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ABSTRACT 

 
 Neonatal Abstinence Syndrome (NAS) is a neonatal medical condition of prenatal 

opioid withdrawal, secondary to prenatal exposure. NAS increases mortality and 

morbidity through seizure risk, and excessive sympathetic autonomic tone; which affects 

respiration and dysregulates sleep and feeding. Our laboratory has recruited more than 

200 pregnant women who are in treatment for opiate dependence with methadone 

maintenance treatments. We have found that NAS severity is modulated by the presence 

of allelic variants of OPRM1 118A>G (µ-opiate receptor) and COMT 158 A>G 

(catechol-o-methyl transferase) genes, revealing a positive correlation between minor 

alleles of these two genes and severity reflected in length of hospitalization and 

treatment.  

 In neonates, in this thesis, it is predicted that SNPs protective for NAS will be 

associated with improved sleep-wake regulation, including movement arousals (MAs), 

periodic movement bursts during sleep, whereas those infants without the protective 

alleles may show increased sleep fragmentation and resulting sleep deprivation, 

providing psychobiological markers of neurodevelopmental risk.  In this thesis, I propose 

that the allelic variants of OPRM1 118A>G, and COMT, that have been associated with 

NAS severity, will similarly associate with early markers of withdrawal in sleep and 

arousal before withdrawal has begun. Further, we had examined several genes from the 

ABCB1 cassette, MDRa, MDRb, MDRc, which are associated with multi-drug resistance 

(Levran, et al., 2008), for relation to NAS severity. Although there had been no prior 

research on the ABCB1 cassette (Wachman et al., 2013), I examined MDR genes as well 

for potential association with pre-withdrawal sleep and wake. 



vi 

TABLE OF CONTENTS 
 
 
LIST OF TABLES ............................................................................................................ vii 
LIST OF FIGURES ......................................................................................................... viii 
LIST OF ABBREVIATIONS ............................................................................................ ix 
 
CHAPTERS: 
 

1. INTRODUCTION .....................................................................................................1 
1.1 NAS AND GENES ..................................................................................................2 
1.2 SLEEP PROPERTIES AND NAS ..........................................................................5 
       1.2.1 SLEEP FRAGMENTATION AND DEPRIVATION  ..................................7 
1.3 HYPOTHESES ......................................................................................................10 
 
 
2. METHODS ..............................................................................................................11 

2.1 PARTICIPANTS .............................................................................................11 
2.2 SLEEP STUDY PROTOCOL .........................................................................13 
2.3 AROUSALS ....................................................................................................14 
         2.3.1 SPONTANEOUS MOVEMENTS ......................................................14 
2.4 BEHAVIORAL STATES CODING CRITERIA ............................................16 
2.5 DNA COLLECTION .......................................................................................17 
2.6 DNA PROCESSING .......................................................................................18 
2.7 STATISTICS ...................................................................................................19 
 

3. RESULTS ................................................................................................................20 
3.1 OPRM1 ............................................................................................................21 
3.2 COMT ..............................................................................................................25 
3.3 ABCB1 CASSETTE ........................................................................................26 
 

4. DISCUSSION ..........................................................................................................27 
4.1 OPRM1 ..................................................................................................................27 
4.2 COMT ....................................................................................................................28 

      4.3 ABCB1 CASSETTE ..............................................................................................29 
 
REFERENCES ..................................................................................................................33 

 

 

 

 



vii 

LIST OF TABLES 

Table 1 Behavioral State Coding Criteria ..........................................................................16 
Table 2 Maternal Demographic Characteristics  ...............................................................20 
Table 3 Infant Demographic Characteristics .....................................................................21 
Table 4 Genotype and Behavioral State Relationships ......................................................23 



viii 

LIST OF FIGURES 
 

Figure 1.1 Cascade of Disrupted Sleep ................................................................................7 
Figure 3.1 Genotype for the COMT A158G SNP .............................................................25  



ix 

 

 
LIST OF ABBREVIATIONS 

 
 ANS    Autonomic Nervous System  

AS    Active Sleep  

BA    Brief Arousal  

cAMP   Cyclic adenosine monophosphate  

CI    Confidence Interval  

CNS    Central Nervous System  

COMT   Catechol-O-methyl transferase  

CRH    Corticotrophin Releasing Hormone  

DA    Dopamine 

DHHS    Department of Health and Human Services  

DNA    De-ribonucleic Acid  

DRD4    Dopamine Receptor  

EMMC   Eastern Maine Medical Center  

FA    Full Arousal  

FAS    Fetal Alcohol Syndrome  

HIPAA   Health Insurance Portability and Accountability Act  

IRB    Institutional Review Board  

IS    Indeterminate State  

LOT    Length of Treatment  

MDRa   SNP C3435>T 

MDRb   SNP G2677>T 



x 

MDRc   SNP C1236>T 

mRNA   Messenger Ribonucleic Acid 

NAS    Neonatal Abstinence Syndrome 

NI   Nurse intervention 

NICU    Neonatal Intensive Care Unit 

NREM   Non-Rapid Eye Movement 

OPRM1 118A>G  Opiate Receptor µ1  

PNS    Peripheral Nervous System 

SES    Socioeconomic Status  

SIDS    Sudden Infant Death Syndrome  

SM    Spontaneous Movements  

SNP    Single Nucleotide Polymorphism  

SPSS    Statistical Package for the Social Sciences  

 



 1 

CHAPTER ONE 
INTRODUCTION 

 
 According to the World Health Organization, an estimated 2 million people are 

dependent on opioid medications, which accounts for epidemic rises in opioid-associated 

mortality (Hayes and Brown, 2014). Similarly, there has been a concomitant rise in the 

abuse of opiates during pregnancy (SAMHSA, 2010; Hayes and Brown, 2012). 

According to research conducted by the Maternal Lifestyle Study, 2.3% of pregnancies 

involve heroin or methadone exposure. Methadone maintenance treatments are the 

standard of care for opiate dependent pregnant women (Jones, 2008).  In 60-80% of 

newborns, opioid withdrawal or Neonatal Abstinence Syndrome (NAS), requires opioid 

pharmacological treatment and weaning (Patrick, 2012). NAS withdrawal complications 

can be life threatening, e.g. seizures, brainstem dysregulation, respiratory sinus 

arrhythmia, or poor sleep and feeding (Hudak, 2012). NAS severity is affected by allelic 

variants of the OPRM1 118A>G (opiate receptor µ1) and COMT (catechol-o-methyl-

transferase) genes, which have been linked to brain circuitry for opioid pain 

effectiveness, addiction and psychiatric disease (Wachman et al., 2013).  

 Addiction is a neuroadaptation process that is progressive, but can proceed rapidly 

when significant quantities of opioid compounds (e.g. as prescription drugs or heroin) are 

consumed over a period of months or years. All of the mothers in this study suffered from 

an addiction to opioid narcotics and required treatment with methadone throughout their 

pregnancies. Addiction is considered a condition that results when a person ingests a 

substance or engages in an activity that activates neural pathways associated with 

dopamine.  But, when this act is continued, it may become compulsive, reflecting 

neuroadaptive changes in the CNS. In this psychiatric state, the person is dependent on 
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the drug and is suffering from addiction. The user may not be aware that their behavior is 

out of control. This is a neurobiological state in which the brain will adapt to the presence 

of a drug, so that the drug no longer gives the same initial effect and is defined as 

tolerance. In the absence of drug, the addicted organism will experience withdrawal when 

the drug is discontinued. In opiate and other drug addictions such as alcohol, the person 

in withdrawal seeks the drug to relieve symptoms and decrease psychological distress. 

Mothers in the present study are monitored carefully to insure that they do not experience 

withdrawal, which has been hypothesized to cause fetal harm or demise in opioid 

addicted women not in treatment. The present study explores the relationship of genetic 

factors in the pre-withdrawal period and examines allelic differences in the mother and 

baby to NAS severity. Differences have been found for OPRM1 and COMT, as described 

above by Dr. Hayes’ lab (Wachman et al., 2013). My study examined these and other 

gene variants on sleep in relation to the pre-withdrawal status of the newborn using an 

overnight sleep study on day 0 or day 1 post-birth. 

1.1 NAS AND GENES: 

 Naturally occurring single nucleotide polymorphisms (SNPs) in genes often 

produce profound effects on the functioning of proteins. SNPs are DNA sequence 

variations that occur commonly within a population, and a single nucleotide in the 

genome will differ between members of the biological species. They are biological 

markers, and help to locate genes that could be associated with diseases. It has been 

found that SNPs can be associated with an individual’s responses to certain drugs. 

OPRM1 118 AG risk allele occurs at a rate of approximately 12% in the Caucasian 

ethnicity and is linked with to a risk for substance abuse. The µ-opioid receptor is a 
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member of the G protein coupled receptor family. This group of receptors sense 

molecules outside of the cell, and activate signal transduction pathways and cellular 

responses. Approximately 40% of all modern medicinal drugs target these G protein 

coupled receptors. The mechanism behind these receptors starts with external signaling in 

the form of a ligand that creates the conformational change that leads to the activation of 

a G protein. One ligand category that can bind to the G protein is opioid peptides. Though 

we do not know entirely how the signal transduction occurs, it is thought that the 

molecule exists in equilibrium between active and inactive, and there is a possibility that 

the binding of the ligands will shift the equilibrium state towards the active state.  

 The COMT 158A>G SNP has a minor allele frequency of approximately 50% in 

whites and has been associated with responses to pain and morphine dosage requirements 

in adults (Wachman, 2013).
 
Variations in the COMT gene have also been previously 

linked with disorders such as schizophrenia, anxiety and drug abuse. Drugs that cause 

addiction increase the brain’s dopaminergic transmission, and the COMT enzyme plays a 

critical role in dopamine inactivation. A shorter length of treatment (LOT) was found by 

Wachman, Hayes and colleagues, (Wachman et al, 2013)
 
with a reduction in COMT 

enzyme activity due to an increase in levels of circulating catecholamine and led to an 

improved stress tolerance.  

 Another gene complex, termed the ABCB1 cassette is involved in drug processing 

leading some SNPs to be associated with faster or slower metabolic degradation of 

opioids and other drugs. Methadone is a substrate of the transporter P-glycoprotein (P-gp) 

which is encoded by the ABCB1 (MDR1: Multi Drug Resistance Protein 1) gene. These 

genes has been found to have significant variations in allele frequencies among various 
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populations, and a few variants have been shown to be associated with P-gp expression, 

drug response and disease susceptibility. When homozygous to the T allele (TT) are 

present, lower in-vivo duodenal P-gp expression occurs (in comparison with CT or CC). 

Gene duplications have been associated with rapid metabolism and non-functional 

variants associated with poorer metabolism. Rapid metabolizers are often born with a 

propensity towards early withdrawal (Levran et al., 2008). 

 In a previous study conducted by Wachman et al. (2013) to determine whether 

SNPS in the OPRM1, ABCB1 and COMT genes are associated with length of hospital 

stay and the need for treatment of NAS. Infants were enrolled at Tufts Medical Center 

and affiliated nurseries (Brockton Hospital, Melrose Wakefield Hospital, Lowell General 

Hospital) and Eastern Maine Medical Center. Eligibility criteria had included maternal 

prescribed methadone or buprenorphine exposure in utero for at least 30 days before 

delivery. The result, using the genetics statistical approach called the dominant model 

(e.g. in which group one is associated with homozygous variants for the major allele, 

termed AA, and group two is composed of collapsed groups of heterozygotes and 

homozygotes for the minor allele ie. AG/GG), found that infants in group two with the 

minor G allele, either OPRM1 AG or GG, had a shortened length of stay and were less 

likely to receive NAS treatment than infants who did not have the G allele, designated 

OPRM1 AA genotype. For COMT minor alleles (group two) shortened length of stay and 

significantly less treatment (with 2+ medications) was observed than the dominant alleles 

(group one). Overall, this study concluded that the minor variants in the OPRM1 and 

COMT genes were associated with a shorter length of stay and less of a need for 

pharmacological treatment.  
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 An additional study done by Wachman et al. (2014) shows that methylation in 

OPRM1 may also affect responsiveness to opioids. The SNP polymorphism in the µ-

opioid receptor can affect the activity of the receptor, and alter the sensitivity to β-

endorphins and the potency of post-synaptic cellular activity. These findings are 

associated with previous findings by Wachman et al., and the increased length of stay in 

newborns. If newborns with higher methylation in OPRM1 have more severe withdrawal, 

it may be because methylation of OPRM1 down-regulates opiate receptors and decreases 

the sensitivity of opiate receptors to replacement medications leading to slower recovery. 

This is hypothesized by Wachman (2014) to be an epigenetic consequence of high 

exposure to opioids prenatally. 

 In this thesis it is imperative to uncover the association between NAS, and the 

SNPs labeled as protective. It is predicted that these protective SNPs will be associated 

with improved sleep-wake regulation including movement arousals (periodic movement 

bursts during sleep), whereas those infants without the protective alleles may show an 

increased sleep fragmentation pattern, which will result in sleep deprivation (decrease in 

the frequency and duration of arousal parameters following sleep onset and decreased 

spontaneous movement duration) providing psychobiological markers of 

neurodevelopmental risk. 

 

1.2 SLEEP PROPERTIES AND NAS:  

 It is known that newborns that are exposed to opioids prenatally show impairment 

in autonomic arousal-regulatory tone (Jansson, 2011). One measure of changes in 

autonomic tone during sleep are movement arousals (MA), high frequency cycles of 
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sleep-related, spontaneous movements (SM). Vecchierini and Navalet (2002) state that 

the process of differentiating awakenings from arousal is based on the polysomnographic 

and behavioral state criteria in which awakening is believed to occur when behavioral 

markers such as quiet or restless, open eyes, grimaces, movements and occasional cry is 

present. In our lab’s sleep studies, MAs are depressed in high-risk-for-SIDS groups, e.g. 

prenatal alcohol and tobacco exposure (Troese et al., 2008); high-risk premature infants 

(Hayes et al, 2007). There is a sleep pattern known as the “cascade of disrupted sleep” 

which many of our infants display. The first stage is sleep organization measured 

immediately post birth for sleep/wake states, state-dependent brief and full arousals and 

state independent primitive arousals (with sleep related spontaneous movements). If 

prenatal insult occurs (ie. opioid exposure) then we next see signs of sleep fragmentation 

(high arousals). This includes frequent awakenings, excessive crying, decreased active 

sleep and increased arousals. This state can lead to sleep deprivation (low arousals), a 

consequence of sleep fragmentation. This leads to decreased frequency and duration of 

arousal parameters, following sleep onset and decreased spontaneous movement duration 

further leading to disrupted CNS arousal properties and posing a potential risk for SIDS. 

Movement arousals are primitive movements, protective from SIDS. 

Although not addressed directly in this thesis, it is noteworthy that when exposed 

to exogenous opioids, the human adult sleep regulatory system is compromised 

(Hartwell, 2008).  During the third trimester, fetuses begin to entrain their biological 

clocks to their mother’s sleep patterns. Prenatal opioid exposure may delay fetal 

development leading to sleep deficit from abnormal sleep cycles of the infant post birth 

(Jansson, 2011); alternatively, early withdrawal may also disrupt sleep patterns. The 
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hypothesis of my thesis incorporates our prior findings that the minor alleles of OPRM1 

and COMT (rs1799971 dbSNP database) are associated with milder NAS (Wachman, 

2013), defined by shorter length of stay and less pharmacological replacement drug, and 

thereby, deemed “protective.”  In our recent study it was found that opioid exposed 

infants with a more severe NAS phenotype (i.e. longer length of stay and two or more 

medication to stabilize withdrawal) had an increase in DNA methylation in the OPRM1 

(Wachman et al., 2014). This result suggests that in addition to NAS severity based on 

allelic differences in OPRM1, there may be epigenetic changes during exposure in utero 

that result in methylation of OPRM1 gene expression, and, perhaps, decreases sensitivity 

to opioid replacement therapy during withdrawal. 

1.2.1 SLEEP FRAGMENTATION AND DEPRIVATION  

 

Figure 1.1: Cascade of Disrupted Sleep 
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 In figure 1.1 we can analyze the cascade of disrupted sleep, and its measurements. 

Sleep organization is measured immediately post birth in the neonate. The sleep cycle is 

recorded and calculations made for sleep/wake states, state-dependent brief and full 

arousals, state independent primitive arousals (also known as spontaneous movements). 

When an infant experiences prenatal insult such as pre-term labor, methadone exposure 

and other factors (such as tobacco use, alcohol, anti-depressants) the infant typically will 

experience sleep fragmentation. Fragmentation is characterized by frequent awakenings, 

excessive crying, decreased active sleep and an increase in arousals. If sleep 

fragmentation is not properly resolved, then sleep deprivation is likely to occur. Sleep 

fragmentation includes a decrease in frequency and duration of arousal parameters 

following sleep onset and decreased spontaneous movement duration. Sleep 

fragmentation and deprivation are key factors in Central Nervous System deficiencies 

and are a potential risk factor for SIDS. 

 While most theories of sleep biology and the concept of deprivation are derived 

from animal studies, the assumptions pertaining to sleep-related brain plasticity have 

been formed based on the deprivation model, which is measurable by use of behavioral 

observation and histology (Hayes, 2002). The model of deprivation assumes an adverse 

outcome when the outcome is preceded by the deprivation of stimulus. Psychobiological 

effects of sleep deprivation are potentially adverse and are comprised of many different 

factors. Some of these effects include: irritability, cognitive impairment, memory lapses, 

impaired moral judgment, yawning, hallucinations, ADHD symptoms, impaired immune 

system, a risk of diabetes, increased heart variability, decreased accuracy, tremors, aches, 

growth suppression and many more. 
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 In infants the consequences of sleep deprivation are even greater than in adults, 

because sleep deprivation has been found to lead to longer-than-usual durations of sleep 

and decreased latency to REM sleep (Franco, Seret, Van Hees, Scaillet, Vermeulen et al., 

2004) in addition to decreased sleep-related arousal, which is believed to be a high risk 

factor for SIDS in infants (Kato, Franco, Groswasser, Scaillet, Kelmanson, Togari, & 

Kahn, 2003).  In order to measure the level of sleep deprivation and the subsequent 

arousal deficits, Franco et al. induced sleep deprivation and arousals on fourteen healthy 

infants ages 6-18 weeks in a sleep laboratory. The infants underwent polygraphic 

recording during a morning and afternoon nap and were sleep deprived for two hours 

before being allowed to fall asleep. Deprivation was achieved by keeping infants awake 

for as long as possible before their usual nap times. The results showed that most sleep 

characteristics were similar for normal and sleep deprived conditions except that the 

duration of total nap increased, and latency of REM sleep and density of body 

movements saw a decrease. During sleep these infants needed more intense auditory 

stimuli for arousal; compared with a normal nap.  

 The interactions among sleep deprivation, arousals and SIDS is extremely 

complex. While arousal deficit due to sleep deprivation is associated with SIDS, 

excessive arousability during sleep leads to sleep fragmentation, which is the predecessor 

of sleep deprivation (Troese et al., 2007) Therefore, based on several documented 

associations among sleep fragmentation, deprivation, arousal deficit and SIDS, it appears 

that while optimal amount of arousal is adaptive, hyper- or hypo- arousability may pose a 

risk for adverse post-natal outcomes. This is extremely important to understanding the 

mechanism and risk factors associated with SIDS. 
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1.3 HYPOTHESES:  

In the proposed study, I hypothesize that movement arousals (MA) based on spontaneous 

movements (SM) and sleep-wake behavioral states will be impaired with infants with 

allelic variants known to affect NAS.  

Hypothesis 1. Overall this project will be used to compare the sleep-wake and SM 

parameters of opiate exposed infants possessing OPRM1 and COMT SNPs that affect 

NAS severity. It is predicted that SNPs protective for NAS will share and be associated 

with sleep-wake regulation, while those associated with the more severe NAS phenotype 

will display sleep-wake dysregulation during all night videographic and actigraphic sleep 

studies.  

Hypothesis 2. Our preliminary data (Mariah Bundy, Biology/pre-med, Capstone, 2014) 

has shown that newborns with the COMT protective allele have more normative SMs and 

less impairment of SM vigor. NAS infants with one of the protective or risk alleles of 

COMT or OPRM1 are predicted to have SM patterns that reflect both 

neurodevelopmental and pre-withdrawal status on days 0-1 of life.  
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CHAPTER TWO 
       METHODS 

 In our larger longitudinal study, our lab has collected data on rural, disadvantaged 

mothers who are dependent on methadone and demographic controls (N= 200). All 

mothers are recruited from three local methadone treatment clinics and all infants are 

birthed at Eastern Maine Medical Center. For this study, 19 newborns who were > 36 

weeks gestational age were used. Mothers who were dependent on methadone were 

recruited during the third trimester. Eligibility criteria include maternal prescribed 

methadone exposure in utero for a minimum of 30 days, singleton pregnancies, and 

infants who were medically stable after delivery. This study has been approved by the 

University of Maine and Eastern Maine Medical Center institutional review boards with 

written informed consent and compensation for participation of $175 for the perinatal 

assessments described below. 

2.1 PARTICIPANTS:  

 We collected a subset of Caucasian (>98%) mother-infant dyads (N=19; total of 

200) from our lab’s longitudinal study at the University of Maine with funding from the 

National Institute of Health (NIH, #DA024806). Our participant demographics consisted 

of women that were pregnant and concurrently receiving methadone maintenance 

treatments (MMT). The mothers were recruited through a variety of programs during 

their third trimester of pregnancy from sites throughout the Bangor area. These sites 

included the Bangor Discovery House, Metro treatment of Maine and Acadia Hospital 

Narcotics Treatment Programs. The comparison group, whose sleep data are not included 

in this study, contained mothers with low socioeconomic status, which were recruited 

from Family Practice Center and Woman Infant and Children, also located in Bangor. 
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Both groups contained similar demographic characteristics including alcohol and tobacco 

use with the exception of opiate use for the comparison group. For the remainder of this 

thesis, the study group is restricted to sleep studies of 19 methadone dependent mother-

infant dyads. 

 In the 3rd trimester, a semi-structured clinical interview of alcohol tolerance and 

dependence, socioeconomic status and depression and urinalysis and infant meconium 

document opioid and other drug exposures, that is used to quantify exposures. Both 

groups underwent a pre-screening process, which was used to evaluate the drug and 

alcohol history of the pregnant mother and also gain various demographics on age, 

ethnicity, socioeconomic status and mental health state of the mother.  

 The infants also underwent assessments post-birth in which behavioral state, 

genetics and medical records were collected after various HIPPA acts had been signed by 

the parent in order to learn more about each individual infant throughout various time 

points. The first testing was done in the hospital where infant biomarkers of substance 

exposure were assessed and recorded during initial hospital stay after birth. The nurses 

follow a protocol to take fecal matter samples and send them to Affiliated Laboratories in 

Bangor, ME for a toxic substance screening looking for particularly cocaine, opiates, 

cannabinoids, amphetamines and PCP.  

 Throughout the neonates hospital stay they undergo Finnegan Neonatal 

Abstinence Scoring System to look for symptoms of NAS (Kaltenbach & Finnegan, 

1986). This scoring system lists 21 symptoms that are most frequently experienced in 

opiate-exposed infants. The symptoms are associated with a degree of severity and a 
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‘score’. In the present study, all infants were pre-withdrawal; hence, do not score in the 

withdrawal range.  

2.2 SLEEP STUDY PROTOCOL:  

 On Day 0 or 1, a sleep study was scheduled in all pre-enrolled mother-infant 

dyads. A Sony DCR-SR82 digital camcorder with a 60GB hard drive is used. It is a low 

light camera, which can record up to 40 hours of video for determination of behavioral 

state (described below) and sleep related spontaneous movements (SM) also termed 

movement arousals (MAs). The camera is set up for a maximum of thirteen hours, but the 

quietest periods occur between 2400-0500 hours and this period is standardized across 

newborns as the coding period.  In addition to video coding, movements were also 

recorded using Minimitter Actiwatch AW-64 device. This device is a wrist-sized watch 

containing piezoelectric accelerometers. Previous tests confirmed use on pediatric 

populations on the leg to provide raw data for SM analyses at 10Hz to be analyzed by 

standardized software. The actigraphic data will not be incorporated into this thesis.  

 Analyzing the videos was automated using XL script by pre-defined criteria for 

behavioral units, which yielded coded information for frequency, duration and sequence 

(utilizing a Dell XPS 710 computer with a 3.0GHz Intel Core 2 CPU). Sleep-wake and 

behavioral state changes were measured over a 5-hour period from 2400-0500 in the 

neonatal nursery or the mother’s room. Infants were not moved once the sleep study was 

begun at approximately 2000 hours. All of our videos are coded in the laboratory, by 

research assistants, who are trained to specific video coding criterion, in order to follow 

standard inter-rater reliability methods. In order to ensure proper coding techniques, all 

research assistants are withheld information regarding the infant’s status, making the 
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study double-blinded. All video coding for each sleep study was repeated with 

independent observers and Kappa coefficients (0.68-90) met published criterion for 

acceptance. Over the course of the past year I have coded over 50 sleep-wake state 

videos, and 30 spontaneous movement videos. However, not all of these videos included 

genetic data, see results. 

 With the infant sleep and arousal coding we look at various behavioral states of 

the infant. In order to have consistency in the coding technique between each individual 

there were various parameters set in place in order to ensure consistencies. 

 

2.3 AROUSALS: 

 In order to assess infant arousals, a brief arousal (10-30”), full arousal (>30”<1’), 

awakening (>1’) were used. In order to assess sleep state, timing criteria were also put in 

place. Sleep bouts were defined as sleep behavioral unit that lasted longer than 1 minute 

following the onset of sleep. We were able to code SM bouts if the event lasted longer 

than or equal to five seconds. There was a latency requirement post SM offset of <5” of 

the spontaneous movement, or the movement was considered one continuous movement. 

Research assistants were blind to the infant’s status and were trained to code behavioral 

states based on the system, described more fully below.  

2.3.1 SM: The characteristics of spontaneous movement were gross motor 

movements with the addition of arm, leg, neck and full body movements during the time 

of a sleep bout. SM had to last a minimum of five seconds, with a five second pause 

permitted. SM offset was determined with the end of one spontaneous bout and more 

than five second between the first and second bout within one sleep cycle. Inter-rater 
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reliability was established by using the Kappa coefficient method for each behavioral 

state: brief arousal, full arousal, wake, transition, sleep and spontaneous movements. 

 Though arousal criteria have been controversial due to the lack of standard 

operational definition to be applied across studies, sleep state organization is considered 

an essential marker of CNS and ANS maturity, common features of which, according to 

Hayes et al. (2007), include presence of arousals and SM during sleep periods in a 

cyclical fashion. Arousal is generally is defined as a physiological and psychological 

state of being awake or reactive to stimuli, achieved through the symphonic process of 

the reticular activating system within the brain stem, ANS and endocrine system 

stimulation. Arousal typically leads to increases in blood pressure and heart rate that will 

trigger sensory alertness, mobility and readiness to respond (Robinson, 2000).  

 SM occurs throughout sleep and is a measure that can assess arousal quality 

during sleep in neonates. SM is a state-dependent movement pattern that is predicted to 

occur periodically in a 3-5 minute window. SMs are characterized as writhing bodily 

movements and sub-characterized according to amplitude and speed. SMs are believed to 

be a ‘primitive’ physiological arousal system that offers autonomic protection in sleep 

during the neonatal and early infancy period, when the arousals are immature (Hayes et 

al., 1993). SMs serve as a potential primitive and protective arousal regulatory 

mechanism and their effect is to restore airway openness and upregulate cardiorespiratory 

cycles of the medullary circuitry.  
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2.4 BEHAVIORAL STATE CODING: 

 The following coding criteria were derived from Giganti et al. (2002); Hayes et al. 

(2007); and Troese at el. (2008). 

Table 1. Behavioral States Coding Criteria 

Behavioral State Coding Criteria 
Sleep Sleep states are composed as two different types. These are known 

as active sleep (REM) and quiet sleep (NREM). Each state is based 
on EEG and behavioral states, and each state is comprised of its 
own behavioral and physiological characteristics. This study did not 
classify into two separate types of sleep. We coded the videos 
simply for when the infant’s eyes were shut, motor activity was 
low, and muscle tone was low. This state must last for a minimum 
of sixty seconds. 

Spontaneous 
Movements 

Throughout the sleep cycle, bursts of spontaneous movements 
occur every 3-5 minutes. A spontaneous movement is defined as a 
cluster of movements during sleep that is >5 seconds and can 
include occasional mouthing and grimacing behaviors in addition to 
movements of the limb, trunk and head. 

Wake Wake is the alternative state for sleep. The process of this state 
change involves transition states before and after the wake state. 
The infants must show signs of wake and have eyes open for > 1 
minute to be coded as a wakeful state. Typically the infant is 
scanning the surroundings and is focusing on the environment. 
Sometimes the state of wake includes crying or other motor 
movements (to be coded separately) 

Indeterminate When a behavioral state is mixed between sleep and wake states but 
does not meet the criteria for either state. 

Transition These events are expected to come before or after sleep and wake 
states. They include characteristics such as spontaneous 
movements, yawn and drowse. Transition was considered to occur 
when the baby successfully transitioned from one state to the next. 

Cry Cry was measured based on vocalized cries that were heard through 
the audio of our recording equipment. If there were multiple cries, 
then the bout between them had to be more >5 seconds to be 
considered individual cries. 

Nurse Intervention Occasionally in our study it was difficult to see the baby due to an 
adult in the line of the camera’s sight. This was coded as Nurse 
Intervention if it occurred longer than five seconds. Nurse 
intervention often caused changes in the babies behavioral state as 
well, and this was taken into consideration. 

No Baby Often the neonates were taken away for various activities such as 
feeding, changing, vitals and health check-ups. Despite our efforts 
to limit interruption of the video by working with the mother and 
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nursing staff, because the infants were between 24-48 hours of age, 
this aspect of experimental control was important. If the baby was 
taken away for two or more minutes, this segment was coded as 
‘no-baby’ and this segment of the video is considered to be missing 
data and is not coded into our calculations of frequency or duration. 

 

 A second category of sleep behavior is known as movement arousals (MAs), 

which are coded from sleep-related spontaneous movements (SMs) which occur in bursts 

every 3-5 minutes and do not disrupted sleep, but are similarly impaired in high risk 

samples such as infants exposed to prenatal alcohol (Troese et al., 2008). Arousals were 

coded as described previously. 

2.5 DNA COLLECTION: 

 Saliva samples were collected during the hospital stay.  In addition to infant 

DNA, we collected mother’s DNA through saliva by having them spit into an Oragene 

GR-500 kit tube. The infant’s saliva was collected using the infant version, OG-250 DNA 

collection kits with CS-1 sponges. Separated by 30 minutes from a feed, the infant’s gum 

line was swabbed using five cotton swabs and placed in the storage kit to preserve the 

DNA. The kits can be stored at room temperature for as long as five years post-

collection.  

 Infant DNA is collected in the newborn period in the first few days of life.  

Exploration of genotype SNP and methylation analyses were conducted for OPRM1 and 

COMT and the ABCB1 cassette genes. The protocol for collecting DNA from saliva is 

by gently swabbing the inside of the gum line, tongue and cheek of the infant’s mouth 

with 5 swabs from the newborn saliva kit (GenotekTM, Kanata, Ontario, Canada). When 

swabbing the infant’s cheek the sponge has been placed between the gums and the inner 
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cheek. The swab is rolled against the cheek for a maximum of 15 seconds with 

precautions set in place to not scrape the mouth. The sponge of each swab is snipped off 

into a collector and capped where Oragene solution will release and preserve the DNA. 

Genetic SNP and methylation findings will be compared with Polyvideosomnographyic 

data from our ongoing longitudinal data on pre-withdrawal neonatal sleep and genetic 

information gathered over the last several years will be used in addition to new data 

collected for use and coding as well.  

2.6 DNA PROCESSING: 

 The specimens were sent to Tufts Medical Center and the Clinical and 

Translational Research Center Genetics Core Laboratory for processing. The DNA was 

isolated and there were five main SNPs evaluated. 

1. OPRM1 118A>G (rs1799971, dbSNP database; assay C_8950074_1)  

2. ABCB1: 3435C>T (rs1045642, dbSNP; assay C_7586657 _20),  

3. ABCB1: 2677G/T/A (rs2032582, dbSNP; assays C_11711720C_30 and 

C_11711720D_40)  

4. ABCB1: 1236C>T (rs1128503, dbSNP; assay C_7586662 _10)  

5.   COMT: 158A>G (rs4680, dbSNP; assay C_25746809_50)  

DNA isolation for genotyping was done using established Taqman technology 

(Wachman et al., 2013). These results were returned to our lab for comparison with 

the behavioral state measures. The methylation results weren’t included in this report.  
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2.7 STATISTICS:  

 Using the dominant model, genes were examined as the major homozygous allele 

vs. the minor allele/s. This created 2 groups to contrast with sleep-wake measures and 

SM. Group 1 is associated with homozygous variants for the major allele (ie. AA), 

and Group 2 is associated with collapsed heterozygotes and homozygotes for the 

minor allele (ie. AG/GG). I was able to analyze 19 sleep studies for comparison to the 

dominant model gene groups and used separate t-test to compare sleep-wake states 

and SM parameters with OPRM1, COMT, and 3 of the ABCB1 genes. Statistical 

significance was defined as p<.1 without multiple comparison correction. This 

approach was used because of the pilot nature of the study, and bias was assumed to 

avoid the Type II error. 
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CHAPTER 3 
RESULTS 

 
 Throughout the analysis of my results, I was able to use 17 sleep studies, which 

had corresponding genetic data on mother and infant and an infant pre-withdrawal from 

the nocturnal period of day 0 or 1 of life. 

 The infants’ prenatal exposure and pregnancy quality were evaluated through a 

maternal interview in the 3rd trimester. Although not presented here, meconium (infant 

fecal material immediately post-birth) data were consistent with maternal peri-pregnancy 

(i.e. retrospective to before knowledge of pregnancy and during pregnancy drug and 

alcohol use/abuse) and psychological state reported in the structured interview. Table 1 

shows maternal demographics of SES, intelligence estimate (measured by the PPVT), 

prenatal depression and psychiatric status. My sample is a subset (n=19) of the 

methadone group. As shown, a comparison group is similar in age, SES and PPVT 

measures, but has significantly higher rates of depression, psychiatric symptoms and use 

of tobacco. In the cohort described in Table 1, a subset of methadone exposed neonates 

who had both sleep studies and genetics data were used (N=19).  

 
Table 2. Maternal Demographic Characteristics  
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Table 3. Infant Demographic Characteristics 

 n Mean SD 
Sex (% Female) 8 42%  
Length of Stay (days) 19 17.2 

 
15.2 

Gestational Age 19 15.2 1.9 
Weight (kg) 19 3.3 0.5 
Length (cm) 19 51.2 2.5 
Head Circumference (cm) 19 34.4 1.7 
Delivery Method (%vaginal) 12 68%  
Table 3. Infant demographics for n=19 infants with sleep-wake and genetics data. 

 All infants reported herein were full-term (>38 weeks gestational age) and had 

had normal vaginal or caesarian delivery and were admitted in the pre-withdrawal period 

to the low risk neonatal nursery or were “rooming in” with their mothers.  

 The sleep-wake results are organized by each genotype according to the dominant 

model. This model consists of two groups separated by the presence or absence of the 

minor allele (example: Group 1: AA; Group 2: AG or GG with the minor allele). Groups 

were contrasted with sleep-wake and SM measures separately for each allelic gene 

pattern identified in the infant. Although not hypothesized, some statistically significant 

findings were uncovered for the mother’s SNPS and are reported as well. 

3.1 OPRM1.  

 Table 2 presents the results of the t-test comparisons between Groups 1 and 2 for 

behavioral state and SM parameters. No results were found for the association of sleep-

wake or MA measures and infant genotype group using the dominant model. As shown in 

Table 2, for the mother’s DNA, infants in Group 2 (protective minor alleles, Wachman et 

al., 2013) had significantly increased frequency of awakenings (p<.04), sleep-wake 
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transitions (p<.004), and number of sleep bouts (p<.059), all calculated as a proportion of 

the total observation window. 

  



 23 

 
 

Behavioral Unit Gene Values St. Dev n 

 OPRMMOM    

Ratio of total awakening frequency to total clip (per hour) Group 1 0.574 0.155 15 

 Group 2 1.765 0.434 2 

 P Value 0.041   

Ratio of total sleep frequency to total clip (per hour) Group 1 1.031 0.391 15 

 Group 2 1.885 1.558 2 

 P Value 0.059   

Ratio of total transition frequency to total coded clip (hour) Group 1 0.353 0.233 15 

 Group 2 1.100 0.707 2 

 P Value 0.004   

     

 MDRaMOM    

Ratio of spontaneous movements to sleep duration Group 1 0.122 0.016 4 

 Group 2 0.041 0.031 10 

 P Value 0.000   

     

 MDRbMOM    

Average quiescence duration Group 1 97.440 13.980 5 

 Group 2 185.780 78.300 8 

 P Value 0.032  5 

Average IBI Group 1 114.780 11.390 8 

 Group 2 202.690 73.040  

 P Value 0.023   

     

 MDRcMOM    

Average duration of sleep Group 1 2812.22
0 

851.270 3 

 Group 2 3281.91
0 

2199.99
0 

8 

 P Value 0.073   

Average quiescence duration Group 1 97.440 13.980 5 

 Group 2 174.970 80.100 9 

 P Value 0.057   

Average IBI Group 1 114.780 11.390 5 

 Group 2 191.280 76.400 9 

 P Value 0.049   
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Table 4. This table shows the relationships between genotypes and behavioral states 
using t-tests and the dominant model. Group one and Group two values are displayed 
with associated p-values listed below. 

Behavioral Unit Gene Values St. Dev n 

 MDRaINF    

Ratio of total awakening frequency to total clip (per hour) Group 1 1.277 1.216 4 

 Group 2 0.562 0.363 12 

 P Value 0.077   

Proportion of total coded time awake Group 1 0.258 0.204 4 

 Group 2 0.089 0.090 12 

 P Value 0.032   

Proportion of total coded time transitioning Group 1 0.040 0.038 4 

 Group 2 0.014 0.013 12 

 P Value 0.048   

     
 MDRbINF    

Average brief arousal Group 1 4.330 10.614 6 

 Group 2 12.070 12.564 9 

 P Value 0.024   

Average full arousal Group 1 7.666 18.779 6 

 Group 2 33.805 21.853 9 

 P Value 0.033   

     
 MDRcINF    

Ratio of total sleep frequency to total clip (per hour) Group 1 0.238 0.180 5 

 Group 2 0.094 0.097 12 

 P Value 0.099   

Average full arousal Group 1 9.200 20.570 5 

 Group 2 29.188 23.353 12 

 P Value 0.118   

     
 COMTINF    

Ratio of spontaneous movements to sleep duration Group 1 0.005 0.006 3 

 Group 2 0.066 0.041 16 

 P Value 0.025   
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3.2 COMT.  

 Infant SNPs for the protective minor allele (Group 2; Wachman et al., 2013) were 

associated with improved vigor in the MA system, measured by the rate of SM bouts per 

hour As shown in Figure 1, the frequency of SM is greater in Group 2 than Group 1 

(p<.025). No other relationships to sleep measures were found for infant or maternal 

DNA. 

   

Figure 3.1 Genotype for the COMT A158G SNP with Average Frequency of 
Spontaneous Movements per hour. Here we see a higher frequency of SM in Group 2 
with the minor T allele (CT/TT) than Group 1 (CC). 
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3.3 ABCB1 CASSETTE: (including MDR a,b,c genes)  

 As described in the introduction, p-glycoprotein, the main enzyme in methadone 

pharmacokinetics is more active in the minor SNPs of the cassette genes.  

 An important result for infant MDRb was associated with an increase in brief 

arousal (p<0.024) and full arousals (p<0.033) in Group 2. As well, infant MDRc is 

associated with increased full arousal (p<0.01) and decreased sleep (p<0.099) in Group 2 

when compared to Group 1. These results suggest that Group 2 in both MDRb and MDRc 

are comprised of infants with sleep fragmentation, defined as increased arousals and 

wake state during a sleep period, relative to Group 1.  

Group 2 results for MDRb and MDRc show evidence for sleep disorder (both 

fragmentation and deprivation). Consistent with a sleep disorder effect, maternal DNA 

for both MDRb and MDRc from maternal DNA was associated with a decrease in SM 

measures. As shown for mean values in Table 2, Group 2 is associated with longer 

average interburst interval (IBI: time between the onset of SM bursts) (p<0.023) 

suggesting that there is a suppression of SM in Group 2 vs. Group 1. However, SM 

frequency and duration were not different which would be expected by the IBI change.  

   

 MDRa infant DNA was associated with decreased wakefulness (p<0.032), and 

concomitant decrease in sleep-wake transition time (p<0.048) in Group 2. Interestingly, 

in maternal DNA, MRDa was associated with decreased relative frequency of SM bouts, 

our measure of MAs during sleep. These results suggest a more severe phenotype for fast 

metabolism consistent with sleep deprivation that follows sleep fragmentation temporally 

in our prior studies.  
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CHAPTER FOUR 
DISCUSSION 

 This thesis project explored the relationship between all night sleep studies 

conducted in the first few days of life in prenatally methadone exposed newborns and the 

genetic profile for key genes that have been linked to processing of opioids by the CNS. 

The hypothesis was to examine whether allelic variants associated with NAS severity 

would be associated with sleep disorder, particularly, increases of arousal or wake state, 

and intrusion into sleep (sleep fragmentation) or decreases in arousal or wake state from 

typical rates (sleep fragmentation). A significant limitation of my findings is that 

genotype information for mothers and newborns with matched sleep studies was far less 

than would be optimal to establish these relationships. I was able to use a total of 19 

mother-infant dyads with sleep and infant and maternal genetic data, so the pilot results 

should be interpreted with caution.  

 

4.1 OPRM1: 

 Though I was unable to find an association for sleep-wake or MA measures using 

the genetic dominant model, we found that infants whose mother carried the protective 

minor alleles (Group 2) had rates of awakenings, sleep-wake transitions, and total number 

of sleep bouts that were significantly lower than in Group 1. Group 2’s sleep-wake 

behavior was consistent with our normative data, and is also consistent with the milder 

NAS phenotype where newborn patterns of sleep-wake regulation are preserved. Group 1 

did not show the typical pendulum from sleep to arousal or wake behavior, and this group 

had shown the more severe NAS phenotype in our earlier study. This result suggests that 

Group 1 infants may already be showing sleep deprivation (which is reflected by less 
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arousals). For example, the mean frequency of awakenings/hour is lower in the risk group 

(0.5 awakenings/hour), matching consistently with sleep deprivation or 

neurodevelopmental delay from the prenatal environmental conditions, compared to 

Group 1 showing higher rates. Of notes, this also suggests that maternal genotyping may 

help to predict the NAS phenotype before withdrawal is diagnosed with the Finnegan 

scores. 

4.2 COMT: 

 Group 2 infants with SNPs that included the protective minor allele (Wachman et 

al., 2013) had sleep findings that were associated with an improvement of vigor in the 

primitive MA system, which was measured in this study by sleep-related spontaneous 

movements. Protective COMT SNPs are associated with a milder NAS phenotype and in 

this pilot study were associated with a robust MA profile.  In studies in our laboratory, 

the MA system has been shown to be reflective of optimal functioning during sleep, and 

hypothesized as a protective mechanism for SIDS. High-risk for SIDS subgroups (e.g. 

prenatal alcohol exposure, apnea of prematurity, prenatal tobacco exposure) have been 

found to have reduced MA during sleep. Further, this pattern was preceded by sleep 

fragmentation (increased arousal intrusion into sleep) that converts, in our prior studies of 

high risk infants, to sleep deprivation (characterized by decreased arousals during sleep). 

It is important for infants to have 1-2 brief to full arousals/hour of sleep and to exhibit 

robust MA every 3-5 minutes during sleep (Hayes, 2002).  
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4.3 ABCB1 CASSETTE: 

 I was able to find that both MDRb and MDRc in maternal DNA are associated 

with changes in several infant SM measures consistent with decreases in the primitive 

MA system. As discussed in the introduction, minor alleles of these genes are associated 

with increased p-glycoprotein degradation of opioid, including methadone, and are 

associated with a faster metabolism of methadone, consistent with shorter latency to enter 

NAS withdrawal.  

 In reference to infant MDRb, infant DNA was associated with an increase in brief 

arousal and full arousals with the minor allele in Group 2. For MDRc, infant DNA with 

the minor allele, Group 2, showed increases in full arousal, and a decrease in total sleep. 

These results suggests that infant minor alleles for MDRb and MDRc are associated with 

sleep fragmentation, which is consistent with maternal DNA for these same genes in the 

suppression of MA system that is suppressed for both sleep fragmentation and sleep 

deprivation (Hayes, 2002). Sleep fragmentation is observed clinically with NAS and may 

reflect the ‘fast metabolizer’ phenotype that is associated with the minor allele in adults. 

 MDRa infant DNA was associated with a decrease in wakefulness and a 

concomitant decrease in state transitions for infants with the minor allele in Group 2. 

Interestingly, SM bout frequency during sleep was depressed when MDRa maternal 

DNA was cross-examined with infant sleep. These results are suggesting that minor allele 

status in the infant and mother has features of sleep deprivation (e.g. decreased arousals 

and SM, and increased sleep). Sleep deprivation, or low arousal/wake including MA, 

reflects post-fragmentation sleep disorder, which is more severe, but consistent with 
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withdrawal, and in the same direction as findings for MDRb and MDRc, which showed 

sleep fragmentation. 

 It is well known that sleep fragmentation, characterized by increased intrusion of 

wakefulness and arousal periods into sleep, leads to poorer sleep consolidation 

(Touchette, et al., 2005). Once sleep fragmentation is well established, sleep deprivation 

effects can be observed. During sleep deprivation, arousals during sleep are decreased 

and MAs (as measured by SM measures) are similarly depressed. The latter is a known 

protective system that reflects sleep integrity and autonomic regulatory processes during 

sleep.  

In summary, the clearest findings related to the ABCB1 cassette genes that argue 

that infants with the minor alleles (group 2) represent a “fast metabolizer” phenotype that 

may reflect rapid withdrawal onset. In our earlier work (Wachman et al., 2013) we did 

not find a role for the ABCB1 cassette and associated SNPS in the severity for NAS. 

However, these findings suggest that a careful inspection of NAS scoring in the pre-

withdrawal period and time to treatment may confirm this hypothesis.  

The utility of maternal DNA for predicting infant sleep regulation, and 

implications for neurodevelopment and/or latency of opioid withdrawal was found for 

OPRM1 and genes in the ABCB1 cassette, which may provide important information on 

the infant withdrawal phenotype before birth.  OPRM1 maternal minor alleles predicted 

improved sleep regulation, which is consistent with the milder NAS phenotype, although 

we did not replicate the infant findings from our early work, likely related to the low 

sample size in the current study. For infant DNA, minor alleles of COMT were associated 
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with improved MA profile, which is similarly consistent with better sleep regulation and 

in our earlier study, a milder NAS phenotype.   

In short, the results of my pilot study suggest that addiction (OPRM1 and COMT) 

and metabolism (ABCB1 cassette) allelic profile of both infants and their mothers may 

provide important information regarding infant opioid withdrawal and clinical course. In 

combination with early assessment of infant sleep-wake regulation, gene-function 

relationships relevant to withdrawal are apparent prior to the emergence of frank clinical 

signs assessed by the Finnegan score, and may aid in identifying which infants may need 

early opioid replacement to improve their recovery course.  

Though the study had a small N, there is importance of creating this pilot study. A 

pilot study is also known as a feasibility study, used to pre-test a particular research 

technique to determine if it is appropriate for a full-scale study. Pilot studies typically 

provide insight for other researchers and can spark discussions and birth new studies. The 

value of this study is primarily the identification of early markers of pre-withdrawal; poor 

sleep quality and poor neurodevelopment. This knowledge can facilitate the withdrawal 

process for neonates early and reduce the risk for SIDS. 

There are areas that merit further review, such as sample size, gender of the infant 

in relationship to drug response, metabolism, etc. While reviewing numbers it is 

important to note that not all infants needed pharmacological treatment for NAS. Eight of 

nineteen infants in this study did not receive pharmacological treatment in this study, and 

this lack of treatment would merit further review. Also, there are important limitations to 

my study that should be mentioned. First, this was a pilot study and many of the findings 

may not hold up with a larger sample and more stringent statistical tests. Also, I was not 
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able to control for potential group differences in prenatal exposure to other factors such 

as comorbid drug use and maternal depression and psychiatric status. Other studies have 

shown that maternal psychological health to compromise fetal neurodevelopment through 

CNS stress pathways (Glover et al, 2011).  Future work from our group will aim to 

expand on these preliminary findings.  
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