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INTRODUCTION

Lake Bonney, Antarctica, is a permanently ice-
covered lake in the Taylor Valley of East Antarctica
(77° S, 168° W). It has been thoroughly characterized in
terms of its biology and physical characteristics (Priscu
& Spigel 1998) and is included in an ongoing Long-
Term Ecological Research (LTER) program in the
McMurdo Dry Valleys. Lake Bonney has 2 lobes, each
about 40 m deep, separated by a narrow passage with
a sill depth of 12 to 13 m. Thus, the surface waters of
the 2 lobes are able to exchange, and the circulation
has been described as a set of linked gyres (Priscu &
Spigel 1998). Water enters the system at the foot of the
Taylor Glacier in the West Lobe and exits at the east

end of the East Lobe or is lost through sublimation of
the ice surface. The chemocline depth in both lobes is
deeper than the sill depth, so there is no communica-
tion of the deep waters between the 2 lobes. The water
below chemocline depth in both lobes is suboxic to
anoxic, and early reports documented high concentra-
tions of bioactive and other trace metals in the
hypolimnion (Boswell et al. 1967a,b, Weand et al.
1976). The most peculiar feature of the lake is the
chemistry in the deep water, which is substantially dif-
ferent between the 2 lobes, both in total salt content
and in concentration and distribution of several inor-
ganic nitrogen species (Priscu 1995, Lyons et al. 2000).

The recent geochemical history of the lake at least
partially explains the high salt and metal concentra-
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tions. There is evidence that the geologic history of the
East (ELB) and West (WLB) Lobes of Lake Bonney
differ significantly (Lyons et al. 1998). Oxygen and
deuterium isotopic measurements in lake waters of the
Dry Valleys indicate a climate shift in this region from
‘warm-wet’ to ‘cold-dry’ conditions ~3000 yr ago. As a
consequence, the East and West Lobes of Lake Bonney
became hydrologically separated at the sill as the
‘cold-dry’ conditions increased the net evaporation.
While freshwater inflows from Taylor Glacier appar-
ently sufficed to maintain ice-cover on the West Lobe
(B. Lyons pers. comm.), sublimation loss quickly trans-
formed the East Lobe into an exposed, hypersaline
lake. These conditions persisted for more than a
millennium until climatic conditions became warmer
~1000 yr ago. The increased freshwater inflows from
the Taylor Glacier then raised the West Lobe level until
freshwater flow over the sill capped the hypersaline
East Lobe. Thus, the deep-water chemical distributions
in the East Lobe represent the partial dilution of the
old deep brine layer into the overlying fresh layer.
Although sulfate is a major ion in both lobes, and oxy-
gen is greatly depleted in the hypolimnion of both
lobes, detection of hydrogen sulfide has never been
reported for either lobe.

In the West Lobe of Lake Bonney, the chemocline oc-
curs at about 15 to 17 m, and oxygen is depleted below
that depth. Ammonium accumulates to a maximum of
300 µM in the deep water, and nitrate and nitrite both
show small maxima (25 and <1 µM, respectively) in the
region of the chemocline. Nitrous oxide is present at
relatively low levels, again with a small maximum
(about 1 µM) near the chemocline (Priscu et al. 1996,
Ward & Priscu 1997, Voytek et al. 1999). In the East
Lobe, oxygen is depleted below 18 to 20 m, and ammo-
nium accumulates to a maximum of about 150 µM in
the deep water. In contrast to the West Lobe, however,
nitrate and nitrite both accumulate in the deep water,
reaching maximum total concentrations of nearly 200
and 40 µM, respectively. Nitrous oxide shows a record-
breaking maximum near the chemocline of about
40 µM (Priscu et al. 1996). Clearly, the nitrogen cycle of
the East Lobe is unusual for a stratified aquatic system;
suboxic conditions in both lobes would be expected to
result in denitrification and subsequent depletion of
nitrogen oxides. The different nitrogen distributions
have been interpreted to infer that denitrification
occurs in the West Lobe but not in the East. Priscu
(1997) has demonstrated that denitrification can be
detected in the West Lobe but not in the East Lobe.

The McMurdo LTER project (see huey.colorado.
edu/LTER) has reported bacterial abundance and
production rates in depth profiles from central stations
in both lobes of Lake Bonney for many years. The long-
running time series of bacterial production measure-

ments shows interannual variability in bacterial para-
meters; however, a seasonal cycle generally exhibits
increased abundances and productivity in November
and December (Takacs & Priscu 1998). In the West
Lobe, the bacterial abundance maximum (15 to 16 m)
usually coincides in depth with the productivity maxi-
mum, but in the East Lobe, a strong abundance maxi-
mum at 20 to 25 m is consistently deeper than the
productivity maximum at 12 to 15 m (Takacs & Priscu
1998). The productivity data consistently show de-
tectable bacterial activity in and below the chemocline
of the West Lobe but more rarely and at very low levels
at analogous depths in the East Lobe.

The reason for the collapse of the nitrogen cycle in
the East Lobe could be specific to some process, i.e.
denitrification, in the nitrogen cycle itself, or it could be
due to overall limitation, toxicity or inhibition of essen-
tially all microbial activity in the water. The potential
for specific inhibition of denitrification is addressed
separately (authors’ unpubl.). The LTER data suggest
that overall bacterial activity is repressed in the sub-
chemocline waters of the East Lobe. Here, we report
on the results of experiments designed to determine
which aspects of the lake water chemistry could be
responsible for a nearly complete suppression of bacte-
rial activity. We hypothesized that the region below the
chemocline in the East Lobe was essentially a dead
zone, with no detectable microbial activity, possibly
due to toxicity of high concentrations of bioactive
metals, such as copper, lead, nickel or cadmium. The
hypothesis was addressed by measuring bacterial
production, as estimated by thymidine incorporation
rates, at discrete depths near the chemocline in both
lobes of the lake as well as in many experiments
focused in the deep waters of the East Lobe. Manipula-
tions, such as organic carbon or phosphorus additions,
and dilution of the salt and metal content of the deep
waters, were performed. The experiments focused in
particular on a potential role for bioactive metals (e.g.
metals required as cofactors in enzymes or those which
cause toxicity by various mechanisms) and their avail-
ability or limitation. The concentrations and availabil-
ity of metals were manipulated using chelation with
organic chelators of varying specificities. Thymidine
incorporation rates were measured to assess the effect
of the manipulations on bacterial growth in lake water.

MATERIALS AND METHODS

Sample collection. Two stations, one near the center
of each lobe, were sampled at several depths for nutri-
ent profiles and at 1 or 2 depths each for incubation
experiments. We have summarized some of the chemi-
cal characteristics of the 2 lobes (Table 1). Based on
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previously reported chemical profiles, 16 m in the West
Lobe and 22 m in the East Lobe were identified as the
location in the chemocline chemical gradient, where
denitrification was expected to occur. These depths
were just below the depth where oxygen concentra-
tions begin to decrease dramatically to nearly unde-
tectable levels (Ward & Priscu 1997) and where ammo-
nium concentrations begin to increase. This is the
depth horizon where denitrification is implicated by
nutrient profiles in the West Lobe and where denitrifi-
cation was actually detected previously (Priscu 1997).
A comparison depth above the chemocline, 19 m, was
sampled in the East Lobe.

Water was collected from Lake Bonney using trace
metal clean techniques. A peristaltic pump equipped
with acid-leached C-Flex tubing (Cole Parmer) was
used to pump water from depth through an acid
cleaned teflon (PFA) tube which was lowered through
a hole drilled through the 4 m thick permanent ice
cover. Water exited the sampling tube inside a Plexi-
glas positive pressure hood supplied with HEPA (High
Energy Particulate Air) filtered air. All sample han-
dling was done with gloved hands by workers wearing
clean disposable lab coats, using protocols developed
for the collections of offshore seawaters (Bruland et al.
1979). After the end of the tube was positioned at the
sampling depth (determined by deployment on a
metered line weighted with a sealed plastic bottle
filled with sand), 10 l of water was pumped and dis-
carded, in order to flush the tubing. Sampling always
proceeded from shallow to deeper depths to avoid con-
taminating the tubing with the higher salt and metal
content of the deeper layers. The sample line was
cleaned between each deployment by recirculating
with detergent (Micro), soaking (>12 h) with 6 N HCl
(Fisher TM grade), followed by a thorough rinse with
deionized (Nanopure) water.

Polyethylene-lined trilaminate bags (Pollution Mea-
surement) were used for sample collection and incuba-
tion. The bags were composed of a laminate including

an outer layer of polyester, a middle layer of aluminum
foil and an inner layer of low-density polyethylene
(125 µl) (Pollution Measurement). Before use, the bags
were cleaned by multiple rinses with 10% HCL and
Milli-Q water. Exposure to strong acid for more than 1 h
was found to compromise the gas impermeability of the
bags, so multiple shorter rinses were used instead. The
deep lake water was supersaturated with carbon
dioxide. Therefore, the sample water was passed
through a debubbler (a plastic bottle in which the gases
released by decreased pressure were collected into the
headspace) to avoid creating a headspace in the incu-
bation bags. The water was pumped directly into
previously cleaned bags of approximately 500 ml maxi-
mum volume (12.5 × 20 cm) through the bag opening, a
10 cm length of 0.312 cm diameter hard polypropylene
tubing. The bags were closed with plastic 3-way stop-
cocks and placed in insulated boxes for return to the
laboratory by helicopter (maximum 4 h delay).

Experimental manipulations. In the laboratory, the
bags were weighed and sample masses were all set to
400 g (~400 ml) by removing any excess water with an
acid cleaned syringe. Bags were incubated in a 12°C
dark incubator, 12°C having been previously deter-
mined to be the optimal growth temperature for
several bacterial cultures isolated from this lake (Ward
& Priscu 1997). After equilibration (usually overnight),
additions were made to the bags to affect various treat-
ments. All solutions were made up in Milli-Q water
(MQ), with contaminant metals being removed by ion
exchange (Chelex-100) if necessary (Price et al.
1988/1989), and all additions were made with acid-
cleaned plastic syringes. Treatments included the
following:

Chelator additions: If concentrations of bioactive
trace metals were sufficiently high in natural lake
waters to cause toxicity, the addition of chelators could
alter their speciation, to reduce their availability and
toxicity. Reagent grade desferrioxamine B (DFB; 1 to
5 µM), ethylendiaminetetraacetic acid (EDTA; 1 to
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Depth pH DIC (mg l–1) Na (mg l–1) Cl (mg l–1) Mg (mg l–1) SO4 (mg l–1) K (mg l–1) Ca (mg l–1)
(m) ELB WLB ELB WLB ELB WLB ELB WLB ELB WLB ELB WLB ELB WLB ELB WLB

5 8.6 8.7 23.5 20.6 19.8 485 897 904 72.81 74.1 231 220 23.9 23.7 96 95
10 8.3 8.3 30.2 25.5 40.9 880 1993 2220 171 145 243 256 51.1 39.8 114 114
15 6.7 6.2 151 538 263 21444 15551 56952 1787 5006 965 4399 308 701 473 1700
20 6.3 5.9 226 690 971 28258 88313 61714 17179 6656 2683 4500 1367 982 1133 2001
25 6.3 5.8 141 851 2014 33745 153849 77691 29049 7997 3118 4664 2488 1187 1430 1977
30 6.1 5.7 63.0 903 2015 38077 169593 85332 31616 9245 3280 4858 2962 1321 1576 2233
35 6.8 5.8 58.7 895 2175 39133 175945 86257 32375 9274 3459 4798 3030 1355 1569 2259
37/38.5 6.7 5.9 66.0 918 3128 40361 187231 87250 26292 9526 3509 4832 2466 1377 1331 2281

Table 1. Chemistry of Lake Bonney. Data were collected on 3 (East Lobe Lake Bonney, ELB) and 5 December 1999 (West Lobe
Lake Bonney, WLB) by the McMurdo LTER team (http://huey.colorado.edu/LTER)
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100 µM), diethylenetriaminepentaacetic acid (DTPA;
0.75 to 100 µM), diethyldithio-carbamate (DDC; 10 to
100 µM), and humic acids (Sigma) (HA; 32 mg l–1) were
added at various concentrations to separate treatments
(noted in ‘Results’ where appropriate). DFB differs
from the other chelators in that it is a siderophore
isolated from terrestrial fungus and is highly specific
for iron relative to other metals. At least 1 marine
bacterium has been found to produce a derivative of
ferrioxamine (Martinez et al. 2001) and it can facilitate
iron uptake by some non-DFB-producing strains
(Granger & Price 1999). Because siderophores are used
as competitive tools among bacteria to acquire iron,
DFB might increase or decrease iron availability
depending on whether Lake Bonney microbes are able
to use this form of iron. By contrast, DDC, EDTA and
DTPA are synthetic, more general, metal chelators,
having a range of affinities for different bioactive
metals. These compounds are routinely used in cultur-
ing microbes and testing for metal requirements in
enzymes (e.g. Coyne et al. 1989, Sillanpaa & Aimo
1996). HAs are natural metal-complexing compounds
found in normal lake systems having comparatively
low affinities for trace metals in high ionic strength
solutions. If some of the metals are present at toxic
levels, then chelation by these ‘generalist’ chelators
might reduce metal activity and thus allow growth.

Organic substrate additions: Additions of organic
carbon had been found to increase denitrification rates
in the West Lobe of Lake Bonney (Priscu 1997). If
carbon substrate concentrations were limiting to bacte-
rial growth, then additional substrate might enhance
thymidine incorporation rates. Acetate (52.5 µM, a
concentration equivalent to the acetate component of
the addition of 7.5 µM DTPA), bactopeptone (200 mg
l–1, the level used for cultivation of lake isolates) and
culture filtrate (see below) were added as noted in
individual experiments described below.

Inorganic nutrient additions: The phytoplankton in
several of the Taylor Valley lakes, including Lake Bon-
ney, are reportedly phosphorus-limited (Dore & Priscu
2001), and denitrification is often nitrate-limited in
aquatic and sediment environments. Therefore, inor-
ganic nutrient additions were tested for their ability to
enhance bacterial activity. Nitrate (50 µM, the level
observed at 22 m in the East Lobe) was added to cir-
cumvent potential limitation of denitrification by
nitrate in dilution experiments (see below), assuming
that most cells present in the suboxic water would be
capable of denitrification. Phosphate (10 µM) was
added to test for phosphate limitation of overall bacte-
rial activity.

Dilution experiments: Dilution was intended to
dilute either metals or salts, or both, thus reducing
potential metal or salt toxicity (previous work showed

that a slightly lower than ambient salinity was optimal
for growth of isolates from below the chemocline).
Dilution of sample water was accomplished by adding
MQ or artificial lake water (ALW) to the samples in
ratios representing up to 10-fold dilution. ALW was
made up at a salinity of 80, and the major ion composi-
tion was adjusted according to the major ion composi-
tion of the water in each lobe (Lyons et al. 2000). The
same overall salt concentration was used in both ELB
and WLB experiments, because it was clear that deni-
trification and growth were possible at the salinity of
the West Lobe (80), and also that cultivated organisms
from both lobes had salinity optima much lower than
that found at 22 m in the East Lobe (135). For ELB, the
composition of ALW was the following: 35 g NaCl,
2.9 g Na2SO4, 0.44 g NaHCO3, 0.49 g KBr, 1.5 g KCl,
0.07 g H3BO3, 75 g MgCl2·6H2O, 3.3 g CaCl2·2H2O,
0.04 g SrCl2·6H2O in 1 l of MQ; for WLB, the composi-
tion of ALW was the following: 46.7 g NaCl, 2.9 g
Na2SO4, 0.44 g NaHCO3, 0.48 g KBr, 1.5 g KCl, 0.06 g
H3BO3, 55 g MgCl2·6H2O, 2.51 g CaCl2·2H2O, 0.04 g
SrCl2·6H2O in 1 l of MQ. Metal contaminants in these
solutions were removed by ion exchange with Chelex
100 (Price et al. 1988/1989). Dilution with ALW was
designed to remove the metal component of the solutes
without changing the salinity dramatically. In some
experiments, lake water was filtered (0.2 µm) through
acid-cleaned polyethylene cartridge filters to remove
particle interactions.

Live bacterial cultures (CB): Most of the above
manipulations were repeated with the addition of live
bacteria to the incubations. If the addition of live
bacteria to the experimental bags caused an increase
in the thymidine incorporation rate relative to the
parallel experiments without CB additions, it would
imply that the lake water was not completely inhibitory
to growth. The denitrifying bacterial strains WLB20
and ELB17, which were isolated from the West Lobe
and East Lobe of Lake Bonney, respectively, in 1992,
both have a temperature optimum of 12 to 15°C and a
salinity optimum of ~35 (Ward & Priscu 1997). They
were cultured at 12°C in filtered seawater amended
with 0.2 g l–1 bactopeptone and 50 µM nitrate in the
laboratory in the same bags used for experimental
incubations. Cultured bacteria (CB) were added to the
treatment bags at a final concentration of approxi-
mately 105 ml–1. The inoculum consisted of approxi-
mately equal numbers of the 2 denitrifying strains,
ELB17 and WBL20. The abundance of CB in the
experimental incubations was determined by indirect
immunofluorescence staining and epifluorescence
microscopy (see below; Ward & Priscu 1997) of sub-
samples collected from the incubation bags.

Incubation experiments and thymidine incorpora-
tion measurements. Bags containing the treated
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samples were incubated at 12°C for up to 2 wk. At
intervals, subsamples were removed and used in short-
term thymidine uptake experiments. In 1999, duplicate
subsamples (20 ml) were incubated in glass scintilla-
tion vials at 12°C for up to 4 h. In 2000, duplicate sub-
samples (20 ml) were incubated for 24 h in polypropy-
lene tubes inside a glove box filled with N2 in a 12°C
cold room. In 2000, all sample transfers and manipula-
tions were performed in the glove box so that the sam-
ples were never exposed to air. The longer incubation
time in 2000 was intended to enhance sensitivity, and
the glove box allowed the sample to remain suboxic
under conditions similar to in situ conditions. This
glove box was not available for the 1999 field season,
so oxygenation of the samples undoubtedly occurred
to some degree. Assuming at least some of the organ-
isms present were denitrifiers, addition of oxygen
should not have been toxic and may in fact have
enhanced thymidine incorporation capability of the
sample.

3H-thymidine (ring-labeled), diluted in MQ, was
added at approximately 1.7 µCi per 20 ml subsample
(20 nM final concentration). Formalin (1% final con-
centration) was added to blank incubations. The incu-
bations were stopped by the addition of cold TCA, and
the filtration and quantification followed standard
methods (Bell 1993). Each treatment was performed in
duplicate (2 bags), and duplicate samples from each
bag were used in thymidine incorporation experi-
ments. Results are presented as the average and SD of
4 dpm determinations per treatment. Small sample
sizes and limited replication may weaken the robust-
ness of our statistical comparisons; we infer that 2
results are significantly different if their SD do not
overlap. A thymidine incorporation rate less than 0
indicates that the magnitude of the formalin blank
exceeded that of the experimental treatment. The
experimental design included independent replication
of treatments in separate experiments on water col-
lected from the same depths but manipulated in the
laboratory on separate days. This provides a check on
consistency in the absence of true replication.

In describing the results, we focus on 3 indications of
activity in the incubation experiments. ‘Activity’ is
defined as uptake of thymidine, at a minimum of 1 time
point in the controls or treatments, that is significantly
greater than 0 (i.e. significantly greater than in the for-
malin-killed blanks). In the case of controls (no amend-
ments to natural lake water), this activity might
increase with time due to enhanced growth related to
bottle effects (e.g. diminished activity of grazers in oxic
samples) or may remain constant over time (i.e. the
community remains in steady state). ‘Growth’ implies a
statistically significant, consistent increase in thymi-
dine incorporation rate over at least 2 time points.

However, in cases where the initial activity in a treat-
ment is lower than in the relevant control (‘inhibition’),
any subsequent ‘growth’ is interpreted as a ‘recovery’
from the chemical insult. The data are presented in
terms of dpm h–1 with the formalin-killed blank values
subtracted. Results are discussed by grouping experi-
ments that received similar treatments. However, sim-
ilar treatments on different dates cannot always be
compared quantitatively because slight differences in
sampling depth could have introduced differences in
initial conditions. Data have not been converted to
units of carbon or cell biomass production because the
comparisons we wish to make are between treatments,
not between rates measured here and other published
data. Nor do we wish to assess the contribution of these
processes to the carbon cycle of the environment in
these experiments, which could only be done after
extensive calibration in additional experiments.

Chemical and microbiological analyses. Nutrient
measurements were made by autoanalyzer (Lachat
Instruments) on filtered samples stored frozen for up to
4 wk. Oxygen concentrations in the incubation bags
were measured using the micro-Winkler colorimetric
method (Broenkow & Cline 1969) and nitrite by the
azo-dye colorimetric method (Parsons et al. 1984).
Oxygen measurements were made on duplicate bags
that were incubated in parallel to monitor for leakage.
No significant increases in oxygen concentration were
detected in any bags measured for up to 2 wk, but it
cannot be guaranteed that none of the actual incuba-
tion bags leaked. Indirect immunofluorescence (IIF)
enumeration of the cultivated Lake Bonney denitrify-
ing strains was performed as described previously
(Ward & Carlucci 1985, Ward & Priscu 1997). Samples
were viewed by epifluorescence microscopy at 1000×
power using a Zeiss standard microscope with epifluo-
rescence modification (50 W Hg illumination; 450 DF
55 filter for excitation, 505 DF 35 barrier filter and
505DRLEXT02 dichroic filter). Acridine orange-
stained filters were prepared from 5 to 10 ml aliquots of
the samples and enumerated using the same micro-
scope with the same filter set (Hobbie et al. 1977).

RESULTS

Nutrient and metal distributions

Distributions of nitrogen compounds in the 2 lobes of
Lake Bonney were very similar to those reported pre-
viously (Ward & Priscu 1997) and were entirely consis-
tent with the long-running data set collected by the
McMurdo Dry Valleys LTER. In brief, oxidized forms of
nitrogen (nitrite and nitrate) were abundant in the sub-
oxic water below the chemocline in the East Lobe
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(Fig. 1A) but ammonium was the only fixed nitrogen
compound that was abundant in the deep water of the
West Lobe (Fig. 1B). The in situ temperatures at the
incubation depths were as follows: ELB 19 m, 6°C; ELB
22 m, 5°C; WLB 16 m, 1°C.

Complete metal concentration and speciation data
will be reported in detail elsewhere (authors’ unpubl.).
For the purposes of this report, a brief description of
their distributions will suffice: total dissolved metals
were uniformly low in the surface waters of both lobes,
in the low nM range for Mo, Cd, Pb, Mn, Fe, Co, Ni, Cu
and Zn. Concentrations of all these elements increased
dramatically below the chemocline in both lobes
(Table 2).

Incubation experiments

Results are presented separately for the West and
East Lobes for 1999 and 2000. Experiments are
grouped in terms of the variables manipulated in each
experiment.

West Lobe Lake Bonney

Experiments in both lobes focused on the chemo-
cline depth, where denitrification should be favored
and where previous researchers had detected micro-
bial activity reliably in the West Lobe but only sporad-

ically in the East Lobe. All West Lobe experiments
were performed on water collected at 16 m and
handled as described above. The West Lobe experi-
ments are in some sense all positive control experi-
ments for the subsequent East Lobe experiments — the
bacterial community at 16 m in WLB consistently
shows activity in the LTER data set and in our denitrifi-
cation experiments (authors’ unpubl.). Their useful-
ness here therefore lies mainly in their comparison to
the ELB experiments.

Effect of chelators. No thymidine incorporation
above the formalin-treated control level in the indige-
nous bacteria was detected after 2 h incubations with
added chelators (DFB at 1 µM, DTPA at 0.75 and
7.5 µM; Expt 1; data not shown). In Expt 2, those treat-
ments were repeated with the addition of 4 parallel
treatments in which live bacteria were added with the
chelators. After 2 h incubations, significant activity was
detected in all the vials to which bacteria had been
added, but no activity was detected in samples con-
taining only the indigenous community (Fig. 2). Initial
activity in treatments which received added bacteria
was 1000 dpm h–1 except the DTPA addition, where
almost 2000 dpm h–1 were measured. Five days later,
the indigenous community still showed little or no
activity, while thymidine incorporation rates had
increased significantly in all 4 of the treatments that
received live bacteria (i.e. growth occurred). Of the
treatments that were inoculated with bacterial cells,
only the treatment that received 7.5 µM DTPA had sig-
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Fig. 1. Dissolved inorganic nitrogen profiles in (A) East Lobe
Lake Bonney (ELB) collected in November 2000 and (B) West
Lobe Lake Bonney (WLB) collected during November 1999.
X: PO4

3–; s: NO2
–; f: NO3

– (2 casts on separate days); ■ , h:
NH4

+ (2 casts on separate days). Thick lines = conductivity;
thin lines = temperature. Conductivity and temperature data

from 2000

Metal Surface (10 m) Depth of max. Conc.
conc. (nM) conc. (m) at max. (nM)

ELB
Mo 14 35 182
Cd 0 25 23
Pb 0 25 201
Mn 0 25 82700
Fe 0 25 288
Co 0 25 795
Ni 32 25 3508
Cu 48 25 883
Zn 6 25 2350

WLB
Mo 32 19 74
Cd 2.6 19 6.9
Pb 0 35 54.6
Mn 0 35 164460
Fe 0 30 55452
Co 0 35 1147
Ni 47 35 2800
Cu 138 35 2897
Zn 8 35 569

Table 2. Summary of trace metal concentrations in East (ELB)
and West (WLB) Lobe of Lake Bonney
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nificantly higher activity (4000 dpm h–1) than the sam-
ple that did not receive chelators (3000 dpm h–1).

When the inoculum of live cells was added, the
growth medium in which the cells were suspended
(1 to 2 ml) was also added. Thus, in addition to live
bacteria, the CB treatments also received a minor addi-
tion of medium (1 to 2 ml of medium diluted into 400 ml
of lake water) containing partially spent substrate and,
potentially, exudates from growing cells that might
enhance activity. This complication was avoided by
centrifuging the cells before inoculation when similar
manipulations were repeated the following year (see
below).

Effect of lake water dilution. To further explore
whether physical or chemical constraints were inhibit-
ing microbial activity in WLB 16 m water, a series of
dilution experiments were conducted. Dilution of West
Lobe water with MQ resulted in minimal activity by
the indigenous community (Expt 3; Fig. 2) and no addi-
tional activity was detected in the 2 h uptake measure-
ments made after 6 d continued incubation. No control

treatment was included in this experiment because no
activity had been detected in the previous control
treatment from the same depth (Expt 2).

In the parallel treatments to which live bacteria were
added, initial thymidine incorporation rates were
enhanced over the indigenous community rates, espe-
cially in the samples that had been diluted. Activity of
diluted treatments was above 7000 dpm h–1 initially,
compared to 1000 dpm h–1 observed for cells added to
undiluted water here and in the previous experiment.
After 6 d incubation, however, thymidine incorporation
rates did not increase further in the diluted samples,
while growth was apparent in undiluted samples to
which bacteria had been added. It appears that while
dilution may have increased growth, substrate limita-
tion likely prevented sustained growth in the diluted
medium. Filtered lake water to which cells were added
yielded the same thymidine incorporation rate as unfil-
tered water, implying that all the activity we detected
was due to the added cells and that particles do not
inhibit activity in this community.
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Fig. 2. West Lobe Lake Bonney (WLB) experiments in 1999 with 16 m water. Bars represent mean of 4 incubations; error bars
represent SD. Expt 2 (30 November 1999), effect of iron and other bioactive metals; Expt 3 (30 November 1999), effect of lake
water dilution; Expt 4 (9 December 1999), effect of salinity. Expt 4A, 50% MQ treatment = dilution with Milli-Q water and no
further additions. 50% ALW = dilution with chelexed artificial lake water. Expt 4B, same suite of treatments as Expt 4A except

that live bacteria (CB) were added to all. DTPA concentrations were 7.5 µM
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Both salinity and metal concentrations were low-
ered by MQ dilution in the above experiments, so the
2 potential effects were separated in Expt 4. Initial
activity was detected only in the 2 treatments that had
been diluted by 50% (1 with MQ and 1 with ALW)

and received no chelator additions, but growth did
not occur (Expt 4A; Fig. 2). In the parallel
dilution/chelator treatments to which live bacteria
were added, growth occurred in all combinations,
including the treatment that received only live bacte-
ria (Expt 4B, Fig. 2). Again, a marked increase in
activity was observed for the 50% dilution treatment,
as in Expt 3. Dilution with ALW, however, initially had
a negative effect relative to the control. There was no
consistent effect of chelator addition on either initial
thymidine incorporation rates or on the increase in
thymidine incorporation rate after 2 d. While DTPA
addition alone increased activity of added cells, when
added to MQ diluted water, the effect of DTPA was
negative.

East Lobe Lake Bonney 1999 experiments

Most of the East Lobe Lake Bonney experiments
were performed with water from a depth of 22 m, iden-
tified from the hydrography as the depth where the
denitrification zone would be expected to occur in a
conventional suboxic water column, i.e. the depth
analogous to 16 m in the West Lobe. The designated
comparison depth in ELB, where an active bacterial
community has been consistently detected above the
chemocline, was 19 m. The gradients associated with
the chemocline were extremely sharp in this region,
and slight differences in sampling depth affected the
initial conditions, making exact duplication of experi-
ments difficult (see below).

Effect of chelators. In the short (2 to 3 h) incuba-
tions performed in 1999 on 22 m water, very little
activity was detected in any treatment. The addition
of chelators (Expt 5, 1 µM DFB and 0.75 µM DTPA)
initially had no significant effect on thymidine incor-
poration by the indigenous bacteria but appeared
significantly to enhance their thymidine incorpor-
ation rate relative to that in the control on Day 6
(Fig. 3).

In the parallel treatments, which received live bacte-
ria, the treatment that received CB alone was the only
treatment to show activity initially and after 6 d
(Expt 5). However, the initial thymidine incorporation
rates by CB treatments that received chelators were all
less than by the treatment that received live bacteria
alone, and thymidine incorporation rates were not
significantly enhanced after 6 d. Note that the initial
microbial activity of the added cell treatment was
lower than in the WLB experiments (200 vs 1000 dpm
h–1), even though these incubations received the same
specific activity of tracer and only a factor of 2 lower
concentration of CB (enumerated by IIF in samples
collected at the initial time point).
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Fig. 3. East Lobe Lake Bonney (ELB) experiments in 1999.
Expt 5 (22 m, 26 November 1999), effect of iron and other
bioactive metals. Expt 6 (19 m, 6 December 1999), effect of
dilution without (Expt 6A) and with (Expt 6B) the addition of
live bacteria. DFB additions were 1 µM and DTPA as shown
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Effect of lake water dilution (with DTPA and
acetate). Dilution with either MQ or ALW was used to
investigate the independent effects of salinity and
metal concentration in ELB 19 and 22 m water. Water
from 19 m was used for Expt 6 in order to provide a
contrast for comparing activity above and below the
chemocline in the East Lobe. Expt 6A detected activity
in both Day 0 and Day 4 samples of the indige-
nous community collected at 19 m with no addi-
tions and in the 50% dilution after 4 d (Fig. 3). All
of the chelator and acetate additions appeared to
inhibit activity by Day 1 (relative to the control),
and the treatments did not significantly recover
by Day 4. Activity in the indigenous controls at
19 m was significantly higher than that observed
at 22 m (Expt 5), but this activity was not
enhanced by dilution (Milli-Q or ALW) or by the
addition of chelators or carbon substrate
(acetate). As was seen in experiments with West
Lobe waters, addition of CB to 19 m ELB water
resulted in much higher levels of initial activity
(Expt 6B) relative to uptake by the indigenous
bacteria in the parallel treatments (Expt 6A).
Comparison between activity in the CB treat-
ments of Expts 6 (19 m) and 5 (22 m) indicated
that the water at 19 m is less immediately toxic
than that at 22 m. Nonetheless, only 1 of the CB
treatments showed growth over the 4 d incuba-
tion, in contrast to the response observed in West
Lobe 16 m water (Expts 2 and 3; Fig. 2), suggest-
ing that bacteria at this depth are stressed by
some factor (but see below). The addition of
acetate alone to both indigenous and added cells
did not enhance thymidine incorporation rate,
suggesting that organic carbon was not a limit-
ing factor.

To test whether the addition of bacteria cultures
to 19 m water enhanced activity as a result of the
activity of the added cells themselves or due to the
addition of conditioning agents (e.g. chelators) or
carbon substrates present in the culture medium,
culture filtrates (2 ml, the same volume of cell
culture that was added in CB additions) were
added to treatments diluted with MQ. No positive
response was observed compared to the parallel
treatment diluted by 50% with MQ with CB
added; i.e. filtrate alone had no effect.

Unfortunately, no CB-only treatment was
included as part of Expt 6. Therefore, we cannot
ascertain whether dilution increased the activity
of CB above that which would have been
detected in undiluted lake water. Replacing the
salts, i.e. diluting with ALW instead of MQ had
no effect on activity, as observed in WLB exp-
eriments.

East Lobe Lake Bonney 2000 experiments

In 2000, experiments were carried out for longer
periods, both in terms of exposure to the treatment (up
to 14 d) and the duration of the thymidine incorpora-
tion rate measurements (24 h), and were performed
under conditions that preserved the oxygen concentra-
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Fig. 4. East Lobe Lake Bonney (ELB) experiments in 2000 with 19 m
water. Expt 7 (14 November 2000) and Expt 8 (20 November 2000),
macronutrient (P) limitation. Expt 9 (14 November 2000), effect of 

organic carbon additions. DFB additions were 5 µM
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tion of the sample during the thymidine incorporation
rate measurements as well as during the bag incuba-
tion. Cells of the denitrifying strains WLB20 and ELB17
were grown as described previously, but were har-
vested by centrifugation and resuspended in minimal
volumes of clean seawater before addition to the incu-
bation bag, in order to minimize the addition of extra
substrate or medium-conditioning molecules. The
results of the ELB 2000 experiments are summarized in
Table 3.

Macronutrient, chelator and organic carbon addi-
tions at 19 m. Three experiments (Expts 7, 8 and 9)
using water from 19 m, at the top of the chemocline in
ELB, verified the viability of microbial populations at
that depth and investigated the effect of various addi-
tions on their activity. Activity and growth were
detected in the controls in all 3 experiments (Fig. 4), in
contrast to experiments in 1999, where activity but no
growth was detected. This difference probably exists
because the longer thymidine incubation times (24 h)
yielded greater sensitivity. Expts 7 and 8 indicated that
phosphate might limit bacterial production above the
chemocline. These 2 experiments were identical
except that water for Expt 7 was collected with the
pump on 14 November and water for Expt 8 was col-
lected with a 5 l Go-Flo bottle 1 wk later. The results
were very similar, differing only in the magnitude of
some treatments but not in the patterns. The indige-
nous community with no additions showed significant
increase in thymidine incorporation over 10 d, but the
increase was significantly greater in the indigenous
population that received a phosphate addition (Expts 7
and 8; Fig. 4). The addition of DFB appeared to inhibit
bacterial activity over time when compared to controls.
The difference in magnitude in the maximum rates
detected (1700 vs 690 dpm h–1), as well as in the initial
activity of the control treatment (200 vs 100 dpm h–1),
may well be due to the different sampling methods.

The Go-Flo sample was integrated over a wider depth
range than the pumped sample. Initial nitrite concen-
tration for Expt 7 was 1.47 µM and for Expt 8 was
0.40 µM, which indicates that water for Expt 7 was
collected at a slightly greater depth than water for Expt
8 (Fig. 1). In Expt 9 (19 m), higher initial activity was
observed in treatments containing added bacteria
compared to the indigenous community, and this activ-
ity increased further between Days 2 and 5. However,
sustained growth occurred only when bactopeptone
was also added, suggesting that growth in the incuba-
tions became limited by available organic substrates as
bacteria populations increased. This result contrasts
with Expt 6B, in which acetate did not enhance growth
of added cells, perhaps indicating that the cells may be
limited by nutrients other than carbon present in
bactopeptone, such as N or P. DFB had no effect when
added with cultured bacteria but appeared to inhibit
growth by Day 11, when peptone was added, suggest-
ing that chelation of iron by DFB limited iron supply to
actively growing bacteria.

Phosphate and chelator effects at 22 m. Three
experiments at 22 and 25 m (Expts 10, 11 and 12)
tested the effect of several chelators and phosphate
additions. The highest activity in these 3 experiments,
about 140 dpm h–1, was at least 80-fold lower than
the highest activity, nearly 12 000 dpm h–1, at 19 m
(note scale change between Expts 9 and 10). In Expt
10, activity increased over the 10 d incubation, but
scatter among replicates in the control precluded
detecting any statistically significant trend (Fig. 5).
The control, DTPA and phosphate incubations all
showed increased activity (activity on Day 10 was
greater than initial activity) but the treatments were
not significantly different from the controls. Addition
of DFB appeared to inhibit growth by Day 10, similar
to the response seen at 19 m (see above). In contrast,
addition of DDC significantly decreased bacterial
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Depth Expt Treatment DFB DTPA EDTA DDC CB DFB+CB HA+CB CB+B DFB+CB DDC+CB HA+CB PO4

(m) CTRL +B +B +B

19 7 ++ + ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ++
19 8 ++ + ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ++
19 9 ++ ■■ ■■ ■■ ■■ ++ ++ ■■ ■■ ++ ■■ ■■ ■■
22 10 ++ + ++ ■■ –/++ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ++
22 11 ++ ■■ ++ ++ + ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■
25 12 + ■■ ++ –/++ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■
22 13 ++ ■■ ■■ ■■ ■■ ++ ++ ■■ –/++ –/++ ■■ ■■ ■■
22 14 + + ■■ ■■ ■■ ■■ ■■ + ■■ ■■ –/++ –/++ ■■

Table 3. Summary of thymidine incorporation experimental results in ELB in 2000. +: activity; ++: growth; –: inhibition; –/++:
recovery; gray cells: treatment was not included in the experiment; CTRL: control, no additions; DFB: desferrioxamine B; DTPA:
diethylenetriaminepentaacetic acid; EDTA: ethylenediaminetetraacetic acid; DDC: diethyldithio-carbamate; HA: humic acid;

CB: cultured bacteria; B: bactopeptone; PO4: phosphate
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activity on Day 1 relative to other treatments and the
controls, but the indigenous population appeared to
recover partially over the next 10 d. The apparent
inhibitory effect of DDC on growth of indigenous
bacteria was confirmed in later experiments (see
below).

Expts 11 and 12 were conducted to evaluate
whether chelator concentrations in the above
treatments may have been insufficient to allevi-
ate metal toxicity. Water was collected from
22 m (Expt 11; Fig. 5) and 25 m (Expt 12; Fig. 5)
using a Go-Flo bottle instead of the peristaltic
pump tubing. As a consequence, these samples
were integrated over a larger depth range
(about 0.8 m), centered upon the target depth,
than the previous experiments, in which sam-
ples were pumped from a narrow depth range.
This distinction is important here because the
sharply defined density/chemistry gradients
with depth likely will have a profound effect on
the bioactive constituents responsible for the
low activity of the indigenous bacteria. The con-
trol at 22 m showed net growth over the 10 d
experiment, although activities were substan-
tially lower than in Expt 10, which used water
collected by pumping. Activities in the control at
25 m were lower still. Additions of high concen-
trations of EDTA (0.1, 1.0 mM) and DTPA
(0.1 mM) to the 22 m waters did not enhance
activity but appeared to diminish the increase in
activity over time relative to the control. Addi-
tion of 0.1 mM DDC had a strong negative effect
on thymidine incorporation rate. Addition of
1 mM EDTA and 0.1 mM DTPA to 25 m waters
did not enhance thymidine uptake relative to
the control (Expt 12; Fig. 5). Although there is
some indication of increased activity over time
in these treatments, it is due more to the initial
inhibitory effect of the ligands in these treat-
ments than to any real enhancement of activity.
In other words, the apparent ‘growth’ was sim-
ply recovery back up to the level of the no
amendment control.

The very high chelator concentrations used in
these 2 experiments were intended to over-
whelm all metal activities to remove toxicity, but
they did not increase thymidine incorporation
rates substantially compared to the control treat-
ment over the course of the incubation and, in
fact, may have been inhibitory at 22 m (Fig. 5).

Effect of organic carbon, iron and chelators at
22 m. The last 2 experiments at 22 m included a
few additional chelator treatments as well as the
addition of organic carbon and live bacteria
(Fig. 6). The highest activity in these experi-

ments, less than 120 dpm h–1 even with the addition of
CB, was similar to that observed in Expt 10 and much
lower than the highest activity at 19 m (compare Expts
9 with 13 and 14; Figs. 3 & 6). Activity was detected ini-
tially in the indigenous community in both experi-
ments. In Expt 13, growth occurred between Days 1
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Fig. 5. East Lobe Lake Bonney (ELB) experiments in 2000. Expt 10
(14 November 2000; 22 m), phosphate and iron effects. DFB additions
were 5 µM, DDC additions were 10 mM, DTPA additions were
10 µM. Expts 11 (30 November 2000; 22 m) and 12 (30 November 

2000; 25 m), effects of extremely high chelator concentrations
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and 4, and that appeared to represent a recovery back
to initial levels observed in Expt 14. Notably, treat-
ments with the addition of CB, alone or with DFB,
yielded the same activity as measured in the indige-
nous community controls, whereas at 19 m (Expt 9), CB
treatments always showed enhanced initial activity
even when activity did not increase throughout the
incubation. This finding perhaps suggests that the
physiology of the added bacteria was not tuned ade-
quately to in situ conditions at 22 m and that the bulk
of the measured response in these treatments was
attributable to the indigenous bacteria. Paradoxically,
the addition of bactopeptone appeared to decrease
activity relative to the control; i.e. an inhibitory effect
contrasting with the enhancement observed in 19 m
water. Bactopeptone was inhibitory at the initial time
point when added in all combinations — with humic
acid, with DDC, with DFB or alone to CB (Expts 13 and
14; Fig. 6). Addition of HA to a bacterially amended
treatment strongly inhibited activity throughout the
10 d experiment. The added peptone treatments

appear to show active recovery over the 14 d incuba-
tion, but activities never exceeded that in the control
by the end of the experiment. The addition of DFB had
no effect on the activity of added CB at 22 m, as was
observed for 19 m in Expt 10.

DISCUSSION

The West Lobe experiments were conducted in 1999,
when all the incubations were 2 h. Previous reports
consistently found bacterial activity at this depth based
upon 24 h uptake incubations, so we attribute our
failure to detect activity in most of the indigenous
community treatments to a lack of sensitivity resulting
from our short incubation periods. The shorter interval
used here was chosen to minimize any potential effects
associated with exposure to air of samples withdrawn
from the incubation bags. Nevertheless, the treatments
containing added bacteria demonstrate that WLB
water supports bacterial activity and that dilution with
MQ enhances this activity. DTPA additions to WLB
water enhanced activity of added cells, suggesting it
may have affected metal speciation favorably. How-
ever, the effect was not additive (DTPA did not
enhance activity in the diluted treatments). The
remaining chelator addition treatments showed no
consistent enhancement of activity.

From the 1999 experiments in ELB, we concluded
that the hypolimnion of the ELB is not, in fact, a dead
zone. Activity was detected both in the indigenous
community, albeit at very low levels, and in the CB
treatments. However, there were no clear, repro-
ducible indications that any of the treatments signifi-
cantly increased the activity of the indigenous popula-
tion, or of added live cells, even after exposure to the
treatment for up to 6 d. Activity was greater at 19 than
at 22 m, as expected, and added cells showed higher
activity at 19 m, implying some toxic effect on their
metabolism in 22 m water. Experiments in both 1999
and 2000, designed to test the response of the microbes
in ELB to changes in bioactive metal availability, gen-
erally failed to elicit a significant response. This result
implies either that metals are not the primary control
on activity or that a more specific investigation of
speciation of individual metals and metal-biota inter-
actions is required to resolve the mystery.

There are several reports of trace element distribu-
tions in the lakes of the McMurdo Dry Valleys
(Boswell et al. 1967a,b, Weand et al. 1976, Masuda et
al. 1982, Green et al. 1986, 1988, 1989). The early data
available for Lake Bonney (Boswell et al. 1967a,b)
were reported for an unspecified location in the deep
water of the lake, so it is impossible to make any
direct comparisons. The concentrations reported in

44

Fig. 6. East Lobe Lake Bonney (ELB) experiments in 2000 with
22 m water. Expts 13 (20 November 2000) and 14 (22 Nov-
ember 2000), effect of organic carbon and chelators. DFB

additions were 5 µM and DDC additions were 10 µM
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1967 generally are within 1 order of magnitude of
those measured in 1999 and 2000. Weand et al. (1976)
sampled at sites very near the east end of the East
Lobe, focusing on the contribution of melt water
streams; therefore, although these data are consistent
with the increasing metal concentrations in the
hypolimnion, none of these reports is directly applica-
ble to our sites. Metal concentrations are sufficiently
low in the surface layer that they may be in the range
capable of limiting phytoplankton production, but
their concentrations increase dramatically below the
chemocline (Table 2; author’s unpubl.). Most transi-
tion elements increase in solubility in reducing condi-
tions, and the main source of these elements may be
molecular diffusion out of the concentrated brine
pools that fill the deepest regions of both lobes of
Lake Bonney (Lyons et al. 2000). The highest concen-
trations of Cd, Pb, Ni and Zn occur in the East Lobe at
25 m, while Co and Cu are highest in the West Lobe
at 35 m (Table 2). The major ion concentrations in
Lake Bonney show the same pattern of surface deple-
tion and deep-water enrichment. The surface water
is replenished by annual seasonal melt water stream
flow, while the deep water may not have been
renewed or fully mixed since the last evaporative
episode ended some 900 to 1200 yr ago (Lyons et al.
2000). Melt water, salts and metals continue to enter
the West Lobe of Lake Bonney from the snout of the
Taylor Glacier, but the deep water of the East Lobe is
saltier than that of the West Lobe, albeit with different
elemental ratios (Table 1).

P-limitation appears to be a general feature of the
epilimnion of Lake Bonney. Dore & Priscu (2001)
showed clear evidence that CO2 fixation by phyto-
plankton is stimulated by addition of inorganic phos-
phate for both lobes of Lake Bonney. Alkaline phos-
phatase activity was associated with the bacterial size
fraction, which provides indirect evidence for P-limita-
tion of bacteria. Lake Bonney’s history of repeated
evaporation, leading to selective precipitation of
phosphate minerals in the brine, is suggested as the
ultimate reason for phosphate depletion in Lake
Bonney (Lyons et al. 2000, Dore & Priscu 2001).

There is significant bacterial activity above the
chemocline in both East and West Lobes of Lake
Bonney that continues into the sub-oxic waters of the
West Lobe, where denitrification is observed. Water
below the chemocline in the East Lobe supports only
very low, but analytically significant, rates of thymi-
dine incorporation, and the geochemical evidence is
that denitrification is lacking there. It is curious, then,
that a maximum in bacterial numbers is often
observed at 25 m in the East Lobe, well below the
maximum in bacterial production at 12 to 15 m
(Takacs & Priscu 1998). It was suggested (Ward et al.

1993) that the cell abundance maximum might be due
to a dramatic increase in the abundance of nitrifiers at
that depth, autotrophs which might contribute to bio-
mass but not to thymidine incorporation. The maxi-
mum in nitrifier abundance, however, is generally
shallower (12 to 15 m) and 3 orders of magnitude or so
smaller than the total bacterial abundance at that
depth (Voytek et al. 1998). Takacs & Priscu (1998)
detected bacterial production in 5 out of 30 measure-
ments below 20 m in ELB, and in 10 out of 16 mea-
surements at 20 m, in their 4 yr study. The production
rates were so low, however, that specific activity
(uptake cell–1 d–1) was indistinguishable from 0 in all
46 measurements. This results from the mysterious
biomass maximum — high numbers of nearly inactive
cells — at 25 m.

The imperfect suite of chemical tools used here to
manipulate transition metal speciation provided no
clear indication that metal toxicity (or metal limita-
tion) could explain the lack of activity below the
chemocline in the East Lobe. Bacteria isolated from
the lake and cultured under optimal conditions did
not grow when added to 22 m water, while the
indigenous population showed low-level but non-0
rates of thymidine uptake. The implication is that the
time frame for adaptation to in situ conditions
exceeded the 2 wk duration of our experiments. It
might be reasonable to assume that adaptations by
the indigenous populations to the altered chemical
conditions in our experiments might also require long
time frames before changes become expressed as
increased rates of thymidine incorporation. As a con-
sequence, it is unclear whether these experiments
can rule out metal stress as the cause for low activity
in these waters.

There also may be some question about the suitabil-
ity of thymidine as a tracer for bacterial activity in
these waters. Although thymidine incorporation is
generally accepted as a measure of heterotrophic bac-
terial activity, there are several groups of bacteria
whose activity is not adequately quantified by this
method (Winding 1992). Obligate anaerobes (e.g. sul-
fate reducers, fermenters) and chemoautotrophs gen-
erally do not assimilate thymidine, and thus, communi-
ties in which these groups contribute a major portion of
the biomass will not be reliably assayed with this
method. Lake Bonney contains no sulfide, although
sulfate is a major ion in the deep water, so anaerobic
metabolism by conventional sulfate reducers and
fermenters is not likely to be important here. Metal-
reducing bacteria, some of them obligate anaerobes,
may be present; however, little is known of their
thymidine incorporation capabilities. There is evi-
dence of a significant chemoautotrophic nitrifying
assemblage near the chemocline (Voytek et al. 1999)
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but the absolute numbers of these cells is only in the
order of 0.1 to 1% of the total bacterial abundances
(Voytek et al. 1998). Thus, it seems unlikely that the
composition of the bacterial assemblage in the East
Lobe would cause an artificially low estimate of
bacterial production in terms of thymidine incorpora-
tion. In any case, the long metabolic response times
indicated in our experiments suggests that other, more
direct metabolic assays (e.g. vital stains such as 5-
cyano-2,3-ditolyl tetrazolium chloride [CTC] in aero-
bic conditions; Smith et al. 1994) may be useful in
probing the bacterial biomass for indications of
viability and response to manipulations of chemical
conditions.

CONCLUSIONS

A large number of experiments was performed in a
manner that allowed independent replication of treat-
ments: water collected from the same depth but on
different days (and therefore, handled and subjected
to manipulations on different days) was subjected to
the same treatments in different combinations. The
results described above lead to the following conclu-
sions, which are summarized in answer to several
questions that informed our experimental design.

(1) Is the suboxic water below chemocline depths in
ELB toxic to bacterial life? Yes. The very low activity
levels imply that the water was indeed toxic, but not so
completely as to preclude activity altogether. Activity
was detected in the control treatments in each experi-
ment but decreased with increasing proximity to the
remnant bottom waters that had been exposed sub-
aerially in the recent geologic past. Ionic concentra-
tions in the deep water have been interpreted to result
from diffusion from the high concentrations in the
brine pool, combined with differential precipitation
(Wilson 1979, Lyons et al. 2000). Our results indicate
that this deep water is the direct source of the sub-
stances responsible for bacterial inhibition in the East
Lobe. These data imply that there might yet be some
treatment that could allow the indigenous cells to
recover from this toxicity and grow. More direct, cellu-
lar indicators for the shift in cell metabolism are
needed to better address the question of whether metal
stress is responsible for the difference in microbial
activities between the East and West Lobes of Lake
Bonney.

(2) Was bacterial growth in ELB limited by toxicity of
bioactive transition metals whose availability could be
reduced by chelation? No, at least over the time frame
of our experiments. Additions of chelators alone (DFB,
DDC, EDTA) to the indigenous community did not
enhance activity relative to the controls, with perhaps

one exception. The DTPA treatment in Expt 10 showed
activity comparable to that observed in the phosphate
addition treatment, but neither exceeded the activity
in the control by the end of the experiment. In general,
the addition of the general synthetic chelators EDTA
and DTPA had little or no enhancement effect on
thymidine uptake in these incubations, with or without
added cultured bacteria. Addition of the specific iron
chelator DFB had an inhibitory effect at both 19 and
22 m depth. Thus, if metal toxicity is a factor inhibiting
bacterial activity in ELB, we were unable to remove its
effect with this suite of chelator additions over the
duration of these experiments.

Even so, these experiments do not rule out metal
inhibition of bacteria in these waters. The absence of
enhanced activity by the addition of cultured bacteria
to ELB deep water (with one exception, Expt 5), even
though they were isolated from the same lake, demon-
strates the need for cells to acclimate to in situ condi-
tions. It is possible then that the duration of our exper-
iments was insufficient to allow the indigenous
population to ‘recover’, which might require several
weeks at these low growth rates. Alternatively, it is
possible that the chelators we employed did not bind
the toxic components sufficiently to remove their toxi-
city or by doing so, the availability of other required
metals became limiting. In that case, metal toxicity
could still be an important factor, but one that we were
unable to alter with sufficient precision. Finally, the
bacterial activity could be inhibited by metals that
were not complexed by the chelators tested.

(3) Was growth limited by carbon substrate con-
centration? No. Addition of acetate, a labile carbon
substrate, did not enhance activity. Bactopeptone addi-
tions produced inconsistent results. When bactopep-
tone did increase activity it cannot be determined
which component was responsible, suggesting that
P-limitation may be the underlying phenomenon,
rather than C-limitation.

(4) Was growth limited by a nutrient element? Yes, at
19 m. Phosphate addition consistently enhanced
growth in the indigenous population at 19 m in ELB
(Expts 7 and 8). In all 3 experiments at 19 m, growth
was detected in the control (perhaps due to removal of
grazers in this slightly oxygenated water) but phos-
phate addition caused a significantly greater increased
thymidine incorporation rate. Thus, is it clear that
bacterial production in the surface layer was limited
by phosphate. However, phosphate did not clearly
enhance growth or activity in deeper waters.
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