
5.5 Creating Alternative Subplans in Task Structures

Creating alternative plans and, hence, schedules creates new search branches for the planner.

Each alternative must be planned for separately because, in general, each included method may

have different postconditions that enable other and different tasks and methods than its alternative

method. In cases where one method's post conditions are the same as another method's, it may be

included without significant additional computational cost to the task structure.

Figure 5.12: Task decomposition binding options.

When the number of applicable disjunctive methods is large, it is essential that the planner

constrain its search space. It does so through the use of a heuristic, criteria-directed sort. Using

a characteristic evaluation vector comparator, a total order is placed on the applicable tasks at an

alternative choice point. The total order is derived from the application of TEMS criteria rating

functions [WLOl].

Figure 5.13 depicts the combination of subplans and alternatives to produce a rating for each

alternative. Associated with a task structure point is a set of feasible subplans and their associated

performance distributions. In Figure 5.13, those subplans are depicted as the set { P S I , PS2, PS3).

To obtain a raw rating, the distributions from each subplan are combined with a alternative candi-

date to produced a new set of performance distributions. Each alternative is then rated according

to the TEMS criteria definition relative to the other alternatives.

Structure

Method Method Method

Figure 5.13: Rating subplan alternatives.

A subset of the alternatives is then chosen. The subset is determined according to an adjustable

selection function. The selection function produces one set from the possible sets of n options,

and 2" possible sets. The DTS planner makes one of the following selections: median, extremes,

best, worst, random, and all. Selecting from the set of alternatives enables the planner to ide-

ally provide an optimal distribution of method alternatives based on preferred characteristics as

specified in the characteristic comparison criteria and selection heuristic.

GENERATE-SELECTED(Goa1CharacteristicsSet set, TaemsNode tasknode)
1 foreach(gc in set)
3 UPDATE-RATING@, task~node.allOutcomeSets());
4 SORT-ON-RATING(set);
5 SELECT-SUBSET-BY-HEURISTIC-TYPE(set, HEURISTIC-TYPE);
6 return set;

To clarify, there are two points at which alternative set selection comes to play a role. One

is where there exists more than one method that has an applicable binding. The other is where

there is more than one applicable task reduction. The planner could select a set at this point as

68

well, but unless it is a reduction to a method with defined characteristics there is no information

available upon which to base a decision unless some preprocessing is done as is the case in the

DTC scheduler[WLOl]. The only available option is selecting a subset of a determined size in

order to facilitate planning within a time constraint. Since our experimentation includes some

exploration into sampling from alternative methods with all reductions, reduction sampling has

not been implemented - all reductions are explored unless time constraints are violated.

Chapter 6

EXECUTION MONITORING

Planning and scheduling are fundamental aspects of the agent architecture. They offer the agent

explicit control over its actions, which allows it a degree of flexibility unachievable without their

analogue. The Design-To-Schedule task structure planning performed by the F-SRTA architecture

is described in detail in a separate section. The Design-To-Criteria scheduling performed as it

pertains to planning is described in the planning section. Extensive details on the scheduler can be

found in [WagOO].

6.1 Expected Characteristic Rescheduling

There are cases where a schedule will fail in one manner or another. A schedule can be consid-

ered to fail if any of its methods fails in duration or non-duration characteristics. TEMS provides

for numerous interrelations between methods, so either duration or non-duration failures may not

impact the schedule; e.g., if a parallel method that only facilitates fails to meet a deadline, one

might think that this should not cause the schedule to fail in its entirety, but this is largely dependent

on how failure is measured. TEMS criteria provide the appropriate metric for plan and schedule

failure, since they are so tightly coupled to plan and schedule generation.

We now focus on duration monitoring for rescheduling. Our focus here is equivalent to evalu-

ating schedule failure from within a TEMS criteria evaluation context where the 100% of the eval-

uation weight is put on duration certainty goodness. We are experimenting with three rescheduling

policies:

Schedule Deadline Deviation Constraint (SDD),

Method Deadline Deviation Constraint (MDD), and

Adjusted Method Deadline Deviation Constraint (AMDD)

We will explain each of these in turn immediately following. Each of the constraint policies can

have one of three consequences, however, that are now noted:

Shuffle-down rescheduling, where each method's expected duration characteristics are in-

cremented or decremented by some constant factor,

Full rescheduling, where actual runtime characteristics are are used to annotate the T E M S

method descriptions, and the DTC scheduler is reinvoked on the task structure, and

Full replanning and rescheduling, where the current state of the world is loaded from the

MSM before the failed action and replanning is done from that world state followed by

scheduling.

The design of experiments currently being conducted to determine the appropriate conditions for

each rescheduling condition are discussed in a later section.

Expected schedule, M

A c l a l schedule, L=7

A c l a l schedule, t=17

r Deadlme forrerults

{
Schedule deadline
v ~ o l a h m causes
rescheduling actlon

Figure 6.1: An illustration of the SDD constraint.

6.2 Schedule Deadline Deviation Constraint

The SDD policy calculates the combination of method deadline deviations for a given sched-

ule. Each method's duration is characterized by a random variable X with an associated discrete

probability distribution. The deviation of X, Dev(X), is calculated as follows:

That is, as Equation 6.2 shows, that the deviation is the square-root of the sum of the differences

between each value of the discreet probability distribution that X can assume, squared, and then

multiplied by the probability of assuming that value. It obtains the full schedule deadline from

the DTC scheduler and then combines the deviations of the methods included in the schedule to

produce the deadline deviation - deviation from which will cause a rescheduling or replanning

operation. This policy is depicted in Figure 6.1. The other constraints are variations on this con-

straint.

6.3 Method Deadline Deviation Constraint

The MDD policy calculates the deviation on each method included in a schedule produced by

the DTC scheduler. If any method's actual duration lies outside the duration's deviation, it will

cause a rescheduling or replanning operation. This policy is depicted in Figure 6.2.

Expeted schedule, ki)

Aclal schedule, 1 4

Achral schedule, t=13

completm hme exceeds
deadline vanance

Figure 6.2: An illustration of the MDD constraint.

6.4 Adjusted Method Deadline Deviation Constraint

The AMDD policy calculates the deviation on each method included in a schedule produced

by the DTC scheduler. If any method's actual duration lies outside the duration's deviation, it will

cause a rescheduling or replanning operation. However, in the adjusted version of the MDD policy,

actual durations can immediately cause a simple "shuffle down" rescheduling operation or a more

complex operation, depending on the expected performance of the remainder of the schedule. This

policy is depicted in Figure 6.3.

6.5 Monitoring Parallel Schedules with Deviance-Based Constraints

There seem to be two fundamental approaches to monitoring schedules with parallel actions.

One approach is appropriate when what matters is the performance of the parallel actions in the

Expected schedule, b O

Achal schedule, t=7

Achal schedule, t=14

'Mdod's adual
compld~cn time enceeds
od@d deadline vanance

Figure 6.3: An illustration of the AMDD constraint.

aggregate, i.e., each method's deviation is important to the overall performance of the application.

Another approach is appropriate when the performance of parallel actions effect the application's

overall performance with different weights. In this case, each branch of the parallelized sched-

ule could be targeted for monitoring, replanning, and rescheduling actions when a constraint was

violated. Each approach may have its merits in different domains.

Chapter 7

EXPERIMENTS

Several experiments were conducted to derive statistics explaining the effect of criteria-directed

goal reduction heuristic choice on planning time and schedule quality. Our ultimate research goal

is to be able to appropriately characterize an agent's task environment in terms that allow us to

choose heuristics effectively and efficiently. In the presented research, we are especially interested

in time and complexity constraints. So, in the context of viewing the agent control problem as

a problem of compute time allocation, the experiments attempt to find a map between task and

environment characteristics and task structure generation heuristics.

The key features of the solution design space that are explored in the experiments are:

The effects of the use of a goal reduction policy on scheduling options and compute time,

The appropriate schedule failure metric based on method performance statistics, and

The correct compute time allocation for a given task environment.

7.1 Comments on Domain Complexity

A measure of expected required computation time and space of each operation required to

produce a result is necessary to make the correct decision of how to balance the allocation of time

and space for computing in each situation. We need to know the expected quality of additional

compute time spent on one operation versus another. We focus solely on the operations of the DTS

75

planner and the DTC scheduler in the experiments reported. Further, we focus on compute time,

rather than the compute space, since the operations in the cases reported are run sequentially. Such

a focus simplifies the analysis.

The important gauges of complexity in the DTS planning domain are:

0 The number of choices in each subplan,

0 The number of supporting subplans, and

0 The expected number and characteristics of failing plans.

The DTS task structure planner can instantiate methods under a given task to support subplan

choice. It can thus create tasks that include a number of alternative supporting subtasks. To

support a number of different exactly-one branches based on changes in the agent's perception

of plan state, there is an interplay between the domain definition and the problem definition. There

has to be a number of equivalent subplans to pursue, where there are enabling interactions between

one action and a sequence of successive actions.

7.2 Alternative Selection Heuristic Effects

We need to determine the effect of the choice of a reduction heuristic across sets of:

0 Task environment classes,

Domain complexities,

0 Task structure generation and scheduling criteria, and

0 Time to c0mpute.d

The number and kind of varying parameters in experiments and analysis of tradeoffs between

TiEMS planning and scheduling are quite daunting; they include:

a Task structure,

Method performance characteristics,

Performance characteristic model types,

0 Selection heuristic dimension,

0 Planning and scheduling criteria and application,

0 Compute time constraints,

a Domain complexity, and

a Problem complexity.

Both the planning and scheduling compute time are of interest in these cases, since what is ulti-

mately of interest is the expected utility as a function of compute time for a task structure and its

schedules which may incorporate contingencies, where the probability of failure in a given sched-

ule varies. However, we do not focus on that element of the problem presently, partly since the the

planner version used in the experiments supports anytime computation naively and the scheduler

version used in the experiments does not support anytime computation.

7.2.1 Selection Heuristic Effect on DTS Planner Runtime

The effects of a given altemative selection heuristic on planning runtime is dependent on several

aspects of the domain theory. One is, b, the branching factor for the the number of alternatives that

are available, on average, and explored per selection. Another is how many altemative points are

part of the search, on average, to complete a task network, n, the depth of a complete search.

This yields time complexity of O(bn) for a complete search of the plan space, if the problem is

decidable.

77

The DTS planner uses alternative rating and selection heuristics at each alternative point to

choose a subset of applicable alternatives to include in the task network and associated TEMS

task structure. We now examine the runtime performance of the different selection heuristic types

on planning runtime. We compare the planning runtime with the runtime required to schedule the

generated T S M S task structure.

The experiments were run in the Probabilistic Blocks World (PBW) domain, with three appli-

cable method alternatives at each alternative point - the ability to stack a block in three different

ways, with differing cost and duration profiles, but with uniform quality profiles.

Figure 7.1 shows run times for the DTS planner when using a heuristic that explores one alter-

ative at alternative selection points and the DTC scheduling runtime on the resulting TEMS task

structure for domains of increasing complexity. In the "select one" heuristics, one alternative of

PBW-3 ACs. Select One Heurlstlc n p e (L,H,M,F,R) Ave. Planner and
Scheduler Runtimes

2 3 4 5

complexity

Figure 7.1: DTS planner and DTC scheduler runtimes for select one heuristi
domain complexity.

cs over increa

the three applicable alternatives available is selected. There are five heuristics which select only

one of the alternatives. First, recall that the alternatives are ranked according to a T E M S criteria

rating that calculates each alternative's rating based on the relative and proportional value of its

characteristics across existing plans and the other alternatives.

The select one heuristics are, more precisely, as follows:

high - choose the highest rated alternative;

low - choose the lowest rated alternative;

median -choose the median alternative: if A is the list of alternatives, choose [k$J ;

random - choose a random alternative: if A is the list of alternatives and R is a random

variable with a uniform distribution over the set [O, l) , choose [R * JAI J.

fast - choose the fastest alternative.

The select one heuristics, minus the selection processes described above, perform the same opera-

tions, and so have effectively identical runtimes.

The average runtime curves for both the DTS planner and the DTC scheduler are given in

Figure 7.1 over increasing domain complexity, meaning that there were more blocks to move from

one configuration to its inverse configuration - the sort of problems used for these tests. Figure

7.1 shows clearly that the total computing runtime to produce a schedule of action from a goal is

dominated by the planning process when only one alternative is included at each alternative point

in task network generation and, hence, in the resulting T&MS task structure. This shows that the

DTC scheduler handles a task structure with sparse alternatives well. This is to be expected.

Figure 7.2 shows run times for the DTS planner when using a heuristic that explores two

alternatives at alternative selection points and the DTC scheduling runtime on the resulting T&MS

task structure for domains of increasing complexity. In the "select two" heuristics, two alternatives

of the three applicable alternatives available are selected. There is only one heuristic that selects

two alternatives, the extremes selection heuristic. The extremes heuristic combines both the

high and low selection heuristics to explore both the highest and lowest rated alternatives.

We see now that the runtime of the DTC scheduler is beginning to overtake the runtime of the

DTS planner at domain complexity between 4 and 5 blocks. This is not due to inherent complexity

in this instance of the scheduling problem but, rather, in the generalized manner in which the DTC

PBW-3 Alts. Select Two Heuristic Type (Extremes)Ave. Planner and
Scheduler Runtimes

Figure 7.2: DTS planner and DTC scheduler runtimes for select two heuristics over increasing
domain complexity.

3500 -

3000 -

2500 -
0

5 2000 -
E"
1500 -

1000 --

500 -

0 ,

scheduler schedules. Thus, current research is being conducted to match appropriate scheduling

P
/

/

algorithms to task structure scheduling problems such as the one we have here.

Figure 7.3 shows run times for the DTS planner when using a heuristic that explores all alter-

2 3 4 5

complexity

natives at alternative selection points and the DTC scheduling runtime on the resulting TEMS task

structure for domains of increasing complexity. Here, "all" equals three alternatives.

Clearly, there is significant computational overhead with the exploration of plan and schedule

alternatives - exponential in space, in the worst case. In the all alternative selection case above,

we see the scheduling time dramatically overtake the planning time.

Fortunately, as we will see shortly, it turns out that, given a uniform distribution of method

characteristics and deadlines, extra computation will not typically be needed unless deadlines are

very tight and meeting them precisely is important for the domain problem, if schedule quality

Q(t) density is our measure, i.e., ,.

PBW-3 Alts Select Three Heuristic Type (All) Ave. Planner and
Scheduler Runtimes

2 3 4 5

complexity

Figure 7.3: DTS planner and DTC scheduler runtimes for select three heuristics over increasing
domain complexity.

7.2.2 Selection Heuristic Effect on Schedule Quality

We decided to run an experiment to test whether and when expending additional computational

resources will lead to benefits in terms of schedule quality density. We ran each heuristic on a set

of random domain planning problems. The results are displayed in Table 7.1.

1) Batch I Low I High I Extremes I Median / All] Random 1 Fast 11

Table 7.1 : Schedule Quality Density Achieved By Plan Alternative Selection Heuristics

In this experiment, each of the seven selection heuristics was run on a set of 30 randomly

generated Tripbot domain planning problems. The problems involve generating plan alternatives

for a trip from one location to another with no stops between the two. Each location has five

flights to it and five flights from it. Each flight is randomly assigned method characteristics from

a uniformly distributed set of nine method characteristic types that vary stepwise along the axes

of Quality, Cost, and Duration. If the first letter represents the expected value of the Quality

characteristic, the second the Cost characteristic, and the third the Duration characteristic, the set

is { H L H , H L M , H L L , M L H , M L M , M L L , LLH, L L M , LLL) . H represents a high expected

value, L represents a low expected value, and M represents an expected value halfway between L

and H. The cost of each action is the same, L. This simplification just allows us to focus on a two

value tradeoff; the results for this analysis extend to n characteristic tradeoffs.

The values in Table 7.1, pertaining to schedule quality density, indicate a relative rating [O,1]

of schedule quality density, so a 1 value indicates that it obtained the highest rating. A 0 value in

the table indicates that no feasible schedule was found. The fact that the low heuristic has all zeros

means that there was always a way to overshoot the deadline placed on the trip schedule.

An ANOVA test shows that there are statistically significant differences between the selection

heuristics with FCritical = 2.143451638, F = 18.34052918, and p = 5.49E - 17. Pairwise T-tests

show which heuristics differ significantly.

The results of pairwise t-Tests, displayed in Table 7.2, show that there is no statistically signif-

icant difference between high, fast , extremes, and all selection heuristics a the p=0.05 rejection

level when the relative schedule quality density is our metric. In practice, the high, extremes, and

all heuristics will produce higher quality schedules overall, but with higher duration and cost.

Comparison I T-test p 1) -
I

n Low VS Hieh 1 1.36703E-07 1

Table 7.2: Pairwise T-Test p values for Heuristic Selection Quality Density Comparisons

Chapter 8

ONGOING RESEARCH

This section discusses some ongoing research in F-SRTA and Tripbot control. The focus of our

work is on determining the best cases for replanning versus those for rescheduling only. In both

cases there are a range of actions that can be taken to avoid failure in the future, and we focus on

tuning the planning and scheduling search criteria to provide the best control solution based on the

expected runtime characteristics of the available actions.

8.1 Determining and Responding to Schedule Failure

TEMS schedule failure can occur on any of 2 ̂ expected attribute subsets. When a failure

occurs, a determination must be made to pursue a course of action to rectify the failure. The

following options are available to the agent:

Retry - retry the method,

Reschedule - generate a new schedule,

Replan - generate a new task structure.

There is a special failure case in the dimension of time. A determination of failure is necessary

when no further evidence of failure than lack of results within an expected time is available. The

expected values of the the characteristics for each method are provided in the output of the sched-

uler. However, additional information, especially about the expected variance on the duration of

85

the method, could be helpful in this case, to determine whether one of the above recourses is

appropriate, or whether one additional recourse is appropriate:

Wait - wait to see if the action completes.

When considering when to reschedule, the computation should not be taken lightly, since the

determination of whether a feasible schedule still exists after a failure is a new scheduling problem,

which is, in the general case, computationally hard This means that it is no small proposition under

certain circumstances to make a rescheduling decision. The same can be said for a decision about

generating a new task structure.

Things are further complicated by considering parallel actions, as is the case in the Tripbot

domain. In cases where task alternatives are grouped under a sum QAF, and there are no NLEs

precluding it, the tasks may be run in parallel. We now add the problem of any of the 2" task

subsets failing in any of their 2" expected characteristic values.

8.2 Recovery Compute Time Reduction

An obvious focus point for this research is on how failure recovery compute time can be min-

imized within stated utility bounds. We are exploring classification of the type of agent task en-

vironments that favor more time spent planning up front rather than in reaction to failed actions,

according to the best of several alternative failure criteria previously identified.

The current experiment determines if or when it is better to plan for a set of contingencies and

then to schedule those contingencies or whether it is more efficient to regenerate task structures

and then to reschedule. In the situation where this consideration must be made, there are two types

of deferrals:

One is to defer analysis of densely interconnected task structures to the scheduler;

0 Another is to defer selection of combinations of method disjunctions that are not intercon-

nected.

There is, of course, a notion of providing a "selection" for the scheduler in these deferrals, malung

them only partial deferrals of computation since the planner must do some of the computation done

by the scheduler to produce the appropriate subsets. Key questions are:

What is the complexity of the operation deferred?

What is the complexity of the sampling operation?

We hypothesize that the following will be important factors in the test:

The number of choices in each subtask,

The number of supporting subtask, and

The average number of failing methods.

A domain problem generator creates "synonymous" methods under a given task to support

subplan choice. It then creates tasks that includes the number of supporting subplans. To support a

number of different exactly-one branches based on changes in the perceived state of a plan, there

is an interrelationship between the domain definition and the problem definition. There needs to

be a number of equivalent subtasks to pursue, where there are enabling interactions between one

action and a sequence of successive actions.

Chapter 9

CONCLUSION

This work has produced a number of interesting artifacts, including a new agent architecture and

system with an integrated probabilistic TRMS task structure planning component. As stated pre-

viously, the major contributions were the development of the DTS TRMS task structure planner,

the DTC scheduler driver and parser for use in the Tripbofi-SRTA system, the Tripborn-SRTA

system Executor, an experimental harness for generating problems and analyzing results to test

hypotheses regarding the interactions between Tripborn-SRTA system components, runtime com-

plexity versus utility results, several rescheduling criteria, some computational complexity identifi-

cations regarding the Tripbofi-SRTA generic control problem, and other supporting contributions

to the F-SRTA/Tripbot system. This research made the importance of accurate problem-dependent

performance characteristics of related problem solving methods starkly apparent. Current and pro-

posed research attempts to refine and generalize the solutions to problem solving method selection

and online agent-based control within the TRMS agent framework.

BIBLIOGRAPHY

Yigal Arens, Chin Chee, Chun-Nan Hsu, and Craig Knoblock. Retrieving and inte-
grating data from multiple information sources. International Journal of Coopera-
tive Information Systems, pages 127-158, 1993 [cited August 20, 20031. Available
from: http://citeseer.nj.nec.com/arens93retrieving.html.

Martin Andersson and Tuomas Sandholm. Leveled commitment contracts with my-
opic and strategic agents. In Proceedings of the Fifteenth National Conference on
Artijicial Intelligence, pages 61 5-640, 1998.

Corin Anderson, Daniel Weld, and David Smith. Conditional effects in graph-
plan. In Proceedings of the Fourth International Conference on Artijicial In-
telligence Planning Systems, 1998 [cited August 20, 20031. Available from:
http://citeseer.nj.nec.com/anderson98conditional.html.

John Bresina, Mark Drumrnond, and Keith Swanson. Managing action duration
uncertainty with just-in-case scheduling. pages 19-26, 1994.

Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In
Proceedings of the Fourteenth International Joint Conference on Artijicial Intelli-
gence, pages 1636-1642. Morgan Kaufmann, 1995.

Sanjoy Baruah and Mary Hickey. Competitive on-line scheduling of im-
precise computations. In Proceedings of the Twenty-Ninth Hawaii In-
ternational Conference on System Sciences, Volume 1: SofnYare Technol-
ogy and Architecture, 1996 [cited August 20, 20031. Available from:
http://www.cs.unc.edul baruah/Papers/baruahHickey1996.pdf.

Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton, Andrew Philpot,
and Cyrus Shahabi. Theaterloc: A case study in building an information integra-
tion application. In Proceedings of the Sixteenth International Joint Conference on
Arti$cial Intelligence Workshop on Intelligent Information Integration, 1999 [cited
August 20, 20031. Available from: http://www.isi.edu/info-agents/papers/barish99-
iii.pdf.

Fahiem Bacchus, Henry Kautz, David Smith, Derek Long, Hector Geffner, and
Jana Koehler (organizers). Fifth international conference of A1 planning and sched-
uleing competition. Available from: http://www.cs.toronto.edu/aips2000/, 2000
[cited August 20, 20031.

[BL99] Avrim Blum and John Langford. Probabilistic planning in the graphplan framework.
In Fifth European Conference on Planning, pages 3 19-332. Springer-Verlag, 1999.

[CS03b]

[CT9 1]

[Dec95]

[DE W97]

Maroua Bouzid and Abdel-Illah Mouaddib. Cooperative uncertain temporal reason-
ing for distributed transportation scheduling. In Proceedings of the Third Intema-
tional Conference on Multiagent Systems, pages 397-398. IEEE Press, 1998.

Jiri Baum and Ann E. Nicholson. Dynamic non-uniform abstractions for approxi-
mate planning in large structured stochastic domains. In Pacijic Rim International
Conference on Artijicial Intelligence, pages 587-598, 1998 [cited August 20, 2003.
Available from: http:Nciteseer.nj.nec.com/2253 14.html.

Rodney Brooks. Intelligence without representation. In Artijicial Intelligence, num-
ber 47, page 139159. Elsevier, 1991.

Richard C. Bodner and Fei Song. Knowledge-based approaches to query ex-
pansion in information retrieval. In Canadian Conference on Artijicial In-
telligence, pages 146-158, 1996 [cited August 20, 2003. Available from:
http://citeseer.nj.nec.com/bodner96knowledgebased.html.

Paul Cohen, Vinay Chaudhri, Adam Pease, and Robert Schrag. Does prior knowl-
edge facilitate the development of knowledge-based systems? In Proceedings of
the Sixteenth National Conference on Artijicial Intelligence, pages 221-226. AAAI
Press. 1999.

Norman Carver, Victor Lesser, and Qiegang Long. Distributed sensor in-
terpretation: Modeling agent interpretations in dresun. In UMass Techni-
cal Report, UMCS 93-75, 1993 [cited August 20, 20031. Available from:
http://mas.cs.umass.edu/pub/paper~detail.php/l64.

Steve Chien, Gregg Rabideau, Russell Knight, Robert Sherwood, Barbara Engel-
hardt, Darren Mutz, Tara Estlin, Ben Smith, Forest Fisher, Tony Barrett, Gary Steb-
bins, and Daniel Tran. Aspen - automated planning and scheduling for space mission
operations, 2000 [cited August 28, 20031. http:Nciteseer.nj.nec.com/373541.html.

W. Conen and Tuomas Sandholm. Differential-revelation vcg mechanisms
for combinatorial auctions. 2002 [cited August 20, 2003. Available from:
http://citeseer.nj.nec.com/conen02differentialrevelation.html.

Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. 2002
[cited August 20, 20031. Available from: http://citeseer.nj.nec.com/534262.html.

Ken Currie and Austin Tate. 0-plan: the open planning architecture. In Artijicial
Intelligence, pages 49-86. AAAI Press, 1991.

Keith Decker. Environment Centered Analysis and Design of Coordination Mecha-
nisms. PhD thesis, University of Massachusetts, Amherst, 1995.

Robert Doorenbos, Oren Etzioni, and Daniel Weld. A scalable comparison-shopping
agent for the world wide web. In Proceedings of the First International Conference
on Autonomous Agents, pages 39-48. ACM Press, 1997.

[DH W94]

[DLOO]

[DWS96a]

Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with informa-
tion gathering and contingent execution. In Proceedings of the Second International
Conference on Artijicial Intelligence Planning Systems, pages 3 1-36. AAAI Press,
1994.

Minh Binh Do and Subbarao Kambhampati. Planning as constraint satisfaction:
Solving the planning graph by compiling it into CSP. Artijicial Intelligence,
132(2): 15 1-1 82, 2001.

Minh Do and Subbarao Kambhampati. Planning graph-based heuristics for cost-
sensitive temporal planning. In Proceedings of the Sixth International Conference
on Artijicial Intelligence Planning and Scheduling, pages 3-12. AAAI Press, 2002.

Minh Do and Subbarao Kambhampati. Sapa: A scalable multi-objective heuris-
tic metric temporal planner. 2003 [cited August 20, 20031. Available from:
http://citeseer.nj .nec.coml455880.html.

Keith Decker and Jinjiang Li. Coordinating mutually exclusive resources using
gpgp. Autonomous Agents and Multi-Agent Systems, 3(2): 133-1 57,2000.

Keith Decker, Mark Williamson, and Katia Sycara. Intelligent adaptive information
agents. In Proceedings of the National Conference on Artijicial Intelligence Work-
shop on Intelligent Adaptive Agents. AAAI Press, 1996. Tech Report WS-96-04.

Keith Decker, Mark Williamson, and Katia Sycara. Modeling information agents:
Advertisements, organizational roles, and dynamic behavior. In Proceedings of the
Thirteenth National Conference on Artijicial Intelligence Workshop on Agent Mod-
eling, 1996.

Kutluhan Erol, James Hendler, and Dana Nau. Umcp: A sound and complete pro-
cedure for hierarchical task-network planning. In Proceedings of the Second In-
ternational Conference on Artijicial Intelligence Planning Systems, pages 249-254.
AAAI Press, 1994.

Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and
expressivity. In Proceedings of the Twelfrh National Conference on Artijicial Intel-
ligence, pages 1 123-1 128. AAAI Press, 1994.

Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and
expressivity. Technical Report 94-44, University of Maryland, 1994.

Kutluhan Erol, James Hendler, Dana Nau, and Reiko Tsuneto. A critical look at
critics in HTN planning. In Proceedings of the Fourteenth International Joint Con-
ference on Artijicial Intelligence, pages 1592-1598. Morgan Kauffmann, 1995.

Tara Estlin and Raymond Mooney. Hybrid learning of search control for partial-
order planning. In New Directions in AI Planning, pages 129-140.10s Press, 1996.

Michael Emst, Todd D. Millstein, and Daniel S. Weld. Automatic sat-compilation of
planning problems. In Proceedings of the Fifteenth International Joint Conference
on Artijicial Intelligence, pages 1169-1 177, 1997.

[EW94] Oren Etzioni and Daniel Weld. A softbot-based interface to the internet. Communi-
cations of the ACM, 37(7):72-76, 1994.

[GOO 11

Orin Etzioni, Daniel Weld, Denise Draper, Neil Lesh, and Mark Williamson. An
approach to planning with incomplete information. In Proceedings of the Third
International Conference on Knowledge Representation and Reasoning, pages 11 5-
1 13. Morgan Kaufmann, 1992.

Richard Fikes and Nils Nilsson. Strips: A new approach to the application of theo-
rem proving to problem solving. In Artij-icial Intelligence, volume 2.

David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why
reuse is so hard? In IEEE Sofmare, volume 12, pages 17-26. IEEE Press, 1995.

Piotr Gmytrasiewicz and Edmund Durfee. Rational communication in multi-
agent environments. Autonomous Agents and Multi-Agent Systems, 4(3):233-272,
September 2001.

Carlos Guestrin and Dirk Ormoneit. Robust combination of local controllers. In
Uncertainty in Artij-icial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), pages 178-1 85. Morgan Kaufmann, 2001.

David Garlen and Mary Shaw. An introduction to software architecture. In IEEE
Sofmare, volume 12, pages 17-26. IEEE Press, 1995.

Robert J. Glushko, Jay M. Tenenbaum, and Bart Meltzer. An xml framework for
agent-based e-commerce. Communications of the ACM, 42(3): 106-1 14, 1999.

Bryan Horling, Victor Lesser, Regis Vincent, and Thomas Wagner. The soft
real-time agent control architecture. Technical Report TR02- 14, University of
Massachusetts at Arnherst, 2002 [cited August 20, 20031. Available from:
http://citeseer.nj.nec.corn/horling02soft.html.

Bryan Hor-
ling. A reusable component architecture for agent construction. In University of
Massachusetts/Amherst CMPSCI Technical Report 1998-49, 1998 [cited August 20,
20031. Available from: http://mas.cs.umass.edu/pub/paperdetail.php?id=l18.

Frank Harmelen and Annette Teije. Characterising approximate problem-solving by
partial pre- and postconditions. In Proceedings of ECAI'98, pages 78-82, Brighton,
August 1998.

John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Lmzguages,
and Computation. Addison Wesley, 1979.

Bryan Horling, Regis Vincent, Roger Mailler, Jiaying Shen, Raphen Becker, Kyle
Rawlins, and Victor Lesser. Distributed sensor network for real time tracking. In
Proceedings of the Fifth International Conference on Autonomous Agents, pages
41 7-424. ACM Press, 2001.

[INMAA02] Okhatay Ilghami, Dana Nau, Hector Muoz-Avila, and David Aha. Camel: Learn-

[JP941

[JSW98]

[Kam95]

[KHW95]

[KKY 951

[LAH+03]

[LDV99]

[LFS+03]

[LHK+OO]

[LSK95]

[MBF+98]

ing method preconditions for HTN planning. In Proceedings of Sixth International
Conference on ArtiJicial Intelligence Planning and Scheduling. AAAI Press, 2002.

David J o s h and Martha Pollack. Least-cost flaw repair: A plan refinement strategy
for partial-order planning. In Proceedings of the Twelfrh National Conference on
Artificial Intelligence, pages 1004-1 009. AAAI Press, 1994.

Nick Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent research
and development. Journal of Autonomous Agents and Multi-Agent Systems, 1 (1):7-
38, 1998.

Subbarao Kambhampati. A comparative analysis of partial order planning and task
reduction planning. In ACM SIGART Bulletin, 1995.

Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An algorithm for probabilistic
planning. ArtiJicial Intelligence, 76(1-2):239-286, 1995.

Subbarao Kambhampati, Craig Knoblock, and Qiang Yang. Planning as refinement
search: A unified framework for evaluating design tradeoffs in partial-order plan-
ning. Artificial Intelligence, 76(1-2):167-238, 1995.

Victor Lesser, Michael Atighetchi, Bryan Horling, Brett Benyo, Anita Raja, Regis
Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ. A multi-agent system for
intelligent environment control. In Proceedings of the Third International Con-
ference on Autonomous Agents, 1999 [cited August 20, 20031. Available from:
http://dis.cs.umass.edu/pub/paperdetail.php/l20.

Henry Lieberman, Neil Van Dyke, and Adrian Vivacqua. Let's browse: a collab-
orative web browsing agent. In Proceedings of the International Conference on
Intelligent User Inter$aces, pages 65-68. ACM Press, 1999.

Derek Long, Maria Fox, David Smith, Drew McDerrnott, Fahiem Bacchus, and Hec-
tor Geffner (organizers). Sixth international conference of A1 planning and schedule-
ing competition. Available from: http://www.dur.ac.uk/d.p.long/competition.html,
2002 [cited August 20, 20031.

Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and
Shelley Zhang. Big: An agent for resource-bounded information gathering and deci-
sion making. In Artificial Intelligence Journal, Special Issue on Internet Information
Agents, volume 118, pages 197-244. Elsevier, 2000.

Alon Levy, Divesh Srivastava, and Thomas Kirk. Data model and query evaluation
in global information systems. Journal of Intelligent Information Systems - Special
Issue on Networked Information Discovery and Retrieval, 5(2): 121-143, 1995.

George Miller, Richard Beckwith, Christiane Fellbaum, Derie Gross, and Katherine
Miller. Wordnet: An on-line lexical database. MIT Press, 1998.

D. McDermott. A reactive plan language. Technical Report CSD-RR-864, 1991
[cited August 20, 20031. Available from:
http://citeseer.nj.nec.com/mcdermott93reactive.html.

Zbigniew Michalewicz and David Fogel. How to solve it: Modem heuristics.
Springer Verlag, 1999.

Stephen Majercik and Michael Littman. Maxplan: A new approach to probabilistic
planning. In Artijicial Intelligence Planning Systems, pages 86-93. AAAI Press,
1998.

David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceed-
ings of the Ninth National Conference on Artijicial Intelligence, volume 2, pages
634-639. AAAI PressIMIT Press, 1991.

Rila Mandala, Takenobu Tokunaga, and Hozurni Tanaka. Complementing wordnet
with roget's and corpus-based thesauri for information retrieval. In Ninth Conference
of the European Chapter of the Association for Computational Linguistics, 1999
[cited August 20,20031.

[NCLMA99] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. SHOP: Simple hi-
erarchical ordered planner. In Proceedings of the Sixteenth International Joint Con-
ference on Artijicial Intelligence, pages 968-973. AAAI Press, 1999.

[NKO 1] XuanLong Nguyen and Subbarao Kambhampati. Reviving partial order planning.
In Proceedings of the Seventeenth International Joint Conference on Arti$cial Intel-
ligence, pages 459-466. Morgan Kaufmann, 2001.

[NMAC+03] Dana Nau, Hector Muoz-Avila, Yue Cao, Amnon Lotem, and Steven Mitchell. Total-
order planning with partially ordered subtasks. In Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelligence, 2001 [cited August 20,2003.
Available from: http://www.cs.umd.edul

Barney Pell, Douglas Bernard, Steve Chien, Erann Gat, Nicola Muscettola, Pan-
durang Nayak, Michael Wagner, and Brian Williams. A remote agent prototype for
spacecraft autonomy. In Proceedings of the SPIE Conference on Optical Science,
Engineering and Instrumentation, 1996 [cited August 20, 20031.

Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based ap-
proach. Journal of Artijicial Intelligence Research, 4:287-339, 1996.

Scott Penberthy and Daniel Weld. Ucpop: A sound, complete, partial order planner
for adl. In Bernhard Nebel, Charles Rich, and William Swartout, editors, KR'92.
Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference, pages 103-1 14. Morgan Kaufmann, San Mateo, Califor-
nia, 1992.

Yuhui Qian. A csp approach to information fusion. Master's thesis, University of
Maine, 2002.

Khashayar Rohanimanesh and Sridhar Mahadevan. Decision-theoretic planning
with concurrent temporally extended actions. In Uncertainty in Artijicial Intelli-
gence: Proceedings of the Seventeenth Conference (UAI-2001), pages 472479, San
Francisco, CA, 2001. Morgan Kaufmann.

Stuart Russell and Peter Norvig. Artijicial Intelligence: A Modem Approach. Pren-
tice Hall, New Jersey, 199 1.

John Regehr and John Stankovic. Hls: A framework for composing
soft real-time schedulers, 2001 [cited August 20, 20031. Available from:
http:Nciteseer.nj.nec.corn/regehrOl hls.htm1.

Earl Sacerdoti. The nonlinear nature of plans. In Proceedings of the Fourth Inter-
national Joint Conference on Artijicial Intelligence, pages 206-214. Morgan Kauf-
mann. 1975.

Martin Skutella. Approximation algorithms for the discrete time-cost tradeoff prob-
lem. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 501-508. ACM Press, 1997.

Tuomas Sandholm and Victor Lesser. Leveled commitment contracts and strategic
breach. In Games and Economic Behavior, volume 35, pages 212-270. AAAI Press,
200 1.

Kilian Stoffel, Merwyn G. Taylor, and James A. Hendler. Efficient management of
very large ontologies. In Proceedings of the The Fourteenth National Conference on
Artijicial Intelligence, pages 442447. AAAI Press, 1997.

Austin Tate. Generating project networks. In Proceedings of the Fifth International
Joint Congress on Artijicial Intelligence, pages 888-893. Morgan Kaufmann, 1977.

Austin Tate, Jeff Dalton, and John Levine. Generation of multiple qualitatively
different plan options. In Proceedings of the Fourth International Conference on
Artijicial IntelligencePlanning Systems, pages 27-34. AAAI Press, 1998.

Annette Teije and Frank Harmelen. Describing problem solving meth-
ods using anytime performance profiles. In Proceedings of the Intema-
tional Joint Conference on Artijicial Intelligence Workshop on Ontologies and
Problem Solving Methods, 1999 [cited August 20, 20031. Available from:
http://www.cs.vu.nV frankh/abstracts/UCAI99-PSM.htm1.

Roy Turner. Orca: Intelligent adaptive reasoning for autonomous undenva-
ter vehicle control. In Proceedings of the FLAIRS International Workshop on
Intelligent Adaptive Systems, 1995 [cited August 20, 20031. Available from:
http://cdps.umcs.maine.edu/Papers/l995/FLAIRS/body.html.

Thomas Wagner. Toward Quantijied Control for Organizationally Situated Agents.
PhD thesis, University of Massachusetts, 2000.

Thomas Wagner. Conversation about the complexity of TEMS task structure
scheduling. Personal Conversation, July 10,2003.

Daniel Weld, Corin Anderson, and David Smith. Extending graphplan to handle
uncertainty and sensing actions. In The Fifteenth National Conference on ArtiJicial
Intelligence, pages 897-904. AAAI Press, 1998.

David Wilkins and Marie desJardins. A call for knowledge-based plan-
ning. In AIPS Workshop on Analysing and Exploiting Domain Knowl-
edge for EfJicient Planning, 2000 [cited August 20, 20031. Available from:
http://citeseer.nj.nec.com/wilkins00call.html.

Mike Williamson, Keith Decker, and Katia Sycara. Unified information and control
flow in hierarchical task networks. In Proceedings of the AAAI Workshop on The-
ories of Action, Planning, and Robot Control: Bridging the Gap, pages 142-150.
AAAI Press, 1996.

Daniel Weld. An introduction to least commitment planning. AI Magazine,
l5(4):27+l, 1994.

Thomas Wagner, Valerie Guralnik, and John Phelps. A key-based coordination al-
gorithm for dynamic readiness and repair service coordination. In Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems, page To Appear. ACM Press, 2003.

Thomas Wagner, Valerie Guralnik, and John Phelps. Taems agents: Enabling dy-
namic distributed supply chain management. In To appear in the Journal of Elec-
tronic Commerce Research and Applications. Elsevier, 2003.

Thomas Wagner and Victor Lesser. Design-to-criteria scheduling: Real-time agent
control. Lecture Notes in Computer Science, 1887: 128, 2001.

Thomas Wagner and Victor Lesser. Relating quantified motivations for or-
ganizationally situated agents. In Intelligent Agents VI: Agent Theories, Ar-
chitectures, and Languages, 1999 [cite August 20, 20031. Available from:
http://dis.cs.umass.edu/ wagnerfhtmlpapers/mq/.

David Wilkins and Karen Myers. A multiagent planning architecture. In ArtiJicial
Intelligence Planning Systems, pages 154-1 63. AAAI Press, 1998.

Thomas Wagner, J. Phelps, Y. Qian, E. Albert, and G. Beane. A modified archi-
tecture for constructing real-time information-gathering agents. In Proceedings of
Agent-Oriented Information Systems, 2001 [cited August 20,20031. Available from:
http:Nwww.aois.org/2001/Wagner-Abstract.htm1.

William Waite and Anthony Sloane. Software synthesis via domain-specific soft-
ware architectures. Technical Report CU-CS-6 1 1-92, 1992 [cited August 20,20031.
Available from: http://citeseer.nj.nec.com/1778.html.

Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automated plan-
ning: Looking back, taking stock, going forward. In AI Magazine, 2003 [cited Au-
gust 20, 20031. Available from: http://rakaposhi.eas.asu.edu/learn-plan-aimag.pdf.

APPENDICES

Appendix A

FORMAL PROBLEM DEFINITIONS

The following sections present a more formal definition of the two key problems solved by Tripbot:

the data gathering problem and the information generation (or fusion) problem.

For Tripbot, the data gathering problem was that of deciding on the best data sources to query

to obtain the data necessary to generate the required information results. Tripbot, for this part

of the problem, is given a set of data subject areas to gather data from, a set of data sources,

constraints on the cost and duration of query operations, and constraints for the resulting trip

itinerary information. This part of the solution attempts to find.the best set of information sources

to query to produce the best data, which, in turn, will provide the best, most complete set of

subsolutions in the information generation solution phase.

The problem is depicted graphically in Figure A.1. We view this gathering problem, more

precisely, as an iterative decision problem over a 4-tuple, (9 , r, y, E) , where 9 is set of vectors,

of which for each the first element is a unique subsolution generator function and the remaining

elements are characteristicfinctions, which are discussed in more detail later, but which are es-

sentially distributional functions characterizing the subsolution generator random variable and that

return a distribution characterizing an attribute of the associated subsolution, i.e., for our purposes,

cost, quality, or duration. The subsolution part of each element of is a function which produces,

with some probability, some data (for example, within the Tripbot domain, a set of potential airline

reservations) - there is almost always a small probability that no data will be produced, but a

subsets 0
Figure A. 1 : The data gathering problem.

much larger probability that the data will be returned in more time than the expected duration.

T is a set of sets over the powerset of Q that characterize "complete" data gathering solution

sets, i.e., those sets that will produce all the required data to generate the information required by

the query.

y is an objective function for the inclusion of individual possible subsolutions in the probabilis-

tic search over 9'. y is thus used to decide which elements of T will be included in query actions

by the system.

Finally, E provides a time constraint on the search of T . The problem here is to maximize ex-

pected value of y within the specified E and y constraints of the expected environmental conditions.

Generating trip itineraries for Tripbot clients means consolidating the results returned in the

data gathering phase - although additional data gathering actions may be necessary. There may be

'In our solution, we use the TEMS criteria definition, discussed in more detail later.

many combinations of destinations, intermediary stops, transportation choices, recreation choices,

and accommodation choices generated from data gathering. Tripbot must use the information

provided to produce feasible trips that meet the customer's requirements within a specified €-time

bound.

subsets 0
(d (< P , O), {a> I < P is a solution) 1

<<V>, subject to {C,, C,, . . ., Ck))
I

Figure A.2: The information generation problem.

The problem is depicted graphically in Figure A.2. The information generation problem, is

an iterative decision problem over a 4-tuple, (I?, (, y, E), where I? is a set of vectors, defined as

above, except that the first element in each vector is a unique subsolution of a solution. For Tripbot

this solution is part of the query result - a part of an itinerary, such as a potential hotel reservation.

< is a partial order on the elements in I? - this partial order specifies the order in which parts

of the trip may take place; e.g., a flight is taken from the origin city to a destination city before a

flight is taken from a destination city to the origin city. This ordering enables the establishment of

completion conditions for the information generation problem. A complete trip starts at the origin

location, visits the destination location, and then returns to the origin location.

y is an objective function for the inclusion of individual possible subsolutions in the probabilis-

tic search over I?. The same objective function is applied to both the data gathering and information

generation phase because both seek to maximize the value of the returned itineraries.

t, as defined above, is a time constraint on the total computation time available to solve an

instance of the information generation problem. The problem is to maximize the value of y.

Notable differences between the data gathering problem and the information generation prob-

lem are that:

0 The solution to the data gathering problem produces new data, i.e., new state information

that is not derived from existing state information; and

0 There is an additional source of uncertainty in the data gathering problem about the quantity

and expected characteristics of the new data produced.

It is the presence of uncertainty in unstructured data gathering operations that particularly distin-

guishes Tripbot's problem from database query optimization. The difficulty in the data gathering

problem is to generate likely good subsolutions for a likely good solution. The problem in the in-

formation generation problem is deciding upon which subsolutions to fuse together to generate the

best result possible, within a set of constraints on the characteristics of the solution and within an t

time bound. This contrasts distinctly with database query optimization whose techniques are index

and subquery reordering, which are complex in their own right but which always return complete,

meaning optimal results, at least if the parameter of solution time is disregarded.

Appendix B

COMPUTATIONAL COMPLEXITY

Here we prove that TRMS task structure scheduling is NP-Hard. [Wag031 stipulates that checking

the validity of a schedule derived from an arbitrary TRMS task structure should be a low-order

polynomial operation (or better), so a proof of NP-completeness is likely possible. Checking the

optimality of a schedule in the worst case requires checking each of the following number of

schedules, where where n is the number of methods in the TRMS task structure:

Theorem B.O.l T E M S task structure scheduling (TSS) is NP-hard.

Pro08 We transform SAT to TSS. Let V = {vl, v2,. . . , v,) be a finite set of boolean variables

and let C = {cl, c2,. . . , G) be a finite set of disjunctive clauses. Each clause c, contains a set of

variables. The SAT problem is to find a truth assignment for V that satisfies all the clauses in C.

For the purposes of this transformation, we assume that an arbitrary total order exists on C. We

also assume that an arbitrary total order exists on the variables for each clause c, E C. vijj then

corresponds to the j th variable of clause c,.

We must construct a TRMS task structure such that a schedule of length (CI exists if and only

if C is satisfiable. For each c, E C there is a TRMS task, ti, with lcil child tasks of method type.

Each method mi, j , that is a child of ti exclusively corresponds to variable v i j

The methods {mi,l, . . . , mi,k) that are children of task ti each have an identical TEMS method

characteristics, where the outcome density is 1 .O, there is one outcome, and the quality, cost, and

duration characteristic distribution functions return the real value 1.0 with complete certainty.

The quality accumulation function governing the relation between task ti and each of its child

methods, mi,j is the M a x () function, which functionally is interpreted as a logical or.

Each task ti is then made a child of a TEMS task group node, t,atisfy-all. The quality accumu-

lation function governing the relation between tsatis f y A l l and each of its child tasks, ti is the All ()

function, which functionally is interpreted as a logical and.

The TRMS disables interrelationship is used to model variable negation. We now assume that

there is a lookup table, LUT that contains a mapping from every variable vi to its corresponding

method mi,j and that also contains the reverse mapping. The following procedure is then used to

create the disables to model variable negation in the TEMS task structure rooted at tSatisfydll New

terminology is introduced: C [i] returns the ith clause of the totally ordered set C , and the variable

construct vi4 is assumed to have two fields, where value returns the element of V for which

vi,j is a copy, and vi j.negated is a boolean field that returns true if this variable copy is negated.

The procedure GENERATE-DISABLES generates the disables links in the TEMS task struc-

ture from logically opposing variable instances for each ci E C . It does this in quadradtic time,

approximately 9(-).

GENERATE-DISABLES(V9 C , LUT, tsatis f y _all)

1 for(i=O to size(C))
forCj=O to size(C[i]))

for(k=j+l to size C [i])
 if(^^,^ .value==~~,~.value)
i f (~ ~ , ~ . n e g a t e d ! = v ~ .negated)

tsatisfy-all .addDisables(LUT.getMethod(vi j), L U T . g e t M e t h ~ d (v ~ , ~) , B I) ;
for(l=i+l to size(C))

for(m=O to size C [i])
if(vi,j.value==vl,m.value)

if(vl,,.negated!=vij .negated)
tsatis~y,~~.addDisables(LUT.getMethod(vi,j), LUT.getMethod(vl,,), B I) ;

The transformation from SAT to TSS is given in Figure B.1. The construction can be clearly

accomplished in polynomial time. All that remains to be shown is that C is satisfiable if and only

if tsatisfyllll produces a schedule of length (CI.

First, suppose that S is a schedule of length JCJ, scheduled from a task structure ts,tisfy-all that

was generated in the manner that we described above. In order for such a schedule to exist, there

would have to exist in the schedule at least one method, m i j from each task ti. And, due to the

Max() quality accumulation function governing task ti's relation to its child methods, there could

be at most one method included in a schedule that is a child of task ti; in the case where more than

one method could be included, one is picked at random.

Two feasible schedules cmespmding
to the two feasible
truth assignments
{{Vl=T,VZ=T),{V l=F,VZ=F)).

Figure B. 1: Depiction of SAT to TIEMS task structure transformation.

The inclusion of method mif under task ti is equivalent to the satisfaction of clause ci by a

truth assignment to variable .value that makes vi,j evaluate to true. Now, for any method mi,j

corresponding to variable vi,j included in the schedule, disables interrelationships between mi,j

and any method ml,, corresponding to a variable v~,,, where vl,,.negated!=vij.netgated, prevent

the method ml,, from being included in a schedule containing mif. This means that method mi,j

corresponding to a truth assignment for variable value will be included in the schedule in

correspondence with one and only one truth assignment.

The assignment of truth values to value corresponding to the inclusion of mif ensures that

each variable has only one truth assignment. The Max() quality accumulation function governing

the task subtask relation ensures that one and only one method from each task is included in the

schedule. This corresponds to the inclusion of one and only one true variable from each clause

in SAT. Finally, the length of the schedule, (CI, indicates that the assignment of truth values that

make each variable vi,j corresponding to miYj in the schedule true in ci satisfies C , since C is the

conjunct of the disjuncts ci.

Now, conversely, suppose that A : V + {true, false) is a satisfying truth assignment for

C . This means that each clause ci E C has at least one variable v i j that evaluates to true. The

corresponding T E M S task structure includes one and only one method mij under each task ti

derived from each ci E C , corresponding to the variable v i j that evaluates to true. Since there are

ICI clauses containing one such variable, this will produce a schedule containing ICI methods, i.e.,

a schedule of size IC(.

BIOGRAPHY OF THE AUTHOR

John Phelps was born in Ellsworth, Maine. He graduated from John Bapst Memorial High School.

He received his Bachelor of Science degree in Computer Science from the University of Maine

in May, 1999. He is a candidate for the Master of Science degree in Computer Science from the

University of Maine in August, 2003.

