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Abstract 

 Inorganic arsenic is a well-known toxic element found around the world, but the 

molecular mechanisms involved in arsenic toxicity are currently poorly understood.  

Arsenic has been linked to several types of cancer, diabetes, cardiovascular disease, and 

other metabolic diseases.  This project explores the toxic effects of arsenic using mouse 

(Mus musculus) as a mammalian model organism.  Preliminary data from the Van 

Beneden lab has shown that mice respond to low-dose, transplacental arsenic exposure in 

a dose-, sex-, and generation-dependent manner.  The current study addresses a potential 

mechanism of toxicity by determining relative expression levels of pAKT/AKT1, a 

serine/threonine kinase that is activated via phosphorylation.  In previous Van Beneden 

lab studies, arsenic exposure was linked to altered expression of several gene products 

that are involved in cell cycle regulation as well as glucose uptake and lipid transport; 

each of which is known to be regulated in part by AKT.  Many of these pathways are 

highly conserved, making AKT the subject of a significant amount of cancer and diabetes 

research.  We hypothesized a dose-dependent increase in !"#$
!"#

 expression, suggesting 

more AKT pathway activity in response to arsenic exposure.  Initial data show a trend of 

reduced AKT activity at 50ppb and 500ppb transplacental arsenic exposure, but no sex-

dependent response or statistically significant effects of the treatment levels.  Analysis of 

!"#$
!"#

 expression provides insight to the molecular pathways involved in arsenic 

toxicology when partnered with existing literature and results of the ongoing study in the 

Van Beneden laboratory.

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1When referring to gene products, uppercase represents protein, whereas lowercase italics represent mRNA. 
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Introduction 
 
 This study was done to further assess the effects of arsenic on the hepatic system.  

The study was based on previous work performed in the Van Beneden lab by Patrick 

Carlson.  Pat identified several gene products (on both the mRNA and protein scale) with 

altered levels of expression in response to low-dose transplacental arsenic exposure in 

mice, all of which are involved either in cell cycle regulatory pathways or in metabolic 

pathways related to glucose or lipids (Carlson, 2013c).  AKT (formerly Protein Kinase B 

or PKB) plays a role upstream of these signaling pathways, making it interesting to study 

for its implications associated with cancer formation and diabetes development.  Of 

further fascination is the well-documented connection between arsenic, cancer, and 

diabetes (Zimmerman, 1999).  Given this information, it was decided that this project 

would focus on determining AKT activity in the same animals used in the preceding 

studies.  This is relevant because arsenic is a common toxicant found in drinking water 

around the New England region and around the world, and the rates of both cancer and 

diabetes have been on the rise in recent years (Ayotte et al., 2003; CDC Diabetes Public 

Health Resource; NCI Stat Fact Sheet).   Because of the link between arsenic exposure 

and these chronic diseases, and because of the role of AKT, it was hypothesized that 

relative !"#$
!"#

 expression would increase with arsenic exposure, suggesting more AKT 

pathway activity.  This hypothesis was derived from proposed mechanisms laid out by 

Patrick Carlson in his dissertation (Carlson, 2013c).  With this study we hope to gain 

further insight to the molecular mechanisms involved in arsenic toxicity, which have 

been complicated by a non-linear dose-response curve.   
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Arsenic: 
 
 Arsenic, a naturally occurring metalloid found in bedrock around the world, is 

found throughout the environment in its inorganic form.  The World Health Organization 

(WHO) and United States Environmental Protection Agency (US EPA) have set a current 

allowable exposure level of 10 parts per billion (ppb).  This regulation is a result of 

significant research performed around the turn of the millennium, which led the 

acceptable limit in U.S. drinking water to be dropped from 50ppb to 10ppb in 2001 (EPA, 

2007).   

 Inorganic arsenic is odorless and colorless and is commonly found in private 

drinking water wells as a result of leaching from bedrock, and, to a lesser extent, through 

industrial and agricultural waste and runoff (EPA, 2007).  Naturally occurring arsenic in 

groundwater varies with respect to both climate and geology.  Globally, the highest levels 

of exposures can be found in Mexico, Chile, Argentina, Taiwan, Thailand, Bangladesh, 

and India.  However, there is also widespread occurrence at less extreme levels found in 

Japan, Poland, Hungary, Canada, and the United States (Basu et al., 2001).  In the U.S., it 

has long been recognized that groundwater arsenic concentrations are high in the Interior 

Plains region, throughout much of the Rocky Mountain System, and in many 

southwestern states, though in recent years it has been shown that several other regions—

including New England—have higher concentrations than previously believed (Welch et 

al., 2000).  Throughout eastern New England, it is estimated that over 100,000 people 

with private wells are exposed to arsenic in their drinking water at levels above the 
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current EPA standard (Ayotte et al., 2003).  This recorded distribution is shown in Figure 

1. 

 

Figure 1: Arsenic concentrations found throughout New England (Ayotte et al., 2003). 

 

 In the United States, the first regulation of arsenic exposure occurred in 1974 with 

the Safe Drinking Water Act, which established maximum contaminant level goals 
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(MCLGs) for individual contaminants.  This allows for a baseline assessment for utilities 

to have as a resource when ensuring safe potable water.  Interestingly, the MCLG for 

arsenic has been set at zero, yet the EPA has based the 10ppb standard on the feasibility 

of utility systems to attain a concentration of 0ppb effectively.  In 2002, a year after the 

lowered acceptable limit, the Arsenic and Clarifications to Compliance and New Source 

Contaminants Monitoring Final Rule became effective, which allows the EPA to 

continually review and revise standards based on emerging scientific data as frequently as 

every six years.  For this reason, the study of arsenic toxicology has legitimate potential 

to have a broad effect on public health standards (EPA, 2007). 

 Inorganic arsenic has been shown to have a wide range of effects on human 

health, including carcinogenesis, cardiovascular disease, diabetes, peripheral neuropathy, 

skin lesions, hypertension, and other metabolic diseases (Ratnaike, 2003; Duker, 2005).  

With specific respect to cancer, it has been shown that arsenic promotes tumor 

angiogenesis (affecting the ability of cancerous growths to obtain nutrients), alters 

matrix-associated proteins (enabling metastasis), and alters expression of cell-cycle 

regulatory genes (Soucy et al. 2003, 2005; Straub et al. 2008; Carlson et al., 2013b,c).  

Less is known about arsenic’s impacts on lipid metabolism.  However, epidemiological 

studies have shown that the presence of diabetes is positively correlated to high levels of 

arsenic in drinking water and with arsenic metabolites in urine (Navas-Acien et al., 2008; 

Del Razo et al., 2011).  Many studies have explored the pathways of arsenic 

metabolites—notably, methylated arsenites—and their effects on glucose metabolism 

(Del Razo et al., 2011; Paul et al., 2011; Swaran, 2011).  It has been shown that exposure 

to inorganic arsenic inhibits insulin signaling and glucose uptake in an AKT-mediated 
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pathway (Paul et al., 2011).  Studies such as this laid the foundation for prior Van 

Beneden lab studies linking arsenic exposure to cancer and diabetes, and provide further 

rationale for the purpose of this study. 

Hepatic Relevance: 
 
 The liver is responsible for several important functions, with the most important 

to this study being metabolism.  The organ produces enzymes critical to digestion, 

toxicant metabolism, and glucose metabolism (Burke, 1975).  Consequently, it is of 

interest to study hepatic gene product expression in toxicological studies, which have 

come to rely on integrated transcriptomics, proteomics, and metabolomics.  This has led 

to exploration of functional genomics involved in arsenic toxicology, with particular 

respect to diabetes in hepatic studies.  In recent years, the field of hepatic toxicogenomics 

has developed significantly, supporting traditional toxicology measures to advance the 

field from hazard identification to hazard characterization (Kienhuis et al., 2010).  The 

mouse (Mus musculus) is a useful model organism to study due to extensive homology 

associated with mammalian phylogeny.  For this study the animal care and treatment 

were performed in previous years, with harvested tissue samples stored at -80ºC.  

Prior Studies: 
 
 The Van Beneden lab designed the transplacental study based on existing 

literature citing effects of in utero exposure on development of chronic adult diseases 

(Waalkes et al., 2003; Ferrario et al., 2008; States et al., 2011).  The study also sought to 

explore the documented effects of arsenic in a sex-dependent manner as observed in 

literature of the field (Ferrario et al., 2008).   Furthermore, the study was also designed to 

allow for observation of the effects of transplacental arsenic exposure in a generation-
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dependent manner, which is cited frequently not only with inorganic arsenic, but with 

many other toxicants as well (Paul et al., 2011; States et al., 2011; Stueckle et al., 2012).  

For this project, generation-dependent effects were not explored, though much of the 

preparation to do so was performed.  The Van Beneden lab is positioned to continue 

studying the effects of inorganic arsenic exposure on relative AKT activity in the mouse 

hepatic system of the F2 offspring. 

 Of the prior work done in the Van Beneden lab, the most notable and relevant to 

this project was performed by Patrick Carlson, whose studies explored the effects of 

arsenic on cell cycle regulation as well as glucose and lipid metabolism.  It was observed 

that arsenic exposure in zebrafish resulted in several dozen proteomic expression 

differences (Carlson et al., 2013a).  Upon further investigation, it was shown that low-

dose inorganic arsenic exposure in zebrafish altered mRNA expression of a selected 

subset of genes, notably Pparγ and Wee1, which are known to be regulated in part by 

AKT (Carlson et al., 2013b).  Furthermore, it was shown in separate studies that similar 

exposures in mice (administered transplacentally) alter expression of Pparγ and Wee1, as 

well as other genes involved in similar pathways.  PPARγ, a peroxisome proliferator 

activated receptor, is integrated along the growth hormone—Insulin-like growth factor 

(GH-IGF) axis and is therefore involved in growth factor responses related to cell cycle 

progression and metabolism (Scarth JP, 2005; Stueckle et al., 2012; Carlson et al., 

2013b). WEE1 is critical to regulation at the G2/M checkpoint for the cell cycle, making 

it of interest in early-stage cancer development (Katayama et al., 2005; Carlson et al., 

2013b).  Due to the relative importance of AKT signaling upstream in both PPARγ and 

WEE1 activity, the observed changes in their expression in response to arsenic exposure 
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drove the rationale to study the effects of arsenic exposure on AKT activation.      

AKT: 
 
 In the 1980’s, several research groups exploring insulin signaling pathways 

identified what appeared to be a novel kinase similar to protein kinases A and C (PKA 

and PKC; Jones et al., 1991; Brazil et al., 2001).  Upon cloning and further identification, 

AKT was termed Protein Kinase B (PKB) due to its structural similarities to PKA and 

PKC.  In the 1990’s, three isoforms of AKT were identified, now known as AKT1, 

AKT2, and AKT3 (Franke, 2008).  For the purposes of this study, the three isoforms are 

discussed as a unit simply as AKT.  This is because they share similar function and their 

structure is so homologous that the antibodies used for western blotting were not specific 

to any individual isoform.   

 AKT is a serine/threonine kinase with a plethora of downstream targets.  AKT is 

activated via phosphorylation by the membrane-bound phosphatidylinositol 3-kinase 

(PI3K) as shown in Figure 2.   

      

Figure 2: Upstream AKT signaling (Hemmings et al., 2012). Arrows indicate activation, 
while bars indicate inhibition. 



	   8	  

In its inactive state, AKT is free in the cytoplasm, where if it is “damaged” (i.e. mis-

folded, improperly translated, etc.) it is ubiquitinated, which acts as a molecular tag for 

degradation (Liao et al., 2010).  The signal transduction cascade can begin in several 

ways in response to growth and stress factors.  Most commonly, receptor tyrosine kinase 

(RTK) subunits bind the signal ligand, stimulating the recruitment of phosphoinositides 

and PI3K (Engelman et al., 2006; Hawkins et al. 2006).  PI3K is then phosphorylated, 

activating its kinase activity to initiate the downstream cascade.  PI3K phosphorylation is 

also regulated (in what is proposed to be a lesser extent) by detached subunits in G 

protein-coupled receptor (GPCR) pathways and by small signaling proteins such as Ras.  

It should be noted that GPCR-mediated PI3K regulation has significant importance to the 

mitogen activated protein kinase (MAPK) cascade, which can be activated downstream 

from PI3K kinase activity (Lopez-Ilasaca et al., 1997).  The MAPK cascade is a well-

documented set of pathways associated with cellular proliferation, differentiation, 

survival, and death (Kim et al., 2010). 

 Activated PI3K induces phosphorylation of phosphoinositides—most notably 

PIP3—which recruits both phosphoinositide-dependent kinase (PDK1) and AKT in 

proximity to each other.  Phosphorylation of AKT takes place once PDK1 is bound to the 

membrane in proximity to AKT, which allows for its dissociation from PIP3, and thus 

stimulates its kinase activity.   

 AKT has several phosphorylation sites, with the most important being at Ser473 

(which is the phospho-site targeted by the active-state antibody used for this study).  

Once phosphorylated, AKT can act on a number of substrates involved in diverse 

biological responses, ranging from primarily metabolic functions such as glucose 
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transport, glycolysis, glycogen synthesis and the suppression of gluconeogenesis to 

protein synthesis, increased cell size, cell-cycle progression and apoptosis suppression 

(Franke, 2008).  The identified motif that AKT acts on is R-X-R-X-X-S/T-B, where X 

represents any amino acid and B represents bulky hydrophobic residues [and S/T 

represents the serine/threonine phosphorecognition site] (Alessi et al., 1996).  This 

identified motif is similar to other protein kinases, such as PKA and PKC, unique only by 

the denoted R-residues [Arginine] (Manning et al., 2007).  However, at high levels of 

substrate and longer time interval, AKT can also act on the less specific R-X-X-S/T site, 

which gives an added level of complexity to the study of downstream AKT signaling.  

For this study, it is imperative to note that AKT can also act on the less specific site 

because in vivo cellular environments can have significant variation in the concentration 

of proteins with AKT recognition sites relative to in vitro studies (Manning et al., 2007).  

Literature review reveals over 100 reported AKT substrates, though not all contain the 

specific kinase motif, and many have not been studied beyond in vitro kinase assays.  

Figure 3 shows the diverse downstream signaling of pAKT. 
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Figure 3: Downstream AKT signaling (Manning et al., 2007). Arrows indicate activation, 
while bars indicate inhibition.	  

Prior Van Beneden lab studies identified altered gene expression of WEE1, 

BRCA2, and PPARγ in response to arsenic, each of which is proposed to be regulated in 

part by AKT, making them of particular importance to this study.  Other associated gene 

[products] that are relevant to this study include GSK3, FOXO1, and PFK 

(Phosphofructokinase; Manning et al., 2007; Hemmings et al. 2012) that are associated 

with glucose metabolism.  As mentioned previously, the role of the liver includes 

producing enzymes critical to toxicant metabolism and glucose metabolism (Burke, 

1975).  For this reason, and given the cited connection between arsenic exposure and 

diabetes (Navas-Acien et al., 2008; Del Razo et al., 2011; Paul et al., 2011; Swaran, 

2011), we hypothesize expression of GSK3, FOXO1, and PFK to be affected in response 
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to arsenic exposure, potentially leading to altered glucose metabolism.  AKT-mediated 

down-regulation of GSK3 prevents activation of the enzyme glycogen synthase, which 

lowers the rate of gluconeogenesis and raises glucose concentrations (Cohen et al., 2001).  

Inhibited FOXO1 lowers hepatic glucose production and interferes with the 

differentiation of cells involved in metabolic control (Acilli et al., 2004). Conversely, up-

regulated PFK stimulates glycolysis, further raising glucose levels in hepatic tissue (Ono 

et al. 2003).  The combined effects of these downstream targets of AKT in hepatic tissue 

suggest strong connection to the role of AKT in regulating glucose metabolism.  Over-

activated AKT (higher !"#$
!"#

) can therefore potentially result in pathway disruptions 

associated with the development of type II diabetes mellitus (via a desensitization of 

insulin as a result of elevated glucose levels; Ono et al. 2003; Manning et al. 2007). 

 The diversity of downstream targets of AKT shown in Figure 3 also further shows 

how AKT acts as a regulatory connection between both metabolic activity and cell cycle 

progression.  As noted earlier, AKT interconnected with upstream regulation of the 

MAPK cascade, which is involved in cellular proliferation, differentiation, survival, and 

death (Lopez-Ilasaca et al., 1997; Kim et al., 2010).  Regulation of cell growth appears to 

occur primarily via activation of the mTOR complex 1 (mTORC1), which is involved in 

a negative feedback loop (Manning et al., 2007).  mTORC1 is a critical regulator of 

translation initiation that is extensively characterized, detailing its highly conserved role 

in cell growth control (Wullschleger et al., 2006).  AKT has also been proposed as a 

regulator of cellular proliferation via phosphorylation of MDM2.  This phosphorylation is 

known to downregulate p53, which minimizes p21 expression (Mayo et al., 2001; Zhou 

et al., 2001).  Tumor suppressor p53 is commonly recognized as one of the most 
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significant proteins involved in regulation of cellular growth and division, and has been 

labeled as “the guardian of the genome” (Lane, 1992).  The p21 protein regulates the cell 

cycle at the G1/S phase transition by inhibiting cyclin-dependent kinase complexes 

necessary for cell cycle progressions.  In humans, p21 is encoded by the gene Cdkn1a.  

Patrick Carlson has shown that mice transplacentally exposed to 500ppb sodium arsenite 

exhibit a 3-fold decrease in Cdkn1a expression (Carlson, 2013c), which is consistent with 

results found in the literature (Mayo et al., 2001; Zhou et al., 2001).  These findings 

support the rationale for studying AKT activity in response to arsenic exposure; this 

study is an attempt to further characterize the connection between arsenic, diabetes, and 

cancer. 

Western Blotting: 
 
 All modern blotting protocols stemmed from the originally described Southern 

blots used to detect DNA fragments that had been separated by electrophoresis, named 

after the inventor Edwin Southern in the mid 1970’s (Southern, 1975).  By the end of the 

decade, Henry Towbin’s lab at the Friedrich Miescher Institute in Switzerland had 

described the technique now known as western blotting (also immunoblotting), which has 

not changed much to this day (Towbin et al., 1979).  The technique was developed to 

meet the need for a visual assay for antigen specificity of monoclonal antibodies, though 

today its implications are far broader for immunodiagnostics, making it a ubiquitous 

research tool in molecular biology (Burnette, 2009).  It should be noted that technological 

advancements have allowed for more effective detection techniques utilizing digital 

imaging systems, which has in turn allowed western blotting to be incorporated into 

molecular biology research to a much greater extent.  
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Major Findings: 
 
 Western blot analysis showed that low-dose transplacental arsenic exposure has 

minimal effects on mouse F1 hepatic AKT and pAKT relative protein expression.  No 

statistically significant differences were observed in a sex- or dose-dependent manner.  

However, an apparent decrease in the relative concentration of AKT in the active form 

was observed in animals exposed to sodium arsenite at 50ppb.  There are several ways in 

which arsenic could induce AKT signaling via a dynamic web of inter-related pathways 

(Fig. 3), but it is important to note that unregulated activation of AKT generally leads to 

signal transduction promoting processes associated with cancer progression as well as 

disrupting processes associated with glucose metabolism and homeostasis. 
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Materials and Methods 
 
 Animals and arsenic exposures: Previous studies provided a foundational 

framework and tissues used for this study (Van Beneden per. comm.; Carlson et al., 

2013a,b,c).  In short, 5-week-old C57BL/6J mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME) and acclimated to a 14/10h light/dark cycle at 22ºC for 3 

weeks in the University of Maine Small Animal Facility.  Female mice (F0) were fed 

standard mouse chow (5POO ProLab RMH 3000, Purina Mills LLC, St Louis, MO, 

USA) and exposed to 0, 10, 50 or 500 ppb sodium arsenite (Sigma, St. Louis MO, USA) 

in drinking water ad libitum beginning four days prior to mating.  Eight males were used 

to mate with sixteen females; all females had successful litters.  Direct arsenic exposure 

to the F0 dams continued throughout mating, gestation and during nursing for 21 days 

post birth of the F1 generation.  Three male and three female F1 pups from separate litters 

at each treatment level were moved to an arsenic-free water supply; the remaining 

animals were sacrificed.   

 

Figure 4: Timeline of transplacental mouse study experimental setup (modified from 
Carlson, 2013c). 
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A portion of the liver tissue was flash frozen in liquid nitrogen and stored at -80°C for 

gene expression analysis; a second portion was placed in 10% buffered formalin for 

histological analysis.  F1 mice were mated to produce an F2 generation with no further 

arsenic exposure.  At 21 days post birth, F2 mice were sacrificed and liver tissue was 

collected as described above.  All animals were handled in accordance with protocols 

approved by the University of Maine Institutional Animal Care and Use Committee 

(IACUC). 

 Sample Preparation: Hepatic tissue samples (3 males, 3 females at each exposure 

level in F1) identified for study (Fig. 5) were taken from the same individuals previously 

tested for altered expression of other genes (Carlson et al., 2013a), which allows us to 

increase the combined data set.  The samples were labeled individually by harvest date 

and exposure level (e.g. the first animal sacrificed in December of 2010 that was exposed 

to arsenic at a concentration of 50ppb was labeled as 122010-50-1).  

 0ppb 10ppb 50ppb 500ppb 

Blot 1 (male) 102010-0-11 122010-10-07 122010-50-10 122010-500-08 

Blot 3 (male) 122010-0-10 122010-10-05 122010-50-09 122010-500-07 

Blot 5 (male) 122010-0-09 122010-10-06 122010-50-08 122010-500-06 

Blot 2 (female) 122010-0-19 032011-10-02 032011-50-03 122010-500-17 

Blot 4 (female) 122010-0-05 032011-10-04 032011-50-02 122010-500-15 

Blot 6 (female) 122010-0-17 032011-10-05 042011-50-18 122010-500-19 

Figure 5: Male and female animals from which hepatic samples were obtained, organized 
by exposure level and blot number.  Note: each blot consists of a sample from each 
exposure level. 
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 Homogenization: Tissue samples (prepared from F1 hepatic tissues stored at -80ºC 

in the Van Beneden lab) with mass of approximately 5mg were homogenized on ice in 

200µL PhosphoSafe buffer (EMD Millipore, Dermstadt, Germany) with added protease 

inhibitors (Complete Protease Inhibitors, Roche Diagnostics, Mannheim, Germany) using 

a micro-pestle.  Homogenates were then centrifuged at 14,000xg for 10 minutes at 4ºC; 

the supernatant was extracted and the pellet was discarded. Protein supernatants were 

stored at -80ºC. 

 Protein Quantification: Total protein concentration was determined via BCA 

assay (Pierce Biotech, Rockford, IL) following supplier’s protocol.   

Western Blot Analysis: Loading Samples (20µL total volume) were prepared to 

40µg total protein in distilled water with 5µL NuPage loading dye (Life Technologies, 

Carlsbad, CA) and 2µL reducing agent (Life Technologies).  Controls were prepared 

using 10µL Jurkat cell extracts treated with Calyculin A (Cell Signaling, Danvers, MA), 

3µL distilled water, 5µL dye, and 2µL reducer.  Samples were heated for 10 minutes at 

70ºC to denature proteins and spun at 14,000xg for 30 seconds before loading onto 

Novex NuPAGE pre-cast SDS-polyacrylamide 10% bis-tris gels (Life Technologies).  

Protein size-standard markers added to marker lanes were a SeeBlue Plus2 Prestained 

Standard (Life Technologies) and a SuperSignal Molecular Weight Protein Ladder 

chemiluminescent marker (ThermoScientific, Philadelphia, PA). Proteins were separated 

by SDS-PAGE using MOPS running buffer (stock 20X: 50mM MOPS, 50mM Tris Base, 

0.1% SDS, 1mM EDTA, pH 7.7; Life Technologies; diluted to 1X concentration in 

distilled water) at 160v for approximately 1 hour or until the loading dye reached the foot 

of the gel.  Proteins were then transferred to an Immobilon PVDF membrane (Millipore) 
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using transfer buffer (50 mL 20x stock, 100mL methanol, 850mL dH2O; Life 

Technologies) at 35v for 1 hour.  Electrophoresis and transfer were performed using an 

XCell SureLock Novex Mini-Cell apparatus (Life Technologies) following 

manufacturer’s protocol. 

Post-transfer gels were stained in Coomassie staining solution (1g Brilliant Blue 

R, 500mL methanol, 100mL acetic acid, 400mL dH2O) and subsequently placed in de-

staining solution (450mL methanol, 100mL acetic acid, 450mL dH2O) to observe band 

separation.  Gels were preserved using a gel drying solution (368mL ethanol, 25mL 

glycerol, 607mL dH2O) and clamped overnight between sheets of gel drying cellulose 

film (Promega, Madison, WI).  A Ponceau stain was performed to determine transfer 

efficiency, prepared using Ponceau S stock solution (2.5mL 20x stock, 47.5mL dH2O; 

Sigma).  Briefly, membranes were placed in stain for 5 minutes before being rinsed with 

dH2O to observe bands.  With bands present, membranes were marked to be cut after 

blocking, which allowed for separate primary incubations.  Membranes were then rinsed 

with 0.1M NaOH to remove stain and subsequently washed in dH2O with frequent water 

changes to remove residual NaOH.   

Non-specific protein binding sites were blocked with 2.5% bovine serum albumin 

(BSA) in TTBS (90g NaCl, 50mL 1M Tris, pH 7.6, 10mL Tween 20, dH2O to 1L) for 1hr 

at room temperature before membranes were cut and segments were separately incubated 

in primary antibody (AKT and pAKT 1:500, β-Actin 1:1000 in 2.5% BSA) overnight at 

4ºC.  Membranes were then washed 4 times with TTBS before incubation with 

horseradish peroxidase (HRP)-conjugated anti-rabbit secondary antibody (Jackson 

Immuno Inc., West Grove, PA) for 1hr at room temperature.  Final washes with TTBS 
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(4x 5min) followed with TBS (NaCl, Tris, pH 7.6; 5x 5min) were performed before 

imaging.  Proteins were visualized using LumiGLO chemiluminescent substrate (KPL, 

Gaithersburg, MD) and a digital imager (FUJIFilm LAS4000).  Finally, membranes were 

stained in Coomassie staining solution and compared to gels for qualitative assessment of 

transfer efficiency.  

 Primary antibodies used for analysis were anti-β-Actin (Cell Signaling, Danvers, 

MA), anti-AKT (Cell Signaling), and anti-Phospho-AKT (Ser473; Cell Signaling).  All 

membranes were incubated with the same volume of luminescent substrate and imaged 

with a five second exposure time.  Gel Analyzer software was used to generate 

densitometry values for relative expression of protein bands on the western blots.  β-

Actin values were normalized to an average expression derived from a pAKT-stimulated 

Jurkat cell extract control used for each blot to adjust for blot-to-blot variability.  These 

values were then used to normalize AKT and pAKT values on each blot.  Relative AKT 

activity was determined using the ratio of relative !"#$
!"#

 expression generated by 

densitometry analysis; significance was determined using a two-tailed t-test, one-way 

ANOVA, and Tukey’s test. 
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Results 
 

 Western blot analysis produced signal bands, representing relative targeted 

protein expression, for each sample tested.  However, the antibody targeting AKT 

produced a much stronger “signal” than the antibody for pAKT.  The exception of this is 

found in the pAKT-stimulated control Jurkat cell extracts, as shown in Figure 6.  Jurkat 

extracts were used to normalize for blot-to-blot variability and to determine antibody 

specificity.  As shown in Figure 6, the pAKT-stimulated controls also displayed signal 

for inactive AKT.  This could be due to the actual presence of AKT despite pAKT 

stimulation, or it could be due to a lack of pAKT antibody specificity.  Because of this, 

samples were analyzed for relative !"#$
!"#

 rather than determine relative pAKT expression 

alone. 

	  

Figure 6: Representative pAKT-, AKT-, and β-Actin targeted western blot bands at 
different exposures. Note: the same sample is run in separate lanes to target AKT and 
pAKT individually (Molecular weights are 60kDa and 62kDa respectively, making them 
difficult to distinguish when probed together). 
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 Before normalizing AKT and pAKT expression values to β-Actin, it was 

important to explore the effects of arsenic treatment on β-Actin expression.  Given cited 

findings of actin cytoskeletal rearrangement in response to arsenic exposure (Bernstam et 

al., 2010), it is critical that AKT expression is not normalized to β-Actin if β-Actin itself 

exhibits a response to arsenic.  One-way ANOVA followed by Tukey’s test showed no 

significant difference in β-Actin expression at any arsenic exposure level, as shown in 

Figure 7. 

 

Figure 7: Analysis of β-Actin expression in response to arsenic exposure shows no 
significant dose-dependent changes when normalized to Jurkat cell extract controls. Bars 
represent ±SEM, n=6 for each exposure, sexes combined. 
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With determination of β-Actin as a reliable control for lane-to-lane variability within each 

blot, AKT and pAKT values (also normalized to the average of the Jurkat control to 

account for blot-to-blot variability) could then be normalized to β-Actin expression for 

each sample.  Normalized AKT and pAKT expression values were then compared 

relative to each other to determine a value of !"#$
!"#

 that was used as a representation of 

AKT activity in each sample.  It should be noted that AKT and pAKT expression were 

also both analyzed independently, and no significant effects were observed in a sex-

dependent or dose-dependent manner in response to arsenic exposure. 

 Sex-dependent change in related gene product expression was observed in 

previous studies (Carlson, 2013b,c) so a paired t-test was performed between males and 

females at each exposure level.  The results showed no significant differences (Fig. 8). 
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Figure 8: Sex-dependent analysis of pAKT/AKT expression after arsenic exposure. Bars 
represent ±SEM, n=3 for each sex in each exposure group. 

By determining that there is no statistical difference in relative !"#$
!"#

 expression in a sex-

dependent manner, the data for both sexes could be combined to increase the sample size 

for further analysis of dose-dependent response to arsenic exposure.   

 It was hypothesized that arsenic exposure would alter relative !"#$
!"#

  expression in 

a dose-dependent manner, though not necessarily in a linear fashion.  Previous studies 

have shown significant dose-dependent expression changes in a non-linear fashion 

(Carlson, 2013b,c).  Because arsenic exposure has been linked to several types of cancers 

as well as increased rates of diabetes (Ratnaike, 2003; Duker, 2005), it was further 

hypothesized that more active-state AKT would be found in arsenic-exposed animals 

than in the control group.  This is because of the association of AKT with pathways 

involved in cellular growth and division as well as glucose metabolism (Manning et al., 

2007).  A one-way ANOVA with Tukey’s test showed no significant difference in !"#$
!"#

 

expression at any level of arsenic exposure (Fig. 9).   
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Figure 9: Dose-dependent analysis of pAKT/AKT expression after arsenic exposure. Bars 
represent ±SEM, n=5 for each exposure, sexes combined. 
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The data show that transplacental arsenic exposure at 50ppb and 500ppb appears to result 

in lower relative !"#$
!"#

 expression, though the results are not statistically significant.  

Notably, the same results are generated when using the accepted arcsine data 

transformation, suggesting that data distribution does not impact apparent findings.  This 

is shown in Figure 10. 

         

Figure 10: Dose-dependent analysis of arcsine transformed data showing pAKT/AKT 
expression after arsenic exposure ±SEM, n=5 for each exposure, sexes combined. 
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Data transformations are useful for biological data because natural variability will 

oftentimes produce data sets without homogenous standard deviations.  Making 

comparisons between one set of data with a small deviation to another set with a large 

deviation cannot be accurately done with an ANOVA because it depends on those 

deviations to produce results.  Arcsine transformations are frequently used for analysis of 

proportion statistics with values ranging from zero-to-one (McDonald, 2014).  These data 

look at the proportion of pAKT found in a sample relative to the total amount of AKT 

found in the same sample, with values ranging from zero-to-one.  For that reason, it was 

useful to observe any differences in statistical analysis using arcsine-transformed data.   

 The results of this study show via western blot analysis that AKT activity in 

mouse livers is not significantly altered in a sex- or dose-dependent manner after 

transplacental arsenic exposure.  These results are upheld with and without normalization 

techniques as well as with and without data transformation techniques.   
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Discussion 
 
 Chronic arsenic exposure has historically been linked to skin diseases, such as 

black foot disease (Basu et al., 2001).  In more recent years, studies have described 

correlations between arsenic exposure and cancers and diabetes mellitus (Ratnaike, 2003; 

Duker, 2005).  Understanding of the link between arsenic and these diseases has been 

limited by the complicated molecular mechanisms of action.  Arsenic exposure has been 

shown to have sex-, generational-, and dose-dependent effects, but the apparent complex 

and inter-connected pathways have proved difficult to marry into a holistic description of 

molecular toxicological effects (Ferrario et al., 2008; Paul et al., 2011; States et al., 2011; 

Stueckle et al., 2012; Carlson et al., 2013b,c).  Because the Van Beneden lab had 

observed several arsenic-induced expression changes of gene products involved in 

cancer-associated pathways as well as glucose metabolism (diabetes-associated) 

pathways, exploring AKT activity showed potential to help explain the link between 

these two major pathways (Carlson et al., 2013b,c).   

 Although no significant expression changes were observed, it should be noted that 

more studies are necessary to support these findings before AKT response to arsenic can 

be fully understood.  This study is a useful pilot that shows no major response at the 

protein level, but that does not necessarily mean there is no significant change in relative 

expression on the protein level at all, and it does not address a potential arsenic-induced 

expression response on the mRNA transcript level.  It is well known that there is often a 

difference in relative transcript expression when compared to relative protein expression.  

As the field of functional genomics continues to expand, the dynamic regulation of 

expression at all levels becomes further complicated— only adding to the importance of 
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exploring responses beyond the protein product level.   

Prior Studies: 

 Patrick Carlson observed increased Pparγ expression and decreased expression of 

Wee1 and Brca2 in response to environmentally relevant arsenic exposure.  He suggested 

that these expression changes were AKT-mediated, and proposed the following pathway: 

 

Figure 11: Proposed mechanism of arsenic toxicity. Arrows indicate activation, while 
bars indicate inhibition. Abbreviations: As, arsenic; P, phosphate; RXR, retinoid X 
receptor; CDK1, cyclin dependent kinase 1; CCNB1, cyclin B1; FA, fatty acid (Carlson, 
2013c). 
 
Aberrant AKT phosphorylation in response to arsenic is an instrumental point to the 

pathway proposed above.  Carlson hypothesized that AKT phosphorylation could be 

altered in response to mutation of its upstream regulators, such as RAS, PTEN, and PI3K, 

which are cited as commonly mutated (Manning et al., 2007; Yuan et al., 2008; Carlson, 

2013c).  Studies exploring the effects of arsenic exposure on the abovementioned protein 
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expression could be instrumental in further explaining the outlined response pathway, as 

they would provide insight to AKT regulation.  In the hypothesized pathway (Fig. 11) the 

downstream effects of AKT activity range from PPARγ activation (leading to 

suppression of Crot and Hmgcs1, potentially deregulating fatty acid transport 

mechanisms as well as sterol synthesis) to repression of Wee1 and Brca2 (potentially 

leading to impaired DNA repair mechanisms and the onset of cellular division).  This 

proposed pathway—based on results of prior studies—further demonstrates the 

significance of AKT as a link between cell cycle regulation and metabolism.   

 

Western Blotting: 

 Western blotting is a well-known diagnostic technique to analyze relative 

expression of specific target antigens and are generally “semi-quantitative” in nature.  

Reasons for this include variations in loading and transfer rates from lane-to-lane and 

blot-to-blot that are accounted for only with imprecise normalization techniques, as well 

as non-linear detection of the signal generated (Mahmood, et al. 2012).  Furthermore, 

western blotting is notorious for its many problems that can arise during a relatively 

simple procedure.  Many of these problems were observed throughout the development 

of this project and led to a slight change in experimental plan.  For example, high 

background noise and non-specific binding was observed, which led to an extensive trial-

and-error process of determining proper blocking buffer, antibodies and dilutions, and 

wash procedures.  Also, it was expected that blots would be visualized using a LiCor C-

DiGit scanner, but after a month of troubleshooting no workable images were produced.  

For these reasons and more, the project was limited to exploring relative AKT and pAKT 
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expression only in F1 samples, though F2 samples were also identified for study.  

 

Experimental Design: 

 It should be noted that AKT phosphorylation state has been described as 

temporary and is often reversed within minutes (Fig. 12), though the mechanisms of this 

negative regulation are not fully understood (Yuan et al., 2011). 

	  

Figure 12: pAKT level observed over time after EGF stimulation of growth factor-starved 
cell populations (Yuan et al., 2011).  Cells were characterized by level of p110 (catalytic 
subunit of PI3K; see figure 2) expression.  Note “Total cells” pAKT level over 2 hour 
period as well as the apparent importance of p110 in pAKT regulation. 
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Yuan, Cantley, and colleagues show not only that relative pAKT expression is variable 

over a short time frame, but also that it is highly variable among subpopulations of cells 

within the same tissue.  This has implications for this study based on the experimental 

design.  For example, if one mouse had recently eaten a lot in the time before sacrifice, it 

could have vastly different relative AKT activity than a mouse in the same exposure 

group that had not recently eaten.  Also, western blot analysis shows relative expression 

of the entire population of cells in the sample tested.  Cell-to-cell variability shows 

potential to introduce further complexity to the understanding of AKT regulation (Yuan 

et al., 2011).  Furthermore, this study was performed using hepatic tissue samples derived 

from different lobes of the liver, which can have significantly different relative protein 

expression. Mammalian studies addressing expression profile differences between liver 

lobes caution to recognize a lack of homogeneity throughout the organ (Cox et al., 2006).  

Given the small sample sizes used, this study would benefit from a more thorough 

analysis using more specific samples (i.e. all samples taken from the same lobe of the 

liver) from a much larger sample size.  

 

Future Directions: 

 As mentioned, the Van Beneden lab is now positioned to continue studies of 

mouse hepatic tissue transplacentally exposed to environmentally relevant levels of 

inorganic arsenic.  Next steps should include further analysis of AKT activity.  This 

project only addressed the F1 generation, but it would be useful to explore the F2 

generation as well.  It would be useful to explore generation-dependent expression in 

response to arsenic to further understand any direct insult response or epigenetic response 
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spanning across generations (Carlson, 2013c).  It is also important to expand the study to 

a larger sample size to increase significance, and the Van Beneden lab has the tissues 

prepared to do just that.  Furthermore, it would also be useful to partner western blot 

analyses with other laboratory techniques (ie. ELISA, IHC, and qPCR) in order to come 

to a more definitive conclusion.   

 Beyond further analysis of AKT activity, this study would also be supported 

greatly by exploring upstream and downstream expression.  Upstream, it would be of 

significant benefit to this project to have information about PI3K response because it is 

the most significant and well-cited upstream regulator (Engelman et al., 2006; Franke, 

2008; Hemmings et al., 2012).  Downstream, it would be useful to expand on the 

understudied subject of glucose metabolism in response to arsenic.  As mentioned 

previously, because this project examines hepatic tissue, AKT pathway analysis is poised 

to give information on arsenic-induced diabetes development.  Suggestions of genes to 

look at include those noted earlier— GSK3, FOXO1, and PFK, as shown in Figure 13.  

These gene products are involved (directly or indirectly) in the regulation of glucose 

metabolism, and they are known to be targets of pAKT, making them particularly 

relevant to this project.   
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Figure 13: Example of pAKT downstream signaling in glucose metabolism pathways. 

	  
 All of these studies would be very time demanding and would require significant 

skills in acquired laboratory techniques to generate reproducible results, but would “tell 

the story” of arsenic response more fully.  I hope that this project will be followed up in 

the future because investigations into how environmental toxicants impact our health are 

of critical importance to public health measures.  
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