
5.5 Creating Alternative Subplans in Task Structures 

Creating alternative plans and, hence, schedules creates new search branches for the planner. 

Each alternative must be planned for separately because, in general, each included method may 

have different postconditions that enable other and different tasks and methods than its alternative 

method. In cases where one method's post conditions are the same as another method's, it may be 

included without significant additional computational cost to the task structure. 

Figure 5.12: Task decomposition binding options. 

When the number of applicable disjunctive methods is large, it is essential that the planner 

constrain its search space. It does so through the use of a heuristic, criteria-directed sort. Using 

a characteristic evaluation vector comparator, a total order is placed on the applicable tasks at an 

alternative choice point. The total order is derived from the application of TEMS criteria rating 

functions [WLOl]. 

Figure 5.13 depicts the combination of subplans and alternatives to produce a rating for each 

alternative. Associated with a task structure point is a set of feasible subplans and their associated 

performance distributions. In Figure 5.13, those subplans are depicted as the set { P S I ,  PS2, PS3). 

To obtain a raw rating, the distributions from each subplan are combined with a alternative candi- 

date to produced a new set of performance distributions. Each alternative is then rated according 

to the TEMS criteria definition relative to the other alternatives. 



Structure 

Method Method Method 

Figure 5.13: Rating subplan alternatives. 

A subset of the alternatives is then chosen. The subset is determined according to an adjustable 

selection function. The selection function produces one set from the possible sets of n options, 

and 2" possible sets. The DTS planner makes one of the following selections: median, extremes, 

best, worst, random, and all. Selecting from the set of alternatives enables the planner to ide- 

ally provide an optimal distribution of method alternatives based on preferred characteristics as 

specified in the characteristic comparison criteria and selection heuristic. 

GENERATE-SELECTED(Goa1CharacteristicsSet set, TaemsNode tasknode) 
1 foreach(gc in set) 
3 UPDATE-RATING@, task~node.allOutcomeSets()); 
4 SORT-ON-RATING(set); 
5 SELECT-SUBSET-BY-HEURISTIC-TYPE(set, HEURISTIC-TYPE); 
6 return set; 

To clarify, there are two points at which alternative set selection comes to play a role. One 

is where there exists more than one method that has an applicable binding. The other is where 

there is more than one applicable task reduction. The planner could select a set at this point as 
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well, but unless it is a reduction to a method with defined characteristics there is no information 

available upon which to base a decision unless some preprocessing is done as is the case in the 

DTC scheduler[WLOl]. The only available option is selecting a subset of a determined size in 

order to facilitate planning within a time constraint. Since our experimentation includes some 

exploration into sampling from alternative methods with all reductions, reduction sampling has 

not been implemented - all reductions are explored unless time constraints are violated. 



Chapter 6 

EXECUTION MONITORING 

Planning and scheduling are fundamental aspects of the agent architecture. They offer the agent 

explicit control over its actions, which allows it a degree of flexibility unachievable without their 

analogue. The Design-To-Schedule task structure planning performed by the F-SRTA architecture 

is described in detail in a separate section. The Design-To-Criteria scheduling performed as it 

pertains to planning is described in the planning section. Extensive details on the scheduler can be 

found in [WagOO]. 

6.1 Expected Characteristic Rescheduling 

There are cases where a schedule will fail in one manner or another. A schedule can be consid- 

ered to fail if any of its methods fails in duration or non-duration characteristics. TEMS provides 

for numerous interrelations between methods, so either duration or non-duration failures may not 

impact the schedule; e.g., if a parallel method that only facilitates fails to meet a deadline, one 

might think that this should not cause the schedule to fail in its entirety, but this is largely dependent 

on how failure is measured. TEMS criteria provide the appropriate metric for plan and schedule 

failure, since they are so tightly coupled to plan and schedule generation. 



We now focus on duration monitoring for rescheduling. Our focus here is equivalent to evalu- 

ating schedule failure from within a TEMS criteria evaluation context where the 100% of the eval- 

uation weight is put on duration certainty goodness. We are experimenting with three rescheduling 

policies: 

Schedule Deadline Deviation Constraint (SDD), 

Method Deadline Deviation Constraint (MDD), and 

Adjusted Method Deadline Deviation Constraint (AMDD) 

We will explain each of these in turn immediately following. Each of the constraint policies can 

have one of three consequences, however, that are now noted: 

Shuffle-down rescheduling, where each method's expected duration characteristics are in- 

cremented or decremented by some constant factor, 

Full rescheduling, where actual runtime characteristics are are used to annotate the T E M S  

method descriptions, and the DTC scheduler is reinvoked on the task structure, and 

Full replanning and rescheduling, where the current state of the world is loaded from the 

MSM before the failed action and replanning is done from that world state followed by 

scheduling. 

The design of experiments currently being conducted to determine the appropriate conditions for 

each rescheduling condition are discussed in a later section. 
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Figure 6.1: An illustration of the SDD constraint. 

6.2 Schedule Deadline Deviation Constraint 

The SDD policy calculates the combination of method deadline deviations for a given sched- 

ule. Each method's duration is characterized by a random variable X with an associated discrete 

probability distribution. The deviation of X, Dev(X), is calculated as follows: 

That is, as Equation 6.2 shows, that the deviation is the square-root of the sum of the differences 

between each value of the discreet probability distribution that X can assume, squared, and then 

multiplied by the probability of assuming that value. It obtains the full schedule deadline from 

the DTC scheduler and then combines the deviations of the methods included in the schedule to 

produce the deadline deviation - deviation from which will cause a rescheduling or replanning 

operation. This policy is depicted in Figure 6.1. The other constraints are variations on this con- 

straint. 



6.3 Method Deadline Deviation Constraint 

The MDD policy calculates the deviation on each method included in a schedule produced by 

the DTC scheduler. If any method's actual duration lies outside the duration's deviation, it will 

cause a rescheduling or replanning operation. This policy is depicted in Figure 6.2. 

Expeted schedule, ki) 

Aclal  schedule, 1 4  

Achral schedule, t=13 

completm hme exceeds 
deadline vanance 

Figure 6.2: An illustration of the MDD constraint. 

6.4 Adjusted Method Deadline Deviation Constraint 

The AMDD policy calculates the deviation on each method included in a schedule produced 

by the DTC scheduler. If any method's actual duration lies outside the duration's deviation, it will 

cause a rescheduling or replanning operation. However, in the adjusted version of the MDD policy, 

actual durations can immediately cause a simple "shuffle down" rescheduling operation or a more 

complex operation, depending on the expected performance of the remainder of the schedule. This 

policy is depicted in Figure 6.3. 

6.5 Monitoring Parallel Schedules with Deviance-Based Constraints 

There seem to be two fundamental approaches to monitoring schedules with parallel actions. 

One approach is appropriate when what matters is the performance of the parallel actions in the 
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Figure 6.3: An illustration of the AMDD constraint. 

aggregate, i.e., each method's deviation is important to the overall performance of the application. 

Another approach is appropriate when the performance of parallel actions effect the application's 

overall performance with different weights. In this case, each branch of the parallelized sched- 

ule could be targeted for monitoring, replanning, and rescheduling actions when a constraint was 

violated. Each approach may have its merits in different domains. 



Chapter 7 

EXPERIMENTS 

Several experiments were conducted to derive statistics explaining the effect of criteria-directed 

goal reduction heuristic choice on planning time and schedule quality. Our ultimate research goal 

is to be able to appropriately characterize an agent's task environment in terms that allow us to 

choose heuristics effectively and efficiently. In the presented research, we are especially interested 

in time and complexity constraints. So, in the context of viewing the agent control problem as 

a problem of compute time allocation, the experiments attempt to find a map between task and 

environment characteristics and task structure generation heuristics. 

The key features of the solution design space that are explored in the experiments are: 

The effects of the use of a goal reduction policy on scheduling options and compute time, 

The appropriate schedule failure metric based on method performance statistics, and 

The correct compute time allocation for a given task environment. 

7.1 Comments on Domain Complexity 

A measure of expected required computation time and space of each operation required to 

produce a result is necessary to make the correct decision of how to balance the allocation of time 

and space for computing in each situation. We need to know the expected quality of additional 

compute time spent on one operation versus another. We focus solely on the operations of the DTS 
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planner and the DTC scheduler in the experiments reported. Further, we focus on compute time, 

rather than the compute space, since the operations in the cases reported are run sequentially. Such 

a focus simplifies the analysis. 

The important gauges of complexity in the DTS planning domain are: 

0 The number of choices in each subplan, 

0 The number of supporting subplans, and 

0 The expected number and characteristics of failing plans. 

The DTS task structure planner can instantiate methods under a given task to support subplan 

choice. It can thus create tasks that include a number of alternative supporting subtasks. To 

support a number of different exactly-one branches based on changes in the agent's perception 

of plan state, there is an interplay between the domain definition and the problem definition. There 

has to be a number of equivalent subplans to pursue, where there are enabling interactions between 

one action and a sequence of successive actions. 

7.2 Alternative Selection Heuristic Effects 

We need to determine the effect of the choice of a reduction heuristic across sets of: 

0 Task environment classes, 

Domain complexities, 

0 Task structure generation and scheduling criteria, and 

0 Time to c0mpute.d 



The number and kind of varying parameters in experiments and analysis of tradeoffs between 

TiEMS planning and scheduling are quite daunting; they include: 

a Task structure, 

Method performance characteristics, 

Performance characteristic model types, 

0 Selection heuristic dimension, 

0 Planning and scheduling criteria and application, 

0 Compute time constraints, 

a Domain complexity, and 

a Problem complexity. 

Both the planning and scheduling compute time are of interest in these cases, since what is ulti- 

mately of interest is the expected utility as a function of compute time for a task structure and its 

schedules which may incorporate contingencies, where the probability of failure in a given sched- 

ule varies. However, we do not focus on that element of the problem presently, partly since the the 

planner version used in the experiments supports anytime computation naively and the scheduler 

version used in the experiments does not support anytime computation. 

7.2.1 Selection Heuristic Effect on DTS Planner Runtime 

The effects of a given altemative selection heuristic on planning runtime is dependent on several 

aspects of the domain theory. One is, b, the branching factor for the the number of alternatives that 

are available, on average, and explored per selection. Another is how many altemative points are 

part of the search, on average, to complete a task network, n, the depth of a complete search. 

This yields time complexity of O(bn) for a complete search of the plan space, if the problem is 

decidable. 
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The DTS planner uses alternative rating and selection heuristics at each alternative point to 

choose a subset of applicable alternatives to include in the task network and associated TEMS 

task structure. We now examine the runtime performance of the different selection heuristic types 

on planning runtime. We compare the planning runtime with the runtime required to schedule the 

generated T S M S  task structure. 

The experiments were run in the Probabilistic Blocks World (PBW) domain, with three appli- 

cable method alternatives at each alternative point - the ability to stack a block in three different 

ways, with differing cost and duration profiles, but with uniform quality profiles. 

Figure 7.1 shows run times for the DTS planner when using a heuristic that explores one alter- 

ative at alternative selection points and the DTC scheduling runtime on the resulting TEMS task 

structure for domains of increasing complexity. In the "select one" heuristics, one alternative of 

PBW-3 ACs. Select One Heurlstlc n p e  (L,H,M,F,R) Ave. Planner and 
Scheduler Runtimes 
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complexity 

Figure 7.1: DTS planner and DTC scheduler runtimes for select one heuristi 
domain complexity. 

cs over increa 

the three applicable alternatives available is selected. There are five heuristics which select only 

one of the alternatives. First, recall that the alternatives are ranked according to a T E M S  criteria 

rating that calculates each alternative's rating based on the relative and proportional value of its 

characteristics across existing plans and the other alternatives. 



The select one heuristics are, more precisely, as follows: 

high - choose the highest rated alternative; 

low - choose the lowest rated alternative; 

median -choose the median alternative: if A is the list of alternatives, choose [k$J ; 

random - choose a random alternative: if A is the list of alternatives and R is a random 

variable with a uniform distribution over the set [O, l ) ,  choose [R  * JAI J. 

fast - choose the fastest alternative. 

The select one heuristics, minus the selection processes described above, perform the same opera- 

tions, and so have effectively identical runtimes. 

The average runtime curves for both the DTS planner and the DTC scheduler are given in 

Figure 7.1 over increasing domain complexity, meaning that there were more blocks to move from 

one configuration to its inverse configuration - the sort of problems used for these tests. Figure 

7.1 shows clearly that the total computing runtime to produce a schedule of action from a goal is 

dominated by the planning process when only one alternative is included at each alternative point 

in task network generation and, hence, in the resulting T&MS task structure. This shows that the 

DTC scheduler handles a task structure with sparse alternatives well. This is to be expected. 

Figure 7.2 shows run times for the DTS planner when using a heuristic that explores two 

alternatives at alternative selection points and the DTC scheduling runtime on the resulting T&MS 

task structure for domains of increasing complexity. In the "select two" heuristics, two alternatives 

of the three applicable alternatives available are selected. There is only one heuristic that selects 

two alternatives, the extremes selection heuristic. The extremes heuristic combines both the 

high and low selection heuristics to explore both the highest and lowest rated alternatives. 

We see now that the runtime of the DTC scheduler is beginning to overtake the runtime of the 

DTS planner at domain complexity between 4 and 5 blocks. This is not due to inherent complexity 

in this instance of the scheduling problem but, rather, in the generalized manner in which the DTC 
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Figure 7.2: DTS planner and DTC scheduler runtimes for select two heuristics over increasing 
domain complexity. 
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algorithms to task structure scheduling problems such as the one we have here. 

Figure 7.3 shows run times for the DTS planner when using a heuristic that explores all alter- 
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complexity 

natives at alternative selection points and the DTC scheduling runtime on the resulting TEMS task 

structure for domains of increasing complexity. Here, "all" equals three alternatives. 

Clearly, there is significant computational overhead with the exploration of plan and schedule 

alternatives - exponential in space, in the worst case. In the all alternative selection case above, 

we see the scheduling time dramatically overtake the planning time. 

Fortunately, as we will see shortly, it turns out that, given a uniform distribution of method 

characteristics and deadlines, extra computation will not typically be needed unless deadlines are 

very tight and meeting them precisely is important for the domain problem, if schedule quality 

Q(t )  density is our measure, i.e., ,. 
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Figure 7.3: DTS planner and DTC scheduler runtimes for select three heuristics over increasing 
domain complexity. 

7.2.2 Selection Heuristic Effect on Schedule Quality 

We decided to run an experiment to test whether and when expending additional computational 

resources will lead to benefits in terms of schedule quality density. We ran each heuristic on a set 

of random domain planning problems. The results are displayed in Table 7.1. 



1) Batch I Low I High I Extremes I Median / All ] Random 1 Fast 11 

Table 7.1 : Schedule Quality Density Achieved By Plan Alternative Selection Heuristics 



In this experiment, each of the seven selection heuristics was run on a set of 30 randomly 

generated Tripbot domain planning problems. The problems involve generating plan alternatives 

for a trip from one location to another with no stops between the two. Each location has five 

flights to it and five flights from it. Each flight is randomly assigned method characteristics from 

a uniformly distributed set of nine method characteristic types that vary stepwise along the axes 

of Quality, Cost, and Duration. If the first letter represents the expected value of the Quality 

characteristic, the second the Cost characteristic, and the third the Duration characteristic, the set 

is { H L H ,  H L M ,  H L L ,  M L H ,  M L M ,  M L L ,  LLH,  L L M ,  LLL) .  H represents a high expected 

value, L  represents a low expected value, and M  represents an expected value halfway between L  

and H.  The cost of each action is the same, L. This simplification just allows us to focus on a two 

value tradeoff; the results for this analysis extend to n characteristic tradeoffs. 

The values in Table 7.1, pertaining to schedule quality density, indicate a relative rating [O,1] 

of schedule quality density, so a 1 value indicates that it obtained the highest rating. A 0 value in 

the table indicates that no feasible schedule was found. The fact that the low heuristic has all zeros 

means that there was always a way to overshoot the deadline placed on the trip schedule. 

An ANOVA test shows that there are statistically significant differences between the selection 

heuristics with FCritical = 2.143451638, F = 18.34052918, and p = 5.49E - 17. Pairwise T-tests 

show which heuristics differ significantly. 

The results of pairwise t-Tests, displayed in Table 7.2, show that there is no statistically signif- 

icant difference between high, fast ,  extremes, and all selection heuristics a the p=0.05 rejection 

level when the relative schedule quality density is our metric. In practice, the high, extremes, and 

all heuristics will produce higher quality schedules overall, but with higher duration and cost. 



Comparison I T-test p 1) - 
I 

n Low VS Hieh 1 1.36703E-07 1 

Table 7.2: Pairwise T-Test p values for Heuristic Selection Quality Density Comparisons 



Chapter 8 

ONGOING RESEARCH 

This section discusses some ongoing research in F-SRTA and Tripbot control. The focus of our 

work is on determining the best cases for replanning versus those for rescheduling only. In both 

cases there are a range of actions that can be taken to avoid failure in the future, and we focus on 

tuning the planning and scheduling search criteria to provide the best control solution based on the 

expected runtime characteristics of the available actions. 

8.1 Determining and Responding to Schedule Failure 

TEMS schedule failure can occur on any of 2  ̂ expected attribute subsets. When a failure 

occurs, a determination must be made to pursue a course of action to rectify the failure. The 

following options are available to the agent: 

Retry - retry the method, 

Reschedule - generate a new schedule, 

Replan - generate a new task structure. 

There is a special failure case in the dimension of time. A determination of failure is necessary 

when no further evidence of failure than lack of results within an expected time is available. The 

expected values of the the characteristics for each method are provided in the output of the sched- 

uler. However, additional information, especially about the expected variance on the duration of 
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the method, could be helpful in this case, to determine whether one of the above recourses is 

appropriate, or whether one additional recourse is appropriate: 

Wait - wait to see if the action completes. 

When considering when to reschedule, the computation should not be taken lightly, since the 

determination of whether a feasible schedule still exists after a failure is a new scheduling problem, 

which is, in the general case, computationally hard This means that it is no small proposition under 

certain circumstances to make a rescheduling decision. The same can be said for a decision about 

generating a new task structure. 

Things are further complicated by considering parallel actions, as is the case in the Tripbot 

domain. In cases where task alternatives are grouped under a sum QAF, and there are no NLEs 

precluding it, the tasks may be run in parallel. We now add the problem of any of the 2" task 

subsets failing in any of their 2" expected characteristic values. 

8.2 Recovery Compute Time Reduction 

An obvious focus point for this research is on how failure recovery compute time can be min- 

imized within stated utility bounds. We are exploring classification of the type of agent task en- 

vironments that favor more time spent planning up front rather than in reaction to failed actions, 

according to the best of several alternative failure criteria previously identified. 

The current experiment determines if or when it is better to plan for a set of contingencies and 

then to schedule those contingencies or whether it is more efficient to regenerate task structures 

and then to reschedule. In the situation where this consideration must be made, there are two types 

of deferrals: 

One is to defer analysis of densely interconnected task structures to the scheduler; 

0 Another is to defer selection of combinations of method disjunctions that are not intercon- 

nected. 



There is, of course, a notion of providing a "selection" for the scheduler in these deferrals, malung 

them only partial deferrals of computation since the planner must do some of the computation done 

by the scheduler to produce the appropriate subsets. Key questions are: 

What is the complexity of the operation deferred? 

What is the complexity of the sampling operation? 

We hypothesize that the following will be important factors in the test: 

The number of choices in each subtask, 

The number of supporting subtask, and 

The average number of failing methods. 

A domain problem generator creates "synonymous" methods under a given task to support 

subplan choice. It then creates tasks that includes the number of supporting subplans. To support a 

number of different exactly-one branches based on changes in the perceived state of a plan, there 

is an interrelationship between the domain definition and the problem definition. There needs to 

be a number of equivalent subtasks to pursue, where there are enabling interactions between one 

action and a sequence of successive actions. 



Chapter 9 

CONCLUSION 

This work has produced a number of interesting artifacts, including a new agent architecture and 

system with an integrated probabilistic TRMS task structure planning component. As stated pre- 

viously, the major contributions were the development of the DTS TRMS task structure planner, 

the DTC scheduler driver and parser for use in the Tripbofi-SRTA system, the Tripborn-SRTA 

system Executor, an experimental harness for generating problems and analyzing results to test 

hypotheses regarding the interactions between Tripborn-SRTA system components, runtime com- 

plexity versus utility results, several rescheduling criteria, some computational complexity identifi- 

cations regarding the Tripbofi-SRTA generic control problem, and other supporting contributions 

to the F-SRTA/Tripbot system. This research made the importance of accurate problem-dependent 

performance characteristics of related problem solving methods starkly apparent. Current and pro- 

posed research attempts to refine and generalize the solutions to problem solving method selection 

and online agent-based control within the TRMS agent framework. 
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Appendix A 

FORMAL PROBLEM DEFINITIONS 

The following sections present a more formal definition of the two key problems solved by Tripbot: 

the data gathering problem and the information generation (or fusion) problem. 

For Tripbot, the data gathering problem was that of deciding on the best data sources to query 

to obtain the data necessary to generate the required information results. Tripbot, for this part 

of the problem, is given a set of data subject areas to gather data from, a set of data sources, 

constraints on the cost and duration of query operations, and constraints for the resulting trip 

itinerary information. This part of the solution attempts to find.the best set of information sources 

to query to produce the best data, which, in turn, will provide the best, most complete set of 

subsolutions in the information generation solution phase. 

The problem is depicted graphically in Figure A.1. We view this gathering problem, more 

precisely, as an iterative decision problem over a 4-tuple, ( 9 ,  r, y, E ) ,  where 9 is set of vectors, 

of which for each the first element is a unique subsolution generator function and the remaining 

elements are characteristicfinctions, which are discussed in more detail later, but which are es- 

sentially distributional functions characterizing the subsolution generator random variable and that 

return a distribution characterizing an attribute of the associated subsolution, i.e., for our purposes, 

cost, quality, or duration. The subsolution part of each element of is a function which produces, 

with some probability, some data (for example, within the Tripbot domain, a set of potential airline 

reservations) - there is almost always a small probability that no data will be produced, but a 



subsets 0 
Figure A. 1 : The data gathering problem. 

much larger probability that the data will be returned in more time than the expected duration. 

T is a set of sets over the powerset of Q that characterize "complete" data gathering solution 

sets, i.e., those sets that will produce all the required data to generate the information required by 

the query. 

y is an objective function for the inclusion of individual possible subsolutions in the probabilis- 

tic search over 9'. y is thus used to decide which elements of T will be included in query actions 

by the system. 

Finally, E provides a time constraint on the search of T .  The problem here is to maximize ex- 

pected value of y within the specified E and y constraints of the expected environmental conditions. 

Generating trip itineraries for Tripbot clients means consolidating the results returned in the 

data gathering phase - although additional data gathering actions may be necessary. There may be 

'In our solution, we use the TEMS criteria definition, discussed in more detail later. 



many combinations of destinations, intermediary stops, transportation choices, recreation choices, 

and accommodation choices generated from data gathering. Tripbot must use the information 

provided to produce feasible trips that meet the customer's requirements within a specified €-time 

bound. 

subsets 0 
( d ( < P ,  O), {a> I < P  is a solution) 1 

<<V>, subject to {C,, C,, . . ., Ck)) 
I 

Figure A.2: The information generation problem. 

The problem is depicted graphically in Figure A.2. The information generation problem, is 

an iterative decision problem over a 4-tuple, (I?, (, y, E), where I? is a set of vectors, defined as 

above, except that the first element in each vector is a unique subsolution of a solution. For Tripbot 

this solution is part of the query result - a part of an itinerary, such as a potential hotel reservation. 



< is a partial order on the elements in I? - this partial order specifies the order in which parts 

of the trip may take place; e.g., a flight is taken from the origin city to a destination city before a 

flight is taken from a destination city to the origin city. This ordering enables the establishment of 

completion conditions for the information generation problem. A complete trip starts at the origin 

location, visits the destination location, and then returns to the origin location. 

y is an objective function for the inclusion of individual possible subsolutions in the probabilis- 

tic search over I?. The same objective function is applied to both the data gathering and information 

generation phase because both seek to maximize the value of the returned itineraries. 

t, as defined above, is a time constraint on the total computation time available to solve an 

instance of the information generation problem. The problem is to maximize the value of y. 

Notable differences between the data gathering problem and the information generation prob- 

lem are that: 

0 The solution to the data gathering problem produces new data, i.e., new state information 

that is not derived from existing state information; and 

0 There is an additional source of uncertainty in the data gathering problem about the quantity 

and expected characteristics of the new data produced. 

It is the presence of uncertainty in unstructured data gathering operations that particularly distin- 

guishes Tripbot's problem from database query optimization. The difficulty in the data gathering 

problem is to generate likely good subsolutions for a likely good solution. The problem in the in- 

formation generation problem is deciding upon which subsolutions to fuse together to generate the 

best result possible, within a set of constraints on the characteristics of the solution and within an t 

time bound. This contrasts distinctly with database query optimization whose techniques are index 

and subquery reordering, which are complex in their own right but which always return complete, 

meaning optimal results, at least if the parameter of solution time is disregarded. 



Appendix B 

COMPUTATIONAL COMPLEXITY 

Here we prove that TRMS task structure scheduling is NP-Hard. [Wag031 stipulates that checking 

the validity of a schedule derived from an arbitrary TRMS task structure should be a low-order 

polynomial operation (or better), so a proof of NP-completeness is likely possible. Checking the 

optimality of a schedule in the worst case requires checking each of the following number of 

schedules, where where n is the number of methods in the TRMS task structure: 

Theorem B.O.l T E M S  task structure scheduling (TSS) is NP-hard. 

Pro08 We transform SAT to TSS. Let V = {vl, v2,. . . , v,) be a finite set of boolean variables 

and let C = {cl, c2,. . . , G) be a finite set of disjunctive clauses. Each clause c, contains a set of 

variables. The SAT problem is to find a truth assignment for V that satisfies all the clauses in C. 

For the purposes of this transformation, we assume that an arbitrary total order exists on C. We 

also assume that an arbitrary total order exists on the variables for each clause c, E C. vijj then 

corresponds to the j th variable of clause c,. 

We must construct a TRMS task structure such that a schedule of length (CI exists if and only 

if C is satisfiable. For each c, E C there is a TRMS task, ti, with lcil child tasks of method type. 



Each method mi, j ,  that is a child of ti exclusively corresponds to variable v i j  

The methods {mi,l, . . . , mi,k) that are children of task ti each have an identical TEMS method 

characteristics, where the outcome density is 1 .O, there is one outcome, and the quality, cost, and 

duration characteristic distribution functions return the real value 1.0 with complete certainty. 

The quality accumulation function governing the relation between task ti and each of its child 

methods, mi,j is the M a x ( )  function, which functionally is interpreted as a logical or. 

Each task ti is then made a child of a TEMS task group node, t,atisfy-all. The quality accumu- 

lation function governing the relation between tsatis f y A l l  and each of its child tasks, ti is the All () 

function, which functionally is interpreted as a logical and. 

The TRMS disables interrelationship is used to model variable negation. We now assume that 

there is a lookup table, LUT that contains a mapping from every variable vi to its corresponding 

method mi,j and that also contains the reverse mapping. The following procedure is then used to 

create the disables to model variable negation in the TEMS task structure rooted at tSatisfydll  New 

terminology is introduced: C [ i ]  returns the ith clause of the totally ordered set C ,  and the variable 

construct vi4 is assumed to have two fields, where  value returns the element of V for which 

vi,j is a copy, and vi j.negated is a boolean field that returns true if this variable copy is negated. 

The procedure GENERATE-DISABLES generates the disables links in the TEMS task struc- 

ture from logically opposing variable instances for each ci E C .  It does this in quadradtic time, 

approximately 9(-). 

GENERATE-DISABLES(V9 C ,  LUT,  tsatis f y  _all)  

1 for(i=O to size(C)) 
forCj=O to size(C[i])) 

for(k=j+l to size C [ i ] )  
 if(^^,^ .value==~~,~.value) 
i f ( ~ ~ , ~ . n e g a t e d ! = v ~  .negated) 

tsatisfy-all .addDisables(LUT.getMethod(vi j), L U T . g e t M e t h ~ d ( v ~ , ~ ) ,  B I ) ;  
for(l=i+l to size(C)) 

for(m=O to size C [ i ] )  
if(vi,j.value==vl,m.value) 

if(vl,,.negated!=vij .negated) 
tsatis~y,~~.addDisables(LUT.getMethod(vi,j), LUT.getMethod(vl,,), B I ) ;  



The transformation from SAT to TSS is given in Figure B.1. The construction can be clearly 

accomplished in polynomial time. All that remains to be shown is that C is satisfiable if and only 

if tsatisfyllll produces a schedule of length (CI. 

First, suppose that S is a schedule of length JCJ, scheduled from a task structure ts,tisfy-all that 

was generated in the manner that we described above. In order for such a schedule to exist, there 

would have to exist in the schedule at least one method, m i j  from each task ti. And, due to the 

Max() quality accumulation function governing task ti's relation to its child methods, there could 

be at most one method included in a schedule that is a child of task ti; in the case where more than 

one method could be included, one is picked at random. 

Two feasible schedules cmespmding 
to the two feasible 
truth assignments 
{{Vl=T,VZ=T),{V l=F,VZ=F)). 

Figure B. 1: Depiction of SAT to TIEMS task structure transformation. 

The inclusion of method mif under task ti is equivalent to the satisfaction of clause ci by a 

truth assignment to variable .value that makes vi,j evaluate to true. Now, for any method mi,j 

corresponding to variable vi,j included in the schedule, disables interrelationships between mi,j 



and any method ml,, corresponding to a variable v~,,, where vl,,.negated!=vij.netgated, prevent 

the method ml,, from being included in a schedule containing mif.  This means that method mi,j 

corresponding to a truth assignment for variable  value will be included in the schedule in 

correspondence with one and only one truth assignment. 

The assignment of truth values to  value corresponding to the inclusion of mif ensures that 

each variable has only one truth assignment. The Max( )  quality accumulation function governing 

the task subtask relation ensures that one and only one method from each task is included in the 

schedule. This corresponds to the inclusion of one and only one true variable from each clause 

in SAT. Finally, the length of the schedule, (CI, indicates that the assignment of truth values that 

make each variable vi,j corresponding to miYj in the schedule true in ci satisfies C ,  since C is the 

conjunct of the disjuncts ci. 

Now, conversely, suppose that A : V + {true, false) is a satisfying truth assignment for 

C .  This means that each clause ci E C has at least one variable v i j  that evaluates to true. The 

corresponding T E M S  task structure includes one and only one method mij under each task ti 

derived from each ci E C ,  corresponding to the variable v i j  that evaluates to true. Since there are 

ICI clauses containing one such variable, this will produce a schedule containing ICI methods, i.e., 

a schedule of size IC(. 
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