1-2018

Within Katahdin’s Realm: Log Drives and Sporting Camps - Chapter 02: The West Branch of the Penobscot River: Nicatou Island to Ambajejus Falls

William W. Geller

Follow this and additional works at: https://digitalcommons.library.umaine.edu/mainehistory

Part of the History Commons

Repository Citation

https://digitalcommons.library.umaine.edu/mainehistory/141

This Book Chapter is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine History Documents by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Within Katahdin's Realm:

Log Drives and Sporting Camps

Part I
Logging
Chapter 2
The West Branch of the Penobscot River:
Nicatou Island to Ambajejus Falls

Early Homestead Loggers between Nicatou and Millinocket Stream
Logging: Pre-1841
Logging: 1841–1894
 Logging between Nicatou Island and North Twin Dam
 Logging around the Lower Chain Lakes
 North Twin Dam and Norcross as Logging Communities
Post-1894 Logging around Quakish and the Lower Chain Lakes
The Log Drive: Across the Lower Chain Lakes to North Twin Dam and on to Nicatou Island
 The Drive before 1901
 The Drive Starting in 1901
 Changes at North Twin Dam
 The Lower Drive: From Shad Pond Downriver
 Moving Logs to the Mill at Burnt Land Rapids
Sawmills on the Lakes and Streams
Wood Salvage Operations: Post-1947
My Explorations, Some of What Can Still Be Seen

January 2018
William (Bill) W. Geller – researcher and writer
108 Orchard Street
Farmington, Maine 04938 or 207-778-6672 or geller@maine.edu
https://sites.google.com/a/maine.edu/mountain-explorations/home
Chapter 2

The West Branch of the Penobscot River: Nicatou Island to Ambajejus Falls

Early Homestead Loggers between Nicatou and Millinocket Stream

In 1826, the first families settled near Nicatou Island, and named their community Nicatou. In March three years later and 9 miles up the West Branch of the Penobscot River, Thomas Fowler Sr., a logger and farmer interested in the timber, came overland instead of traveling up the Penobscot River and built a home at the head of Nollesemic Pond below Grand Falls on the south side. By 1829, the number of folks traveling the Penobscot River or following its banks encouraged Colonel Stanley to establish a shanty at Mattawamkeag, 12 miles below Nicatou. Soon after 1833 when Isaac J. Stevens bought his first properties at Nicatou, he opened a sawmill and a shingle mill on lot seven at the mouth of the West Branch. His dam, built of rock cribs without iron spikes, spanned the river channel on the south side of Nicatou Island. The mill, farm, and boarding house were on the south side of the dam. Also in 1833, Israel Heald bought 250 acres from Amos M. Roberts in Township A Range 7 West of the Easterly Line of the State (TAR7 W.E.L.S.) on the south side of the river below Burnt Land Rapids and immediately above

3 Penobscot Registry of Deeds

4 Geller exploration during the water draw down of 2013 at the Weldon Dam
the Nicatou (TAR6 W.E.L.S.) town line. Heald developed what became known as the Nicatou farm, but it appears he continued to live in Lincoln, Maine, and hired someone to develop it. George Waite bought the farm in 1845, and both he and his son William farmed it. Thirty years later, Freeman W. Powers bought a small 50-acre parcel on the river bordering TAR7’s east town line. In the same year, James and Mercy A. Wiley and family bought the remainder of “Lot 9” and its buildings, which had been the Waite farm. No other pre-1900 farms developed upriver on the south side.

In TAR7, the George McCauslin family started its 300-acre farm in the mid-1830s on the river’s north side at the mouth of Schoodic Stream. McCauslin had spent the winters and springs from about 1835 to 1840 logging and driving from the Ripogenus Lake area before he left to concentrate on farming. By 1850, the Thomas Jr. and Aurora McCauslin Fowler family established a 200-acre farm across from the McCauslin farm, and the John H. and Sarah McCauslin Hathaway family had a 115-acre farm, also on the lower end of Schoodic Stream. About two miles farther upriver on the north bank, Daniel and Charles Watson established a 100-acre farm before 1860 and after a couple decades sold it to James C. Rice. The Bill M. and Lucy Clemment family also had a 200-acre farm by 1860. Bill was the first one to log on Rockabema Stream (Abenaki word meaning woodpecker). These farms raised crops and hayed the natural fields and river swales for themselves and for other loggers. Three other lumbermen—George Reed, Royal Reed, and William B. Boynton—and their families lived in the township for a short period (c. 1870 –1879) before moving back to Nicatou by 1880.

Above the big island at the mouth of Nollesemic Pond in Township 3 Indian Purchase (T3 I.P.), the town above TAR7, the Fowler families—Thomas Sr., Thomas Jr., and George

5 ancestry.com (U.S. Census) and Penobscot Registry of Deeds are the sources for each person in this paragraph
W.—established the first and only farms. Thomas Sr. moved from Nollesemic Pond and built 2 miles north on Millinocket Stream in 1837 where a succession of family members lived until 1882 when Frances M. Fowler sold it to Charles T. Powers. The home was at the centuries-old carrying place to the West Branch at Rhine’s Pitch near the foot of Quakish Lake. Thomas Fowler Sr. cut a tote road across the 2-mile carry and provided a toting service with yoked oxen and a jumper for loggers and other travelers who did not want to carry up around Grand Falls, referred to by area folks as Grand Pitch. In 1845, Thomas Fowler Jr. built a home at the mouth of Millinocket Stream on the east side at Nollesemic Pond. Samuel Bradeen and his wife Sarah moved to the township in 1850 when they bought Thomas Jr.’s lot plus the lots that encompass the land on the east and south sides of Nollesemic Pond. The Bradeens sold in 1857 so Sam could continue his logging elsewhere. By 1882, most of the Fowler family had moved downriver to farm in the Nicatou area. With the exception of some trappers and loggers, the area between the Fowlers and Ripogenus Lake remained uninhabited, and the number of families living upriver of Nicatou was static until the 1890s.

By 1847, wood-burning stern-wheelers could reach Nicatou from Old Town when the water was high. Two steam-powered scows carried supplies upriver and milled wood downriver until 1869, but logs and logjams often made it difficult or impossible for them to operate. The volume of river travel by 1852 encouraged Benjamin N. Fisk, who lived at Nicatou, to open a hotel. Enough folks came to settle in the immediate Nicatou area so that in 1855 they formally organized Nicatou plantation, which became in 1875.

Isaac Stevens’s Nicatou Mill Company continued to saw wood into at least the mid-1850s when he had to cover his indebtedness by selling his home and farm at the mill and other

6 see footnotes 2 and 5
properties to Nathaniel Stevens, his uncle of North Andover, Massachusetts. Nathaniel, who had investments in logging elsewhere in Maine, seems to have kept the mill operating given the dam was still in place when Manly Hardy shot through it in a canoe while on a September 1857 trip. In 1859, Nathaniel sold everything he owned in the township to Bradbury C. Hill of Warwick, Rhode Island, the major landowner in this area. Whether Hill kept the mill going is unknown, but when he sold the land on which the mill rested in 1864 to Horace B. Jordan of Nicatou, the sale included all the buildings, including a boarding house, and Bradbury retained log landing and rafting rights. The mill likely ceased operations before 1873.

Sometime before 1870, Harry Poor and Sons established a sawmill opposite Nicatou Island on the east shore. From 1870 to 1930, the Poors also operated a tannery, which used hemlock bark harvested by loggers. About 1940, when Delmont McLaughlin and his father were logging on nearby Rockabema Stream, they found unused stacked piles of the bark.

Before 1856, when Edward Beatham received a charter for a ferry service on the Penobscot River at Chester, the only ways to cross the rivers in the Nicatou area were by boat or either fording or walking on the ice. Someone established a ferry on the Penobscot River just below Nicatou Island in 1872, which operated until 1936. The river connected the few farms along the north side of the river until Thomas Fowler Sr. cut a tote road from his farm at the Millinocket Stream carry along the north side of the river to the East Branch ferry landing in 1878. When the county built a road from Nicatou, now Medway, to the two-year-old Millinocket

7 Nathan Stevens Papers at Maine Historical Society, Portland, Maine
8 “The Hardy Journals, First West Branch Trip 1857,” Fanny Hardy Eckstorm Papers, University of Maine Fogler Library Special Collections
9 Penobscot Registry of Deeds
10 conversations with Delmont McLaughlin
community in 1901, it followed the Fowler route, and eight years later, the first bridge over the East Branch replaced the ferry.

Logging: Pre-1841

In 1820, Major Joseph Treat traveled up the West Branch of the Penobscot River to assess the timber.\(^{11}\) Between Nicatou Island and Nollesemic Pond, he found good growth of pine, spruce, and hemlock on both sides of the river. Joseph C. Norris, surveying TAR7 in 1825, found no cutting on Schoodic Stream, but discovered logs cut the previous winter not far up Nollesemic Stream.\(^{12}\) A second surveyor, James Irish, running the boundary lines of T3 I.P. and T4 Indian Purchase (T4 I.P.) found the same logs and spent a night at Freese’s camp on Nollesemic Pond.\(^{13}\) Freese, a logger and farmer, may have been one of the Freeses of Argyle, which is above Bangor on the Penobscot River. Isaac, Jeremiah, and William Freese cut pine logs on the river just above Nicatou Island near Burnt Land Rapids in 1828.\(^{14}\)

Shortly after the Norris and Irish surveys, the landscape in the area changed and likely influenced logging for the next one hundred years. On October 7, 1825, Maine’s Miramichi Fire, one of the nation’s largest, burned an estimated 832,000 acres or the equivalent of about thirty-three townships.\(^{15}\) Even though the woods were tinder dry all fall, farmers to the south in the Guilford area and along the Piscataquis River continued to clear land by burning. High winds on

13 Irish, James. Field Notes for Survey of 1825 for the boundary lines of T3 IND and T4 IND.

October 7 whipped their many small fires into an inferno that no one could stop. Its northeast path went through Katahdin Iron Works, west of the Ebeemee lakes, across Long A township south of the South and North Twin lakes, and jumped the West Branch of the Penobscot River. As most forest fires do, it left untouched pockets.

No discovered account traces the exact boundaries of the burn as it crossed the West Branch. Isaac Small’s 1836 survey of T3 I.P. indicated the fire touched its southern boundary in several spots on the eastern side.\(^{16}\) Assuming the fire continued to the east northeast, it probably crossed the river below the mouth of Schoodic Stream and perhaps at the second set of rapids below that spot, Burnt Land Rapids, an area not burned before fall 1825 and a name that suggests where the fire crossed the river. How the 1825 fire affected the cutting between Nicatou Island and Schoodic Stream is unknown.

Loggers worked quickly into the West Branch area. Thomas Fowler Sr. and his family cut in the Nollesemic Pond area by 1830. In 1832 near Salmon Stream below Nicatou Island, loggers built and used a logging camp on the south shore.\(^{17}\) Although no written accounts have been found, the earliest loggers likely took advantage of every waterway between Nicatou Island and Grand Pitch by 1840. The Fowlers, McCauslins, Bradeens, Clemments, and Nicatou farmers such as the Stevens, McLaughlins, and Waites drove the pine cut on their lands along the lower portions of Rockabema, Schoodic, Millinocket, and Nollesemic streams, all of which drain to the West Branch below Grand Pitch.

\(^{16}\) Small, Isaac. Field Notes for Survey of summer 1836 of T3 IND and Upper Section of T4 IND.

By 1835, crews were cutting on the shores of South Twin, North Twin, and Pemadumcook lakes. J. W. Bailey’s party ate lunch in 1836 at a Pemadumcook Lake logging camp of the previous season. Also in 1836, the landowners of T3 I.P. and the northern half of T4 I.P. hired Small to assess the timber in each square mile of the townships. He mentioned no logging away from the waterways and that much of the land north of the West Branch had burned previously, probably not in the 1825 fire, but in one that burned before Treat’s 1820 survey, perhaps the 1795 fire. In 1837, James T. Hodge reported for Charles T. Jackson’s geological survey that loggers had cut all the timber surrounding North Twin Lake. The statement likely meant that loggers stripped the edges of the waterway of their large white pine. In 1839, a logger had a camp at Elbow Lake on the south side.

As more crews cut and drove logs, it became increasingly difficult for them to keep their logs separated. The first attempt at a solution was the formation of the West Branch Boom Company. Stephen Cummings, E. B. Escher, Robert Gibson, Enoch Paine, and A. Shaw, some of the lumbermen working the river and Lower Chain Lakes, sought and received a charter for the company from the Maine state legislature in 1835. The charter enabled them to operate during a specific period each spring and to construct piers, booms, and storage areas at the mouth of Umbagugus (Ambajejus) Lake while maintaining open passage for log rafts. In that same year, the company was likely responsible for building the first boom house, a camp used yearly by the

19 Small, Isaac. Field Notes for Survey of summer 1836 of T3 IND and Upper Section of T4 IND.

log drivers who boomed the logs, near the foot of Ambajejus Lake at a narrows. These men, cutting above Ambajejus Lake, boomed their logs at the head of Ambajejus Lake and towed them to the North Twin Lake outlet. Between the head of the lake and Nicatou Island, loggers competed for water and river space with those lumbermen driving from the Lower Chain Lakes and downriver. The West Branch Boom Company conducted a drive for each of the next nine years.

The lumbermen knew they could improve driving conditions by constructing dams; however, it was not until late 1840 that the first dam was in place. In 1834, lumbermen had formed the Chesuncook Dam Company and petitioned the Maine state legislature for a charter for dams to be constructed within the year at the outlets of Elbow Lake and Chesuncook Lake. Failing to build either dam in the allotted time, the company sought and received an extension to May 1836. The company did not meet that time line and asked for and received another extension in 1839. A crew built the dam at Chesuncook in the fall of 1840.

On August 20, 1841, a construction crew of fifty men under the direction of Benjamin P. Gilman left Bangor for the outlet of Elbow Lake where they spent the fall building the first North Twin Dam. Gilman started his logging in the Sebec Lake area before 1830 and by 1850 operated a sawmill in Orono where he had an accompanying boarding house for his sawyers and raftsmen. A small group of the men transported the needed food supplies and equipment to the site by bateaux via the Penobscot and West Branch rivers. Gilman and the balance of the men,

22 see footnote 21
23 see footnote 21
24 Bangor Daily Whig and Courier (Bangor, ME), November 16, 1841, p.2.
25 Bangor Daily Whig and Courier, November 16, 1841, p. 2
with three days’ supplies, and oxen walked north from Brownville on the Nahmakanta Tote Road, stayed at Philbrook’s shanty, and reached the southwest corner of South Twin Lake. Here they found only a leaky bateau, which a few men used to ferry some of the supplies. The rest of the men followed the shoreline cutting out trees where necessary for the oxen. On August 23, they reached the dam site, cleared land for a camp, and put up some temporary shelter. Once their equipment arrived, they built a 100-foot-long camp for sleeping, a kitchen, and a storehouse. Soon after the work began, Gilman sent two men 30 miles north to Chesuncook Dam to close its gates to minimize the water flow at the dam site. However, someone coming downriver in early October opened the gates, and two men went back to close them. Work on the dam went well with low water and little rain. About November 4, Gilman reduced the crew to twenty men who completed the dam within the next two weeks. The lake, previously a relatively tiny river deadwater, was enlarged, and the river between the dam and North Twin Lake became quick water.

The dams resolved some of the driving issues, but the number of independent drive crews from the Lower Chain Lakes and tributaries still complicated the drive, and once it reached the Penobscot River, the drive competed for space with the Penobscot Log Driving Company (PLDC), which was chartered in 1833. In 1846, the PLDC sought and received an amendment to its charter to take over from the West Branch Boom Company. By 1849, PLDC handled all the logs coming through on the spring drive until 1901. The company reconstituted itself each logging season with lumbermen who planned to drive any portion of the river from Nicatou Island upriver. During the winter the men cut, and in the spring the PLDC scaled each

26 see footnote 21
27 see footnote 21
lumberman’s cut. The company combined each logger’s cut to determine the total board feet and the percentage of the total that belonged to each logger. When the drive reached Bangor, scalars determined the total board feet and the company paid each logger for his percentage of the total.

Although the drive’s leadership often changed from year to year, the strategies employed by the drive boss did not. The earliest drives were only pine, which floated deep in the water. Later when fir and spruce, which float high in the water, were also being cut, drive crews kept them separated. To mix them with pine was to add another risk of jams. Similarly, loggers kept the logs sorted by length. Only three times during these years did the lumbermen not have a drive.28 In 1861, an insufficient number of men were available because of the Civil War. High water washed out the North Twin Dam, hanging the drive in the Lower Chain Lakes in 1879. High water in 1880 severely damaged the Chesuncook Dam, leaving much of the cut in the Upper Chain Lakes.

Logging: 1841–1894

For the fifty-two years between 1841 and 1893, little changed in how the lumbermen conducted their operations. The North Twin Dam remained in place as the only dam; its owners kept it repaired and increased its head twice. Those working between Nicatou Island and Quakish Lake used their Nicatou farms and the Penobscot River as their supply line. The lumbermen on the Lower Chain Lakes relied on the Nahmakanta Tote Road for their supplies. What did change was the ever-increasing amount of logs harvested by the lumbermen.

Logging between Nicatou Island and North Twin Dam

By 1840, the area farmers, who turned to logging in winter, had cut much of the land around Nicatou Island and were cutting farther away from the river. The two main tributaries in this section of river, Rockabema Stream and Schoodic Stream, hosted the earliest loggers such as Isaac Stevens, William McLaughlin, and George Waite, all with Nicatou farms. The earliest recorded cutting on Rockabema Stream was that of Bill M. Clemment, who cut on William B. Hayford land in 1862.29 Harry Poor and Sons of Nicatou cut the area again in 1869 and 1870.

When loggers other than George McCauslin first started cutting their way up Schoodic Stream is unknown, but beginning in 1861, the landowner, Hayford, sold stumpage. Between 1861 and 1870, Boynton, DeGrassse, Hussing, Harry Poor, and Charles and Daniel Watson, all of whom resided in the area, landed their cuts on the stream. By 1870, the vast majority of the cut was spruce and very little pine. Loggers built the driving dams on the stream after 1869. The American Spool and Thread Company moved into the area in 1894 to cut the birch hauled to their mill at Grindstone on the East Branch of the Penobscot River. The growth of the birch in this area may have resulted from the great fire of 1825. How long American Spool and Thread Company operated here is unknown, but the mill eventually became the Madden Mill, which operated until it burned in 1957.30 James M. McNulty cut pine in 1897 from a camp at the junction of the Grindstone Tote Road and the stream.31

29 Hayford owned a great deal of property in TAR7, West Hopkins Academy Grant, T3 IND, T4 IND. The names of the loggers and where they logged, both in the following sentences, on his lands came from William B. Hayford Papers, University of Maine Fogler Library Special Collections, Timberlands Account Book and his 1871-1887 ledger and Medway Records 1848-1868 also at Fogler Library Special Collections.

31 The McNulty cut of 1893-94 in this township was a trespass on McRillis lands. William H. McRillis Papers, University of Maine Fogler Library Special Collections
A little farther up river, the Watsons cut on the north side of Nollesemic Pond east of the mouth of Millinocket Stream in 1893. Elsewhere on the pond, James F. Kimball cut in 1899, 1901, 1902; Sargent and Emerson cut in 1904 and 1905. A 1903 forest fire burned a small area south of Nollesemic Pond. By 1904, loggers used a ferry to cross the West Branch of the Penobscot River at the head of Nollesemic Pond. The ferry probably supported the substantial lumbering on the river’s south side and transported horses whose summer pasture was on that side. Other than fording, this was the only river crossing point above Nicatou Island.

Between Nollesemic Pond and North Twin Lake, substantial cutting took place for decades. The pond received logs from two substantial tributaries, Millinocket Stream (which is covered in its own chapter) and Nollesemic Stream. Thomas Fowler Jr. cut on the stream in 1841 and 1842; John W. Mayo, in 1849; Fowlers and Hales, from 1874 to 1876. The tote road for these operations went up along the river’s north edge from Nollesemic Pond to cross above

32 Charles Watson cut in the Millinocket Stream valley as early as 1878. Prentiss & Carlisle Company ledgers: 1873–1895, Prentiss and Carlisle Company Papers, University of Maine Fogler Library Special Collections

33 Stumpage Ledgers 1896-1904, 1904-1912, 1912 – 1922; Webber Family Papers, University of Maine Fogler Library Special Collections

34 Hopkins Academy Grant, Penobscot County, August 11, 1913

35 This area is within townships T3 IND, T4 IND, an area managed by Prentiss and Carlisle Company from 1873 into the mid-1890s and lands owned by Hayford. Unless otherwise footnoted in the following paragraphs the logging site and accompanying logger’s name are in either the Hayford ledgers (see footnote 30) or the Prentiss and Carlisle account ledgers available at University of Maine Fogler Library Special Collections.

36 see footnote 35
Grand Pitch and dropped back down the south side of the river before turning south to Nolleseemic Lake.37

The area between Nolleseemic Pond and Quakish Lake was likely cut for a second time in the late 1840s or early 1850s. The next documented logging was in 1875 when John F. and Frances M. Fowler cut both the south and north sides of Nolleseemic Pond. Loggers, who included Freese and Brown, cut on both sides of the river below Rhine’s Pitch in 1873, 1874, 1878, and 1879. In 1880, the Yorks cut on the river’s north side at Grand Pitch. The Watsons cut on the north side of Nolleseemic Pond east of the mouth of Millinocket Stream in 1893.

Quakish Lake and Brook were subject to frequent cutting. Loggers working from the lake’s north edge hauled to Quakish Lake. On the lake’s south side, the haul was either to the lake or to the extensive Quakish Brook drainage. In 1846, Henry David Thoreau described Quakish Lake as having no sign of man other than boom logs secured to the shore awaiting use in the next drive.38 Loggers had culled the large white pine with only a little spruce and hemlock gone. An unknown logger cut in 1871, Frank Fowler in 1873, William R. Boynton in 1874, Wellington Henderson and Frank Fowler in 1875, Frank Fowler in 1878, A. M. Edgerly in 1879, the Yorks in 1880, Charles W. Mullen in 1893, an unknown logger in 1895, and James M. McNulty in 1899.

In support of logging on the south side of Quakish Lake, loggers built a driving dam on Quakish Brook at the head of the deadwater (a portion of a waterway that is calm with a weak current) in T3 I.P., rebuilt it in 1911, and located a logging camp where the brook crossed the

37 GNP Forest Engineering Division Hopkins Academy, Dec. 8, 1927 and Plan of South Part of Indian Township 3, 1910

town line. The 1911 dam was 387 feet long with head of about 5 feet. Even though the area to the immediate south burned in the great 1825 fire, substantial trees were available forty to fifty years later. The main tote road ran from the lake’s south edge and paralleled Quakish Brook on its east side. Frank Fowler cut the areas surrounding Quakish Brook and the south edge of Quakish Lake in 1870, Wellington Henderson in 1874, Thomas Fowler Sr. in 1878, Freese and Brown and Company in 1879 and James F. Kimball in 1893.

Loggers around the Lower Chain Lakes

The logging crews reached the southernmost point of the Lower Chain Lakes at the southwest corner of South Twin Lake via the Nahmakanta Tote Road. In the fall when the small crew for building a camp, swamping a few roads, and generally preparing for the cutting season reached the lake, the men either struck out overland to a distant location on one of the lakes or they used bateaux they brought with them. Oxen and horses may have walked the shorelines or through the woods on uncut paths, and others may have ridden on a raft pulled by a bateau. Those coming in after ice up walked the lakes. In the spring, lumbermen who did not have to take their oxen or horses back to a summer home down country left them at one of the wilderness farms, such as Philbrook’s, until the next season.

Given the distance from the Philbrook shanty to South Twin Lake was the typical 10 miles between shanties, there might have been a winter camp and storehouse at the shore of the lake. The toting shanty at the head of Pemadumcook Lake at the mouth of Nahmakanta Stream

39 GNP Books, Measurements of Dams, Marc Johnson Papers, University of Maine Fogler Library Special Collections

40 Plan of South Part of Indian Township 3, 1910
was another 10 miles away. Some teamsters were probably headed to the mouth of the West Branch of the Penobscot. Their next 10 miles was at the foot of Ambajejus Lake where they stayed a night, perhaps at the boom house, before moving farther up the river.

Logging took place around the Lower Chain Lakes between about 1835 and 1870, but few records of individual crews remain. The Nahmakanta supply route crossed South Twin Lake, so loggers may have started cutting from there and moved farther into the watershed. Nicholas (Nick) G. Norcross, who owned much of the land surrounding North Twin Lake in the 1840s, probably logged the area before 1843.\(^\text{42}\) In 1846, Thoreau found the logging camp at North Twin Dam in use with John Morrison in charge and the camp at the head of Ambajejus Lake abandoned.\(^\text{43}\) In 1856 or earlier and into the 1870s, Hiram Gerrish, whose son Luther became a long-time North Twin Dam tender, was probably cutting on the Lower Chain Lakes based on registered logging marks and an 1863 Penobscot Log Driving Company (PLDC) ledger entry that shows he drove logs from Pemadumcook Lake to the Penobscot Boom at Nicatou Island.\(^\text{44}\)

Scalars’ records from the 1870s indicate loggers cut the north side of North Twin Lake in 1873, 1874, 1878, and 1879 and its west end in 1873. In 1874, Henderson and Boynton cut in the Ragged Lake area and either hauled or drove the logs to South Twin Lake. Eben Webster,

\(^{42}\) Penobscot County Registry of Deeds

\(^{43}\) see footnote 38

\(^{44}\) Penobscot County Registry of Deeds has a book of all registered log marks. The PLDC ledger is available at the Millinocket Historical Society.
Charles H. Estes, Richard Woodman, Hodgdon, and four other crews cut some place on the Lower Chain Lakes. Crews cut both the east and west ends of South Twin Lake in 1875. That same year, they also cut the east and north sides of the north cove of South Twin Lake. They returned the following year to cut the west side. In 1876, Wellington Henderson and Thomas Fowler Jr. cut at some unknown location near the lake. Moses P. Wadleigh, Eben Webster, Estes, Hayford and Stetson, Sanborn and Gilbert, James F. Kimball and Nutter, and Garland and Henderson all drove logs from the Lower Chain Lakes in 1875. A year later, these same men plus Estes, and Grant and Henderson drove logs from the lakes. Those driving logs in 1877 included Henderson and Gould, Hayford and Stetson, Cunningham and Stevens, and Estes. In 1878, Manning and Soper logged the Ragged Pond area, at the mouth of its outlet brook, South Twin Lake’s northernmost cove, and Partridge Cove, and Noah Gould cut on Grant Brook, which flows west to South Twin Lake. Joining them elsewhere on the Lower Chain Lakes were Sawyer, Rufus Wadleigh, Daniel Whitman, Hayford and Stetson, and James L. Smart. A year later, dam repair crews cut the needed hemlock near the North Twin Dam.

In 1881, Mayhew and Howard, G. W. Fiske, Oaks and Whitman, Elijah Webster, Atwell and McLoud, and Cunningham and Stevens all drove logs from different locations on the Lower Chain Lakes.\footnote{Penobscot Log Driving Company Record Book, available at Millinocket Historical Society} Benjamin Fiske logged on North Twin Lake with fifteen men and four horses in 1883.\footnote{Bangor Daily Whig and Courier, January 25, 1883} Three years later, Henry Priest and Powers cut some place near South Twin Lake. In 1889, Cornelius (Con) Murphy cut three million board feet around the foot of Pemadumcook
Lake, and Thomas Fowler Jr. cut a million board feet on Twitchell Brook at the head of the lake. A. M. Chase cut in Partridge Cove in 1894 and 1895.

Between 1893 and 1903, three major developments, largely centered at North Twin Dam, changed the way loggers functioned. The PLDC financed and began operating the first steam-powered boat for the purposes of moving supplies and towing the lumbermen’s booms on the Lower Chain Lakes. The Bangor and Aroostook Railroad reached the foot of North Twin Lake a year later and instantly became the new supply route for those cutting from Nollesemic Pond upriver. Late in 1900, the Great Northern Paper Company (GNP) mill on Millinocket Stream at the old Thomas Fowler Sr.’s farm above Nollesemic Pond began operating, which led to river infrastructure projects that included larger and additional dams.

North Twin Dam and Norcross as Logging Communities

North Twin Dam’s earliest documented structures were those of 1841 constructed by Benjamin Gilman’s men, who also built the dam. The location was the site of a yearly camp used by either those who logged nearby or the spring log drivers or both. Lumbermen built another camp, which became known as a boom house, on the point near the dam’s north side between 1847 and 1867. A boom house provided living quarters used consistently from year to year by river drivers who prepared and moved booms with a headworks or, later, a boat across lakes.

Sometime in the late 1850s and early 1860s, William McLaughlin and his family, Nicatou farmers and loggers, moved to this general area for a few years and presumably farmed and logged. By the late 1880s, Luther Gerrish lived at the dam and was in charge of the dam’s

48 U.S. Census
water flow and the boom. Before that, he was part of the nearly yearly repair crew at the dam. He was dam tender until at least 1901 and perhaps until 1918. His neighbor Charles T. Powers continued to run the toting service from his farm, the old Fowler farm, to Rhine’s Pitch at the foot of Quakish Lake until GNP bought his property for the mill site. No one other than these men seems to have inhabited the area with any permanence until about the early 1890s.

Activity at the dam changed dramatically in 1893–1894. About 1892, members of the PLDC decided to finance and operate a steamboat on the Lower Chain Lakes. Fred A. Fowler, nephew of Thomas Fowler Jr., toted the boat’s two 10-ton boilers and hardware from Nicatou to the old Fowler farm and over a new tote road he cut from there to the dam. The boat, built at the dam, began operating in May 1893. A year later, the Bangor and Aroostook Railroad touched the east end of South Twin Lake, the foot of North Twin Lake’s southernmost cove, and crossed the river just below the dam. The rail line replaced the old supply routes, the Nahmakanta Tote Road, and the stage road that followed the east side of the Penobscot River to Nicatou.

Six years later marked the start of many more changes. With the formation of GNP in 1900, the number of structures at the dam multiplied and by 1903 included a boom house, a stable for eight horses, a blacksmith shop and office building, and three boarding houses with cooking, one for fifteen men, one for forty men, and the other was a 22- by 60-foot structure. The link between the new GNP mill and this site was the Fowler-cut 1892 tote road that

49 ancestry.com and U.S. Census
50 Penobscot County Registry of Deeds
51 *The Northern*, May 1928 (GNP monthly magazine of the 1920s)
52 conversations with Albert Fowler and *The Northern*
53 Insurance memorandum of buildings at North Twin Dam 1903 and 1904; available at Millinocket Historical Society
remained rough until workers spread coal ash from the mill on it about 1928.54 In 1934, it became a gravel road and part of the first road to Brownville. GNP gradually added other structures that included a dwelling, office, two storehouses, boathouse, shop, engine house, two conveyors, recreation building, oil tank, winch shelter, siding, and an unloading plant. The community buildings were on the north side of the dam and clustered on the point.55 The company was still insuring these in 1954.

GNP wintered its towboat and smaller boats at the dam in the dry docks on its south and north sides. The company also used an old boathouse (c. 1880) at the south side of the dam until the log drives ended in 1971.56 Repair crews lived in the log drivers’ quarters when they performed boat maintenance in the fall.

The last use of the dam’s community buildings was about 1950 to 1953 when GNP housed men working on the power line from the new McKay Power House to the mill.57 Only two buildings were standing in 2012: the old engine house and the Gerrish cottage. GNP built the Gerrish cottage about 1919.58 The camp likely sits on the site of the original Gerrish camp (c. 1894).

Two miles south of the dam, the railroad passed the foot of a large teardrop-shaped cove, the southernmost cove of North Twin Lake. The foot of the cove was four to five miles by water

55 \textit{West Branch Driving and Reservoir Dam Co. 1920's-1950's}, “structures 1953;” available at Millinocket Historical Society

56 conversation with Chuck Harris

57 conversations with Bob Hamlin

58 GNP plans for the Gerrish Cottage design, 1917; available at Katahdin Forest Management Maine Division of Acadian Timber Archives
from the dam, and those miles likely precluded loggers from using it as a staging area before the arrival of the railroad. Bert Haynes and his crew logged the area in 1892.59

Exactly when the cove became known as Norcross Cove is unknown, but sometime between about 1831 and 1843, Nicholas (Nick) G. Norcross mistakenly drove logs through the cove’s narrow opening rather than the nearby narrows at Snake Point. Norcross, an early West Branch lumberman of Bangor, was allegedly the first to drive logs through Ripogenus Gorge (c.1831) and provide men with life preservers.60 His Penobscot operations caused him to fall on some hard financial times, and he left Maine about 1843 and moved to Lowell, Massachusetts, where he and partner John Fiske built two dams, a huge sawmill, and planer mill on the Merrimack River. Norcross held an important patent for the planer. His early work on the Penobscot River and then the Merrimack River led some to refer to him as the “New England Timber King.”

When the railroad reached Norcross Cove, Wilbur R. and Emma Stratton from downriver at Chester, Maine, opened the Stratton House, which sat on a small knoll between the rails and the foot of the cove.61 The Strattons also constructed a wharf. The railroad company built facilities for the section crew, and railroad station agent Ernest A. Atherton opened a general store. These facilities served loggers, railroad section workers, and sports. Four years later, the Stratton House burned and Fred A. Fowler built a new hotel, the Norcross House, nearer the railroad.62 In 1900, Frank Mooney was the railroad agent, and he and his wife Bertha housed

59 Haynes family records courtesy of Sandy Haynes
60 Norcross, Nicholas G. www.vintagemachinery.org
61 ancestry.com
62 conversations with Albert Fowler family members
eighteen boarders. The community, now known as Norcross, had a doctor and a hardware and sporting goods store.63

With the 1903 rebuilding of the North Twin Dam and its increased head, Norcross was no longer at the bottom of a tear drop cove, but rather at the foot of the full reach of North Twin Lake and with direct access to South Twin Lake and to Snake Point where drivers opened the booms so the logs could continue downriver. In 1904, brothers Albert F. and Fred A. Fowler built their large wharf to the south of the old Stratton wharf and Norcross became GNP’s supply hub for the logging operations at North Twin Dam, the Debsconeag lakes, and Nahmakanta Stream and Lake and its tributaries such as Rainbow Lake.64 Eventually a railroad siding ran the length of the wharf where boats, and teamsters in winter, called for supplies. When GNP and other lumbermen used it, they paid a tonnage fee that at one point was one dollar per ton. GNP docked here to fuel its steamers and to sit out bad weather. For those traveling downriver, an early tote road connected Norcross with the west point on Quakish Lake. The Fowler family rebuilt the wharf in the 1950s, and they sold the land, buildings and wharf to GNP in the late 1960s.65 GNP removed most of the buildings after the final river drive in 1971 and the wharf in the winter of 1975.66

\textbf{Post-1894 Logging around Quakish and the Lower Chain Lakes}

As soon as the railroad reached Norcross Cove, the routes and means by which loggers supplied their cutting operations on the Lower Chain Lakes and Quakish Lake changed. The new steam-

63 U.S. Census

64 Norcross Heritage Trust. \url{http://norcrossheritagetrust.org}

65 conversations with Albert Fowler

66 conversations with Chuck Harris
powered side-wheeler began ferrying supplies, and in the winter, teamsters came across the ice from the camps, loaded their sleds, stayed the night, and toted back to the camp. The lumbermen probably built up their supplies so they had enough from the time the ice softened until they could use boats. Those lumbermen cutting on Quakish Lake had their teamsters use the tote road that ran up along the river’s south side to North Twin Dam and Norcross. Below Quakish Lake, the loggers continued to be primarily those who lived in the Nicatou area and received supplies via the Penobscot River.

Once the Great Northern Paper Company (GNP) started its operations in 1901, supplies for the camps around the north and west sides of the lakes came from Millinocket Station when crews could not travel the lakes. The company developed a network of tote roads by 1915 that went northwest from Millinocket Station to Grant Brook camp where the road forked. One route went to Debsconeag camp at the head of Pemadumcook Lake. From there, the Millinocket Tote Road followed the edge of Pemadumcook Lake and turned south over the shoulder of Potaywadjo Ridge to the west end of Lower Jo-Mary Lake’s shore, which it followed to the Cooper Brook Tote Road that ran along the north side of Cooper Brook to Yoke Ponds, the company’s furthest operation to the southwest. Another tote road, Norcross Tote Road, left from the Perkins railroad siding south of Norcross and swung around the south side of South Twin, Turkeytail, and Middle Jo-Mary lakes to the Cooper Brook Tote Road.

Below Norcross, frequent cutting continued at Quakish Lake with crews of both Charles W. Mullen and James F. Kimball operating in 1893, unknown crews in 1895, James M. McNulty in 1899, J. W. Burke and Son and James Daigle in 1901, and Moses P. Wadleigh and Francisco

67 GNP map of Storehouses and supply distribution network, 1913
Logging resumed in the Quakish Lake area from 1914 to 1917. Albert Bergeron’s crews cut in 1947 at another unknown location on the lake. That same year, a crew picked the edges of Quakish Lake for “deadheads,” loaded them on rafts, and towed them to a truck dock for transportation to the mill. The operation salvaged 1,550 cords the first year and 758 cords the following year with a twelve-man crew picking 35 to 40 cords a day.

Two camps operated not far south of the T3 I.P. town line on Quakish Brook in 1909. The camp in the stream’s headwaters was at the junction of tote roads from both Norcross and Perkins Siding on South Twin Lake. The James Sewall Company’s 1920 survey assessed the brook as not drivable, which probably meant loggers needed to clean it out again because they drove the brook in 1930. Substantial Bergeron operations took place in 1934 and 1941. Logging also occurred on the east side downstream into the northwest corner of Hopkins Academy Grant in 1942 and 1943. The 1945 Sewall survey indicated loggers cleared the stream and recently drove the brook, but it included no mention of a dam. In 1947, a drive crew drove 150 unneeded boom logs down the stream. During the 1950s, Albert L. Fowler hunted the area, took care of the dam, and opened and closed the gates to maintain a flowage behind it to attract ducks. Loggers may have used the dam a number of times before it washed out about

68 see footnote 33 and Daily Kennebec Journal, April 3, 1902
69 GNP Weekly Newsletter, April 1947
70 Sewall, James W. Field Explorations for Township Hopkins Academy, 1920.
71 Timber Map Northwest Portion Hopkins Academy Grant, Northeast Portion Long A, March 1944
72 Sewall, James W. Hopkins Academy Grant, Penobscot County Maine. 1945.
73 GNP Weekly Newsletter, April 1947
74 conversations with Albert Fowler
1961. In 1970, GNP built a temporary dam some place on Quakish Brook, and the crew that piled logs in the stream had to use dynamite to break them apart for the spring drive.75

Logging continued around the Lower Chain Lakes between 1900 and 1910.76 At Elbow Lake in 1905, James F. Kimball and George J. Maher cut from a camp on the north side and an unknown entity logged in 1909. James M. McNulty operated on North Twin in 1900 and James Daigle in 1902. On South Twin Lake, Daigle cut in 1902 and Francisco O. Estes and Daigle cut in 1903. The Twin Lake Lumber Company harvested North Twin Lake’s second-growth pines in 1904. Estes landed logs on South Twin Lake and cut on Long A township in 1903 and 1905. James C. Rice was on Pemadumcook Lake in 1904, as was another crew in 1908. About 1909, Estes logged north of South Twin Lake around Lincoln Pond and had a camp on the outlet stream halfway between the pond and the lake. Some of these operations cut for sawmills and some for the GNP mills. In 1905, Gerrit S. Stanton described the area around the Lower Chain Lakes as stripped of both large and small wood.77

Lumber camps sprang up at a number of key locations around Pemadumcook Lake. Some of them eventually supported more extensive logging operations farther away from Pemadumcook Lake’s shores. The 1901–1904 logging camp at the mouth of Jo-Mary Stream became an important GNP staging area for cutting in the Jo-Mary lakes watersheds. Less than 2 miles to the west, Stephen built his cutting camp in 1902 and a crew used it seven years later. In 1911, GNP used dimension lumber to rebuild the log camp that included a kitchen and dining

75 conversations with Dana Brown

76 Scalars’ reports by location 1901-1913, GNP Papers, University of Maine Fogler Library Special Collections

area, bunk space for twenty men, and a storehouse.78 A tote road connected the wharf on Pemadumcook to the one on Lower Jo-Mary Lake.79 Loggers used this route when logs and booms blocked Jo-Mary Stream. The 1908 forest fire stopped about a quarter-mile west of the tote road.80 The frequently used area became known as Stephensons Landing.

At Twitchell Brook, what Frank E. Tuck and Wilmont H. Davis used for a camp when they cut on the brook in 1909 is unknown, but GNP rebuilt a camp there in 1911 with room for twenty to dine and sleep.81 The May 1911 forest fire burned the Twitchell Brook camps, one at the lake’s edge, another upstream with a horse hovel at the base of the mountain, and another partway up the mountainside.82 Crews saved the logs at the landing. Loggers eventually rebuilt the camps and logged the full extent of the brook and its valley a number of years after the fire. The drive on the brook in the late 1930s and early 1940s used small horse dams and generally took a couple weeks.83 Mary Myshrall, who ran the sporting camps at White House Landing at the time, baked bread for the men.84

In 1913 at Nahmakanta Stream, GNP rebuilt the old logging camps to create the Debsconeag depot camp.85 The camp, which housed eighty men, served operations to the north and all of the north side of Pemadumcook Lake. As a part of that operation, GNP built a cutting

78 GNP structures inventory, GNP Papers, University of Maine Fogler Library Special Collections
79 Topographic Map T I. R X, September 1909
80 see footnote 79
81 GNP 1916 Building Inventory, GNP Papers University of Maine Fogler Library Special Collections
82 see footnote 79 and Township 1 Range 10, State Ass. Report, 1912
83 conversations with Shorty Budreau and Larry Ferguson
84 conversations with Shorty Budreau
camp 3 miles to the east at the west edge of Moose Cove in 1912. A year earlier, GNP built a camp at Ambajejus Point. Exactly when they built or rebuilt the camp at Lone Point, a half-mile west of Ambajejus Point and north of Porus Islands is unknown. Loggers cut from about the midpoint of the north shore north and west in 1916.

By 1922, GNP was again logging the area to the west of the Ambajejus Boom House. The log camp was near the lakeshore, west of the Ambajejus Boom House, and included a boarding house for sixty men and two smaller buildings. Not far away was a farm that had animals and grew crops. A tote road connected it to the floating bridge over the West Branch at the islands below Passamagamet Falls. Loggers cut easterly from the Moose Cove area on Pemadumcook Lake in 1923 and the northeast side of Ambajejus Lake in 1928 and 1929.

Lumbermen continued cutting on the lakes’ edges in the late 1930s and 1940s. In 1930, crews were on the shores of South Twin Lake and its east edges in 1934, and in 1936 between Partridge Cove and the deep cove at East Ragged Stream. A couple small camps were at the head of South Twin Lake. Ernest Ladd cut pine in 1931 between the mouth of Nahmakanta Stream on Pemadumcook and Moose Cove landing it on both Pemadumcook and Passamagamet lakes. During the 1938 season, crews cut the whole of the landmass that separates Ambajejus Lake from Pemadumcook Lake. In 1939, Dennis Michaud’s camps one and two were on the north side of South Twin Lake, another crew cut to the east of Deep Cove, and others logged the

86 mapped cuts for this area: GNP Division Forest Engineering Township 1 Range 9 March 24, 1932 (2 maps with same date with different cutting years)

87 mapped cuts on: GNP Division of Forest Engineering Township No.4 – Indian Purchase, November 12, 1915

88 mapped on Plan of T.1 R.10, State Ass. Report, 1914
north side of Pemadumcook Lake from Moose Cove west to the mouth of Nahmakanta Stream.89 Michaud also had a crew cutting to the north of Wadleigh Pond and hauling to Deep Cove.

In the 1940s, cuts at the west end and south edge of Pemadumcook Lake did not include land burned in the 1903, 1908, and 1911 fires.90 About 1940, LeGassey had a cutting operation at the head of South Twin Lake. In 1940, Albert Bergeron located his camp on the west side at the narrows between Pemadumcook and North Twin lakes.91 His cut extended north to Jo-Mary Stream and west to Lower Jo-Mary Lake. Another of his crews cut the south side of Pemadumcook from Jo-Mary Stream west to Twitchell Brook. For this operation, his crew toted supplies from the Ambajejus Dike wharf, which they used for free rather than paying at Norcross. A year later, they cut from the west end of the lake west along Nahmakanta Stream, and in 1942, Bergeron logged a parcel partway between the mouth of Nahmakanta Stream and Moose Cove. Remi Raymond hauled wood cut to the east of Partridge Cove to a stacker at the cove’s southeast corner in 1942.92 That same year and the previous one, loggers cut the south side of Pemadumcook Lake westerly to the east edge of Lower Jo-Mary Lake.93 In 1943, they moved west to Twitchell Brook and Deer Brook.94

92 GNP’s \textit{Weekly Newsletter}, March 1947

93 GNP Division of Forest Engineering Township No.4 – Indian Purchase, November 12, 1915

94 GNP Division of Forest Engineering Township 1 Range 10, September 18, 1940
The last major cuts around the lakes’ edges were in the late 1940s. Raymond cut wood in the headwaters of Quakish Brook in 1947 and hauled it onto the ice at Partridge Cove.\(^95\) Howard Yeo and his son Larry had a small cutting job on the north side of North Twin Lake in 1949 and found cords of stacked hemlock bark that a logger never moved to one of the tanneries downriver.\(^96\) A June 1949 GNP crew cut 869 cords of dry-ki that had accumulated around the Lower Chain Lakes.\(^97\) This type of cleanup activity happened periodically. The cuts in the 1950s were generally those of small jobbers. Between the early 1950s and at least 1956 tractors pulled log racks onto the ice at the south end of Partridge Cove where a crew unloaded them.\(^98\) By the time the practice ended with the drive of 1957, trucks from as far away as Brownville drove onto the ice and dumped their loads.

The Log Drive: Across the Lower Chain Lakes to North Twin Dam and on to Nicatou Island

The Drive before 1901

Before 1901, the third leg of the West Branch of the Penobscot River log drive was between the head of Ambajejus Lake and North Twin Dam. Loggers who cut on or at the edge of one of the Lower Chain Lakes boomed their logs at ice-out. At the head of Ambajejus Lake, drivers collected the logs driven from up river. Other crews reboomed the logs from the Rainbow Lake and Pollywog Pond watersheds at the mouth of Nahmakanta Steam on Pemadumcook Lake. At

\(^95\) GNP *Weekly Newsletter*, March 1947

\(^96\) conversations with Larry Yeo

\(^97\) GNP *Weekly Newsletter*, June 1949

\(^98\) conversations with Larry Yeo
the mouth of Jo-Mary Stream on the south side of Pemadumcook Lake, the drivers gathered logs from the Cooper Brook and Jo-Mary watersheds. In the very first years, the early 1830s, some logs came down these waterways in rafts and others came individually. By 1840, nearly all logs arrived singly. The outlet of North Twin Lake was the sole destination for logs until the 1890s when sawmills began to dot the lakes’ edges.

Before the drive started, crews came in across the ice and began preparations. Beginning as early as the mid-1830s, crews began developing an extensive system of side booms used in filling boom bags and keeping logs lost from the boom bags out of the many coves of the Lower Chain Lakes. The crew reset the side booms, cut and made boom logs, added side booms to unblocked coves, prepared boom bags, repaired or built new headworks, and toted in necessary equipment and enough supplies for the duration of the drive to Nicatou Island.

Some crews lived in what became known as “boom houses.” Men, probably from the crews of such lumbermen as Stephen Cummings, E. B. Escher, Robert Gibson, Enoch Paine, and A. Shaw built the first one in 1835 on Ambajejus Lake above the outlet. The site was halfway in travel time between Thomas Fowler Sr.’s farm on Millinocket Stream and Abol Stream. The boom house, which had a sand and gravel landing and faced east, was near the corner of the turn into the thoroughfare to Deep Cove. This crew likely took care of the logs as they entered and exited Ambajejus Lake, and in Deep Cove. Another boom house, operating in 1867 and likely well before, was at North Twin Dam on the north side. In the earliest years, drivers likely used the logging camp at the south end of the dam. Drivers here probably worked from Indian Point at the head of North Twin Lake to the outlet of Quakish Lake until about 1900. The logging camps

99 based on wording used in the charter for the West Branch Boom Company, 1835

100 conversation with Chuck Harris and documents at the Ambajejus Boom House
at the mouth of Nahmakanta Stream and Jo-Mary Stream served as boom houses for drivers in those areas.

The earliest drive crews of such lumbermen as Robert Boyd, Stephen Cummings, James Head, and Enoch Paine moved their logs unimpeded by any dam until 1842 when they first encountered the North Twin Dam at the foot of Elbow Lake. The dam raised the water level in the lake and turned the river between it and into the mouth of North Twin Lake into quick water. North Twin Lake was 4 miles long with a half-mile thoroughfare of rapids and a crooked passage requiring poling to reach Pemadumcook Lake. At a mile across the east end of Pemadumcook was the thoroughfare into Deep Cove (East Bay). Bordering the thoroughfare’s east side was the mainland and its west side, Long Island, which constituted most of the east end of Pemadumcook Lake. Two miles across Deep Cove was Ambajejus Point, and another 3 miles through the narrows into and across Ambajejus Lake was the head of the lake a half-mile below Ambajejus Falls.

In 1847, lumbermen William Emerson, Isaac Farrar, Samuel P. Hersey, James Jenkins, William McCrillis, and S. P. and H. Strickland sought and received a charter for a new North Twin Dam Company with authority to “purchase and maintain” the dam and increase the head to 12 feet. The increased impoundment deepened the water through North Twin Lake and into Nicks Gut at the outlet of Deep Cove. Logs still passed over Ambajejus Falls, through a sharp turn to the south, and an S turn with two more small falls to enter the lake. The drive bosses such

as Aaron Babb, John B. Ross, Lysander Strickland, and Jesse R. Wadleigh worked that flow for
the next twenty years.103

The dam’s head increased again in 1867 when the well-known Maine dam builder
William Jasper Johnston, who repaired the old dam in 1866, directed the rebuilding of the dam
with a 16-foot head.104 The new head widened and deepened all the thoroughfares in the Lower
Chain Lakes, and necessitated the construction of the Ambajejus dike at the head of Spencer
Cove. The dike prevented water from draining into Millinocket Lake. The higher water flooded
out portions of Long Island, and the remaining landmasses became known as Porus Islands. The
dam had no impact at either Ambajejus Falls, which was still a point of logjams, or at the foot of
the lake, which was still too narrow for the passage of booms. Between 1868 and 1890, Johnston
directed dam repairs in thirteen different years.105 High water washed out or badly damaged the
dam at least twice, once in May 1879 and again in May 1887.106 In 1887, the drive crew put logs
through the remains of the dam. Each time crews repaired the dam in the fall at low water. The
dam needed repairs again in 1889 when it had eighteen gates.

In the fall of 1881, Charles E. Hamlin found the Lower Chain Lakes as follows: a mile of
thoroughfare above North Twin Dam, 4 miles of lake travel to the short thoroughfare to
Pemadumcook Lake, 3 miles of lake to Deep Cove, and 2 miles across Deep Cove to a 2-mile
passage into Ambajejus Lake. He also noted that one could paddle through Pemadumcook Lake

103 The drive boss names are from: Hempstead, Alfred G., \textit{The Penobscot Boom}. Orono: University of
Maine Press, 1931.

104 William Jasper Johnston Papers, University of Maine Fogler Library Special Collections

105 see footnote 104

106 \textit{Bangor Daily Whig and Courier}, May 13, 1879; \textit{Daily Kennebec Journal} May 22, 1879; \textit{Bangor Daily
Whig and Courier}, May 10, 1887 and May 17, 1887
along the west side of the Porus Islands and at Gull Rock turn easterly through a narrow and shallow, not easy to negotiate, waterway to get into the west end of Deep Cove.

In 1891, drive boss Cornelius (Con) Murphy, his crew of 250 to 300 men, and the rear of the Penobscot Log Driving Company (PLDC) drive’s second leg, Ripogenus Lake to Ambajejus Lake, reached the head of Ambajejus in early July as it typically did. Here he replenished his supplies for another thirty days for about 200 men including a support cadre of 16 cooks and assistant cooks, known as cookies, and a few blacksmiths. A portion of his crew had already begun the arduous task of towing the booms across the Lower Chain Lakes. Probably about 36 men in three units took care of the log booming on the Lower Chain Lakes, six to nine headworks with 16 men each, operated on Ambajejus, North Twin, and Pemadumcook lakes with each having two accompanying bateaux of 4 to 10 men, and another 20 men sluiced at North Twin Dam. Other men were already in the drive camps between North Twin Dam and Nicatou Island preparing for the drive.

At the head of Ambajejus Lake, Murphy’s crew collected the logs, which the river current pushed into boom bags containing two to three million board feet each. If the average log was 16 feet long and 16 inches in diameter, then a boom bag with two to three million board feet contained an estimated 14,285 to 21,429 logs that covered a water surface area encompassing seven to eleven football fields, a square space of 585 to 717 feet per side. His crew did some

108 Fanny Hardy Eckstorm papers, University of Maine Fogler Library Special Collections, “West Branch Drive 1891” and other PLDC records

109 based on the drive usually reaching Nicatou by early August; the number of men is a Geller estimate based on known deployment of men
sorting if they knew one lumberman had enough to fill a boom bag and tried to keep them together from this point down river.110

A huge flat top rock at the lake’s inlet was always a key booming anchor point and it eventually had a large eye pin. The rock was part of a network of piers connected by booms that kept the logs moving straight from the river’s mouth into the lake and away from the backside of the island and out of the cove to the north. Crews used the north cove to check, repair, and prepare empty boom bags returned from their journey down the lake. As some drivers closed a full boom bag and towed it out of the way, another crew positioned an empty one.111

Both Murphy’s drivers and their predecessors used headworks to tow these boom bags across the lakes to North Twin Dam. The headworks were generally 14 logs wide and cross-piled 3 deep.112 Their capstans had eight bars each pushed by two men. Each raft also had two snubbing posts, one of which doubled as the hitch for the cable to the log boom. Navigating a 14,285-log boom was a challenging task once it had some momentum. Even though headworks moved the booms slowly, they were massive enough not to lose much of their momentum each time the drivers moved the anchor.

Typically, the headworks towed as close to shore as possible as a hedge against being caught in a sudden wind and losing the boom.113 If the breeze was quartering off shore, the crew did not use the anchor, but played out the towline by wrapping it around a tree on shore and controlled the speed of the boom as the wind pushed the boom out into and down the lake

110 Fanny Hardy Eckstorm papers, University of Maine Fogler Library Special Collections, personal journal
111 conversations with Dana Brown
112 Fanny Hardy Eckstorm papers, University of Maine Fogler Library Special Collections, notes of a conversation with Lewy Ketchum
113 see footnote 112
(warping). If the breeze was quartering on shore, then the headworks used the anchor and towed from the lakeside of the boom that the wind pushed toward shore. With a breeze from the rear, the crew positioned the headworks at the rear of the boom, anchored it, wrapped the line around a post set in the raft, and warped the boom down the lake. The friction was often so great that even with wet ropes, the capstan smoked and occasionally caught fire. Tension on the ropes sometimes caused them to snap, and when that happened, men were either hurt or killed by the whip of the recoil.

At the foot of Ambajejus Lake, Murphy’s drivers released the logs from the boom for their passage into Deep Cove. \(^{114}\) They returned to the head of Ambajejus with the headworks and an empty boom bag. At Deep Cove, another crew of sixteen or more men captured the logs in a boom bag that they towed across the cove and through the narrows, Nicks Gut, into the east end of Pemadumcook Lake. The drivers repeated the boom opening and rebooming process at Indian Point, the outlet of Pemadumcook. At Snake Point, the outlet of North Twin Lake, crews opened the booms for the final leg of the drive.

Murphy’s crews, as had their predecessors, moved a boom across the lakes at about a quarter mile per hour. Their trip from the head of Ambajejus Lake to Snake Point took forty hours plus the time to open and close the boom at each narrows. A trip from the mouth of Nahmakanta Stream was fifty-one hours. An unfavorable breeze or heavy fog halted the progress, and the crew tied off the boom to the shore or an island. When towing at night, the crew used fires on the shores to help guide them.

With the rebuilding of the North Twin Dam in 1867 and a full or near full head of water, Murphy’s crew could tow from the head of Ambajejus Lake to Snake Point and only have to

\(^{114}\) conversations with Larry Yeo helped me understand how the men moved booms
open and refill a boom bag at the Ambajejus Lake outlet. Drivers sized the boom bags so they could fit through the narrows at Nicks Gut, and Indian Point. At low water, drivers still had to resort to opening and refilling the boom bag at the outlet of Ambajejus Lake and Indian Point.

Towing across the lakes was a never-ending challenge given inconsistent water levels, narrows, shifting sandbars, and exposed rocks. Efforts to improve the channels happened periodically for more than eighty years. The earliest documented work on the route was in 1886 when the PLDC hired Johnston to clear the boom channel between Ambajejus Lake outlet and Pemadumcook Lake.115 Despite the improvements, problems persisted at low water with booms dragging across part of a large flat exposed island in the thoroughfare to Pemadumcook.

Boom towing changed from headworks to steamboats in 1893 when Isaac A. Terrill was drive boss.116 That spring at ice-out, the PLDC launched its first boom towing boat, the side-wheeler *F.W. Ayer*. John B. Ross, a highly regarded logger who headed the drive in thirteen of the previous twenty-nine years, and Fred W. Ayer, a lumberman and pulp dealer who resided in Bangor, were both members of the PLDC, and were those responsible for leading the effort to have the *Ayer*.117 Captain Hopkins directed the construction of the 100-foot boat at North Twin Dam’s north side during the winter and spring of 1893 and successfully launched it in May 1893.118

A year after the PLDC launched the *F.W. Ayer*, enterprising men opened the first two hotels, the Stratton House and South Twin House, and launched smaller steamboats to transport their guests around the lakes. The loggers hired the South Twin House’s *Josephine, Agnes*, and

115 William Jasper Johnston papers, University of Maine Fogler Library Special Collections
117 *Bangor Daily Whig and Courier*, May 26, 1893
118 see footnote 117
Irma, and the Stratton House’s *Gypsie* to carry supplies and men, and tow empty boom bags. Whether the three South Twin House boats all operated at the same time is unknown, but it appears only *Irma* was functioning in 1901 when Wilbur R. Stratton, who operated other boats on the lake, bought it.¹¹⁹

Assisting the headworks and later the towboats were smaller boats. Each of Con Murphy’s headworks had two supporting bateaux that constantly rowed the edges of the boom bag checking for breaks. The early boom pinning strategy resulted in frequent breaks until about 1886 when drivers began using boom chains. The circling bateau may not have been necessary once the *F.W. Ayer* was in service. Captain Hopkins and a mate standing in the wheelhouse were perhaps high enough to look out across the boom and notice a break. The supporting bateau crew still attended to any breaks in the boom, assisted in tying off a boom when the wind was too strong, helped open booms at the narrows, and reboomed logs.

Hopkins towed booms of two to three million board feet at about three-quarters of a mile per hour.¹²⁰ If all went well, it generally took thirteen hours to tow from the head of Ambajejus Lake to Snake Point and seventeen hours from the mouth of Nahmakanta Stream across Pemadumcook Lake to Snake Point. The distance between the towboat and the boom was always substantial so that the wake of the boat would not disturb the boom. The speed was also necessarily slow to minimize the pressure on the logs so they would not roll under and out of the boom bag. When Hopkins or any other captain encountered a headwind or fog, he stopped and

¹¹⁹ based on advertising in *In the Maine Woods* and O’Reilly, J. T. “J.T. O’Reilly’s Record, West Branch Drive, 1905.” North Twin, Maine, 1905.

¹²⁰ a calculation based on information in the O.A. Harkness log book
the drive crew tied off the boom bag to a large tree or rock outcrop. The boat towed only during daylight in favorable weather conditions.121

As Murphy’s last boom bag of the season left the head of Ambajejus Lake, his men moved the drive camp to North Twin Dam. Some of his bateau crews were perhaps sweeping the coves of the Lower Chain Lakes. At Snake Point where the river current replaced towing, another crew opened the trip boom, a chain of logs that blocked the passage through the narrows at Snake Point. When the trip boom was open, the current swung it downstream on a cable or rope weighted down so logs could float freely through. To pull the boom back across, the river men used a headworks typically made of nine to eleven logs. Closing such a boom took two men, as would the headworks replacement, a winch with a hand crank. As the trip boom opened a bateau crew then opened the boom bag so logs could pass out of it on the river current. The trip boom also kept logs from either being blown back into North Twin Lake or floating through when there was a jam downriver.

Between 1841 and 1867, drive bosses such as Samuel Brailey, Richard Hinman, I. J. Palmer, and George Smith probably used side booms to keep logs out of coves and away from swampy edges of Elbow Lake.122 At the dam, Murphy’s men, as did their predecessors—such as Henry Davis, Samuel W. Hodgdon, E. H. Hunting, Hosea B. Maynard, and James L. Smart, had to sluice the logs. With a strong upriver wind, they halted the sluicing and closed the trip boom to hold the logs near the dam. The rebuilding of the dam in 1867 offered no new sluicing challenges, but the PLDC—perhaps under the direction of John B. Ross, who was drive boss in

121 conversations with Larry Yeo involving boom towing

122 drive boss names from: Hempstead, Alfred G., \textit{The Penobscot Boom}. Orono: University of Maine Press, 1931.
1867, 1868, 1869, and 1871—built a pier and boom-lined channel through a greatly enlarged Elbow Lake.123

At the dam, Murphy’s crew needed the usual couple weeks to sluice all the logs. As they sluiced, loggers who cut between the dam and Nicatou Island moved their logs from landings into the river and joined the now-massive log drive. The last 12 miles of river below the dam included ten named rapids plus Grand Pitch. The drive on this section of river typically took about three weeks.

Before Murphy’s first headworks started to move logs across the Lower Chain Lakes, a small crew with its bateau moved into each of the drive camps downriver. They were at the outlets of Elbow and Quakish lakes, the mouth of Millinocket Stream, and probably Miner Brook and Midkiff landing on the south side at Burnt Land Rapids, and Nicatou. Crews opened the camps, prepared the various types of booms, cleared the drive paths, set the trip booms, put up the signaling systems, and readied the bateaux.

The men positioned themselves on both sides of the river so they could keep the logs moving through their section. The first priority was to maintain an open channel, and they had little time to deal with logs snagged or washed on the banks or jams away from the main current. Substantial rains or dam releases to break upriver jams raised the water level and pushed logs into the woods beyond the banks. If a jam did begin to form in the main current and the men could not minimize it, then one runner went downriver for more men and another went upriver to help close the trip boom, which stopped the log flow.124

124 conversations with Dana Brown
Once Murphy’s crew sluiced the logs at the dam, their work and what they encountered downstream was no different from that of their predecessors. The largest portion of the crew followed the last log and picked stray logs off the banks and out of the woods and broke the remaining jams that were at the edges of the main channel (picking the rear). As the last log passed each drive camp, its crew joined this effort. The last person down the river was a clerk who noted by log mark logs left behind. The log marks were cut into the side of the log with an axe. Some later loggers and the Great Northern Paper Company (GNP) used a heavy iron stamp mounted like a sledgehammer.

The rapid and quick water below Elbow Lake moved the logs into Quakish Lake and through the boom-lined channel to the trip boom at the foot of the lake. The boom stopped the log flow when a jam formed between the outlet and the head of Nollesemic Pond. Beyond the boom, the current carried the logs over Rhine’s Pitch, down the 2 miles of Island Falls Rapids where crews dammed the waterway between the lower two islands to keep logs in the channel on either side of the islands.

At Island Falls in 1867, John F. Fowler, using his renowned bateau skills in the dark of night, saved a surviving number of men stranded on the jam in the middle of the river. A mile below that spot on July 4, 1870, Joseph Attien, Henry David Thoreau’s river guide for his 1853 trip and the youngest (thirty-three years of age) elected chief of the Penobscot Nation in 1862, drowned in a river-driving accident at Island Falls above Grand Pitch. Con Murphy and John Ross were the co-leaders of that drive in 1870. They told the drivers, who had just broken a

125 map of West Branch of Penobscot River from North Twin Lake to Medway, Great Northern Paper Co. Millinocket, Maine April 27, 1906 available at Millinocket Historical Society

127 “Saved from Death by Murphy’s Grit,” *Bangor Weekly Commercial, April 20, 1905*
small jam, to run the river with their boats to just above Grand Pitch. Con was in the first boat
down the wild rapids and it soon filled with water forcing them ashore. Joe Attien was in the
second boat to come down, but it swamped and dumped the men in the river. Con saw what
happened and immediately he and Debiah Johnson, Fred Gilman and Victor Durgin pushed their
boat back into the frothing river. They managed to save the other four men. Just as they pulled
Nate McCausland, the last man, into the boat a log shot in front of them. Con jumped out onto
the log and rolled it as the men pulled on the oars to stay clear. Con sprang back in the boat and
they pulled for the shore. Fellow river drivers remembered men who died on this section of river
by carving their names in the rocks at the pitch where the water cascaded over a 20-foot falls.128

Although no discovered account describes the drive between Rhine’s Pitch and
Nollesemic Pond, it seems probable that drive bosses handled it like they did upriver at
Ripogenus Gorge. The pre-drive preparations included setting up the signaling system. Men
positioned themselves within sight of each other between the pitch and Nollesemic Pond. At
night, they signaled with torches, and during the day with either a torch or a flag system that
communicated one of four messages: stop the logs, stop the water, release more water, and start
logs and water again. Between the dam and Nicatou Island, runners and bateau men carried the
communications before the phone system (c. 1903), a series of wire-connected boxes nailed to
trees along the river.

The river current carried the logs through the boom works of Nollesemic Pond to its
outlet and on to Nicatou Island. In the early years when lumbermen were each conducting their
own drives, they used a trip boom at the foot of Nollesemic Pond to recollect their logs after

drivers cleared them from jams on Island Falls and Grand Pitch. This boom also held logs from going downriver if jams blocked the way.

Once exiting Nolleseemic Pond, a dam between Upper Pond Falls Island and Pond Falls Island forced the logs to pass on either side of the dam before they passed through Jerry Brook Rapids. Crews blocked the small back channel above Jerry Brook. Below Jerry Brook was Shingle Camp Rapids, which ended above the Watson farm. Two miles below the farm was Ledge Falls where a rock crib side dam blocked the channel on the south side of the second island. Dolby Rapids began below the island and ended at Schoodic Stream. Drivers likely used a side boom to block the west side channel of the long narrow island opposite the mouth of Schoodic Stream. Rocky Rapids followed and drivers probably used side booms to keep the logs in the channel on the north side of the islands, as they might have at Burnt Land Rapids with its four narrow islands near the river’s south edge just above the TAR6 town line. Below this section, neither Waite Rapids nor Rockabema Rapids, ending above Rockabema Brook and Nicatou Island, had islands or other obstructions. Side booms kept logs in the north side channel at Nicatou Island for at least the life of the 1833 Stevens dam, which spanned the south channel at Nicatou Island.

The logans, a loggers term for a side pocket of water in a river into logs might float, and streams entering the river on this lower section were numerous, and all had side booms, a string of boom logs stretched across an opening and fixed at each end. To keep the logs in the main flow of the channel through the rapids, drivers lined the rapids with what they called shear booms. Drivers made these by anchoring only the upriver end of a string of boom logs. To the

129 map of West Branch of Penobscot River from North Twin Lake to Medway, Great Northern Paper Co. Millinocket, Maine April 27, 1906; available at Millinocket Historical Society
upriver end of each log in the string, drivers attached a second log, a wing or a fin, that was held away from the log to which it was attached by another log to create an “A.” The wing side of “A” was on the shore side of the “A” and kept the boom out in the river’s current. Based on pictures of the river, a trip boom may have been viable below the mouth of Schoodic Stream and above Rocky Rapids. Whether any existed between Rocky Rapids and Nicatou Island is unknown, but river conditions make it unlikely.

Murphy, as had those drive bosses who preceded him and those who came later, timed the drive so it reached Nicatou Island at about the same time as the one coming down the East Branch of the Penobscot River and so it was there about August 6.130 Achieving the feat was a matter of pride for these river men. At Nicatou Island, the drivers boomed the logs in the main river and drove them together to Bangor.

The Drive Starting in 1901

The drive changed dramatically when GNP came on line in 1900, took over the drive in 1901, rebuilt North Twin Dam in 1903 with a 25-foot head, and built a second mill and dams in 1906–1907 at Burnt Land and Dolby rapids. Suddenly in 1901, many of the logs of the drive went to the mill, but GNP did not need to have them all in storage by mid-July. The company also needed more of the river’s water. Conflicts with lumbermen whose logs were for the Bangor mills developed immediately.

In 1899, investors bought the Charles T. Powers farm, previously the Thomas Fowler Sr. farm, and construction began for what became GNP.131 Before the mill construction began, only

130 West Branch Drives – 1888 to and including 1900; available Katahdin Forest Management Maine Division of Acadian Timber Archives

seven people lived in the area and most of those were at the railroad section quarters near the Millinocket Stream crossing a mile north of the mill site.132 As construction crews worked on the mill, another built Stone Dam at the foot of Quakish Lake 3 miles downstream from North Twin Dam. A dam sluice allowed logs to pass through the main river channel. A canal at the dam’s north end enabled GNP logs to reach the mill via Ferguson Lake, a manmade body of water that provided log storage and supplied the water to power the mill. The water exited the mill into Millinocket Stream. GNP filled an enlarged Quakish Lake with piers, booms, and side booms that kept an open channel to the dam’s sluice and allowed log storage. Even with the dam, the current generally carried the logs through Quakish Lake.

In 1901, PLDC agreed to a two-year contract in which they ceded the drive from Chesuncook Dam above Ripogenus Lake to the head of Nolleseemic Pond (now called Shad Pond) to GNP and retained it from Shad Pond (previously named Nolleseemic Pond) to the Penobscot Boom at Nicatou Island.133 The PLDC continued to use the drive camp at Shad Pond on the east side of Millinocket Stream, the site of the Thomas Fowler Jr. home from 1845 to about 1848. Perhaps the camp was one of his buildings. In early 1903, the PLDC supported the state of Maine chartering the West Branch Driving and Reservoir Dam Company (WBD&RDC). This company, a subsidiary of GNP, bought all the property, structures, and equipment of the PLDC above the head of Shad Pond. The charter stipulated previous conditions of the drive, one being that it had to be at Shad Pond by August 5 where the PLDC resumed responsibility for the drive.

132 U.S. Census

From the beginning, GNP conducted the drive in a way that dissolved its historical culture. GNP thought it knew how to run a successful drive. Those lumbermen, such as Con Murphy and John B. Ross, who had so successfully orchestrated the drives during the previous seventy years were no longer part of the drive.134 The first year, GNP drive boss Fred A. Gilbert brought the drive in late. The lumbermen successfully challenged the breach of contract.135 The court cited the company for mismanagement, untimely delivery, and lost logs. Also lost was the determination and commitment with which the men worked. Their pride involved picking the rear clean as possible and getting the drive through to Bangor in a timely manner, no matter the conditions. The era of a single crew of twelve to sixteen men taking advantage of good weather and operating a headworks for three days straight and eating while they worked ended.

GNP simply needed a steady stream of logs and a buildup of its inventory before ice formed, but those lumbermen with a Bangor market needed the drive into Nicatou Island by early August. Furthermore, GNP wanted to conserve water so it had a consistent flow for the mill’s operations. Until about 1901, lumbermen used all impounded water for the drive and then left dam gates open because they had no need for stored water. A change in Maine laws in 1903 allowed water impoundment, but in 1905, lumbermen took GNP to court again; this time for holding back water that they alleged delayed the drive and violated the conditions of their sale to WBD&RDC.136 Once again, the court found GNP liable.

134 Fanny Hardy Eckstorm papers, University of Maine Fogler Library Special Collections, notes of a discussion with Mrs. John Ross

136 \textit{Cases Argued and Determined in the Supreme Judicial Court of Maine Volume 102}, pp.263-272
GNP officials probably knew from the start that the mill would need increasing amounts of water, more than the natural flow of the river. As soon as the mill was finished, planning started for the 1903 rebuilding of the North Twin Dam. That same year, the company spent $9,000 on river improvements between Stone Dam and Shad Pond, but jams persisted at Grand Pitch. Six years later, GNP completed a third major project, an overland sluice that bypassed the river between Stone Dam and the foot of Grand Pitch. This eliminated jams at Grand Pitch, reduced the drive crew, and enabled the company to shut off the normal water flow to the main river channel, which became known as the “back channel.” The company rebuilt it in 1919, used it regularly until, and did not rebuild it after it collapsed in the 1930s; an indicator that nearly all the logs coming down river were for the Millinocket mill. These were the first of more than fifty years of projects related to both water storage and water conservation.

In support of the expanded operations on Quakish Lake, GNP built (c. 1905) a cook-bunk house for twenty men, storehouse, and stable for three horses on the north side of the dam. Perhaps in the same area, GNP added a cookhouse for eighty men and bunkhouse for fifty men. The river drivers used two boom houses, one constructed in 1911 on the east side point where the West Branch channel entered the lake and another at the dam. In 1913, GNP moved a cook–bunk house from another location to the dam. These buildings were still functional in 1916. By 1918, Quakish and Ferguson lakes had storage space for 28,000 cords and 30 million board feet

138 GNP Buildings Inventory 1916, University of Maine Fogler Library Special Collections

139 Fred Gilbert Papers, University of Maine Fogler Library Special Collections
of logs. Between Snake Point and Stone Dam, the 1939 drive inventory included 3,250 boom sticks; 3,000 boom chains of various sizes; and 3,600 feet of various diameter cable wires.

GNP struggled with the organization of the drives in the early years. Lewis Tesco, who worked the river between North Twin Dam and Stone Dam in at least 1904, noted the inefficiencies of the operation. The booms that season were half the size they normally were, and it took just as long to tow the smaller booms. At times, GNP held full booms at Snake Point waiting for room in Quakish Lake. On July 19, 1904, the thoroughfare leading into Quakish Lake and the lake were full of logs. Thirteen days later, the rear of the drive was in a jam at North Twin Dam. The drivers relied on the wind and current, rather than headworks, to move the logs to the dams in reach of the drivers at the sluice. If the wind and weather was favorable, the drivers sluiced twenty-four hours per day, but if it was not, they did no work. The crews did not sort out GNP logs from those going farther down river until they were in Quakish Lake. One reason for the apparent lack of coordination may have been because GNP did not have an overall drive boss until about the mid-1960s. Before then, the Ambajejus Boom House foreman, the towboat captain, the boom jumper captain, and the North Twin Boom House foreman worked independently of each other.

The drive crews of Fred A. Gilbert, as drive boss for the PLDC in 1900, and for GNP in 1901 and 1902, experienced the lakes as did the crews of such prior drive bosses as Fred W. Ayer, Harry F. Ross (John B. Ross’s son), and Philo A. Strickland. In 1903, however, the

140 Quakish Lake, long logs and short wood storage, March 18, 1918; a map
141 GNP Inventory Book (roughly 1933-1939), West Branch Drive, Section #4, 1939
142 Tesco, Lewis. “1904 West Branch Drive,” personal notebook, given by David Smith to Maine Folklore Center, University of Maine, Orono, Maine.
143 conversations with Larry Yeo
extended impoundment of the rebuilt North Twin Dam with a 9-foot head increase simplified some of the towing when the water was high. The new dam flooded out both Ambajejus Falls and the Ambajejus Boom House that was at the foot of the lake. WBD&RDC built its successor on the newly created island at the head of the lake. The house, which accommodated fourteen men, may have been a combination of three buildings moved over the ice from the North Twin Dam area in 1907. The 1907 building schematic shows a structure that is the same as that currently still standing. The rendering also has another one and a half story building, unattached, but immediately east of the boom house. It does not appear that it was ever at the site. Joe Turcott built the nearby foreman’s house in the 1920s and was foreman for the crew from at least 1926 well into the 1930s. At that time, ten to twelve men worked between the house and the foot of the Debsconeag Deadwater. They came over the ice in the spring to prepare for the drive and stayed until the end of the drive.

By the late 1940s or early 1950s, Harold Kidney was the Ambajejus Boom House foreman and served as such until the end of the drives in 1971. One of his crew in the late 1940s, Dana Brown, lived with his wife for three years near Ambajejus Point just above Pemadumcook and south of the old boom house in a 1930s one-room hunting camp with kerosene lamps and no refrigeration. He used a motorboat and a handheld compass to get back and forth to work in all kinds of weather. As he made his way up the lake one dense foggy morning, a great blue heron began circling him. Once within sight of the shore, the heron took off. After he and his wife moved to town, Brown lived at the Boom House for short periods.

144 conversations with Chuck Harris
145 conversations with Dana Brown and Chuck Harris
When the North Twin Dam held nearly a full head, Oscar Sands’s crews of the 1930s generally did not have jams to tend to between Ambajejus Falls and the lake. His men stood in water on the huge flat rock that still anchored the booming activity. In the late 1940s or early 1950s, WBD&RDC built the current cement pier around the rock and raised its height, and the feet of the crew stayed dry. One day in the late 1940s, Brown was standing on the pier when the crew closed a boom bag. A sudden strong wind and slack in the boom line caused the boom to break in three places. In boom jumpers, the crew quickly reconnected the boom logs. The fear on any such break was that if the logs got loose, they would all end up in Deep Cove, and crews would have to battle the predominant northwest wind in trying to reboom them. As one of the crew told a young concerned GNP executive who was visiting, “Don’t worry boss, none of the logs will get out of the lake.”

The amount of time needed to fill a long log boom bag varied, but short wood could fill it in a twenty-four-hour period. Between 1907 and 1914, GNP started experimenting with driving short wood, the full-scale changeover began in 1917–1918, and the last GNP long log drive was in 1928. In the late 1940s, Brown’s crew typically replaced the boom bag once a day, usually in the morning. Generally, no one watched or worked at night—given the boom had slack and overfilling it was not a problem. When filled, crews moved the bag out of the way and prepared it for towing. They sized it based on wood available, boat to tow, and water level. If it was too large for any reason, then the men towed a string of boom logs through the mass of floating logs to create the appropriate size boom. Typically, they used about 120 28-foot boom logs to create a boom bag that averaged about 3,000 cords, which covered an area equivalent to

146 conversations with Dana Brown
147 conversations with Dana Brown
ten football fields or a square with sides of 692 feet. Wind blowing up the lake brought booming to a standstill.

Even with the 1903 rebuilding of the dam, early captains such as Ernest Knight, Seldon J. McPheters, and Robert Sawyer, faced towing challenges at low water. In an attempt to eliminate some of the obstacles in 1904 and 1905, the WBD&RDC invested $5,527, another $8,904 in 1911, and more in subsequent years.149 In the 1940s, Brown’s crew tried multiple times to remove two huge boulders near the Ambajejus thoroughfare with dynamite, but they only managed to push them farther out of the ground and little changed for the circa 1935 and 1940s captains such as Ulric Cyr, Bob Frazier, Neil Gendreau, and Peter Isaac.150 At the entry to North Twin Lake, crews blasted the tops off rocks. In the late 1950s, Conrad Levesque loaded a bulldozer on a barge and towed it to the Ambajejus Point area, where he used it to remove a small island.151 He removed another small island at Indian Point. This probably made some difference for Captain Howard Yeo. A second bulldozing operation took place at the point from July 29 to August 3, 1965. Despite all the efforts, problems at low water persisted for Captain John Isaac, son of Captain Peter Isaac. At really low water, he would avoid Nicks Gut and swing to the west side of the Porus Islands, but the boom bags still had to be opened at Indian Point. On August 1, 1965, John piloted the \textit{O.A. Harkness} on its last trip of the year through this thoroughfare because the water was near its natural level between the head of Ambajejus Lake and Indian Point.152

149 available at Millinocket Historical Society are: West Branch Driving and Reservoir Company 1903–1912, ledger 1; West Branch Driving and Reservoir Company, voucher record No. 2 1913–1920; West Branch Driving and Reservoir Company, financial records 1920s–1953

150 conversation with Dana Brown

151 conversations with Albert Fowler

152 O.A. Harkness log, privately held
By the time the drives stopped in 1971, the WBD&RDC had owned or used at least four different towboats.153 During the first decade of the 1900s, the company continued to occasionally hire other boats to tow small booms, headworks, scows, slack booms, and supplies. That work came to a gradual end soon after WBD&RDC built a second boat, \textit{West Branch No.1}, at Norcross and launched it on June 2, 1905, with Seldon J. McPheters as captain. Both the \textit{F.W. Ayer} and \textit{West Branch No.1} towed through at least 1927. The early boats burned coal and a round-trip to the head of Ambajejus Lake or Nahmakanta Stream required more than they could carry. Coal Shed Point on the northeast shore at the east end of Pemadumcook Lake became the stopping point to take on more coal, which was loaded on scows at Norcross and towed to the site.

Peter Isaac, captain of \textit{West Branch No.3}, which replaced \textit{West Branch No.1} in 1943, traveling at 0.8-mile per hour and towing an average of 3,500 cords, typically took twelve hours to tow from the head of Ambajejus Lake to Snake Point and fifteen hours from Nahmakanta Lake to Snake Point, if all went well. As Con Murphy’s drivers using headworks did, towboat crew members, such as John J. Fowler, opened the boom bag at the point. About 1904, WBD&RDC built large piers on both sides of the narrows. When the boat neared the point, drivers used a headworks to open the trip boom.154 Captain Ulric Cyr (late 1930s to early 1940s) cut the engine, and his crew lowered its dory, which they used to reach the boom and unhook the towline so the towboat could move out of the way. Fowler and the dory crew tied off the boom to the Snake Point pier and opened the boom by having a headworks tow the disconnected end of the boom bag to the other pier. This maneuver pulled the boom to the narrows, and the current

\begin{itemize}
\item153 McLeod, John E. \textit{The Great Northern Paper Company}, vol. 1–6. Unpublished manuscript, 1978.
\item154 conversations with Larry Yeo
\end{itemize}
carried the logs into Elbow Lake, which now had an extensive pier and boom system for log storage.

Once the logs were all past the point, the crew closed the trip boom. Fowler towed the empty boom bag away from Snake Point to a nearby buoy in preparation for its return trip. Beginning in 1965, GNP scaled the booms at Snake Point rather than before they came down the lake, which was the prior practice. The scalar made a guess about the density of the logs within the boom.

The *F.W. Ayer* and *West Branch No.1* received assistance from a bateau crew until about 1915 when GNP began to replace the bateaux with boom jumpers.155 These flat-bottomed 17- to 20-foot motorized boats had a protected brass propeller and double keel so they could ride over the boom logs. Over the ensuing years, some of these small wooden boats grew larger and more powerful, and ultimately modeled on the lobster boats on the Maine coast. In the late 1950s, their wooden hulls were gradually replaced with steel hulls. One such boat with a captain and a deck hand was sufficient to provide the needed assistance.

Fowler’s boom jumper picked up small boom bags from the jobbers cutting along the shores of the lakes, assisted the tow boat when it radioed for help, took over the tow at Snake Point, returned empty boom bags, picked the edges of the lakes retrieving logs lost from the booms, and ferried supplies.156 By the 1940s, his boat replaced the headworks used to close the trip boom at Snake Point. He called for supplies at two different wharfs on the Lower Chain Lakes. One wharf was at Norcross, rented from the Fowler family, and used until the end of the drives. The other wharf, a 100-foot long dock at the south end of Ambajejus dike, was perhaps

156 conversations with Larry Yeo
built in the late 1920s or early 1930s when a reasonable road from Millinocket reached the dike. As his predecessors, Fowler moored his boat at the Norcross dock between assignments.

Boom jumpers participated in rolling the booms through narrows. To roll a boom, the Ambajejus Boom House crew prepared a special boom bag by closing the bag as usual and then wrapping an empty boom bag around the filled boom bag. Captain John Isaac’s boat towed one to the Ambajejus outlet, and as it began to pass into the narrows, his crew detached the towline. Larry Yeo, captain of the assisting boom jumper and son of Captain Howard Yeo, disconnected one end of the empty boom bag, affixed the other end so the two boom bags became one, and let the unfilled portion float into the narrows. Isaac’s crew reconnected the towline, and it began to pull until the trailing full boom bag was at the narrows. Larry used his boat to push the filled boom, first on one side and then on the other. The pushing began to send the logs out of the filled portion of the boom bag into the attached empty boom bag that was in the narrows. While Larry’s boat pushed, Isaac’s crew again detached the towline and reattached it, first to one side and pulled, and then to the other side and pulled. The synchronized pushing and pulling moved the logs and once all the logs were through, Larry took up the slack by removing the now-trailing, once-full boom bag, and Isaac resumed towing.

When the lake level was so low that a boom had to be opened at any of the narrows, the boom jumper crew reboomed the logs after they passed through the narrows. In years of extremely low water, only the boom jumper towed. One year, GNP added three other boom jumpers to work with Larry’s to complete the drive. When Larry served on boat 56 with Captain Michael Isaac (John’s brother) in 1965, their boat towed while the big towboat *O.A. Harkness*

157 conversations with Larry Yeo
158 conversations with Larry Yeo
remained idle. A lack of water in 1924 may have been the only year boom jumpers could not tow because of water so low it prevented the drive.

Towboat captains often wanted smaller booms so they could get through the narrows more easily.159 On one occasion in the late 1940s, a boom got hung up in the narrows at the foot of Ambajejus Lake. Captain Peter Isaac’s crew unhitched the boom and went around the island to get at the back of the boom where it was stuck. He nosed his boat against it to try to push it through, but that action caused the boom to break apart, and Dana Brown’s Ambajejus Boom House crew had to reassemble it. Even with smaller booms, in low water booms would catch on the flat near Ambejejus Point. John Isaac’s boat was towing a boom that caught, and a boom log snapped. The towing stopped while Brown and his crew re-drilled the broken log plus any of the others that had splits in them. Their auger made a three and a half inch hole, and it took two men to turn it. At low water, Isaac towed smaller booms out around Porus Island to avoid Nicks Gut. Even with all the improvements and towing strategies, captains navigating the Lower Chain Lakes always had to be careful given the rocks, wind, and water depth. One \textit{F.W. Ayer} captain, not wanting to be trapped by a windblown boom, ordered the towline cut, which a man did with one swing of an ax, to increase the speed of maneuvering out of the way.160 Other times, towboats got stuck on a rock or sandbar, and boom jumpers pulled them off.161 One captain fell asleep and his boat became stuck in the sand at Appleby’s off the east end of Porus Islands. The boom jumper Larry Yeo was on could not pull it off. Sand sifted in around the hull while they awaited a barge with a winch and ships anchors. With the barge firmly anchored in deep water, they were able to winch it out. On another occasion, Yeo was on board the \textit{West Branch No.3

\begin{footnotesize}
\begin{enumerate}
\item 159 conversations with Dana Brown
\item 160 conversation with Dana Brown
\item 161 conversations with Larry Yeo
\end{enumerate}
\end{footnotesize}
towing the last boom of the year when it encountered fog at Porus Islands near dark. In a maneuver to tie off the boom to an island, the boat ran aground. Crews could not get it off the rocks, so they had to open the gates at Ripogenus Dam to raise the water level to float it free. Given the preciousness of water, this was a serious loss.

The last booms towed from different areas of the Lower Chain Lakes, excluding the Ambajejus Boom House, were between the mid-1950s and 1967. About 1957, Larry Yeo towed the last boom from the Partridge Cove landing where logging crews piled logs on the ice. The final boom from the mouth of Jo-Mary Stream was also in the mid-1950s. By the mid-1960s, Yeo’s towing of small booms of jobbers landing wood on the lakes had generally ended. He left a small boom bag of twenty sticks for Harold Kidney at Ambajejus Point in 1964. Two years later, Captain John Isaacs towed seven booms from the mouth of Nahmakanta Stream at Pemadumcook Lake and one, the last from this location, the following year.

From 1968 through 1971, the only booms towed across the Lower Chain Lakes came from the head of Ambajejus Lake. The O.A. Harkness launched by GNP in 1964 did the towing and towed the last boom in 1971. On its last run, James Leet was the captain and John J. Fowler was the mate. John, who lived in Norcross as his family had since about 1900, was a descendant of the Thomas Fowler Sr. family. He began working on the boats about 1928. James was the youngest brother of Ralph Leet, who was the straw boss at North Twin Dam beginning

162 conversation with Larry Yeo
163 based on the last drive from the Jo-Mary Lakes
164 conversation with Larry Yeo
165 O.A. Harkness log
166 O.A. Harkness log
167 conversations with Albert Fowler and Robert Leet
in the mid-1940s and was still working the lower river about 1970. Their other brother Lewie had served on the boats and was in charge of the drive between the Ambajejus Boom House and the lower mill beginning in the mid-1960s. Their father Thomas Leet came to Millinocket with his father and mother when the mill opened. Thomas married, worked for GNP in maintenance, was one of the company’s first Lombard log hauler operators, and his sons spent their summers at their Norcross camp watching the boats.

Sometimes a boat captain handled other lumbering related matters. During the Prohibition years, a bootlegger had a camp near one of the lakes’ sawmills. He was distributing liquor to the mill workers, and its effect had a negative impact on production. The GNP woodlands department learned of the situation and got word to the captain suggesting he take care of the matter. The boat came to the camp and backed in. The crew put a hawser around the camp and the boat pulled it into the water; that solved the problem.

Changes at North Twin Dam

The work of the North Twin Dam crew became nearly year-round activity soon after 1934 when GNP converted the dam into an electrical generation facility. Previously, the crew sluiced logs from booms with the last generally arriving in October and moved any needed log inventory out of storage in Elbow Lake before freeze up. In an attempt to save more of the dam’s impoundment for the turbines, GNP initiated a number of dam- and drive-related water-saving strategies. Some of the projects were railcar and truck dumping mechanisms below the North Twin Dam, and other projects involved sluices and log storage above the dam.

Starting about 1940, a crew unloaded logs from multiple rail cars at a time onto a 300-foot conveyor that paralleled the dam’s rail siding and dumped the logs into the river below the

168 conversation with Larry Yeo
dam.169 During the war years when rail cars were as scarce as men were for river drives, GNP unloaded the cars as fast as possible, so being able to handle multiple cars at a time helped. Typically, it took two and a half man-hours to unload the car’s usual nineteen cords.170 The company repaired the conveyor in July 1960 and removed it in December 1962.171 A second strategy, conceived in the mid-1930s, was side-dumping rail cars.172 The railroad experimented and achieved varying degrees of success, but put nothing on the rail lines until 1946. To handle the new pulpwood-dumping car, GNP installed a lift mechanism in another sidetrack below North Twin Dam’s south side. The device pushed up on both ends of the car tilting it toward the river and the logs slid off the car and down the steep concrete spillway. Brown witnessed at least a couple times when the crew forgot to attach the cars and they went into the river along with the wood.173

After World War II and a return to more normal river-drive operations, GNP continued to experiment with trucks, which began hauling to the mill during the war when loggers purposely cut nearby. In 1950, the company built a rock crib reinforced embankment below North Twin Dam between the railroad and the Route 11 bridges.174 At first, men unloaded the trucks by hand. Later a tractor with an extended blade pushed the logs off the truck-bed into the river. GNP initially replaced that strategy with dumping trucks and then with a lift that tilted the whole truck

170 conversations with Larry Yeo
171 GNP Weekly Newsletter, July 1960 and December 1962
173 conversations with Dana Brown
so the logs rolled off the back into the water. GNP rebuilt the dumpsite in 1961, but when the company last used it is unknown.175

On the lake side of North Twin Dam, GNP developed other water conservation measures. Sometime in the 1940s, GNP started unloading trucks on the ice at Partridge Cove on South Twin Lake. Before the ice began to form, a crew lined the entire cove with a boom bag. As soon as the first ice formed, a crew pumped water to flood it and increase its thickness.176 If it snowed, they used a snow roller to pack it and then flooded it repeatedly to achieve 18 inches of ice, the amount need to support a loaded truck. The dumping stopped about 1957.177

In January 1944, GNP added another railroad siding that extended along the lake immediately above the dam. Zenon King, who directed a crew that included a young Larry Yeo who lived a couple miles down the tracks at Norcross, constructed a conveyor next to the new siding.178 The project included a 40-foot-high stacker tower at the end of the conveyor. Knowing the floor of the lake was uneven; King measured the distance from the ice to the bottom at each corner of the future rock crib, the base of the tower. The crew constructed the bottommost tiers of the rock crib so that when it rested on the uneven lakebed, those tiers above would be level and the pier perpendicular to the lake surface. The crew added log tiers and rocks sinking it slowly until it rested on the bottom. Each morning Yeo cut the ice around the pier’s edge. Yeo got the job because he was the only one King found who would climb the stacker poles and install the cross pieces for the tower. In 1953, a crew rebuilt it.179

175 GNP \textit{Weekly Newsletter}, December 1948
176 conversations with Larry Yeo
177 GNP \textit{Weekly Newsletter}, November 1955 and March 1960
178 conversations with Larry Yeo
179 GNP \textit{Weekly Newsletter}, January 1953
Railcars of all types, even box cars, lined up along the unloading trough leading to the stacker. A crew manually emptied rail cars made for logs much faster and more safely than a typical boxcar in which the shifting wood often jammed the doors. Sometimes the crew was one man to a car, and at these times, they timed the unloading; Yeo was the fastest. Unfortunately, as King was opening a boxcar door, a log struck him on the head and he died later from his injuries.

GNP used the stacker in winter when the logs were slippery with snow and ice, a condition that kept the pile from peaking. Typically, the pile broke through the ice, flattening it and making room for more logs. A boom around the pile kept the logs together at ice-out. A second strategy for redistributing the North Twin pile was a double cable that ran from the mainland past the edge of the pile to an island. A plow-like device attached to the cables and moved by a winch carved logs away from the side of the pile causing it to collapse, making more room for logs. At ice-out, drivers either sluiced the logs or towed the logs into storage areas of Elbow Lake. A crew’s last use of the stacker was in 1960, and GNP removed it in February 1962.

In the late 1950s, Bob Hamlin, who started as a welder for GNP in 1955, worked on a water-saving project that involved a sluice and water jets. He and a crew created 16-foot-long, 3-foot-deep, and 5-foot-wide trough sections that, when connected, were 100 feet long and had walkways on both sides. Large buoys kept the trough afloat. Crews fit one end of the trough into an opening at the dam’s sluice gate. At the lake end, they attached a funnel shape trough with a 16-foot-wide mouth. Water pumped into the buoys sank the funnel and trough deep enough so water and logs flowed into the funnel and through the trough into the dam’s sluice. Mounted

180 conversations from Larry Yeo
182 conversations with Bob Hamlin
above the upper edge of the trough were water jets whose spray aimed down the trough kept the logs moving so they did not jam.

GNP used these unloading and sluicing strategies in a systematic way to ensure a year-round log supply at the Millinocket mill. Hauling of cut wood generally commenced as soon as the forest floors froze solid enough to support loaded trucks. As the crews dumped wood at either the conveyors or truck dump below the dam, the combination of its volume and freezing temperatures would create jams that a crew broke up with 30-minute dam water releases that pushed the wood into Quakish Lake. At some point, Quakish Lake either became full or its ice so thick little room was left. The stacker allowed wood storage above the dam in preparation for sluicing as soon as ice was out in the spring. In Quakish Lake, the crews sometimes used dynamite to help break up the ice in the spring just before ice-out so boats had a channel when the wood stock was low at the mill. By the time a crew sluiced the wood from the stacker, the lakes were open and the towboat moved the wood from Partridge Cove to the dam before the drives from the West Branch, Nahmakanta Stream, or Jo-Mary Stream reached the North Twin Dam.

The Lower Drive: From Shad Pond Downriver

Shad Pond was the starting point of two distinct drives; the PLDC drives to Bangor began in 1901 and GNP’s to its new mill at Burnt Land Rapids in 1907. The PLDC retained the drive rights of the Millinocket Lake and Stream watershed through Shad Pond to Nicatou Island. This drive’s logs were for sawmills or paper mills below Burnt Land Rapids.

183 conversation with Larry Yeo
184 GNP Weekly Newsletter, March 1947 and conversations with Larry Yeo
In 1901, the PLDC collected its logs behind a trip boom in Shad Pond, drove them down river with bateaux and headworks in the same manner and with the same supporting structures as the pre-1900 drive bosses such as Con Murphy and John B. Ross used. The PLDC drive changed in 1907 with the building of the dams at Rocky Rapids (Dolby Dam) and Burnt Land Rapids (Burnt Land Dam). The PLDC changed to a headworks on the flowage behind the dam at Rocky Rapids (Dolby Flowage) and a trip boom and sluice at the dam. The current kept the logs moving through the impoundment of the dam at Burnt Land Rapids, and the dam provided no impediment to the flow of logs. The dam at Rockabema Rapids (Rockabema Dam) built between 1912 and 1915, likewise allowed logs to float through freely. The dams flooded out many of the rapids, but the men still conducted the drive as they had previously using drive camps at Shad Pond, Dolby Dam, Midkiff Landing at Burnt Land Dam, and Nicatou; positioning men along the river; picking the rear; and rebooming the logs at Nicatou Island. The year of the last PLDC drive is unknown, but no logs came to its drive from above Stone Dam after about 1925, and the company formally disbanded in 1953.

Beginning about 1905, GNP began buying the farms between Millinocket Stream and Burnt Land Rapids in preparation of its 1906 building of a second paper mill and dam. When the construction commenced, the railroad spur from Millinocket Station, the Schoodic Stream Railroad, did not reach the site so horse teams did the initial hauling. The original plans called for only one dam, but a miscalculation on what the foundation could support necessitated the building of the Dolby Dam (50-foot head) and pulp mill at Rocky Rapids, a mile and a half

185 Plan of Medway, Township A Range 6 W.E.L.S. January 11, 1912. On this map below Rockabema Dam were two dams, one on both the channels around Nicatou Island. The two lower dams do not show on the map, GNP Division Forest Engineering, Medway, Sept 30, 1925.

186 Penobscot Lumbering Association Records, 1854-1953; University of Maine Fogler Library Special Collections

above the new mill. The dam’s impoundment, Dolby Flowage, reached upriver to the old Watson farm and flooded the lower few miles of Schoodic Stream. The mill used the flowage in much the same manner as the upstream mill used Quakish and Ferguson lakes. Generally, the flowage lacked enough current to keep the logs moving so a crew towed the booms. A trip boom at the dam held the logs in place for sluicing. The dam flooded out the probable camp at Miner Brook, and the drivers built a new one at the west end of the dam.

The community of East Millinocket developed with the construction of the new mill and dams. At Dolby Dam, GNP built a boarding house that became known as the Dolby Hotel and a small settlement of houses sprung up along both sides of the road near the dam. With the dismantling of the Dolby pulp-processing mill in the mid-1920s and GNP tearing down the hotel in 1931, families gradually abandoned the Dolby community.

Once the lower mill was operating in 1907, most of the logs cut on the river’s tributaries between Stone Dam and Burnt Land Rapids (Rockabema Stream, Pattagumpus Stream, Miner Brook, Mud Brook, Nollesemic Stream, Millinocket Stream and Lake, Schoodic Stream, and Dolby Flowage watersheds) went to the mill. Some logs for the mill came from along the river around Shad Pond and up river to just below Stone Dam. Previously logs cut in these watersheds were for markets downriver. Each watershed had its own cutting history in relation to supplying the new mill.

Opposite the mill on the south side of the river in TAR7 W.E.L.S. crews cut in the Rockabema Stream, Pattagumpus Stream and Miner Brook watersheds from 1905–1909, 1911–

1920, and again in 1927–1928. Loggers worked from two camps on Miner Brook in the early 1920s and in 1927–1928 when they cut on the large plateau east of Miner Brook and south of Burnt Land Rapids into the Rockabema and Pattagumpus streams’ headwaters. Teamsters using oxen and horses, and later Lombards, hauled to Midkiff Landing with its jetty and turnaround at the head of the rapids and above the 1907 dam opposite the new mill. At some point, the road became known as Curran’s Log Hauler Road. W. J. Curran was a West Branch logger and dam builder and may have been in charge of building the road. In 1895, he rebuilt Slide Dam on Nesowadnehunk Stream, and from the fall of 1911 until 1919, he was in charge of GNP operations in the Nesowadnehunk area.

A little farther upriver on the north side at Dolby Flowage, loggers cut the west side in 1909, the north end in 1910, the east side in 1925 and 1926, the north end in 1928, the northeast corner in 1930, and the west side above the stream in 1939 (for pine). Above Dolby Flowage on Schoodic Stream, loggers constructed at least three dams by 1919. Two were below the railroad crossing and one above it. Who cut when and exactly where up until 1938 is unknown. In 1939, someone cut pine on the stream, and a year later Frank Rush of Rush’s mill on Millinocket Stream logged the watershed above the railroad crossing and hauled the pine to Millinocket Stream. During the same period, Nadeau also cut the stream for its pine from two camps, one of which was upstream of the railroad bridge on the east side and the other farther...

189 mapped cuts: Township A Range 7, c.1927; GNP Division of Forest Engineering Township A Range 7, March 12, 1932; Township A Range 7, no date
190 conversations with Peter Faloon
191 mapped cuts on two maps with same title and date: GNP Division Forest Engineering, Township 1 Range 7, May 3, 1924
192 Brown Town, T.1 R.7, portion west of East Branch, cruised by D.F. Dougherty, 1919
upstream above the dam. Others cut the stream in 1944, 1945, 1946, 1947, and 1948. Loggers cutting after 1950 likely trucked their logs to the mills or to the Rice farm. These last drives on the stream employed forty men.

GNP loggers were cutting in the Mud Brook and Nollesemic Stream watersheds as the new mill opened. When loggers first used dams in this watershed is unknown. J. L. Chapman’s 1908 survey map showed two dams, one just upstream from Shad Pond at the foot of the deadwater and the other at the Nollesemic Lake outlet. The dam on the deadwater enabled loggers to tow small boom bags through it. The 1908 map puts lumber camps two-thirds of the way up the west side of Nollesemic Lake and one not far up Mud Brook on the east side. The 1911 crews landed logs on the west side of the lake and drove the stream from Nollesemic dam with a rebuilt gate. GNP rebuilt the dam at the foot of the deadwater about 1913. In 1913, loggers cut some place in the township and likely drove logs on Nollesemic Stream. Logging continued in 1914 and 1915 with W. E. Murdock as foreman of operations. The tote road for these cuts came down the west side of Millinocket Stream to Shad Pond, then went past the ferry

194 GNP Weekly Newsletter, January 1948

197 GNP Book #158, Nollesemic Dams, available in Marc Johnson Papers, University of Maine Fogler Library Special Collections

198 Nollesemic Operation, W.E. Murdock, Map #11
landing up along the river to the ford above Grand Pitch where it dropped back down the river’s west side before turning south to Nollesemic dam.199

A 1920 James Sewall Company survey indicated that the dam at Nollesemic Lake outlet was in poor shape and needed a new gate but that the lower dam was in good condition.200 The repairs made in 1920, 1921, and 1922 enabled E. J. Smart and Curran, who had cutting operations bordering the stream, to drive it. Drivers repaired the dam again in the winter of 1924 in preparation for that spring’s drive.201 About 1929, Enos Sawyer Jr. and fifty men cut 5,000 cords from a camp at the backside of the lake.202 The drive of 1932 used one motorboat, one headworks, 228 boom logs, and 240 boom chains and started from the lake.203

In 1942, a young Nelson Levasseur, who eventually became one of GNP’s noted drive leaders and woodlands operations bosses, was driving trucks in support of cutting in the Nollesemic area.204 A 1945 Sewall survey indicated that both dams needed repairs to drive the stream.205 In 1947, loggers built a dam on Nollesemic Stream; it was probably a rebuilding of the dam near Shad Pond.206 During this same operation, loggers made improvements in Mud Brook

\begin{itemize}
\item199 Plan of South Indian TWP 3.as explored in May and June 1910
\item200 Sewall, James W. Field Explorations for Township Hopkins Academy, 1920.
\item201 GNP Summary of Logging Costs: Nollesemic Dam improvements 1924
\item203 GNP Inventory Book (1933 – 1939), Nollesemic Drive 1932, available Katahdin Forest Management Maine Division of Acadian Timber Archives
\item204 Marc Johnson papers, University of Maine Fogler Library Special Collections, Interview: Nelson Levasseur, May 23, 2001 and Levasseur, Nelson. Interviews on January 5, 1988; November 9, 1988; November 10, 1988. Aired on MPBN
\item205 Sewall, James W. Field Explorations for Township Hopkins Academy, 1945
\item206 GNP Weekly Newsletter September 1947
\end{itemize}
and drove logs landed on the stream to Nollesemic Stream. Forty-eight men drove the same two streams again in 1948 and Mud Brook in 1949. Loggers cut both sides of Nollesemic Lake in 1949. A 1949 picture of the dam suggests it was recently rebuilt. These were perhaps the last drives from this watershed.

On the main river channel just above Shad Pond loggers cut a stretch of the river’s south side near Grand Pitch in 1914. Five years later, they were on the west side of Shad Pond and the following year on the west and north sides. A year later, they logged on the river’s north side, and the next year a crew cut the south side from Grand Pitch to Stone Dam. In the 1924–1925 winter, Curran logged in the same area on the river. Whether or not loggers cut again before trucks began to haul the logs from the area is unknown.

Although GNP cut off the flow to the main river channel between Stone Dam and Shad Pond in 1909, it released water each year on July 4 and Labor Day for what became known as the Nollesemic drive, any logs cut and landed on or near the back channel. The practice likely ended by the late 1940s, a result of trucking.

All of these GNP logging operations between Stone Dam and Burnt Land Rapids used the company’s recently purchased James C. Rice farm, the old Charles and Daniel Watson farm, as a depot. Rice was a West Branch logger of the late 1800s and early 1900s. In 1907, GNP moved many of the buildings of the John A. Powers farm, the old George McCauslin farm, and the Charles T. Powers farm, the old Thomas Fowler Jr. farm, to the site. GNP also moved a barn Charles Powers built in 1900 for twenty horses and thirty tons of hay to some place other than

207 GNP Weekly Newsletter, January 12, 1948
208 mapped cuts on GNP Division of Forest Engineering, Township No.3 Indian Purchase, July 28, 1915
209 “Nollesemic Drive – Stone Dam,” The Northern, August 1925
the Rice farm on the flowage. The most likely spot was the GNP camp two-thirds of the way up
the east side of Dolby Flowage. The camp supported loggers and teamsters working to the north
and east.

As the company grew, so did the farm, which eventually encompassed 80 acres with
buildings, 50 horses, a boathouse, and 200 to 300 hogs.211 In 1916, the farm had a 30-ton
capacity storehouse; a boarding house for 18 men; a barn for 50 horses and 250 tons of hay; a
stable for 15 horses, 6 cows, and 30 tons of hay; a hen house; a wagon shed for 10 wagons; a
 canvass driving shack for 12 to 16 men; and a harness and ice house. A 1927 GNP report
indicated it had a functioning boom house. The crews that built Dolby Flowage’s multitude of
piers for storage areas and to delineate the channel to the dam in the flowage lived at the farm.212
Some men resided at the farm for free in exchange for taking care of the animals. The farm
operated as such through World War II. In the 1970s, the farm had greenhouses for softwood tree
seedlings, and the Dolby drive crew was still using a bunkhouse and another building near the
lower point where they kept their boom jumpers and 150-gallon refueling tank. However, by the
end of the decade, GNP razed most of the buildings for salvage.

Moving Logs to the Mill at Burnt Land Rapids
Logs for the new mill arrived via a number of conveyances. Some logs came from the inventory
at the Millinocket mill via its sluices into Millinocket Stream. Other logs for the new mill arrived
at the Millinocket mill by railcar and were dumped directly into Millinocket Stream. Crews took
logs from the East Branch of the Penobscot River at Grindstone and Medway for delivery by a
variety of means to the new mill. Truckers hauled logs to the Rice farm where they were put in

212 conversations with Chuck Harris
the river. By the end of 1976, all logs arrived at the mill at Burnt Land Rapids by means other than water.

Initially the Millinocket mill often had an excess of log inventory arriving via the river drive. To help move some of the inventory to the mill at Burnt Land Rapids, GNP used the 1909 sluice a crew built from GNP’s Ferguson Pond storage to Millinocket Stream. The surplus inventory began to increase about 1910 when a small number of logs began to arrive by railroad at the Millinocket mill yard. This excess, which was small at first, was also sluiced into Millinocket Stream. By 1924, substantial quantities of wood arrived by rail, so GNP extended the railroad tracks along Millinocket Stream to a 700-foot dumping trestle, which eliminated the need for the mill’s bypass sluices for this purpose.213

Logs from the East Branch of the Penobscot River came to the mill soon after GNP opened a spur rail line to the old Hathaway farm about a half-mile above the confluence of the East and West branches.214 By April 1924, GNP abandoned the spur line in favor of taking logs out of the river by conveyor at Grindstone, dumping them in a pile, and hand loading wheeled racks that Lombards or tractors towed to the northeast corner of the Dolby Flowage where two stackers operated by mid-1925. Trucks soon replaced the tractors. GNP shut down the inefficient operation in 1928 and replaced it with a log collection and conveyor site near the 1907 East Branch bridge at Medway. GNP closed the operation during the Depression and reopened it in 1933. Ten years later, crews were still using the conveyor to load trucks that hauled the wood to the Rice farm.

214 see footnote 213
In 1940, the Bangor and Aroostook Railroad built the Grindstone spur line, and GNP began to take logs at Grindstone by rail to the Millinocket Mill’s dumping trestle on Millinocket Stream.215 GNP replaced the trestle in 1950 with two dumping mechanisms, one for railcars and the other for trucks. The small train engine, used in the yards at North Twin Lake, eventually operated at the Millinocket site. On a typical day, a six-man crew and the small engine dumped forty cars of about nineteen cords each.216 For non-dumping cars, the crew used a tractor with an extended blade to push the logs into the river.

In the early 1940s, trucks also began taking the logs directly to the mill. When Vernard McLaughlin cut in the Medway portion of the Rockabema plateau in the late 1930s and 1940s, he hauled with horses to the road at Rockabema Stream near the river where he loaded his logs on his truck for the mill.217 Truckers also delivered wood to the Rice farm, which had two stackers, one of which was operating in 1948.218 One ran from about 7 a.m. to midnight during the winter months at the upriver edge of the farm where the old Millinocket Road touches the river. A crew unloaded the logs by hand onto conveyor that took them to the top of stacker, a 15- to 20-foot tower. Dana Brown, a stacker operator, worked in the 2x2-foot cab heated by a 100-watt light bulb. He stopped the conveyor only when he had to climb the pile to add another 4x8-foot chute section that redirected the logs away from a peaking pile. Once when he was on the pile, it shifted so he grabbed the attached chute with his pickeroon, an axe length handle with a heavy pick attached like the head of an axe, and hung in the air until the pile settled a couple

216 conversation with Chuck Harris

217 conversations with Delmont McLaughlin

218 conversations with Dana Brown
yards below his feet. The drivers typically used the stacker in the winter when the Dolby log dumping area was full. The second stacker placed some wood on the riverbank so men could pick it into the river, as the mill needed it. GNP removed the last stacker in March 1961.

Moving the logs from Millinocket Stream, Nollesemic Stream, Shad Pond, Miner Brook, Schoodic Stream and Dolby Flowage, no matter how they arrived at these places, to the new mill became known as the Lower Drive or Dolby Drive. The first Dolby drive, occurred in 1907 when the new mill became operational. During the years when the PLDC was conducting a drive from Shad Pond, the two companies had some arrangement so their logs remained separated. The Rice farm was GNP’s drive camp for the 6-mile stretch of river.

The GNP crew moved the logs coming into Shad Pond out and down the river into Dolby Flowage to the pulp processing plant at the dam’s north end, the sluice at its south end, or a storage area. The river current carried the logs from Millinocket Stream to Dolby Flowage, but at times jams occurred around the marshy islands in Shad Pond or on the rapids at the outlet. At Dolby Flowage, a northwest wind continued the flow, but otherwise a crew boomed and towed the logs. Drivers may have used headworks through at least 1939 given that year’s drive inventory listed no motorized boats.219 Until the late 1940s, another portion of the crew moved logs from the mouth of Schoodic Stream at Dolby Flowage’s northwest end down to the dam or into storage. How they moved logs across or through the causeway that crosses the flowage is unknown.

Beginning in 1924, when GNP closed the pulp-processing plant at the dam and used only the one at the mill, the drive crew sluiced all the logs from the flowage through the dam and

219 GNP Inventory Book (roughly 1933-1939), Lower Drive 1939, available Katahdin Forest Management Maine Division of Acadian Timber Archives
another crew took them from the river at the Burnt Land Dam.220 The crew there also towed in the logs from Midkiff Landing opposite the mill. For the drive in 1938, the inventory included two to three bateaux, two pitch kettles, 1,413 to 1,693 boom logs, and 1,780 to 1,950 boom chains of various sizes.221

In the 1940s, the drive crew worked under the direction of Nick Hawkes and under the direction of Lewie Leet during the last ten or twelve years (c. 1964–1976).222 Many of the men had worked the river for years; some from before the war and others when they returned. The men included Gil Carron, “Bing the Ring” Fowler, Sam French, Hubbie Isaac, Joe Martin, Lloyd and Carl Mason, Harry McGowan, Cecil “Honk” Robbins, Mortimer Skinner, and Pat Voisine. A young Ed Hallett, who grew up in Millinocket, joined the crew in 1967, and he too loved the variety of the work.

The crew’s work both ended and started around Thanksgiving when Dolby Flowage began to freeze, and they strung a Bathurst trip boom across the river at the Rice farm. The boom’s design, which originated in Bathurst, New Brunswick, was especially effective in keeping pulp from washing under or over the boom. They did not open it until spring. Upriver at the mill, crew members continued to unload rail cars and trucks into Millinocket Stream. The stream did not freeze during the winter, so logs continued to float downriver to the trip boom at the Rice farm, and by spring, they filled the 2 miles of river between Shad Pond and Dolby Flowage. In late March, when the ice began to thin and soften, the crew used dynamite to open a

221 GNP Inventory Book (roughly 1933-1939), Lower Drive 1938, available Katahdin Forest Management Maine Division of Acadian Timber Archives

222 conversations with Robert Leet, Chuck Harris, and Ed Hallett provided information on the Dolby Drive
large hole in the ice below the trip boom. Crew members launched their steel-hulled boom jumper and, using it like an icebreaker, ran it forward onto the ice; the ice broke under its weight. They backed up and drove forward onto the ice repeatedly to create a channel to the dam. Once the channel was open, crew members released the trip boom and began the process of moving the logs to the dam.

One arduous and cold task was to check the shackles and pins that connected the hundreds of boom logs in Dolby Flowage. The pins were so far below the water surface that a crew used its boat to roll the boom over to get at the shackle, but they still had their hands in the freezing water handling ice-cold metal. They wore cotton gloves, had many pairs, and kept them on the boat’s motor. Anything the metal chains, shackles, and pins touched turned red or black.

Over the years, scrap logs flushed from the mill washed into the flowage, lessening the depth of the channel by perhaps 30 feet to only about 2 feet in places. The crew dealt with this buildup by lining long, 30- to 40-foot poles with dynamite sticks and pushing them down into the sunken debris. The current carried loosened logs on to the dam where the crew picked them out or drove them through the sluice.

One year, the process may have loosened a huge stump that got lodged in the sluice at the dam. Ralph Leet, the straw boss, took Hallett’s towline and hooked it on the stump. Hallett’s boat, at full throttle, did not budge the stump for the first few minutes, but then it moved. The current of the sluice and the weight of the stump began to overpower the boat and it inched backward toward the sluice. As Hallett jumped out onto a boom, Carl Mason jumped into the boat and with a jackknife sawed away at the towline. The line snapped as the boat neared the open sluice. Mason controlled the boat and when he got out, he said to the young Hallett, “That’s how you do it.”
The other buildup was at the Millinocket dumping site. After years of dumping into the stream, rock and soil carried by the logs built up at the base of the dump and the now-shallow water slowed the dumping. To alleviate the situation, loggers lowered a bulldozer into the river to clear the debris and then successfully met the challenge of winching it out.

During the spring, summer, and fall, the crew continued to dump wood at the mill and towed and sluiced it at Dolby Flowage. To ease the sluicing at the dam, the crew members lined up their motorboats along the edges of the boom logs near the dam and left the motors running. That created enough current to keep the logs moving into the sluice. The year’s log driving ended when the Dolby Flowage began to freeze.

The drives on this section of river ended in 1976 when GNP directed railcars and trucks to the mill yard at Burnt Land Rapids.

Sawmills on the Lakes and Streams

As soon as the railroad reached Norcross in 1894, lumbermen began to build sawmills. Spoolwood companies moved north for the birch. Previously, crews only cut hardwood for local needs because they had to raft it with softwood to keep it afloat. It was never practical to float milled lumber, softwood or hardwood, out of the lakes and over Grand Pitch to Nicatou Island. With the impending construction of the Great Northern Paper Company (GNP) mill in 1899 and the Millinocket community in the following years, lumbermen quickly put up softwood sawmills.

Charles W. Mullen, a civil engineer who surveyed for the rail line through the area, realized the river’s potential and had the vision for what became GNP.\(^{223}\) He started buying property in 1891 and cut tree-length wood for pulp on Millinocket Stream two years later. In

1899, he built a steam-powered sawmill, Twin Lakes Lumber Company, on the east edge of Elbow Lake north of the dam on land he purchased from Charles W. Clement in 1891. A railroad spur line came to the mill, which sawed 100,000 board feet per day. The logs were from Cassidy family lands in the Jo-Mary watershed, and Mullen sold the lumber to those building the GNP mill and the community structures, and sent some by rail to Boston. The little community that quickly sprung up around the mill included a blacksmith shop, boarding house, general store, and a number of houses and cottages. When GNP planned to increase the head of the North Twin Dam in 1903, Mullen’s mill presented a problem; it was in the flowage and Mullen did not want to sell.²²⁴ To solve the impasse, the West Branch Driving and Reservoir Dam Company (WBD&RDC) built protective dikes. Finally in December 1905, Mullen sold to GNP, which immediately dismantled the mill with some parts of it going to the Rush mill on Millinocket Stream.

Another enterprising logger Francisco O. Estes built two mills on the lakes. The Estes family was working the West Branch drives as early as 1878. Estes logged on Pemadumcook Lake in 1903 and on either Elbow or Quakish lakes in 1910. When he opened his mill near the mouth of Nahmakanta Stream at Pemadumcook Lake is unknown. Its operations appear to have ceased about 1911, the year a forest fire swept through the nearby area, perhaps destroying the mill, which might have manufactured toting and log sleds given the piles of sled runners that littered the old site. At the time, Estes also directed the Nahmakanta Stream drive.

The Perkins & Danforth Spoolwood Company, which cut hardwood blocks, built two mills on the Lower Chain Lakes. It built its first mill at Perkins Siding as the Bangor and

²²⁴ map: Plan and Description of Various Parcels of Land Required for Rebuilding, Raising and Maintaining North Twin Dam Indian Township No.3, July 1903; and West Branch Driving and Reservoir Dam Co. ledger 1, 1903-1912 (dyke payments 1903-1906)
Aroostook Railroad laid the main tracks in 1893. The spur line ran from the main line south along the edge of the lake to the point at Partridge Cove. A company crew cleared the area to the south of the mill and used it to store the hardwood logs. The great fire of 1825 swept through a few miles to the east and southeast of South Twin Lake, and the trees that appear to have seeded in after the fire were birch. Perkins & Danforth probably started using Lombards to haul logs about 1909. In 1920, the road the company probably extended to Nollesemic Lake by 1912 was still in good condition, having been consistently used for hauling. Beginning in 1916, the mill went through a succession of two owners, Maine Last Block Company, from 1916 to 1919, and Twin Lakes Lumber Company, which closed the mill in 1926.

The second Estes sawmill, owned by Estes and Perley R. Eaton of Fitchburg, Massachusetts, also operated at Perkins Siding. The mill building was immediately north of the Perkins & Danforth building, and operated before 1910. In November 1910, GNP bought the mill, made fire prevention repairs, and insured it a year later. Estes continued to supervise the mill operations. By 1915, a settlement had grown up around the mill and became known as Estes Mills. It included a boarding house, ten dwellings, schoolhouse, storehouse, stable, blacksmith shop, office building, icehouse, post office, and the home of Estes and his family. The post office, labeled as “Birchville” on an 1897 postal delivery map, operated from about 1897 to 1913. By 1916, Estes had moved out of the area.

226 *The Maine Register*

227 Fred Gilbert Papers, University of Maine Fogler Library Special Collections

228 Perkins Siding building inventory, lots 91 and 102 South Twin Lake, c. 1912 ; and Perkins Siding map, July 24, 1912
In 1928, fire at the mills’ site at Perkins Siding may have destroyed both buildings. In 1930, Ernest Ladd either reopened or rebuilt the northernmost mill building that the railroad siding entered. Ladd stored the softwood logs in the water on the south side of the point and drew them into the mill via a conveyor that went from the water west of the point to the mill’s second floor. The Ladd family cut pine for the mill on the Debsconeag, Jo-Mary, Turkeytail, South Twin, and Passamagamet lakes. Ladd hauled some of his logs across the ice to the mill. The camp for his early 1940s operation was at the foot of the second deadwater on Jo-Mary Stream between Upper Jo-Mary and Turkeytail lakes. His Debsconeag camp was on the east side of Third Debsconeag Lake. During the Depression years, Ladd never turned down a man who wanted to work. His son Gerald operated the mill until 1952 when GNP canceled the lease and asked him to remove equipment so GNP could burn the mill.

Two companies built mills on the north side of Ambajejus Lake. The Michaud mill, which cut cedar, operated on the east side of Spencer Cove from the 1930s until it burned in the 1941 forest fire. Perkins & Danforth built another hardwood mill west of Spencer Cove in 1906 and began operations a year later with a capacity of 1.4 million feet of spool bars. By 1910, the mill employed nine persons who lived nearby. The company, which purchased the timber rights to the white birch in T1R9 W.E.L.S., T2R9 W.E.L.S., and T2R10 W.E.L.S., used either tractors or rafts to bring logs to the mill. The desired wood probably seeded in after the fire.

229 The Maine Register
230 conversations with Sheldon Goodine
231 conversations with Sheldon Goodine
232 conversation with Doug Farquhar
233 Edgar Harvey Defebaugh, “Perkins and Danforth Spoolwood Co,” Barrel & Box & Packages, Volume II, 1906
of 1795 that swept through this area. Joseph Treat mentioned the burned land in his 1820 survey. Doug Farquhar, who grew up in the area, found huge yellow birch and maple in the pool below Wheelbarrow Pitch at Debsconeag Falls. Perhaps these were in rafts that broke apart on their way to the spool mill.234

Mill workers loaded the bars on a scow, towed it to Norcross, and off-loaded it to railroad cars. This mill’s last listing was in the \textit{1913–1914 Maine Register}, but whether the company abandoned the mill or sold it is unknown. Ernest Ladd had a mill at the same site and may have taken over the mill. He hauled his bolts by truck to Millinocket Lake where his men rafted and towed them to the outlet, then drove them down Millinocket Stream to the West Branch of the Penobscot River. Ladd permanently closed the mill about 1930.235

At Dolby Flowage, Gilbert’s mill was on lot nine on the west side north of the railroad causeway and below the mouth of Schoodic Stream.236 Fred A. Gilbert, the first GNP woodlands boss (c. 1902), owned the property and the mill. When the mill actually opened is unknown, but the drawings for it are dated December 1918, and Gilbert sold to GNP in 1920.237 It appears that James M. McNulty, who had partnered with Gilbert on other logging endeavors, then leased and operated the mill until about 1924. Nadeau apparently took over the mill, named it Nadeau’s Mill, and operated into the early 1950s when it closed. Nadeau milled pine, some of which he cut on Schoodic Stream.238

234 conversations with Doug Farquhar

237 see footnote 236

238 Timber Map, T.1 R.7, Lots 23 & 25, Cruised by R.P.T. & R.G.H. 1944
Vernard McLaughlin, who was logging on Rockabema Stream in 1907, built a dam and steam-powered sawmill a short distance up Rockabema Stream from the river about 1930.239 The rocks for the dam came from the cleared fields of the nearby family farm. In his early years, he cut in the winter, sawed in the summer and fall, and either drove the stream or hauled with horses directly to the mill. Although the stream had a sufficient spring flow to move logs, a couple times he blew up a beaver dam to provide the necessary water. At some point, McLaughlin decided to change over to waterpower and installed a metal waterwheel. The mill continued operating under the direction of his son Delmont until the latter tore it down in 2008 and began operating a portable mill. Delmont’s son Jay continues the tradition of the family’s logging business started by Jay’s great-grandfather William McLaughlin at Nicatou in the 1850s.

Three other mills were on the West Branch, but their sites remain unknown. At Nicatou, the Harvey J. Fiske sawmill operated from at least 1925 to 1929 or 1930.240 F. H. Ladd cut on the West Branch between Millinocket and East Millinocket for his mill in that same area about 1929.241 In 1927, a mill was on the east side of Dolby Flowage not far below the second GNP stacker.242 Who operated this mill and for how long is unknown, but it may have been John W. Powers who ran a mill at an unknown location near East Millinocket from 1924 to about 1938.

Wood Salvage Operations: Post-1947

239 conversation with Delmont McLaughlin

240 The Maine Register

242 TWP.1 R.7 W.E.L.S. Penobscot County as explored in 1930; GNP Division Forest Engineering, General Plans, Dolby Pond, Maine, Buildings, Roads, Conveyors, etc, April 1927
The mills at Millinocket and Burnt Land Rapids stored logs in Quakish Lake, Ferguson Pond, and Dolby Flowage for more than sixty years. Some of these logs sank to the bottom and accumulated over the years. Beginning about 1945, the Great Northern Paper Company (GNP) tested log flotation yearly in Marden Pond and at one point found that for every 100 cord, there was a 2 percent loss.243 In 1947 and 1948, the new grappling-hook technology, coupled with an awareness of the quantity of sunken logs in the Dolby and Quakish storage areas, led to a dredging operation that pulled up about 25,000 cords for mill use.244

In the early 1970s, a second set of salvage operations took place on Quakish Lake, Shad Pond, and Dolby Flowage.245 Construction crews that included Ed Hallett, Chuck Harris, Harold Kidney, Lewie Leet, Carl and Lloyd Mason, and Dave (Guy) McLain built nine 20-foot square rafts topped with a large open topped container built of logs and attached a sea buoy to each corner. A crane with grappling hook lifted the sunken pulpwood and dropped it into the container and boats towed the raft to shore. GNP stopped this operation after two or three years because it was fouling the water. One crew worked Quakish Lake from a point of land south of the mouth of the West Branch. On Shad Pond, the landing was the site of the 2014 boat ramp, and on Dolby Flowage, the landing was adjacent to the north end of the dam. A later salvage operation raised 10,000 or more cords that the mill used in an experiment in the paper making process.

Beginning in 1974, GNP began another cleanup operation that focused on boom logs.246 The first site was upriver at Passamagamet Lake where Kidney and Harris salvaged 650-plus boom logs, which they towed to Deep Cove at the east end of Ambajejus Lake where Gerald

243 conversation with Shorty Budreau
244 GNP Weekly Newsletter, January 12, 1948
245 conversations with Chuck Harris
246 conversations with Chuck Harris
Ladd removed them and trucked them to his Brownville mill. Harris, as a new young artist, woodsman, and college man from Delaware, worked the Chesuncook and Kennebec drives and began working on the lower drive crew in 1973. He loved the work, stayed on long after the drives ended, and later became curator for the Ambajejus Boom House Museum where he is still working.

Four years later, after the drives ended, Harris and Hallett began salvaging boom logs between Quakish Lake and Dolby Dam.247 They built landing areas on the Rice Farm Road at deadman’s curve, Dolby Dam, and the north side of Quakish Lake. In the Dolby area, the crew landed 2,000 round boom logs that Ladd hauled away and milled for dimension lumber. GNP sold the accompanying boom chains, which overloaded a dump truck, as scrap metal. Harris and Hallett landed the flat booms at the Rice farm. The river drivers had made these of two timbers squared to 12 inches by 12 inches and bolted together. The flat booms kept logs in place and made it easier for the log drivers to walk on them at sluicing or booming sites. GNP reused these creosoted timbers for other construction projects.

Removing the Bathurst booms from Dolby and Quakish lakes was arduous. Construction crews at the Rice farm had made the booms of four imported Oregon fir timbers, 40-foot-long 10x10s or 12x12s.248 When GNP first used these booms is unknown, but they appear in 1929 pictures at Dolby, and Dana Brown was still constructing them in the late 1940s. They were so big and heavy that a truck could only haul three at a time. Crews positioned them to keep dry-ki out of the gates at North Twin, Stone, Dolby, and Ripogenus dams. Harris and Hallett disassembled some so the timbers could be used for bridge abutments and other construction projects.

247 conversations with Chuck Harris and Ed Hallett

248 conversations with Dana Brown and Chuck Harris
projects. Ten years later (1990), Harris and Hallett were periodically on Quakish Lake in the summer salvaging loose and lost booms of all types. These typically floated in from upriver during the spring.

In 2010, the newly formed West Branch Heritage Timber LLC began another Quakish Lake salvage operation.249 When GNP built Stone Dam in 1903, crews clear-cut the impoundment area and left the hardwoods where they fell. Based on what the West Branch Heritage Timber salvagers found, the loggers limbed these trees and burned the residual brush and underbrush in an attempt to reduce dry-ki and snags. The fire was not intense enough to consume the large logs. The salvaged logs include yellow birch, oak, tamarack, spruce, and cedar. Scientists at the University of Maine have dated one log as having started its growth in 1589. The company crew has also pulled up work barges, three 30-foot fully intact scows, pieces of capstans, a headworks anchor, and fully intact peaveys. To preserve the barges and scows, the crews left them submerged and marked the locations.

West Branch Heritage Timber built a small wharf where it has a crane and dock, a tugboat, and a pontoon workboat. On the lake are two barges, each of which holds two large containers for wood. A third barge has a mechanical arm with grappling claw that reaches into the water and pulls up the sunken logs. In some instances, the crew has dismantled rock crib piers that do not show above the lake’s surface. The company owners know that to take the rock cribs that can be seen above the lake’s surface is to remove a view of history and the marking of the lake’s river channel.

When the salvaged logs arrive at the plant on the nearby Golden Road, they go through a washing process. The company sells the residue as loam, logs less than the desired diameter as

249 conversations with Tom Schafer
biomass, the old 60-pound boom chains and the spikes as scrap metal, the bark from their
debarking operation as mulch, and the residue from their milling as either mulch or biomass. The
shop mills the remaining logs for flooring, paneling, and tabletops and for specialty furniture
shops. As history-conscious owners, Tom Shafer and Steve Sanders save the logs’ selvage edges
with the logger’s marks. In time, they will be able to match the loggers’ marks to loggers who
logged during a particular period.

My Explorations, Some of What Can Still Be Seen

In August 2013 with the West Branch at its natural level at Nicatou, I was able to visualize what
those early settlers and loggers saw from their canoes when they reached Nicatou Island and
looked upriver on either side: nothing but rapids and the river pitch did not change appreciably
until loggers reached the Lower Chain Lakes. It is no wonder that for the first seventy years, only
a few settlers ever moved upriver beyond the third set of rapids, Waite Rapids. The south side of
the West Branch of the Penobscot River between Waite Rapids and the head of Quakish Lake is
still uninhabited with rough access points generally being the old tote roads.

I forded the river to reach the south side of Nicatou Island where I walked through the
previously submerged and still-preserved rock cribs of the circa 1833 Isaac Stevens dam. I was
used to seeing ships’ spikes or rebar-type iron that pinned the logs together sticking up from the
logs, but I saw no iron any place. The south wing of the dam is above the waterline, still in place,
and secure.

From the north side of the island, I could see the pattern of rock crib piers stretching up
the East Branch of the Penobscot River; many of them hidden when the Weldon Dam is not
drawn down. The 1909 bridge pier was in the middle of the East Branch at its mouth. On the east
shore opposite the island was the Poor tannery and sawmill where some remains are still evident.
Harry Poor pulled his saw logs from the river and piled them along the shore; he had no holding pond.

Perhaps someday, I will be lucky enough to see a draw down at Dolby Dam so I can walk the natural flow of the river to Shad Pond. Some of rock crib piers that marked either side of the channel still show above the water. More are not far below the surface. Old pictures, taken when GNP built the dam, reveal that some rock cribs are as tall as 50 feet.²⁵⁰

I spent some time exploring the shores of the Dolby Flowage. Early in my research, I found a list of sawmills in TAR7 and then began to try to locate them. Remains of the Gilbert mill are just south of the mouth of Schoodic Stream. An old map showed a structure on the west side of the flowage well below the causeway in a large cove. I found my way there, but it was an old camp of some type. A John W. Powers mill was rumored to be on the east side of the flowage, but I could not find anything to suggest I found the site. By walking back and forth along the northeast shore, I did find the area of the stackers.

Some of the old rock crib that supported the stacker at North Twin Dam still shows, as does the boat ways on both sides of the dam. The Gerrish cottage (c. 1919 GNP structure) and the engine house are the only remaining buildings. The abandoned sidetracks below the dam are overgrown, but I could see where the conveyor was and the car-dumping mechanism is still in place on the high riverbank. None of the buildings, only suggestions of where they rested, are left on the north side of the dam. From the site, I followed the old road a short distance to the edge of the flooded site of the Twin Lakes Lumber Company mill community. Plenty of old metal is visible. The old railroad spur line took me to the main line. If I were a diver, I would go

²⁵⁰ GNP picture file at Katahdin Forest Management Maine Division of Acadian Timber Archives
into the water at nearby Bait Fish Cove. I hear that the Norcross Transportation Company scuttled some of its old boats here as did GNP.

An interesting time to walk some of the shores of the Lower Chain Lakes is when the water is low. The coves and shallow areas are immediately evident, and one can envision the hundreds of boom logs chained together blocking these areas. In some old aerial pictures, boom logs lined extensive sections of the shores on North Twin, Pemadumcook, and Ambajejus Lakes.

As I come across Ambajejus Lake to the mouth of the West Branch of the Penobscot River, two objects always remind me of the area’s logging history. On the north shore, the sawdust pile of the Perkins & Danforth Spoolwood mill and Ladd’s sawmill is still huge. At the west end of the lake, the Ambajejus Boom House acts like a beacon. It is the most visible of the last four standing buildings that are reminders of 140 years of the West Branch log-driving history.