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Inherent optical properties play an important role in understanding the biogeochemical processes of lakes by
providing proxies for a variety of biogeochemical quantities, including phytoplankton pigments. However, to
date, it has been difficult to accurately derive the absorption coefficient of phytoplankton [aph(λ)] in turbid and
eutrophic waters from remote sensing. A large dataset of remote sensing of reflectance [Rrs (λ)] and absorption
coefficients was measured for samples collected from lakes in the middle and lower reaches of the Yangtze River
and Huai River basin (MLYHR), China. In the process of scattering correction of spectrophotometric measure-
ments, the particulate absorption coefficients [ap(λ)]were first assumed to have no absorption in the near-infrared
(NIR) wavelength. This assumption was corrected by estimating the particulate absorption coefficients at 750 nm
[ap(750)] from the concentrations of chlorophyll-a (Chla) and suspended particulate matter, which was added to
the ap(λ) as a baseline. The resulting mean spectral mass-specific absorption coefficient of the nonalgal particles
(NAPs) was consistent with previous work. A novel iterative IOP inversion model was then designed to retrieve the
total nonwater absorption coefficients [anw(λ)] and backscattering coefficients of particulates [bbp(λ)], aph(λ),
and adg (λ) [absorption coefficients of NAP and colored dissolved organic matter (CDOM)] from Rrs (λ) in turbid
inland lakes. The proposed algorithm performed better than previously published models in deriving anw(λ) and
bbp(λ) in this region. The proposed algorithm performed well in estimating the aph(λ) for wavelengths> 500 nm
for the calibration dataset [N= 285, unbiased absolute percentage difference (UAPD)= 55.22%, root mean
square error (RMSE)= 0.44 m−1] and for the validation dataset (N= 57, UAPD= 56.17%, RMSE= 0.71 m−1).
This algorithm was then applied to Sentinel-3A Ocean and Land Color Instrument (OLCI) satellite data, and was
validated with field data. This study provides an example of how to use local data to devise an algorithm to obtain
IOPs, and in particular, aph(λ), using satellite Rrs (λ)data in turbid inland waters. ©2019Optical Society of America

https://doi.org/10.1364/AO.58.008549

1. INTRODUCTION

Inherent optical properties (IOPs), including the absorption
[a(λ)] and backscattering [bb(λ)] coefficients of water constitu-
ents [e.g., water, nonalgal particles (NAP), phytoplankton, and
colored dissolved organic matter (CDOM)], are the key deter-
minants of ocean color remote sensing and the underwater light
field. The spectral absorption coefficients of water constituents
include absorption of water itself [aw(λ)], phytoplankton
[a ph(λ)], NAP [ad (λ)], and CDOM [ag (λ)]. a ph(λ) is mainly
used to infer pigment concentrations [1–3], primary produc-
tion [4,5], phytoplankton carbon [6,7], and phytoplankton
community composition [8–11]. Deriving the a ph(λ) rather

than chlorophyll-a concentrations (Chla) from remote sensing
reflectance [Rr s (λ)] was recommended for different regions
and seasons of highly turbid inland waters [12–14]. In addition,
the a ph(λ) is desirable to better understand the biogeochemical
processes of waters at regional scales [5], especially in turbid
productive waters [15,16].

Many IOP inversion algorithms, including semianalytical
inversion algorithms (SAAs) [17–19] and empirical approaches
[20,21], have been developed to estimate the absorption and
backscattering coefficients of water constituents in oceanic,
coastal, and inland waters. Among these algorithms, two solu-
tion schemes are used: (1) a simultaneous solution of IOPs of
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the water components and (2) a two-part solution in which the
backscattering coefficients of particulate [bbp(λ)] and a(λ) are
first determined, and then a(λ) is decomposed into its com-
ponents [22]. These approaches usually require assumptions
about spectral shapes, e.g., exponential functions for ad (λ) and
ag (λ), and spectral parameterization of a ph(λ) [23,24]. Most
of these algorithms have been found to be effective in oceanic
waters optically dominated by phytoplankton; however, they
often fail in optically complex inland waters with high CDOM
and NAP contents [22]. In inland waters, NAP and CDOM
often have high magnitude and large variability, and do not
covary with phytoplankton. Published studies for other inland
and coastal waters (e.g., the Boreal lakes of southern Finland
[25], the coastal areas of the Baltic sea [26], Lake Erie [27]), and
the NOMAD dataset (NASA bio-Optical Marine Algorithm
Dataset) [28] had lower total absorption coefficients compared
to the case we study here, and were dominated by a ph(443) and
ag (443), or were codominated by a ph -ag at 443 nm, with a
contribution by ad (443) lower than 40% [29].

Previous studies have found that both the magnitude and
proportion of the absorption coefficient of water constituents
determine the applicability of an IOP inversion algorithm for
specific conditions [30]. Several IOP inversion algorithms
suitable for inland waters have been developed based on the
bio-optical properties of the specific study region to derive a(λ)
(e.g., [31,32]) and the absorption coefficients of water constitu-
ents [e.g., 7,16,33]. Among these algorithms, quasi-analytical
algorithms (QAAs) [18] and QAA-based algorithms [14,16,34]
have advantages in their ease in changing the parameterizations
of the empirical steps of the algorithms. At present, the modified
QAA algorithms can be applied to Rr s (λ) data from multispec-
tral sensors, such as Medium Resolution Imaging Spectrometer
(MERIS) and Ocean and Land Color Instrument (OLCI) to
retrieve the a ph(λ) in optically complex waters by changing the
reference wavelengths to the red and infrared (IR) wavelengths
(e.g., 665, 709, or 750 nm) [15,29,35]. A combination of the
near-IR (NIR)-based and QAA-based algorithm was built to
estimate IOP products for both the open ocean and turbid
coastal/inland waters [36]; whereas, the NIR-based model did
not perform well in in situ hyperspectral Rr s (λ) due to its large
noise in the wavelengths > 800 nm. Overall, estimating the
spectra of a ph(λ) in waters where phytoplankton are not opti-
cally dominant is still a challenge due mainly to the dominance
of NAP and CDOM [16].

The middle and lower reaches of the Yangtze and Huai
River (MLYHR) in China contain approximately 760 lakes
(∼ 15, 102 km2), with areas ranging from ∼ 0.1 km2 to
∼ 3960 km2 [37]. Characterized by the ternary absorption bud-
get at 443 nm, the lakes in the MLYHR basin were found to be
mostly dominated by ad (443) or to be codominated by ad (443)
and a ph(443) [29,38]. An IOP inversion algorithm (denoted
as QAA750) that is suitable for optically complex lakes in the
lower reaches of the Yangtze River, China, was developed by
shifting the reference wavelength to 750 nm [29]. The a ph(675)
was derived from the inverted a(λ) at 665 and 674 nm, where
the contributions of NAP and CDOM were low. However,
this algorithm failed to derive reasonable a ph(λ) spectra, as the
acceptable uncertainties in the derived ad (λ) values introduced
large errors into the a ph(λ), which has lower magnitude. In

addition, the field data we used [29] were measured using the
quantitative filter technique (QFT) in transmittance mode
(T-mode), which has uncertainties from the unknown level of
absorption in the NIR due to the unknown scattering offset
[39]. Therefore, the null assumption at 750 nm previously
applied for our measurements likely introduces errors in waters
with high NAP absorption in the NIR range [40].

In this paper, building upon QAA750 [29], a novel inversion
algorithm is developed to estimate IOPs using Rr s (λ) from
field-measured data and Sentinel-3A/OLCI images of lakes in
the MLYHR basin. The aims of this study are to (1) estimate the
particulate absorption coefficient at 750 nm [a p(750)] to cor-
rect the a p(λ)measured using the T-mode, (2) develop an IOP
inversion algorithm that is applicable to optically complex lakes
based on the field hyperspectral Rr s (λ) data and is validated
with measured IOP data, and (3) apply the proposed algorithm
to Sentinel-3A/OLCI Rr s (λ) data. This study provides an
improved inversion algorithm to monitor the IOPs in turbid
and eutrophic lakes.

2. STUDY REGION AND DATASETS

A. Study Region

The MLYHR basin encompasses the five largest freshwater lakes
in China, including Lake Poyang, Lake Dongting, Lake Taihu,
Lake Hongze, and Lake Chaohu (Fig. 1). Most of the lakes
are turbid with low Secchi disk depths; for example, the mean
Secchi disk depths for the five largest freshwater lakes range from
17.1 to 53.7 cm. Frequent algal blooms, resuspended sediments,
dredging activities, and river inflows are the main causes for IOP
variations in these lakes [41–44].

Fig. 1. Sampling stations and locations of lakes in the middle and
lower reaches of the Yangtze and Huai River (MLYHR) basin in China.
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B. Field Data

Field data were collected during 16 survey cruises (342 distinct
stations) from October 2008 to July 2018 in the lakes located in
the MLYHR basin (Fig. 1). Remote sensing reflectance, Rr s (λ),
spanning from 350 to 1050 nm with an interval of 1 nm, was
estimated from measurements with an ASD field spectrometer
(FieldSpec Pro Dual VNIR, Analytical Spectra Devices, Inc.)
using the method of [45]; the water-leaving radiance [Lw(λ)]
was derived from the above-water upwelling radiance [Lu(λ)]
by removing the influence of the sky radiance [L sky (λ)] using
a reflectance ratio (ρ) and measuring at a viewing direction of
40 deg from the nadir and 135 deg from the sun. The down-
welling plane irradiance [Ed (λ)] was derived from the measured
radiance of a gray Lambertian panel [L p(λ)],

Rr s (λ)=
Lw(λ)
Ed (λ)

=
Lu(λ)− ρ × L sky(λ)

L p(λ)× π/ρp
, (1)

where ρp is the reflectance of the reference board. Considering
the average wind speed (<5 m/s) and sky conditions (under
clear sky or low cloud), ρ was assumed to be 0.028, based on the
lookup table forρ in [45].

The absorption of total particulate matter, a p(λ), was deter-
mined using the QFT in the T-mode with a Shimadzu UV2600
spectrophotometer [46,47]. ad (λ) was measured after the
pigments were bleached with sodium hypochlorite [48], and
the a ph(λ) was the difference between a p(λ) and ad (λ). The
absorbance spectra of particulates were corrected using the
null NIR assumption by subtracting the absorbance at 750 nm
from the entire spectra. Path length amplification was corrected
using the method in Refs. [25,49,50]. Note that the null NIR
assumption leads to underestimation of ad (λ) and a p(λ) in
waters with high NAP [39]. Here, we correct this assumption by
adding back an estimation of a p(750) (Appendix A).

The water samples were filtered using 0.22 µm pore size
filters, and the ag (λ) values of the water samples (280 to 700 nm
with 1 nm interval) were measured using a Shimadzu UV2600
spectrophotometer with a 1 cm cuvette. The total absorption
coefficient spectrum [a(λ)] is the sum of a ph(λ), ad (λ), ag (λ)

and the absorption coefficients of pure water [aw(λ)] [51],

a(λ)= a ph(λ)+ ad (λ)+ ag (λ)+ aw(λ). (2)

The total nonwater absorption coefficient [anw(λ)] is the sum of
a ph(λ) and adg (λ), which is the sum of ad (λ) and ag (λ),

anw(λ)= a ph(λ)+ adg (λ), (3)

adg (λ)= ad (λ)+ ag (λ). (4)

Chla was obtained by measuring pigments extracted with 90%
acetone using a Shimadzu UV2600 spectrophotometer [52,53].
Suspended particulate matter (SPM) was determined gravimet-
rically from samples collected on precombusted and preweighed
GF/F filters in the laboratory [54]. Suspended particulate inor-
ganic matter (SPIM) was derived gravimetrically by burning
organic matter from the filters after drying at 105◦C for 4–6 h.
The total backscattering coefficients [bb(λ)] were measured
with a HydroScat-6 Spectral Backscattering Sensor (HS6) at six
wavelengths, centered at 420, 442, 470, 510, 590, and 700 nm.

Additional details regarding the measurements and processing
methods for deriving the Rr s (λ), absorption coefficients, and
backscattering coefficients can be found in Refs. [29,55,56].

C. Sentinel 3A/OLCI Data

The OLCI on Sentinel-3A has 21 spectral bands (400–
1020 nm) with high signal-to-noise ratios and 300 m× 300 m
pixel sizes. The OLCI Level-1B full-resolution data
(OL_1_EFR, 300 m) over the studied lakes were downloaded
from the European Space Agency (ESA) Copernicus Open
Access Hub (https://scihub.copernicus.eu/dhus/#/home).
The vector version of the 6SV model (the second simulation
of the satellite signal in the solar spectrum correction scheme)
[57] was used to derive the Rr s (λ) from cloud-free Level-1B
OLCI images. The continental aerosol type and middle lati-
tude atmospheric profiles of the 6SV model were used, and the
aerosol optical thickness retrieved by the Aqua/Terra Moderate
Resolution Imaging Spectroradiometer (MODIS) over the
lakes on the same day were set as input parameters to the 6SV
model. Rr s (λ) derived using 6SV was compared with Rr s (λ)

derived from Case 2 Regional Coast Color processor (C2RCC)
[58] and polynomial-based algorithm applied to MERIS
(POLYMER) [59]. It indicated that 6SV performed better than
C2RCC and POLYMER in this region [29,60]. Algal blooms
(coverage area>= 10%) were masked using the floating algae
index (FAI) [61] and the algae pixel-growing algorithm (APA)
[62] due to the large errors associated with the atmospheric cor-
rection for these waters [63]. For comparison with in situ data
and algorithm development, Rr s -OLCI was derived from field-
measured Rr s (λ) values using the spectral response function
(SRF) of OLCI (https://earth.esa.int/web/sentinel/user-
guides/sentinel-3-olci),

Rr s -OLCI(i)=

∫ λ2
λ1

Rr s (λ)× SRF(λ, i)dλ∫ λ2
λ1

SRF(λ, i)dλ
, (5)

where i represents the i th band of OLCI, from 1 to 21. The
measured absorption coefficients were processed similarly for
comparison with those derived from the OLCI data.

3. METHODS

In this study, the in situ particulate absorption data are first cor-
rected by estimating a p(750) (Appendix A). An iterative IOP
inversion model (Section 3.A) is then designed to derive anw(λ),
bbp(λ), a ph(λ), and adg (λ) using the field Rr s (λ) as input, and
is validated using the corrected in situ absorption coefficients.
This model is applied to the OLCI data (Section 3.B) and com-
pared to two other IOP inversion models (Section 3.C) that are
also optimized using the in situ data.

A. Novel Iterative IOP Inversion
Algorithm—Development with In Situ Data

A novel iterative IOP inversion model for turbid and eutrophic
waters is developed using field-measured data (Fig. 2) and is
described as follows.

https://scihub.copernicus.eu/dhus/#/home
https://earth.esa.int/web/sentinel/user-guides/sentinel-3-olci
https://earth.esa.int/web/sentinel/user-guides/sentinel-3-olci
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Fig. 2. Flow chart of the proposed IOP algorithm for field-
measured data. Remote sensing reflectance [Rr s (λ)] is the input
parameter obtained from field measurements. u(λ)= bb(λ)/

(a(λ)+ bb(λ)). Details of QAA750-ap are described in Table 1.

1. Update of Part I ofQAA750 (QAA750-ap)

Part I of QAA750 (Table 3 in Ref. [29]) was built to derive
anw(λ) and bbp(λ) based on the zero absorption assumption for
a p(750); in this study, a p(750) computed using the method
in Appendix A was added to Part I of the QAA750 algorithm to
improve the estimation of anw(λ) and bbp(λ) (Table 1).

For the inversion model from remote sensing, we use two new
bio-optical relationships derived from our in situ data to esti-
mate Chla [root mean square error (RMSE)= 50.41 mg/m3,
unbiased absolute percentage difference (UAPD)= 44.38%,
R2
= 0.58] and SPM (RMSE= 43.54 g/m3, UAPD=

35.63%, R2
= 0.51) from Rr s (Fig. 3),

Chla= 22.68

[
Rr s (709)

Rr s (675)

]3.32

, (6)

SPM= 1417.60× Rr s (709)0.95. (7)

In QAA750-ap, the relationship between Rr s and
bb/(a + bb) is modeled by defining

u(λ)=
bb(λ)

a(λ)+ bb(λ)
, (8)

rr s (λ)=g 0u(λ)+ g 1u(λ)2, (9)

where, g 0 = 0.084 and g 1 = 0.17 [64]. rr s (λ) is the subsur-
face remote sensing reflectance and is derived from Rr s (λ),
according to Lee et al. [18],

rr s (λ)=
Rr s (λ)

0.52+ 1.7Rr s (λ)
. (10)

bb(λ) is the sum of backscattering coefficient of pure water
[bbw(λ)] [65] and bbp(λ), which is expressed as a power-law
function,

bbp(λ)= bbp(750)

(
750

λ

)Y

. (11)

However, with our field dataset, bbp(λ) derived from the mea-
sured anw(λ) and u(λ) does not follow a power-law function
well [Fig. 4(a)]. Hence, if the QAA750-ap-derived bbp(λ) was
used in estimating anw(λ) (step 8 of Table 1), there would be a
difference between the model-derived and measured anw(λ),
especially for wavelengths> 550 nm [Fig. 4(b)]. The differences
between the field anw(λ) and model-derived anw(λ) in Fig. 4(b)
may come from the assumptions of the QAA750-ap model
and/or the power function of bbp(λ). When decomposing
anw(λ) into adg (λ) and a ph(λ), if we subtract an analytical
model of adg (λ) from anw(λ) directly, the uncertainties associ-
ated with anw(λ) would lead to an overestimation of a ph(λ) in
the wavelengths from 550 to 750 nm (we find these values to be
up to twice too large).

2. IterativeApproach toDerive IOPs

To remove the residuals from the first guess of model-derived
anw(λ), an iterative approach was developed to estimate the
a ph(λ) and adg (λ), and then to derive new anw(λ) and
bbp(λ). When i = 1, anw(λ, i − 1) is the QAA750-ap-
derived anw(λ, I = 0). a ph(λ) at 675 nm of the i th iteration
[a ph675(i)] is derived from the absorption line height around
675 nm [LH(i)], calculated from anw(λ) values at 650, 675,
and 715 nm [67],

LH(i)= anw(675, i)−
715− 675

715− 650
anw(650, i)

−
675− 650

715− 650
anw(715, i). (12)

The relationship between a ph675(i) and LH(i) is fitted using
a power-law function (RMSE= 0.33 m−1, UAPD= 17.85%,
R2
= 0.94) as follows:

a ph675(i)=A0 × LH(i)A1 . (13)

The parameters [A0 = 1.53 (±0.02), A1 = 0.97 (±0.01)]
are determined using LH derived from measured anw(λ)

and measured a ph675 [Fig. 5(a)]. The relationship between
the field a ph675 and LH derived from QAA750-ap-derived
anw(λ, i = 0) is compared to that of LH derived from field
anw(λ) [Fig. 5(a)].
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Table 1. Steps of the QAA750-ap Algorithm
a

Step Property Expression Source

1 rr s (λ) rr s (λ)= Rr s (λ)/(0.52+ 1.7Rr s (λ)) literature-based [18]
2 u(λ) u(λ)= bb (λ)

a(λ)+bb (λ)

u(λ)= −g 0+[(g 0)
2
+4g 1rr s (λ)]

1/2

2g 1
g 0 = 0.084,

g 1 = 0.17

literature-based [64]

3 a(750) a(750)= aw(750)+ a p(750) –
4 a p(750) a p(750)= (1− f r )× ad

∗(750)× SPM
= (SPM− 0.37Chla)× ad

∗(750)
a∗p(750)= 0.014

Chla= 22.68[ Rr s (709)
Rr s (675) ]

3.32

SPM= 1417.6× Rr s (709)0.95

using local data and a∗d (750) from [40]

5 bbp(750) bbp(750)= u(750)×a(750)
1−u(750) − bbw(750) definition of u(λ)

6 Y Y= 3.99− 3.59 exp[−0.9 rr s (443)
rr s (560) ] optimized using Ecolight simulation data

7 bb(λ) bb(λ)= bbp(750)( 750
λ
)Y+bbw(λ) assumption regarding shape of bbp(λ)

8 anw(λ) anw(λ)=
(1−u(λ))bb (λ)

u(λ) − aw(λ) definition of u(λ)

a

Steps with gray backgrounds were improved based on Part I of QAA750 (Table 3 in Ref. [29]).

Fig. 3. (a) Relationship between Chla and Rr s (709)/Rr s (675).
(b) Relationship between SPM and Rr s (709).

Fig. 4. (a) Example of bbp(λ) derived from measured anw(λ) and
u(λ) (solid lines), and QAA750-ap derived bbp(λ) (dashed lines)
with different g 0 and g 1 values: u1 (g 0 = 0.084, g 1 = 0.17, [64]); u2

(g 0 = 0.089, g 1 = 0.125, [18]); u3 (g 0 = 0.0949, g 1 = 0.0794, [66]);
u4 (g 0 = 0.101, g 1 = 0.093, derived from Ecolight simulations). The
four pairs of g 0 and g 1 values are used to show that the IOP’s shape
issues are not a result of the choice of g 0 and g 1 values.

Based on previous studies [64,68], a ph(i) is parameterized
from a ph675(i) to describe the initial guess of a ph(λ),

a ph(λ, i)= a ph675(i)[B0(λ)+ ln(a ph675(i))× B1(λ)],

(14)

Fig. 5. (a) Comparisons between field-measured a ph 675 and LH
derived from field-measured anw(λ) and anw(λ, i = 0), respectively.
The black line is the equation fitted from field-measured anw(λ).
(b) Parameters (B0, B1) and R2 of the relationship between the
field-measured a ph(λ) and a ph 675 in Eq. (14).

where B0(λ) and B1(λ) [Fig. 5(b)] are derived from the field
a ph675 and field a ph(λ) at each wavelength using the least
squares regression.

The adg (λ, i) is obtained as the difference,

adg (λ, i)= anw(λ, i)− a ph(λ, i). (15)

It follows that uncertainties in anw(λ, i) and a ph(λ, i) are
transferred into adg (λ, i). By assuming that adg (λ, i) follows
an exponential function plus a constant, adg (λ, i) is fitted to a
new spectrum with three fitting parameters (C0, Sdg , and C1),
which were determined using a least squares regression with a
cost function as

χ(i)2 =
N∑

j=1

(adg (λ j , i)−C0 exp(−Sdg (λ j − 440))−C1)
2
,

(16)
where, C0 and C1 are limited to positive values, and Sdg is lim-
ited in value from 0.005 to 0.013 nm−1 (based on our dataset).
The wavelength range used (λ1 − λN) is 400–550 nm and
730–750 nm, respectively, to avoid the uncertainties induced
from the initial anw(λ). The fit to adg (λ, i) with the minimum
χ(i)2 is adg− f (λ, i).
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The residual,1(λ, i), is computed as

1(λ, i)=adg (λ, i)− adg− f (λ, i). (17)

If the average 1(400− 700, i) > 0.01 m−1 (the assumed
uncertainty in absorption), another iteration (i = i + 1) is
performed after removing1(λ, i) from anw(λ, i),

anw(λ, i + 1)= anw(λ, i)−1(λ, i). (18)

If the average 1(400− 700, i) <= 0.01 m−1, the new
a ph(λ, iend) [a ph−n(λ)] is derived from the new anw(λ, iend)

[anw−n(λ)] and fitted adg− f (λ, iend) in the final loop (i = iend),

a ph−n(λ)= anw−n(λ)− adg− f (λ, iend). (19)

Then, the bbp−n(λ) is recalculated,

bbp−n(λ)=
u(λ)× (anw−n(λ)+ aw(λ))

1− u(λ)
− bbw(λ). (20)

B. Application of the Proposed Algorithm to OLCI
Data

We design the algorithm using the in situ hyperspectral Rr s (λ)

ranging from 400 to 720 nm. For OLCI data, the model is
similar but contains several changes. Due to the lack of a suit-
able OLCI band near 650 nm [needed to compute the LH(i)
based on Eq. (12)], a ph675(i) for OLCI data is derived using
anw(λ) at 665 and 674 nm following the method in QAA750
{Eqs. (2)–(7) in Ref. [29]},

a ph(674)=
anw(674)− ε× anw(665)

(1− ε× S1)
, (21)

where S1 = 0.839 and ε= 0.882.
The parameters in the function for a ph675(i) and a ph(λ)

[Eq. (14)] are derived from the field-measured a ph(λ), which
is wavelength-averaged using the SRF of OLCI. In addition,
due to the large uncertainties in OLCI-derived Rr s at 400
and 412 nm, C0, Sdg , and C1 in Eq. (16) are derived by fitting
adg (λ, i) at wavelengths> 412 nm.

C. Other IOP Inversion Models Used in This Study

Two other IOP inversion algorithms, a nonlinear optimization
method and a tuned LS2 model [69], were compared with the
proposed algorithm in deriving anw(λ) and bbp(λ) using the in
situ data. The nonlinear optimization method (Appendix B.1)
was built based on [2,70] by decomposing the a ph(λ) into 12
Gaussian peaks. The LS2 model [69] was tuned by building a
new lookup table using radiative-transfer simulations (Ecolight
5 [71]) of inland lakes in this study region and by tuning the
empirical models for deriving downwelling diffuse attenua-
tion coefficient, K d (λ), and scattering coefficient, b(λ), to
our in situ data. The input parameters for the tuned LS2 model
(Appendix B.2) include Rr s (λ), SPIM, and the sun zenith angle.
Further details of the two models are described in Appendix B.

D. Analysis of Uncertainties

To evaluate the performance of the algorithms, the unbiased
RMSE in relative percentage (URMSE, %); the UAPD, %;

RMSE; and bias were calculated to describe the differences
between the field-measured data (Xi) and the model-derived
data (Yi). These parameters are defined as follows with N as the
number of samples:

URMSE=

√√√√ 1

N

N∑
i=1

(
Yi − Xi

0.5(Yi + Xi)

)2

× 100%, (22)

UAPD=
1

N

N∑
i=1

|Yi − Xi|

0.5(Yi + Xi)
× 100%, (23)

RMSE=

√√√√ 1

N

N∑
i=1

(Yi − Xi)
2, (24)

Bias=
1

N

N∑
i=1

(Yi − Xi). (25)

4. RESULTS

A. Absorption Properties of the Lakes in the MLYHR
Region

The median anw(λ) values do not have obvious absorption
peaks in the blue part of the spectrum due to the dominance of
adg (λ) [Figs. 6(a)–6(c)]. The median adg (λ) is approximately 3
to 4 times larger than the median a ph(λ) at wavelengths shorter
than 550 nm. For wavelengths longer than 550 nm, the contri-
bution of a ph(λ) to anw(λ) increases at the expense of adg (λ).
The absorption peak of the a ph(λ) at approximately 675 nm
[Fig. 6(d)] is a key feature to distinguish phytoplankton from

Fig. 6. (a) Statistics (Q1–median–Q3) of anw(λ) and published
aw(λ) [51]. (b) Statistics (Q1–median–Q3) of a ph(λ) and adg (λ).
(c) Q1–median–Q3 values of the contributions of a ph(λ) and adg (λ)

to anw(λ). (d) Median values of anw(λ), a ph(λ), and adg (λ) from
550 nm to 750 nm, and the description of the absorption line height
around 675 nm [LH, Eq. (12)]. “Q1” represents the middle value
between the minimum and the median value of the dataset; “Q3”
represents the middle value between the median and the maximum
value of the dataset.
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NAP in turbid inland waters. Note that aw(λ) plays an increas-
ing role in the NIR range and reaches 2.37 m−1 at 750 nm [51]
[Fig. 6(a)].

B. Algorithm Performance with In Situ Data

1. Performance in Estimating anw(λ) and bbp(λ)

For the calibration dataset, QAA750-ap and the proposed
model exhibit better performance than the nonlinear opti-
mization method and tuned LS2 model in deriving anw(λ)

(N= 249), and the proposed model performs better than
QAA750-ap in the red wavelengths (Figs. 7, 8). The nonlinear
optimization method and the tuned LS2 model tend to pro-
vide large relative errors and have significant underestimation
of anw(λ). Therefore, the anw(λ) derived from QAA750-ap
is a better choice for the initial value in the proposed model.
anw(λ) derived from the novel algorithm has a mean URMSE
of 39.45% and UAPD of 34.86% from 400 to 720 nm. The
mean RMSE of anw(λ) is 2.06 m−1 from 400 to 500 nm and
decreases to 0.77 m−1 from 500 to 720 nm. anw(λ) derived
from the new model shows slightly better performance for
wavelengths > 600 nm by removing some of the residuals in
the QAA750-ap-derived anw(λ). The four models exhibit

Fig. 7. Uncertainties of the four models (nonlinear optimization
method, tuned LS2 model, QAA750-ap, and the proposed model) in
deriving anw(λ) (N= 249, the left panel) and bbp(λ) (N= 112, the
right panel) compared with the in situ calibration data. The markers
in the left panel represent the OLCI bands. Six bands (420, 442, 470,
510, 590, and 700 nm) of in situ bbp(λ) data were used. Note that
the number of in situ SPIM values, which is needed in the tuned LS2
model, is 249, and the number of in situ bbp(λ) values is 112.

Fig. 8. Comparisons between field-measured data and the models
(the nonlinear optimization method, tuned LS2 model, QAA750-ap,
and the proposed new model) deriving anw(λ) at 443, 560, 620, and
674 nm and bbp(λ) at 442, 470, 510, and 590 nm [four bands of the in
situ bbp(λ)].

similar performance in estimating bbp(λ) (N= 112) of the
first three bands (420, 442, and 470 nm), but overestimate
bbp(λ) compared to the in situ bbp(λ) at the longer wave-
lengths [Figs. 8(e)–8(h)]. Note that the proposed model also has
improved performance in deriving bbp(590) and bbp(700) than
the updated QAA750-ap (but it is worse than the tuned LS2
model and optimization method).

2. Performance in Estimating a ph(λ) and adg (λ)

Performance of the proposed algorithm in deriving anw(λ),
a ph(λ), and adg (λ) from the calibration data (N= 285) and
validation data (N= 57) is presented in Fig. 9. Compared with
anw(λ), the uncertainties in the a ph(λ) and adg (λ) are higher
with an underestimation of a ph(λ) and an overestimation of
adg (λ), especially for the wavelengths from 400 to 500 nm.
The algorithm performs better in deriving a ph(λ) at wave-
lengths > 500 nm with a mean UAPD of 55.22% and RMSE
of 0.44 m−1, than for the wavelengths ranging from 400 to
500 nm with a mean UAPD of 61.85% and RMSE of 1.35 m−1.
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Fig. 9. Performance of the proposed model in deriving anw(λ),
a ph(λ), and adg (λ) using in situ calibration data (N= 285) and
validation data (N= 57). The markers represent the OLCI bands.

Fig. 10. Comparisons between measured and model-derived
(a) anw(λ), (b) a ph(λ), and (c) adg (λ) at 443, 560, 620, and 674 nm
(N= 57). Note that the error bars of the measured anw(λ) and the
measured adg (λ) are based on the uncertainties in the estimated
a p(750).

In addition, the performance of the algorithm for the in situ
validation data shows similar results with those for the calibra-
tion data. For instance, a ph(λ) has a mean RMSE of 0.71 m−1

Table 2. Uncertainties [UAPD (%), RMSE (m−1), and
R2] of anw(λ), aph(λ), and adg(λ) for Validation Data
(N= 57) at OLCI Bands

UAPD (%) RMSE (m−1) R2

Band (nm) anw aph adg anw aph adg anw aph adg

400 31.00 81.99 41.35 3.11 3.08 3.10 0.62 0.42 0.35
412 31.39 75.92 44.25 2.88 2.83 2.96 0.58 0.42 0.31
443 33.80 72.51 51.20 2.42 2.21 2.60 0.49 0.42 0.20
490 38.19 78.87 48.93 1.83 1.49 1.68 0.40 0.42 0.20
510 39.78 76.86 47.61 1.62 1.23 1.27 0.37 0.43 0.24
560 44.46 65.89 50.04 1.15 0.64 0.76 0.27 0.45 0.27
620 36.28 44.84 46.07 0.90 0.74 0.49 0.40 0.50 0.31
665 28.31 42.16 41.66 0.78 0.77 0.38 0.48 0.50 0.37
673 27.06 45.26 40.31 0.86 0.90 0.37 0.49 0.51 0.37
681 26.91 45.03 37.41 0.84 0.88 0.34 0.49 0.50 0.42
709 34.74 54.47 34.63 0.30 0.15 0.29 0.50 0.47 0.45

and a mean bias of−0.33 m−1 from 500 to 720 nm, compared
to a mean RMSE of 2.10 m−1 and a mean bias of −1.19 m−1

from 400 to 500 nm. Comparisons between the measured and
model-derived anw(λ), a ph(λ), and adg (λ) at 443, 560, 620,
and 674 nm, respectively, show that anw(λ) performs well, but
a ph(443) is underestimated (Fig. 10, Table 2). Overall, the
results indicate that the proposed algorithm performs better
in the longer wavelengths ranging from 500 to 720 nm, and
is an improvement on the other algorithms presented for the
inversion of absorption coefficients.

C. Algorithm Performance with the OLCI Satellite
Data

1. ValidationUsingMatchupPairs

The proposed model is applied to the OLCI satellite data and
validated using matchup pairs of field- and OLCI-derived
anw(λ), a ph(λ), and adg (λ) (N= 57) (Fig. 11). anw(λ) is
overestimated over the 11 OLCI bands from 400 to 709 nm
with a mean UAPD= 48.67%, RMSE= 1.65 m−1, and
bias= 0.99 m−1. a ph(λ) shows slightly better performance
(URMSE= 43.90%) than anw(λ) (URMSE= 52.32%) and
adg (λ) (URMSE= 61.79%). The mean RMSEs of a ph(λ) for
the first four bands (RMSE= 0.97 m−1) are larger than those
of the bands from of 500 to 720 nm (RMSE= 0.42 m−1). This
algorithm results in improved accuracy over the first 11 bands of
the OLCI satellite data compared to our previous model [29].

2. Spatial Distribution of AbsorptionCoefficients

The proposed algorithm is applied to the OLCI-derived Rr s (λ)

to map the spatial pattern of absorption coefficients of Lake
Taihu on December 08, 2016 (Fig. 12). Three sites (S1–S3) rep-
resenting different optical properties are selected to illustrate the
results of the model. Note that the high value of the Rr s (400)
indicates the failure of atmospheric corrections in this band,
and the floating scum (green areas in the quick scene of Rr s ) is
masked due to the failure of atmospheric correction. Compared
with the Rr s (λ) of S1, S2 has higher values of Rr s (λ) but is
featureless at approximately 675 nm, which is in accordance
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Fig. 11. Validation of the proposed algorithm for estimating (a),
(b) anw(λ), (c), (d) a ph(λ), and (e), (f ) adg (λ) using matchup pairs
between field-measured and OLCI-derived data. Comparisons of mea-
sured and model-derived (a) anw(λ), (c) a ph(λ), and (e) adg (λ) at 443,
560, 620, and 674 nm, respectively. Statistical results of (b) anw(λ),
(d) a ph(λ), and (f ) adg (λ) for 11 bands of OLCI data. Note that the
error bars of measured anw(λ) and measured adg (λ) are based on the
uncertainties in the estimated a p(750).

with the lower value of a ph(λ) in S2. S3 has higher values of
Rr s (λ) than S1 with similar characteristics around 675 nm,
indicating a higher content of inorganic suspended particles.
This result is consistent with the higher adg (λ) of S3 than that
of S1 [Fig. 12(d)]. The areas around S1 have high values at
a ph(510) and a ph(674), while adg (λ) in this area does not show
high values and large spatial variations; both a ph and adg are
observed with high values in the areas around S3. Overall, the
high anw in the three bays in the northern part of Lake Taihu is
caused by the high a ph , and the southern part of Lake Taihu is
mainly dominated by a high adg , except for some parts where
algal blooms are present.

5. DISCUSSION

A. Uncertainties of ap(λ) Measured with T-Mode

The NIR null point correction of particulate absorption was
used to correct for scattering offsets in the T-mode. However,
the NIR null point correction removes the NAP absorption
in the NIR band, and leads to the underestimation of a p(λ)

across the spectrum in coastal or mineral-rich waters [40,72]. A
linear function (slope 0.988, intercept −0.0004) was designed
to correct T-mode absorption measurements and to make

them consistent with NAP absorptions measured by a point-
source integrating cavity absorption meter (PSICAM) from
362–726 nm [72]. We attempted to estimate a p(750) from
the exponential function of ad (λ) and the calculating of the
spectral slope of ad (λ) (Sd ); however, this goal was not achieved
because the null assumption for NIR also changed the values of
Sd . The present study provides a method to estimate a p(750)
from Chla and SPM, or from Rr s (λ), based on the proportion
of phytoplankton and NAP in SPM. In this way, the historical
data measured using the T-mode can be corrected by adding
estimated a p(750) as a baseline. Since QAA750 was built and
validated using field-measured a p(λ) based on the null NIR
assumption, we updated it by considering a p(750) in this study.

After corrections, the mean a∗p(443) (mass-specific
absorption coefficients of particulates, = a p(443)/SPM)
and a∗d (443) (mass-specific absorption coefficients of NAP,
= ad (443)/SPM) of the measured data were 0.085± 0.052
and 0.050± 0.027 m2 g−1. It has been reported that a p(λ)

at the blue wavelengths varied from 0.05 m2 g−1 for organic-
dominated soil dust to 0.1− 0.5 m2 g−1 for mineral-dominated
samples [73]. The mean a∗d (443) in this study is higher than
the mean a∗d (443) (0.031 m2 g−1) observed in the coastal
waters around Europe, whose ad (λ) was also obtained by sub-
tracting the measured values of ad (750) [74]. Moreover, this
result indicates that the null NIR assumption is significant in
the red and NIR bands; for instance, the mean a∗d (650) val-
ues of the uncorrected and corrected data are 0.004± 0.002
and 0.014± 0.005 m2 g−1, respectively. The mean a∗d (650)
(0.014± 0.005 m2 g−1) and a∗d (750) (0.010± 0.004 m2 g−1)
of the corrected data were comparable with those of the results
in the German Bight (0.013± 0.003, 0.009± 0.003 m2g−1)
and were lower than those of Elbe River (0.018± 0.001,
0.014± 0.001 m2 g−1) as shown in the study of Röttgers
et al. [40]. Note that the mean value of a∗d (750) from the Elbe
River is used in this study; in fact, a∗d (750) is related to particle
compositions and particle size distributions [73,74]. A trend
towards lower mass-specific absorption coefficients of partic-
ulates in clearer waters was observed [40]. Low values of a∗d (λ)
were reported for noncolored minerals and clear waters, and
high values were related to colored minerals and small particles
[40,73,74].

The advantages of the integrating sphere approach (IS-mode)
have been demonstrated with high accuracy and simple mea-
surement protocol [75,76]. It reported that some signal can still
be detected in the IS-mode when the phytoplankton content is
high [40]. Here, we assume that the phytoplankton absorption
at 750 nm is negligible after masking the floating scum. We
recommend that the IS-mode should be used to measure the
absorption coefficients in future studies, and that additional
studies take place to validate this method in estimating a p(750)
for a p(λ) that were measured using the T-mode.

B. Performance of the Proposed Algorithm

1. ComparisonwithOtherModels

anw(λ) derived from the nonlinear optimization method, tuned
LS2 model, QAA750-ap, and the proposed model had large
uncertainties in the short wavelengths, which induced uncer-
tainties into the following steps. A previous study [16] showed
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Fig. 12. Example of OLCI-derived absorption coefficients for Lake Taihu on December 08, 2016: (a) RGB image (R, Band 10; G, Band 6; and B,
Band 3); (b)–(e) OLCI-derived Rr s (λ), anw(λ), adg (λ), a ph(λ) from three sites (S1–S3), representing different bio-optical properties. Spatial distri-
butions of (f )–(h) anw(λ), (i-k) a ph(λ), and (i)–(n) adg (λ) at 443, 510, and 674 nm, respectively.

similar large errors with an average RMSE of 1.77 m−1 when
retrieving a(λ) for wavelengths from 400 to 500 nm in CDOM-
dominated waters. However, it was reported that anw(λ) was
not well estimated for the long wavelengths (>550 nm) in open
ocean waters due to the lower contribution of anw(λ) to a(λ)
than that of aw(λ) at these wavelengths [69].

The LS2 model performed well in a broad range of oceanic
and coastal marine waters [69]; however, the tuned LS2 model
did not perform well in this study, even though a new lookup
table was built using 4212 Ecolight simulations. One possible
reason is that one set of specific inherent optical properties
(SIOPs) was used in our simulation data; in fact, the SIOPs
varied greatly in the optically complex inland waters. Therefore,
a robust lookup table built using simulation data with a large
range of SIOPs and acceptable optical closure is likely necessary
when inverting IOPs using this method in optically turbid

waters. In addition, broad limits of variables are needed in
the nonlinear optimization model due to the large range and
variability of bio-optical properties in inland waters.

In the development of IOP inversion models, it is rela-
tively easy to derive the total absorption and backscattering
coefficients and the absorption coefficients of water compo-
nents that dominate the water [22]. Relative RMSE values of
a ph in the visible range between 25% and 31% were obtained in
phytoplankton-dominated waters [15,77], but the uncertainties
in estimating a ph would be larger in NAP- and CDOM-
dominated waters [16]. QAA has also been reparameterized in
CDOM-dominated waters using a normalized phytoplankton
absorption coefficient to obtain improved performance for a ph

[16]. However, the scatter plots of a ph at specific wavelengths
did not show satisfactory results in the study of Ogashawara
et al. [16], which also demonstrated the difficulty of retrieving
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a ph from waters dominated by CDOM and NAP. On the other
hand, phytoplankton was often the most important factor caus-
ing uncertainties into the CDOM remote sensing inversion in
CDOM-dominated inland waters [78].

2. Performance inRetrieving a ph(λ) in TurbidWaters

When partitioning a(λ) into its components, most algorithms
assume an a ph(λ) spectral shape or normalized a ph(λ) spectral
features from Chla [23], Rr s [18], and the contribution of
phytoplankton groups [79] based on bio-optical parameters
from specific regions or in situ measurements taken with spe-
cific instruments. A challenge for estimating a ph(λ) in turbid
waters is to obtain a reasonable spectral shape for a ph(λ). For the
nonlinear optimization method and QAA750, a ph(λ) showed
obvious overestimation in the blue and green bands, which
did not present reasonable a ph(λ) values (data not shown),
especially in the blue range, due to the large contribution of
adg (λ). In our previous study, a ph(443) was derived from
OLCI-derived a ph(674) according to their relationship in
QAA750 [29]. If a ph(674) and the spectral shape of a ph(λ)

derived from the measured data were used to model a ph(λ), the
normalization of the derived a ph(λ)would be the same.

In this study, the relationship between the measured a ph675
and a ph(λ) was used as a first guess to parameterize the initial
a ph(λ) in the iterative model to obtain a reasonable a ph(λ)

spectrum. Moreover, the use of the spectral shape of a ph(λ)

computed from a ph675 can also be a source of error in the esti-
mation of a ph(λ) [16]. We attempted to classify the parameters
in Eq. (14) according to the value of a ph675, whereas there was
little difference from using one set of parameters in Eq. (14).
The parameterization of a ph(λ) or normalized a ph(λ) should
be improved in inland-water remote sensing because of the
variations in phytoplankton groups and compositions.

As adg (λ) had a high contribution to anw(λ) in the short
wavelengths, a small relative error in anw(λ) and adg (λ) would
introduce large variations in a ph(λ) [mean a ph(443)/anw(443)
is about 20%]. This phenomenon is similar to studies in
CDOM-dominated waters: the spectral variation due to errors
of a ph(λ) can be related to the residual interference from
CDOM in the short wavelengths, and errors of a ph(λ) were
lower at longer wavelengths [16]. Thus, we suggest that longer
wavelengths (>500 nm) should be used in turbid waters to
effectively estimate a ph(λ).

3. IterativeMethod canRemovePart of theResiduals

Performance of the proposed model on calibration data was
evaluated using measured anw(λ) as input parameters. The
result indicates that the accuracy of adg (λ) improved with a
mean URMSE 24.7%, UAPD 18.3%, and RMSE 0.68 m−1.
a ph(λ) derived from the measured anw(λ) shows slightly better
performance with a mean URMSE 47.4%, UAPD 46.9%,
and RMSE 0.75 m−1. Generally, this obvious improvement
for adg (λ) indicates that model-derived anw(λ) induces larger
uncertainties to adg (λ) than to a ph(λ).

The iterative method can remove part of the residuals caused
by the gap between the field data and the Rr s (λ) model in the
red range; however, the uncertainties from the model-derived

Fig. 13. Example to present the model-derived (a), (b) anw(λ),
(c), (d) a ph(λ), and (e), (f ) adg (λ): the left panel shows the results
of the proposed model, and the right panel shows the results of the
proposed model with the field-measured anw(λ) as input. The green
lines represent the results with i = 1.

anw(λ) in the short wavelengths are not removed (Fig. 13). That
is, if the model-derived anw(λ) has large errors in the blue and
green range, this iterative model cannot perform better in deriv-
ing a ph(λ) and adg (λ). For example, when the input anw(λ)

had a difference from field-measured anw(λ), the model-derived
anw(λ) still had uncertainties for the 400 to 600 nm range,
but the residuals in the red wavelengths decreased [Fig. 13(a)].
Compared with the case of field-measured anw(λ) as input
[Fig. 13(d)], if we do not use the iterative method to remove
the residuals, the a ph(λ) [a ph(i = 1) in Fig. 13(c)] would have
obvious overestimation for wavelengths>550 nm.

C. Limitations of the Proposed Model

Based on the similarity in the spectral shapes of ad (λ) and ag (λ),
the absorption coefficients of NAP and CDOM were merged
into adg (λ). Many approaches for partitioning a(λ) into a ph(λ)

and adg (λ) assumed an exponential shape for adg [18,22,23]. It
has been stated that adg (λ) has limitations when linking IOPs
to biogeochemical parameters due to the different origins of
NAP and CDOM [22]. However, to derive the a ph(λ) more
accurately, a two-component partitioning [a ph(λ) and adg (λ)]
model is used in this study. Note that there are also methods
designed to separate adg (λ) into ad (λ) and ag (λ) [80,81],
which can be evaluated and used to separate adg (λ) if necessary.

The proposed algorithm was also applied to the Rr s of the
OLCI satellite images. Previous studies evaluated the perform-
ance of the atmospheric-corrected Rr s for the OLCI images over
the lakes in the study region [29,60]. The weak performance
of the atmospheric correction also adds uncertainties in the
blue range. In addition, the method of computing a ph675 in
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QAA750 is used in this study due to the lack of a band around
650 nm in the OLCI data, indicating the difficulty of using this
model with satellite data that do not have enough bands in the
red and NIR wavelengths. Recently, a semianalytical model was
built to derive the absorption coefficients of the water compo-
nents from Landsat 8 reflectance in coastal waters by calculating
a virtual Rr s (412) [82]. Unfortunately, the large uncertainties
associated with the atmospheric correction in the blue bands in
optically complex waters [83] make it much more difficult to
apply this algorithm to satellite data with high spatial resolution
but with fewer spectral bands [e.g., Landsat 8\Operational
Land Imager (OLI)].

6. CONCLUSION

For the particulate absorption data measured with the T-mode,
a p(750) was estimated from Chla and SPM to correct the
uncertainty associated with the NIR null correction. Based
on the bio-optical properties of the lakes in the MLYHR basin
region, a novel iterative inversion algorithm for estimating
IOPs from Rr s (λ) was built for turbid and eutrophic lakes.
In the proposed model, the initial anw(λ) is first derived from
QAA750-ap, which is improved from QAA750 by estimating
the a p(750) from the Rr s (λ). anw(λ) is then decomposed into
the a ph(λ) and adg (λ) after removing some of the residuals
of the input anw(λ) values in the red range. The proposed
algorithm performed well in estimating a ph(λ) and adg (λ),
especially for wavelengths >500 nm, and was validated using
matchup pairs of field-measured and OLCI-derived absorp-
tion coefficients. The spatial distribution of the absorption
coefficients of Lake Taihu is mapped using Sentinel-3A/OLCI
satellite data as an example, and displays reasonable spatial
distributions. Overall, the proposed model provides better
estimation of phytoplankton absorption in turbid waters than
any other existing approaches we have applied. Users who are
interested in applying this model to their region should first
optimize the model based on in situ data in a manner similar to
what was used in our approach.

APPENDIX A: CORRECTION OF THE IN SITU
PARTICULATE ABSORPTION DATA

The largest uncertainty in a p(λ) measured using the T-mode
approach arises from an unknown level of absorption in the
NIR, and is caused by the fact that NAP absorption is nonzero
for those wavelengths [39]. To estimate a p(750), we use
the following approach: f r is defined as the ratio of sus-
pended particulate matter from phytoplankton (SPMph ) to
the total suspended particulate matter of NAP (SPMd ) and
phytoplankton, which equals to SPM,

f r =
SPMph

SPMd + SPMph
=

SPMph

SPM
. (A1)

a p(750) is derived from f r , the mass-specific absorption coeffi-
cient of phytoplankton and NAP at 750 nm, and SPM,

a p(750)= f r × a∗ph(750)× SPM

+ (1− f r )× a∗d (750)× SPM
= (1− f r )× a∗d (750)× SPM, (A2)

Fig. 14. Comparisons between measured Chla and SPM.
Relationship between SPMph and Chla (solid line) was derived
using data with a ph(443)/a p(443)> 80% (red circles).

where a∗ph(750) is the mass-specific absorption coefficient of
phytoplankton at 750 nm, which is assumed to be zero, and
a∗d (750) is the mass-specific absorption coefficient of NAP at
750 nm. a∗ph(750) is assumed to be zero, as it is usually below the
detection limit or is lower than the obtained offset error caused
by scattering [40]. We assume that a∗d (750)= 0.014 m2 g−1,
based on the mean value in the Elbe River measured by Röttgers
et al. [40] using the IS-mode.

SPM is assumed to be dominated by phytoplankton in sam-
ples with high contributions of phytoplankton absorption to
particulate absorption at 443 nm [a ph(443)/a p(443)]. Indeed,
we observe that SPM is strongly related to Chla in waters with
a ph(443)/a p(443) > 80% (red circles in Fig. 14). In this
case, SPM would be equal to SPMph if SPMd was negligible.
We therefore estimate SPMph (g/m3) from Chla (mg/m3)
using the following relationship (RMSE= 37.14 g/m3,
UAPD= 35.91%, R2

= 0.94, red line in Fig. 14), derived from
our data (Fig. 14):

SPMph=0.37Chla. (A3)

f r is then derived from Chla and SPM,

f r = 0.37
Chla

SPM
. (A4)

In our dataset, there are 20 out of a total of 342 samples with
f r > 1; for these 20 samples, we set f r = 1 ( f r > 1 is not
physically realistic).

a p(750) can then be calculated from Chla and SPM,

a p(750)= 0.014×

(
1− 0.37

Chla

SPM

)
× SPM

= 0.014× (SPM− 0.37Chla). (A5)

From Eq. (A5), a p(750) is derived from Chla and SPM, and
is then used to correct the T-mode-measured ad−T(λ) and
a p−T(λ) as a baseline (all the descriptions of relevant in situ data
from hereon include this correction),

ad (λ)= ad−T(λ)+ a p(750), (A6)

a p(λ)= a p−T(λ)+ a p(750). (A7)
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APPENDIX B: TWO IOP INVERSION MODELS

1. Nonlinear Optimization Method

The nonlinear optimization method, a simultaneous partition-
ing method, is built based on [2] in estimating pigment concen-
tration. This method aims to find the best fit while allowing for
variations of 40 parameters by minimizing the cost function,

χ2
=

351∑
i=1

(
u f (λi )− um(λi )

ustd(λi )

)2

, (B1)

where the wavelengthλi ranged from 400 to 750 nm, and u f (λ)

is derived from Rr s ,

u f (λ)=
−g 0 + [(g 0)

2
+ 4g 1rr s (λ)]

1/2

2g 1
, (B2)

with g 0 = 0.084, g 1 = 0.17 [64], and

rr s (λ)= Rr s (λ)/(0.52+ 1.7Rr s (λ)). (B3)

ustd(λ) is the standard derivation of u f (λ) ( f stands for field)
based on the variability of rr s (λ) averaged for each individual
inverted spectrum and serves as a weight for the cost function
(so noisy wavelengths have less weight than those that are less
noisy). um(λ) (m stands for modeled) is the function of absorp-
tion, and backscattering coefficients of the modeled water
constitutes

um(λ)=
bb(λ)

a(λ)+ bb(λ)

=
bbp(λ)+ bbw(λ)

adg (λ)+ a ph(λ)+ aw(λ)+ bbp(λ)+ bbw(λ)
,

(B4)

where aw(λ) and bbw(λ) are the known absorption and
backscattering coefficients of pure water, respectively.

bbp(λ) and adg (λ) are modeled as follows:

bbp(λ)= bbp(560)

(
560

λ

)Y

, (B5)

adg (λ)= adg (440) exp(−Sdg (λ− 440)). (B6)

The Gaussian peak heights [agaus(λ)] are used to describe a ph(λ)

in the Gaussian decomposition approach [84,85] as follows:

a ph(λ)=

12∑
i=1

agaus(λi ) exp

(
−0.5

(
λ− λi

σi

)2
)
, (B7)

where λi represents the center wavelength of each Gaussian
peak, and σi represents the width of each Gaussian peak. The
first guess and bound values of ag aus (λi ),λi , and σi are based on
a derivative analysis of the field a ph(λ) and the previous study.
The initial σi is set as 15 nm, and λi and σi were allowed to
change by±5 nm.

a(λ)=
K d (λ)

a1(η, µw)Rr s (λ)
3
+ a2(η, µw)Rr s (λ)

2
+ a3(η, µw)Rr s (λ)+ a4(η, µw)

, (B12)

Fig. 15. (a) Parameters (m1, m2) and R2 of the relationship between
K d (λ) and K d 490 in Eq. (B9) based on the Ecolight simulation
dataset. (b) Parameters (n1, n2) and R2 of the relationship between
b p(λ) and b p 560 in Eq. (B11) based on the Ecolight simulation
dataset.

2. Tuned LS2 Model

The tuned LS2 model is built based on the LS2 inversion model
[69], for which Rr s (λ), SPIM, and the sun zenith angle are the
input parameters. Several steps of LS2 are tuned using the field-
measured data in this study, and the Ecolight simulation data in
the study of [86], which used the field data in Lake Chaohu. The
differences from the LS2 model are as follows:

(1) Step 2 of Table 1 in Ref. [69]:
Downwelling diffuse attenuation coefficient at 490 nm,
K d 490, is derived using the model built for Lake
Taihu [63],

K d 490= 11.89
Rr s (681)

Rr s (560)
+ 6.81

Rr s (750)

Rr s (560)
− 6.17.

(B8)

Downwelling diffuse attenuation coefficient, K d (λ), is
then derived from K d 490 with two parameters [m1(λ),
m2(λ), Fig. 15] based on the Ecolight simulation dataset,

K d (λ)=m1(λ)× K d 490+m2(λ). (B9)

(2) Step 2 of Table 1 in Ref. [69]:
Scattering coefficient of particulate at 560 nm, b p 560, is
related to SPIM using the Ecolight Simulation data,

b p 560= 12.37 exp(0.023× SPIM). (B10)

Scattering coefficient, b(λ), is then derived from b p 560
with two parameters [n1(λ), n2(λ), Fig. 15] based on the
Ecolight simulation dataset and bbw(λ) [65],

b(λ)= n1(λ)× b p 560+ n2(λ)+ 2× bbw(λ). (B11)

The lookup table of parameters (a1 − a4, bb1 − bb3, see
Data File 1) in Eqs. (B12), (B12) was rebuilt using the
Ecolight simulation data based on the bio-optical proper-
ties in Lake Chaohu, China [86].

https://doi.org/10.6084/m9.figshare.9625976
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bb(λ)= K d (λ)× [bb 1(η, µw)Rr s (λ)
3

+ bb 2(η, µw)Rr s (λ)
2
+ bb 3(η, µw)Rr s (λ)].

(B13)

Funding. National Natural Science Foundation of
China (41431176, 41701416, 41771366); Natural Science
Foundation of Jiangsu Province (BK20181509); NIGLAS
project (NIGLAS2017GH03).

Acknowledgment. We thank the colleagues from
NIGLAS (Dian Wang, Zhigang Cao, Junfeng Xiong, Minqi
Hu, Tianci Qi, Jinge Ma, Qiao Chu, and Pengfei Zhan) for their
help with field measurements and data collections. We thank
Alison Chase, Hubert Loisel, and Rüdiger Röttgers for their
help and suggestions in model development.

REFERENCES
1. A. Bricaud, C. Mejia, D. Blondeau-Patissier, H. Claustre, M. Crepon,

and S. Thiria, “Retrieval of pigment concentrations and size structure
of algal populations from their absorption spectra using multilayered
perceptrons,” Appl. Opt. 46, 1251–1260 (2007).
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