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Abstract

Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural

complexity, and biodiversity critically depend on ecosystem services provided by corals that

are threatened because of climate change effects—in particular, ocean warming and acidifica-

tion. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates,
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associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photo-

symbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolu-

tion, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated.

The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses

are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the

context of climate change and anthropogenic threats on coral reef ecosystems, the Tara

Pacific project aims to provide a baseline of the “-omics” complexity of the coral holobiont and

its ecosystem across the Pacific Ocean and for various oceanographically distinct defined

areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016–

2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean,

drawing an east–west transect from Panama to Papua New Guinea and a south–north tran-

sect from Australia to Japan, sampling corals throughout 32 island systems with local repli-

cates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-

throughput genetic sequencing and molecular analysis to reveal the entire microbial and

chemical diversity as well as functional traits associated with coral holobionts, together with

various measures on environmental forcing. This ambitious project aims at revealing a mas-

sive amount of novel biodiversity, shedding light on the complex links between genomes, tran-

scriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a

reference of the biological state of modern coral reefs in the Anthropocene.

Introduction

The 20th century has seen the earth enter into the now widely called Anthropocene [1].

Anthropogenically induced changes are happening on both global and local scales and are

altering the physiology of organisms and ecosystems by modifying the entire earth’s physical,

chemical, and biological processes [2]. Among marine ecosystems, coral reefs have the unfor-

tunate privilege of being highly sensitive to these environmental modifications [3]. In particu-

lar, the thermally mediated process of coral bleaching—i.e., the loss of the obligate

photosynthetic microalgal endosymbionts—is increasingly decimating corals. Projections esti-

mate that approximately 25% of reefs have already been lost, and up to 99% will be threatened

and dramatically transformed by 2050 [4]. Even though they cover only approximately 0.2% of

the ocean’s surface [5], coral reefs harbor approximately 30% of ocean biodiversity [6], provid-

ing ecological services (fisheries, tourism, coastal protection) to nearly 1 billion people [7], and

are estimated to be worth USD 30 billion per year [8].

The late 20th century has also seen our world entering into the “-omics” revolution sparked

by the development of high-throughput analyses of DNA, RNA, proteins, and metabolites.

This revolution has changed our approach to investigate organisms, and it is about to change

the descriptions of ecosystems as genes-to-ecosystem modeling improves [9]. It will advance

our capabilities to investigate the biodiversity and functioning of our oceans in a holistic way.

Holistic approaches, interrogating components across the various levels of organization of an

ecosystem, appear accessible today, as exemplified in the Tara Oceans project [10], which con-

tinues to decipher biodiversity and structural networks across all plankton organisms in the

ocean [11].

Tara Pacific is a unique scientific expedition inspired by earlier maritime explorations

that uncovered the unchartered territories of marine biodiversity. Coral reef research
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started with the contribution of Charles Darwin during “the voyage of the Beagle” (1831–

1836), when Darwin explored many reefs in the Indian and Pacific Oceans and established

his biophysical theory of the formation of coral reefs and atolls [12]. He also highlighted the

paradoxical high diversity of reef organisms living in a nutrient-poor system. Later, the

Great Barrier Reef Expedition (1928–1929) led by Charles Yonge was a landmark in coral

reef research, as it established the scientific basis of coral physiology (nutrition, symbiosis,

growth, etc.). The “polypifers,” later called coral polyps, were then demonstrated to host a

large population of organisms (protists, viruses, bacteria, archaea, and all sorts of unicellular

and multicellular eukaryotes), which are intimately involved in the physiology of the coral

animal host in a complex and still mysterious system named the holobiont [13].

The Tara Pacific expedition has built on these early tracks, applying the most recent tech-

nologies to map the “-omics” complexity of the coral holobiont within its ecosystem and across

the Pacific Ocean. Through the exploration of marine biodiversity at scales spanning from

organisms to genes to biomolecules, Tara Pacific is undertaking the first pan-ecosystemic

study of coral reef diversity across an entire ocean basin (Fig 1). Given that a holistic approach

integrating all components of the reef biota is unrealistic, the Tara Pacific expedition focuses

its approach on widely distributed coral and fish holobionts and their contextual biological

(plankton) and physicochemical environment, including modifications in the context of global

changes (Fig 2).

The geographic and sequencing extent of Tara Pacific will bring an exceptionally compre-

hensive description of coral holobionts, together with the surrounding fish and plankton biota.

Such unprecedented sequencing coverage and depth will place coral reefs among the first eco-

systems with a comprehensive description of their hologenomic diversity (i.e., the totality of

genomes making up the coral holobiont) across their natural environments. We will go

beyond the mere description of species composition to investigate in detail the gene content

and gene expression of these communities, as well as the interconnectedness with their hosts

and habitats. Broad emerging patterns will then be accessible through large-scale data mining

and network analyses.

The coral holobiont

The coral host

Scleractinian corals evolved over 450 million years ago [14] and belong to the phylum Cni-

daria, animals located close to the root of the metazoans. Because of their place in the early

Eumetazoa and as a sister group of bilaterians, the cnidarians allow interesting evolutionary

analyses regarding the origins of animal complexity and the coevolution of early animals with

microbes. Shinzato and colleagues [15] were the first to show that the coral genome is as com-

plex as the one of vertebrates and that it has retained many ancestral genes lost in other line-

ages. Subsequent studies confirmed the deep genomic differences between coral taxa [16].

Moreover, the exceptional longevity of corals, reaching several hundred to thousands of years,

makes them attractive emerging models for aging studies.

The coral endosymbiont microalgae

Reef corals host symbiotic unicellular algae of the family Symbiodiniaceae inside their endo-

dermal cells [17], raising intriguing questions on animal–plant interactions, photosymbiosis,

coevolution, and speciation [18]. The divergence and genetic variation within and between

populations of coral species is also investigated, allowing us to firmly ground the exact taxo-

nomic status of each coral host [19].

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000483 September 23, 2019 3 / 14
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The coral microbiome

In addition to the Symbiodiniaceae, corals host diverse groups of microorganisms, bacteria,

archaea, fungi, and protists, together forming the so-called coral holobiont [13]. The impor-

tance of the microbiome in the normal steady-state functioning of corals or during environ-

mental stress is not well understood, but recent research suggests that microbiome structure

aligns with and contributes to stress resilience [20, 21, 22] (in particular, bleaching [23, 24]), as

seen in humans [25]. Recent work provides evidence that corals have coevolved with certain

groups of microbes [26–28], but the exact nature of these host–microbe symbioses and their

involvement in coral resilience remains unclear. Therefore, Tara Pacific will draw, using

Fig 1. Map showing the route of the Tara Pacific expedition and the sampling sites (red spots) throughout the Pacific Ocean (July 2016 to

October 2018) as well as the mean annual SST (top) and pH (bottom). Global annual SSTs were extracted from the MODIS-Aqua satellite and

correspond to global mapped climatologies of the period from 2002 to 2018 (NASA Goddard Space Flight Center), whereas pH values originate

from the GLODAPv2 database [59, 60], with mean data displayed corresponding to the 0–30 m depths between 2000 and 2013. GLODAP,

Global Ocean Data Analysis Project; MODIS, Moderate Resolution Imaging Spectroradiometer; NASA, National Aeronautics and Space

Administration; PNG, Papua New Guinea; SST, sea surface temperature.

https://doi.org/10.1371/journal.pbio.3000483.g001
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marker gene and metagenomic/metatranscriptomic approaches, a nearly exhaustive census of

the microbial diversity associated with targeted coral taxa, allowing the understanding of the

major drivers of the microbiome diversity and its role in coral health, resilience, and evolution.

The coral virome

Viruses infect all known cellular organisms and are the most abundant biological entities on

our planet [29]. Yet even the basic diversity of viruses associated with marine species and habi-

tats is shockingly unknown. This is particularly true in tropical reef systems, where research

on viral abundance, diversity, and dynamics is still in its infancy (for review, see [30]). Tara
Pacific is using metagenomics and microscopy to interrogate the diversity of viruses across

Pacific waters and within the foundation species of coral reefs.

Research objectives of Tara Pacific

Our goal is to unveil the entire organismal diversity of eukaryotes, prokaryotes, and viruses

associated with the targeted coral and fish holobionts and their surrounding waters and to

assess variation across the explored ecological and geographical gradients. The main objectives

of Tara Pacific are as follows:

• Draw a near-exhaustive census of the biodiversity composing and surrounding coral holo-

bionts. This includes the coral hosts, their endosymbiotic microalgae (zooxanthellae of the

family Symbiodiniaceae), and the associated microeukaryotes, bacteria, archaea, and viruses

found either as endo- or exosymbionts, or in the plankton in surrounding water, using a

metabarcoding approach.

Fig 2. Schematic representation of the frame and major goals of Tara Pacific, which is investigating jointly the coral, microbiome, and

environment.

https://doi.org/10.1371/journal.pbio.3000483.g002
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• Determine the spatial patterns of the holobionts and the environmental diversity within

coral reefs throughout the Pacific Ocean and derive large-scale biogeographic patterns to be

compared with macrofauna patterns of diversity (i.e., the Pacific biodiversity gradient).

• Compare metatranscriptomes and metagenomes of coral reefs throughout the Pacific Ocean

and elucidate the contribution of microbial diversity to local versus basin-scale adaptation in

response to climate change. Importantly, the entire plankton community surrounding the

corals and the islands has been sampled and integrated with physicochemical contextual

data, providing critical context to advance our understanding of the environmental contri-

bution to coral reef resilience.

• Investigate divergence and standing genetic variation within and between populations of the

targeted coral species and their Symbiodiniaceae symbionts across the Pacific Ocean basin

via marker gene barcoding as well as genome and transcriptome sequencing (population

genomics using SNPs). Extensive metadata resources collected during Tara Pacific will allow

the coral holobiont composition to be modeled, taking environmental and coral trait data

into account (e.g., temperature, pH, bleaching, symbiont acquisition, reproduction cycle,

etc.) to identify drivers of adaptation/selection or acclimatization, providing insights into

coral stress resilience.

• Investigate the health status of corals by measuring growth parameters of the recent coral

skeleton and stress biomarkers (antioxidant capacity, apoptosis, stress response pathways,

transcriptomic signatures) as well as by determining the telomere status of each sample (telo-

meric DNA length and damage as potential proxies for stress). These data will be studied in

relation to holobiont biodiversity, transcriptomic and metabolomics data, modern and/or

historical environmental parameters, and stresses determined from a geochemical analysis

of the coral skeleton.

• Generate a holistic coral metabolome for coral species as a foundation to the identification

of the links between holobiont metabolism and prevailing environmental conditions.

• Identify how the environment (physical, chemical, biogeochemical, and biological) is influ-

encing coral holobiont diversity, physiology, and evolution using an extensive compilation

of environmental conditions.

A unique, pan-ecosystemic sampling strategy

The Pacific Ocean covers approximately one-third of the earth’s surface, with nearly 25,000

islands, most of which harbor coral reefs. Tara Pacific equipped the schooner Tara to explore

32 islands across the entire Pacific over a period of 2.5 years (Fig 1). The route of the Tara
schooner was chosen to maximize the number of visited remote islands and atolls and to per-

form the widest possible comparative survey, from the equator to the temperate and more

acidic regions, encompassing most of the environmental range where scleractinian coral spe-

cies can live. It also covers a biodiversity gradient, from the low diversity present in the eastern

Pacific reefs to the highly diverse western Pacific “warm pool” [14]. This sampling strategy also

encompasses a wide variety of environments, from high temperature/low seasonality to low

temperature/high seasonality, and also a full range of trophic status and physicochemical envi-

ronmental parameters that affect coral reef ecosystems (sea surface temperature [SST], pH,

nutrients, lights, pollutants, etc.).

Across its entire route, the Tara Pacific expedition targeted two species of scleractinian cor-

als (Cnidaria, Anthozoa: Pocillopora meandrina and Porites lobata), one species of hydrocoral
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(Cnidaria, Hydrozoa: Millepora platyphylla), and two species of reef fish (Acanthurus triostegus
and Zanclus cornutus) (Fig 3). The chosen taxa are among the few species that occur across

most of the Pacific Ocean and are usually abundant on reefs. Around each of the 32 islands,

three sites were sampled, collecting 10 colonies of each coral species and 5–10 individuals of

each fish species, as well as water samples (see below) (Fig 3). Coral fragments and fish samples

were preserved immediately on board, using specific buffers (e.g., DNA/RNA shield for geno-

mics, glutaraldehyde for microscopy, etc.), and/or flash frozen for subsequent laboratory anal-

yses (e.g., metabolomics, biomarkers, etc.).

In addition, seawater biogeochemistry and plankton microbiomes (viruses to zooplankton)

were assessed in oceanic waters upstream and downstream of each island, as well as from

water above each site (i.e., “surface water”) and surrounding two colonies of sampled P. mean-
drina corals at each site (i.e., “coral-surrounding water”). Underwater propeller-driven plank-

ton nets (for surface water) and water pumping systems (for coral-surrounding water) were

developed to collect plankton on reef sites, whereas the preparation of plankton samples into

different size classes (<0.2, 0.2–3, 3–20, 20–2000 μm) and their preservation followed the Tara
Oceans protocols [31] in order to maximize comparability and integration of data. Samples

will be analyzed using high-throughput imaging and genomic techniques.

Finally, key physical, chemical, and biological parameters were measured continuously

from surface water and from aerosols using specific instruments installed on board (e.g., ther-

mosalinograph, mass- and spectrophotometers), as well as samples for imaging and genetic

analysis of aerosol particles. Environmental context will also be obtained from satellite images

and operational oceanographic products from the European Copernicus Marine Service and

Mercator Ocean.

Tara Pacific samples and data resources for the immediate and

long-term future

Tara Pacific endorses the findable, accessible, interoperable, reusable (FAIR) principles for sci-

entific data management [32] as well as ethical and responsible use of data. With a few excep-

tions, all physical samples of coral, plankton, fish, and sediments were preserved on board

Tara and sent back to partner laboratories for subsequent analyses. Controlled vocabularies

describing sampling devices and sample preparation protocols were used throughout the expe-

dition to capture provenance metadata on customized log sheets, and samples were assigned

unique identifiers to facilitate their traceability. Legal documents regulating the collection,

export, and import of samples, as well as links to the Convention on Biological Diversity’s

(CBD) access and benefit-sharing clearing house (https://absch.cbd.int/) are in the process of

being provided for each sample as a first step toward ethical and responsible use of the Tara
Pacific data. The detailed registry of all samples, including their provenance and environmen-

tal and legal context, is curated manually using simple semantics that enable machine- and

human-readable data discovery services. Sequencing data will be deposited at the free, open-

access European Nucleotides Archive (https://www.ebi.ac.uk/ena); environmental data are

deposited at the free, open-access PANGAEA database (https://www.pangaea.de/); and both

archives will be interlinked via the sample registry available online at BioSamples (https://

www.ebi.ac.uk/biosamples/). Metabolomic data (mass spectrometry [MS] and nuclear mag-

netic resonance [NMR]) and their annotations will also be accessible through the Metabolights

portal (https://www.ebi.ac.uk/metabolights/). The submission of data in a relational, open-

access, updated, and cured database is critical and necessary for our aim to establish a refer-

ence of the biological state of coral reefs in the Anthropocene for the broader research

community.
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Metagenomics and metatranscriptomics to explore the diversity

and physiology of coral reef holobionts

Building upon expertise gained in the previous Tara Oceans project [33–36], we are applying

Illumina HiSeq technology to sequence a series of barcodes designed recently to explore the

diversity of bacteria and archaea (V4–V5 region of the nuclear 16S rRNA gene [37]), eukary-

otes (V9 region of nuclear 18S rRNA gene [33]), Symbiodiniaceae (ITS2 region of the nuclear

ribosomal DNA [38–40]), and metazoan species (mitochondrial COX1 gene [41]), as well as

metagenome assembly–defined viral populations [42, 43]. Barcode-specific PCRs are per-

formed on DNA from coral tissues, coral-surrounding water, fish tissues, and surface water

above the reef in order to assess interkingdom diversity associated with the holobiont at differ-

ent degrees of proximity from the coral animal host, from endosymbiotic to drifting in coral-

surrounding and surface waters. Biogeographic gradients will also be investigated between the

studied island systems. The sequence reads are assembled into operational taxonomic units

(OTUs) for bacteria, archaea, and eukaryotes and into ITS2-type profiles (using the SymPortal

framework at symportal.org [40]) for Symbiodiniaceae and taxonomically annotated by com-

parison to reference databases. Classical numerical ecology methods are applied to employ

OTU richness and abundance data to (1) assess and compare the total diversity of bacteria,

archaea, and eukaryotes associated with various compartments of the different coral

Fig 3. Schematic representation of the sampling design allowing the comparison of various components of coral

reef ecosystems. Using the developed protocol, we collected 2,500 oceanic samples (32 islands × 3 oceanic sites × 5 size

fractions × 2–5 protocols), 7,500 coral-surrounding and surface water samples (32 islands × 3 coral sites × 3

environments × 5 size fractions × 2–5 protocols), 40 coral core samples (32 islands × 1 Porites sp. and/or Diploastrea sp
× 1–2 core samples), 20,160 coral fragments (32 islands × 3 coral sites × 3 species of corals × 10 colonies × 7 protocols),

and 9,600 fish tissue samples (32 islands × 3 coral sites × 2 species of fish × 5–10 individuals × 5 protocols). Taken

together, the dataset comprises a total of approximately 40,000 samples. Bottom figure copyright to Agence DATCHA/
taraexpeditions.org.

https://doi.org/10.1371/journal.pbio.3000483.g003
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holobionts; (2) compare biodiversity patterns across coral colonies, hosts, reefs, islands (geo-

graphic and Lagrangian oceanic circulation distances), and all contextual environmental

parameters measured; (3) integrate the Tara Pacific data into the Tara Oceans global plankton

dataset. In addition, co-occurrence graph techniques inspired from systems biology [44, 9] are

used to reconstruct OTU interaction (sub)networks, and we will aim to disentangle the intrin-

sic (symbiotic auto-organization) from the extrinsic (environmental, historical contingencies)

forces on holobiont biodiversity. Overall, this study is the first attempt to characterize coral

reef and holobiont diversity across comprehensive taxonomic, ecological, and geographical

scales over an entire oceanic basin. Comparison with Tara Oceans plankton data will also

reveal which part of the coral holobiont biodiversity is found in the open ocean and thus bring

fundamental information about reef connectivity, as recently shown for Symbiodiniaceae,

which are found all over the plankton [34].

The sequencing of the holotranscriptomes of coral holobionts sampled along the transect

will provide important genetic information to uncover ecological and evolutionary questions

at both intraspecific and community levels. Two protocols are successively applied on total

RNA from three specimens per species and per site. In a first step, a polyA+ enrichment proto-

col is applied to provide eukaryotic mRNA in order to study the coral and Symbiodiniaceae

dual transcriptome, and in a second step, rRNA is removed from the remaining polyA− frac-

tion to sequence microbial mRNA. We are applying different metatranscriptomics protocols

to capture the gene expression of the Cnidaria, Symbiodiniaceae, bacteria and archaea, other

microbes, and even viruses from the same initial tissue samples [45, 46]. In addition, we are

using similar analysis procedures after filtration of coral-surrounding water samples. This may

potentially reveal how microbes and viruses interact with the coral host and how the coral host

adapts or acclimatizes to their presence. On top of providing deep insight on gene expression

networks at the holobiont level, mRNA samples will also be used to generate transcriptome-

wide SNPs for the coral host, allowing in-depth characterization of the patterns of diversity,

connectivity, demographic history, and local adaptation of sampled coral species. Hence, the

resulting patterns will provide a solid foundation on which to base the study of partner rela-

tionships within the coral holobiont, and possibly even allow for the identification of the selec-

tive forces acting on key genes for these symbiotic associations, plus an account on standing

genetic diversity within and between reefs to highlight regions of high genetic endemicity and

diversity important for conservation efforts.

A metabolomic approach

We will also assess the metabolome (i.e., the metabolic diversity) of the three targeted coral spe-

cies (two stony and one fire coral, see above). Small molecules (i.e., specialized metabolites) are

the end products of unique metabolic pathways. Most of these presumably possess an ecological

role, and as such, they represent key phenotypic traits for the specimens. The broad geographical

cover of the collected coral species will enable us to provide some insight into the relative contri-

bution of environmental factors and the genetic information expressed in the metabolome by

comparison with genomic data. Recent advances in analytical techniques and bioinformatics led

to the development of global metabolomics approaches capable of providing an overview of the

thousands of metabolites present in a minute amount of sample [47, 48]. A nontargeted metabo-

lomics approach is applied to the three species of corals collected across the Pacific Ocean using

both MS and NMR. The subsequent identification of the chemomarkers unveiled by these com-

parative approaches are performed using not only databases of experimental spectra but also

comparison with in silico databases of metabolites. The results will finally contribute to the

assessment of the reef health status when combined with other “-omics” data.
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Identifying the interaction among environmental stressors, the

holobiont, and coral resilience

A key question to be addressed by Tara Pacific is how reef corals change geographically and

how corals locally adapt or acclimate to environmental changes and increasing stress. This

question has been rarely studied at the scale of a complete ocean and across multiple popula-

tions under consideration of phenotypic traits [49]. The physiological status of corals will be

assessed by measuring the parameters of coral growth such as density, linear extension, and

calcification rates of P. lobata (with added Diploastrea heliopora in few places) colonies by ana-

lyzing coral cores recovering the last 50–150 years by sclerochronology. The annual density

bands and growth parameters of the massive coral sampled along the transect will be deter-

mined using X-ray radiography and 3D-computed tomography of growth rings on sliced coral

cores [50–52], allowing the calculation of recent reef growth over the last decades and century.

In parallel, ambient sea temperature and pH changes over the same period of time will be doc-

umented by analyzing, at an annual or monthly timescale, the most advanced geochemical

tracers along the cores, such as boron isotopes or trace elements, trapped along the cores dur-

ing the coral life [53–56]. Recent stress events will be identified by a series of conventional

markers of physiological stress or damage (see above) [57]. In addition, telomere length mea-

surements of coral and microalgal symbiont genomes will be conducted. Notably, although

measurements of telomere length as a method of assessing stress accumulation is currently

being employed in numerous human cohort studies, the importance of telomere length for

stress resilience and biodiversity in ecological studies is in its infancy and remains to be deter-

mined [58]. Thus, it will be highly informative to compare telomere length variations with

coral growth measurements assessed by sclerochronology.

More broadly, the integration of environmental and physicochemical with biological data

will allow us to pinpoint the specific adaptations that enable corals to live and survive across

environmental gradients. Comparison of current to historical data throughout the Pacific will

then show the biological cost of this adaptation and the associated time span. This in turn will

make for a much better understanding of the capacity of coral holobionts to adapt to adverse

environmental conditions and the required time scales.

In summary, Tara Pacific is poised to build the most comprehensive morphomolecular

inventory of the phenotypic and genotypic biodiversity of coral reef ecosystems, including a

wide spectrum of life from viruses to bacteria and from unicellular eukaryotes to metazoans

and covering nested spatial scales from coral holobiont colonies, their surrounding water (i.e.,

coral-surrounding water), reef surface water, and neighboring oceanic surface waters

(upstream and downstream of the sampled islands). The project focuses on selected key species

that are ubiquitous in coral reef ecosystems throughout the Pacific and can be traced from an

environmental, physicochemical, biological perspective down to the gene. This ambitious proj-

ect has the potential to reveal substantial uncharted biodiversity; to shed light on the complex

links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in

coral reef systems; and to provide a basis for the biodiversity and biological state of modern

coral reefs for the research community at large. In addition, this project will contribute signifi-

cantly to other fields of research such as stress and aging biology. We expect that the unprece-

dented scale of this project will help to decipher the complex interactions that together ensure

a healthy state of coral reefs, a quest for which advances are urgently needed.
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tal Science, Israel; (10) Sorbonne Université, CNRS, LOMIC, Observatoire Océanologique de
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24. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C (2017) Sugar enrichment pro-

vides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biology 23: 3838–3848.

https://doi.org/10.1111/gcb.13695 PMID: 28429531

25. McDervitt-Irwin J, Garren M, Baums J, Vega Thurber R (2017) Responses of coral-associated bacterial

community responses to local and global stressors. Frontiers of Marine Science 4(262): e00143.

26. Pollock JF, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. (2018) Coral-associated bacte-

ria demonstrate phylosymbiosis and cophylogeny. Nature Com 9: 4921.

27. Neave MJ, Michell CT, Apprill A, Voolstra CR (2017) Endozoicomonas genomes reveal functional adap-

tation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Scientific

Reports 7: 40579. https://doi.org/10.1038/srep40579 PMID: 28094347

28. Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR (2017) Differential

specificity between closely related corals and abundant Endozoicomonas endosymbionts across global

scales. ISME J 11: 186–200. https://doi.org/10.1038/ismej.2016.95 PMID: 27392086
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