture originated from coho salmon (O. kisutch) 

and had repeatedly been subcultured over several years. This Saprolegnia strain may not 

be particularly pathogenic to zebrafish, or it may have lost its virulence over time. More 

importantly, none of the zoospore treatments produced any mortalities (Fig. 5, 6). Several 

eggs had superficial infections that were shed with the chorion upon hatching, but there 

were no severe or fatal Saprolegnia infections within any treatment groups. This suggests 

that ATCC-2 has become culture adapted over many sub-cultures and does not resemble 

its wild phenotype anymore. 

Not all Saprolegnia strains are species-specific—some Saprolegniales infect a 

variety of hosts. S. parasitica has been shown to infect Atlantic salmon, brown trout, 

crayfish, amphibians, and many other organisms (Wood, Willoughby, & Beakes, 1986; 

Diéguez-Uribeondo, Cerenius, & Söderhäll, 1994b). Additionally, the role of zoospores 
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in the pathogenicity of Saprolegnia sp. is unclear, though it is thought that the secondary 

cysts may play an principal role in infecting fish (Liu et al. 2014). Despite this, previous 

infection models have utilized zoospores as inocula (Willoughby & Pickering, 1977; 

Wood, Willoughby, & Beakes, 1988; Pottinger & Day, 1999) 

The structure of the egg chorion and the thickness of the mucus layer enveloping 

it play a significant role in the occurrence of infections in fish eggs (Songe et al. 2016). 

Fish ova have immature adaptive immune systems and are entirely reliant on their innate 

immune system as a defense against pathogens (Liu et al., 2014). Saprolegnia sp. can 

potentially infect all freshwater fish and eggs, and it has been shown that different 

Saprolegnia strains have significantly different pathogenicity (Stueland, Hatai, and Skaar, 

2005). There are no previous records of S. salmonis infecting zebrafish eggs; even though 

S. salmonis has demonstrated that it is an opportunistic pathogen with a very diverse taste 

in hosts. 

Additionally, the nature of the microbiome of the chorion is unclear, as is the 

relationship between the natural fauna that cohabitates there (Liu et al. 2014). Liu et al. 

(2014) examined the chorions of Atlantic salmon ova for their microfauna and the role 

they may play with defense against Saprolegnia. The authors found that while some 

naturally occurring bacteria on fish ova were pathogenic to fish (i.e. Vibrio sp.), other 

species of bacteria had significant inhibitory effects on the hyphal attachment of 

Saprolegnia (Frondihabitans). The inhibitory effects of Frondihabitans were as effective 

as malachite green treatments (Liu et al. 2014).  

The mechanism behind this inhibitory effect of Frondihabitans upon S. diclina is 

unclear, however (Liu et al. 2014). Moreover, the nature of the zebrafish egg chorion 
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microbiome is unclear, and there may be other factors at play involved in Saprolegnia 

infections. Saprolegnia has been shown to form biofilm associations, and biofilms may 

be considered as a significant factor in the reemergence of Saprolegniasis in aquaculture 

even after treatments, as biofilms can provide protection from chemical treatments (Ali et 

al., 2013).  

This model needs further optimization to produce an infection prevalence of 50% 

or greater. While the model necessitates the use of zoospores as inocula, the 

concentrations were too low to achieve the ideal infection prevalence. Future directions 

for this project should include pathogenicity studies of Saprolegnia sp. in zebrafish as 

well as an assessment of chemical treatments against Saprolegniasis. Additionally, it is 

possible that CW could be used to track the progression of the disease in real time. 

Computer software (i.e. Image J) may be utilized to quantify hyphal densities, diameters, 

or length on a fish ova through image analysis. This application of CW stain is currently 

being assessed.  
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CONCLUSIONS 

 In this study, it was concluded that for some strains of Saprolegnia, culture media 

should be carefully selected to ensure optimal growth. However, some strains are not 

particular of their culture media. Additionally, long-term storage methods of Saprolegnia 

cultures should be further optimized to accommodate different species.  

 CW and LCB were both effective stains for visualizing Saprolegnia. CW has a 

new application in zebrafish infection models to track the progression of Saprolegnia 

within an egg. CW has the potential to be utilized as a qualitative assessment of 

Saprolegniasis infections. 

 The zebrafish infection model needs to be optimized further to infect fish ova at 

an ideal infection prevalence reproducibly. With some modifications, this model has the 

potential to rapidly screen Saprolegnia treatments in a high-throughput manner. Future 

studies should look to the zebrafish egg to study the progression of Saprolegniasis 

infections.  
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Zebrafish toxicity assay 

The zebrafish infection model requires the use of chemicals to test against 

Saprolegnia infections, and as such, it was necessary to determine whether mortalities in 

the model resulted from a Saprolegnia infection or from the chemical treatment itself. 

The chemical controls for the model were proposed to be chemicals already utilized in 

the aquaculture industry to combat oomycete infections, such as formalin. Methods for 

treatment and chemical concentrations for the toxicity assay were determined based on 

treatments used in Atlantic salmon hatcheries (personal correspondence with Dr. Michael 

Pietrak, USDA facility, Franklin, ME). Since zebrafish are utilized in the model rather 

than salmon, it was necessary to test the concentrations of formalin used for the chemical 

control to determine if the formalin treatments should be different than that of salmon.  

Wild-type D. rerio eggs were collected and disinfected and sorted as previously 

described. Eggs were separated into different formalin treatment groups in 50mm Petri 

dishes (0ppm neg. control, 1000ppm, 1500ppm, and 2000ppm formalin) and bath treated 

with formalin for 15min. The eggs were then washed 3x with E3 water before plating in 

96-well microplates and incubating at 26°C for 2d. Every 4h, the eggs were checked for 

mortalities due to formalin toxicity. At 3dpf, the eggs were checked once more for 

mortality and then euthanized with an overdose of tricaine.  

Eggs were examined carefully both at a macro and micro scale for mortalities. An 

initial scan of the plate by eye detected any dead, whitish eggs followed by a closer 

observation under a dissecting microscope. Each egg was examined for signs of life (i.e. 

beating heart, flowing blood vessels in the tail, movement, etc.).  
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It was found that none of the treatments suffered any mortality for any of the time 

points. This indicates that treatments utilized as a flow-through treatment for salmon are 

still safe for use for closed-system bath treatments with zebrafish. However, 

concentrations of treatments may still need to be adjusted to have a significant effect on 

Saprolegnia once introduced into the model.  
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