1-2018

Within Katahdin's Realm: Log Drives and Sporting Camps - Chapter 01: A Regional Context, with Table of Contents, Introduction, and Acknowledgements

William W. Geller

Follow this and additional works at: https://digitalcommons.library.umaine.edu/mainehistory

Part of the History Commons

Repository Citation
https://digitalcommons.library.umaine.edu/mainehistory/134

This Book Chapter is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine History Documents by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
Within Katahdin’s Realm:
Log Drives and Sporting Camps

Contents

Introduction

Acknowledgements

Part I
Logging

Chapter 1
A Regional context

Migration into the Lower West Branch and Its Tributaries

The Logging Operations

January 2018
William (Bill) W. Geller – researcher and writer
108 Orchard Street
Farmington, Maine 04938 or 207-778-6672 or geller@maine.edu
https://sites.google.com/a/maine.edu/mountain-explorations/home
Contents

Introduction

Acknowledgements

Part I Logging

Chapter 1 A Regional Context
Migration into the Lower West Branch and Its Tributaries
The Logging Operations

Chapter 2 The West Branch of the Penobscot River: Nicatou Island to Ambajejus Falls
Early Homestead Loggers between Nicatou and Millinocket Stream
Logging: Pre-1841
Logging: 1841–1894
 Logging between Nicatou Island and North Twin Dam
 Logging around the Lower Chain Lakes
 North Twin Dam and Norcross as Logging Communities
Post-1894 Logging around Quakish and the Lower Chain Lakes
The Log Drive: Across the Lower Chain Lakes to North Twin Dam and on to Nicatou Island
 The Drive before 1901
 The Drive Starting in 1901
 Changes at North Twin Dam
 The Lower Drive: From Shad Pond Downriver
 Moving Logs to the Mill at Burnt Land Rapids
Sawmills on the Lakes and Streams
Wood Salvage Operations: Post-1947
My Explorations, Some of What Can Still Be Seen
Chapter 3 The West Branch of the Penobscot River: Ambajejus Falls to Ripogenus Dam

Logging: Pre-1840

Moving Supplies between Ambajejus Falls and the Ripogenus Outlet

Development at the Ripogenus Lake Outlet

Logging and Logging Camps on the River

Logging on the Tributaries
 - Passamagamet Lake
 - Debsconeag Lakes
 - Hurd Pond and Little Hurd Pond
 - Daisey and No-Name Ponds
 - Mud Pond
 - Hale Pond
 - Pockwockamus Stream Drainage
 - Abol Stream
 - Katahdin Stream
 - Foss and Knowlton Pond Drainage
 - Nesowadnehunk Stream
 - Horserace Ponds
 - Fowler and Sewall Ponds
 - Rocky Pond
 - Little Holbrook, Holbrook, and Chesuncook Ponds

My Field Explorations

The Log Drive: Ripogenus Dam to Ambajejus Lake
 - River Improvements
 - The Drive

My Explorations, Some of What Can Still Be Found

Chapter 4 Millinocket Stream and Millinocket Lake Watershed

Millinocket Stream

Millinocket Lake Drainage

Sandy Stream Drainage
Togue Stream Drainage
Mud Brook Drainage
Sawmills on Millinocket Stream and Lake

Chapter 5 The Debsconeag Lakes Watershed
First and Second Debsconeag Lakes
Third through Eighth Debsconeag Lakes
Discovering More History on My Explorations

Chapter 6 Nahmakanta Stream and Lake Watershed
Nahmakanta Drainage: Nahmakanta Stream to Nahmakanta Lake
 Logging Dams on Nahmakanta Stream
 Operations at the Mouth of Nahmakanta Stream
 Cutting along Nahmakanta Stream
 Tumbledown Dick Stream Drainage
 Logging around Nahmakanta Lake
Pollywog Pond Drainage: Pollywog Stream to Penobscot Pond
 Bean Brook Drainage
 Pollywog Stream and Pond
 Wadleigh Pond
 The Musquash Ponds
 Upstream from Second Musquash Pond
 Farrar Brook Drainage
Rainbow Drainage: Rainbow Stream to Rainbow Lake
 Rainbow Stream
 Gould Pond Drainage
 Stratton Pond Drainage
 Other Drainages Entering Rainbow Stream
 Rainbow Lake
 Post-1924 Rainbow Fire

Chapter 7 Jo-Mary Lakes Watershed
Part II Sporting Camps and People of Maine's West Branch Watershed

Introduction
The Beginning of the Sporting Camp Era

Chapter 8 Fisk's Hotel at Nicatou Up the West Branch to Ripogenus Lake
Pre-1894: Camps and People
Post-1894: Nicatou to North Twin Dam
Post-1894: Norcross Community
Post-1894: Camps on the Lower Chain Lakes
On the River: Ambajejus Falls to Ripogenus Dam
 At Ambajejus Lake
 At Passamagamet Falls
 At Debsconeag Deadwater
 At First and Second Debsconeag Lakes
 At Hurd Pond
 At Daisey Pond
 At Debsconeag Falls
 At Pockwockamus Deadwater
 At Abol and Katahdin Streams
 At Foss and Knowlton Pond
 At Nesowadnehunk Stream
 At the Big Eddy
 At Ripogenus Lake Outlet
Chapter 9 Millinocket Station North to Basin Ponds
Camps on Millinocket Lake
Camps at Millinocket Station, Togue Ponds, Togue Stream, and Sandy Stream Drainage

Chapter 10 North from the Stinchfield and Heath Camp on Pemadumcook Lake at Nahmakanta Stream
At the Mouth of Nahmakanta Stream
At Third and Fourth Debsconeag Lakes
At Nahmakanta Lake
On the Pollywog Pond Drainage
At Rainbow Lake

Chapter 11 On Chief Jo-Mary’s Lands
At Upper Jo-Mary Lake
At Middle Jo-Mary Lake
At Lower Jo-Mary Lake
At Yoke Ponds

Epilogue

Names and Related Information

Sources of Information: Printed Materials
Content Sections
1. Publications Devoted to Understanding Logging Operations
2. Native American–Related
3. Early West Branch Excursions
4. Surveyors’ Field Notes
5. Writings by Those Who Were There
6. Personal Papers
7. Millinocket Historical Society
8. Great Northern Paper Company Documents
9. Penobscot Development Company papers
10. Katahdin Forest Management Maine Division of Acadian Timber
11. Railroads
12. Old Newspaper News Shorts
13. Guidebooks
14. Sporting Camps
15. From *The Maine Sportsman* (by Date)
16. Town and County Histories
17. Government Publications and Directories
18. Other
19. Maps

Glossary
Introduction

This book’s historical journey on Maine’s West Branch of the Penobscot River and its tributaries is in two parts, logging and sporting camps. The journey starts in 1825 when the first loggers began cutting along the river and driving their logs more than 70 river miles to the Bangor sawmills. It ends 151 years later in 1976, the year of the last drive. The area includes the northern half of the Appalachian Trail’s 100-Mile Wilderness.

Every hunter or fisherman, backcountry wanderer or trail hiker, old bottle collector or sport camp guest, land owner or camp lessee, canoer or boater, and forester or logger in Maine has found remnants of old logging camps; walked on old corduroy logging roads; discovered rock crib dams, boom logs, and boom chains; seen sunken ax-cut logs; and stumbled over half-hidden metal remains and old telephone wire. Their discoveries beg the questions this book seeks to answer. When did the loggers first cut here? What was their route to this spot? How did they move their logs? How did they supply their operations? When did they first build dams and make waterway improvements? How frequently did they cut? Who were the men who cut? How did they manage the log drives? How did the operations change over time? When did they last drive logs from a particular spot to market? No matter the size of any pond, lake, or swamp whose water ultimately reaches the West Branch of the Penobscot River between Nicatou and Ripogenus Lake, the reader will find information about it in this book.

Maine’s sporting camp history in this region started with enterprising loggers and teamsters who were also trappers and guides who took adventurous persons to prime fishing and hunting locations where they used tents or their small trapper’s camps or logging camps, either abandoned or in use. Where were these camps? Who were the men
who built them and the guides who served their guests (sports)? Via what route did they reach the camp? What roles did their families play? How did they manage their supplies? Was it a year-round operation? Who frequented these camps? How did the camp evolve over time? The journey starts about 1890, and this book traces the history of each camp that opened before about 1930.

The text moves the reader upstream beginning where the Penobscot River forks at Nicatou Island with the East Branch leading north and the West Branch heading west-northwest. The reader travels up the West Branch into the Lower Chain Lakes (Elbow, North Twin, Pemadumcook, and Ambajejus lakes), and back into the river flowing under the shadow of Mount Katahdin to the Ripogenus Lake outlet where the journey ends. Along the way, each tributary is explored. In this book, this collection of watersheds is the Lower West Branch Region.

The historical journey is a compilation of information bits from three sources: printed matter, conversations, and field explorations. These are woven together to create a story of work and life. In developing the story of what transpired over time, I have used what I have learned about logging practices, deductive reasoning, and logic to, in some places, complete a portion of the story. In those instances, I have signified that by some kind of conditional statement. Creating a time frame for some things is also an educated guess, and in these cases, I have used the word about or c. My use of the word unknown means I have searched, but not been able to find information.

Unknowingly, my field explorations began on a cool misty gray low cloud day in June 1987 when Bob Kimber took me on my first trip through a portion of the region, the Debsconeag Lakes to Nahmakanta Lake, down Nahmakanta Stream to Pemadumcook...
Lake, across it to Ambajejus Lake, and back up the West Branch of the Penobscot River to our starting point at Debsconeag Deadwater. The trip was magical and captivated me. Two years later, I brought my recently retired father, an inveterate bushwhacker. We returned each year until he died in 2004. Some years, we revisited places and other times we ventured into abutting areas: Jo-Mary Lakes, Cooper Brook, Pratt Brook, Nahmakanta Stream, Rainbow Stream, Gould Brook, and Pollywog Stream. My yearly weeklong trips continued and became longer in 2010 when I retired.

In 2010, I read our past trip notes and out of personal curiosity began a search for the answers to my questions. I was surprised by how little I found. Only two works, *The Penobscot Boom* by Alfred Hempstead and *Katahdin: An Historic Journey* by John Neff, provided some of the detail of the area’s history. To get the history I was interested in, I realized that I would have to piece it together.

My early library research focused narrowly on the West Branch from the Ambajejus Boom House at the head of Ambajejus Lake to the Debsconeag Deadwater, the Debsconeag Lakes, Nahmakanta Stream, Rainbow Stream, Pollywog Stream, Jo-Mary Lakes, and Cooper Brook watersheds, the areas through which I bushwhacked. Sometime during the second year of research, I realized that a richer history needed to include a broader area. I shifted the most upriver point from the Debsconeag Deadwater to the outlet of Ripogenus Lake, and the downriver-most point from the Ambajejus Boom House to Nicatou Island. Loggers towed booms from the Upper Chain Lakes (Caribou, Chesuncook, and Ripogenus lakes), to the Ripogenus Lake outlet and released them into the river; the beginning point for the fabled West Branch drives through Ripogenus Gorge. From the first to the last log drive, the outlet was a staging point and hosted an
outpost community, the only one until the logs reached North Twin Dam 35 miles downriver. I wanted to know how they got the logs across the Lower Chain Lakes to North Twin Dam and how they drove the river below it. The first logger’s journey in the mid-1820s started up the West Branch at Nicatou and the last log driven was pulled from the water at Great Northern Paper Company’s East Millinocket mill in 1976 just above Nicatou.

Realizing I had to move beyond libraries, I reached out to a University of Maine at Farmington work-study student, Christina Cesare, whose family had a camp on Third Debsconeag Lake. Her dad, Tony, shared what he knew of the history. That conversation led to dialogue with more than 150 individuals who have some personal connection to the area. I have spoken more than once to most of the people in the acknowledgement section. Some I have been able to meet in person. Others have spent hours on the phone with me. Some are in their nineties, many in their seventies are children of parents and grandparents who worked in the woods, and some are of the families that go back to the 1820s. Others have family who started sporting camps or were guides or trappers. These contributors have read sections, provided feedback, fed me, put me up overnight, given me or shared printed matter, and led me to others. For some, what they have learned from me coupled with what they know has helped to solve their unanswered questions and raise more. Information seemed to lead to more memories and information. I also sense a strong desire by most folks to have this history recorded before any more of it is lost. They are familiar with the few books and are quite aware of how little has been captured in print. Few have ever been asked for what they know.
My twenty-six years of field explorations continue to be fun and invaluable. Often I am simply following a stream or walking a lake or pond shore to see what I might find that would then beg the question of when and how did the logs get to market? Some trips have provided unrecorded information about a known site or area, site confirmations, and precise locations. Others have helped me determine whether loggers followed a cruiser’s recommendations. Sometimes I was looking for possible old dam sites based on what I knew about logging practices and the contour lines of topographical maps.

Some of my fieldwork has been led or otherwise supported by those I have talked to. Skip Young led me to the logging campsites on the upper end of Farrar Brook. Tony York showed me the old root cellar of the Gibson clearing on the West Branch. Rob York gave me a tour of Quakish Lake. Peter Pray walked me through how loggers worked from Big Eddy to Ripogenus Dam. Chuck Harris guided me to areas around the Ambajejus Boom House and Dolby Flowage. Jay McLaughlin and his father, Delmont, took me to places on the river in the Medway area. Tom Schafer gave me a tour of the Togue Pond area. Darryl Day toured me along the old Cooper Brook Tote Road. Robin and Barry Nevel showed me around Yoke Pond and its camps. John Powers took me up the haul road from Grindstone to Dolby Flowage and the area on the south side of the river between Stone Dam and Medway. Don Hibbs of Nahmakanta Lake Camps and Jim Strang of the Millinocket Flying Service provided canoes so I could reach some remote spots. Unknown others whose canoe or punt has been hidden in the woods and left unlocked have supported these explorations.

For printed matter, I started by reading the few books of those men who worked on the river and soon realized that I needed an understanding of how loggers operated
and how that changed over time in this geographical area. When I started looking for logging information for specific water drainages, I was able to find considerable information in *Acts and Resolves and Special Laws of the State of Maine* and in Great Northern Paper Company (GNP) documents.

The GNP records start in 1900, but a 1911 fire at their Millinocket headquarters destroyed many of the early records. Large portions of the remaining records are at University of Maine’s Fogler Library along with some records of the Penobscot Development Company. Other GNP records are at the Maine State Library, Maine State Archives, Millinocket Historical Society, Hampden Historical Society, and Katahdin Forest Management Maine Division of Acadian Timber Company, the current company that manages some of the properties once owned by GNP.

Information for 1820 to 1900 fell into five general areas: Native American–related, early West Branch excursions, field notes of surveyors and timber cruisers, and newspapers such as the *Bangor Daily Whig and Courier*. The letters and account ledgers of landowners and lumbermen from about 1836 to 1920 are in library archives of the University of Maine, Maine Historical Society, University of Rhode Island, Roger Williams University, and Olana New York State Historical Site.

Beginning in the mid 1870s, the first guidebooks appeared and included snippets of information on sporting camps. With the railroad reaching the area in 1894 came the sporting camp era and the Bangor and Aroostook Railroad yearly publication, *In the Maine Woods*, and publications such as *The Maine Sportsman*.
The early histories of towns at the edges the region, the U.S. Census, *The Maine Register*, genealogy records, and county registries of deeds provided information about people and forest industries or sporting camp operations.

Maps are another source of information, but they are not always easy to interpret, especially if they are not dated. What appears on one map may have been copied from a previous map and may no longer exist. The early maps often lack precision of lake shorelines or exact locations of such geographic features as ponds and streams. Names of features sometimes changed from one decade to another. When studying maps, I looked at several maps of the same area spanning a period to see when things first appeared and perhaps disappeared. The largest single collection of maps is in the archives of the James W. Sewall Company. Even though the company began its work about 1880, it has maps that date back to the 1820s. The other large map collections are at Fogler Library, Katahdin Forest Management the Maine Operations of Acadian Timber, Maine State Archives, and University of Southern Maine Osher Library.

Other information came from the archives at the Maine Bureau of Public Lands, Maine Unorganized Territories Tax Office, Prentiss & Carlisle, Webber Oil Company, and The Nature Conservancy.

As I have delved into these resources, one of my interests is place names. For years I have looked at the area’s labels on ponds, railroad track sidings, streams, communities, lake points, islands, and mountains and wondered who was the person for whom someone named the site and what was the person’s role in the area’s history? Nothing has told me someone named a particular site for a particular person, but I have made some suggestions that appear under “Names and Related Information.”
A number of things I found during my research inspired me, but the one I most often returned to was *Katahdin: An Historic Journey*, by John Neff. He wrote the history of the area along the West Branch on the Katahdin side. I wanted to continue the historic journey using similar types of information and go south from the West Branch to Yoke Ponds, a headwater of the Jo-Mary Lakes.

This book is a companion to the Neff and Hempstead books. The small overlap is principally the geography and not the information. For example, I have included little information about logging or sporting camps on or near Nesowadnehunk Stream, a major West Branch tributary on its north side. Where we each write of the same sporting camp or logging area, I use new information. Whereas Neff did not include information on the earliest private family homes and camps, I have. One can obtain a richer understanding of the region’s history by also reading Neff’s and Hempstead’s books.

My interest in the history of this beautiful area continues. There is always a new person to talk to, another corner to explore or re-explore, and new information bits found here and there. You may have additional information, corrections, or questions, and if so, I hope I will hear from you.

—Bill Geller, Farmington, Maine
Acknowledgements

One of the great pleasures of this writing project was talking to people and listening as they shared their knowledge. My calls to these individuals came after about eighteen months of research centered on library and Internet materials. I wondered how many people would talk to me, a strange voice asking for information, but everyone shared with me. Most individuals had information related to more than one of the watersheds within the Lower West Branch region.

I am deeply indebted to and most thankful for the interest and encouragement, and for all that the following individuals so willingly and supportively shared: Jere Allen, Bruce Allgrove, John Alvarado, Richard and Gale Annett, Erwin and Maureen Bacon, William Barron, Peter Bartley, John Barton, Charles Beaupain, John and Dorothy Beeuwkes, Reinier Beeuwkes, Val and Carol Belanger, Heidi Benedict, Claire Benson, William R. Boyington, Ralph Boynton, Ted and Alfred Bradbury, Mike and Ralph Bragdon, Ida Brier, Dana Brown, Ronald (Shorty) Budreau, Desiree Butterfield-Nagy, Raymond “Buddy” Campbell, Reid Campbell, Reny Cardon, David Carlisle, Edgar Carr, Christina Cesare Flint, Tony Cesare, Peter Chaples, Quinten Clark, Howard Collins, Bill Cook, Ray and Leslie Cooley, Daniel J. Corcoran, Rodney Corriveau, Ray Cota, Ellie Cowie, Al Cowperthwaite, Frank Crosby, Joe Daniels, Darryl Day, John and Barbara Descentes, Tom Dinsmore, David Edson, William England, Anne Erickson, David Erickson, Peter Faloon, Mrs. Ray Faloon, Doug Farquhar Jr., Jack Farquhar, Larry Ferguson, Richard Fernald, Frank and Pauline Fernald Jr., David Field, Paul Firlotte, Albert and Marian Fowler, Fred Fowler, George Fowler, Dave Fuller, DeWolf Fulton, Lana Fyrberg, Vaughan Gagne, Mardi George, J. C. Gerrish, Jud Gerrish, Charles
Gilbert, James A. Goodwin, Wally and Donna Gould, Peter Grabber, Thomas Griffin Jr.,
Jack R. Hale, John S. Hale, Bill H. Hall, Jay Hall, Robert Hamlin, Chuck Harris, Harlin
and Linda Harris, Keith Hasty, Sandy Haynes, Donald and Angel Hibbs, Woody Higgins,
Daniel Hinse, John Hofbauer Jr., Lawrence (Buzzy) and Betty Hopper, John Jones,
Marvin and Elizabeth (Schoppe) Keith, Robert Kimber, Ernest LeGassey, James
Lagassey, Clark W. Lakeman, Eugene Larlee, John Leathers, Robert C. Leet, Rick and
Debbie LeVasseur, Fred D. Lewis, Lowell Libby, David Little, James Logan, Kathy
Low, Carroll Lozier, Robert MacDonald, Henry Madore Jr., Ervin and Ann Marston,
Marcia McKeague, Jay and Delmont McLaughlin, John McManus, Peter J. McPheters,
Peter W. McPheters, Jean Megquier, Amanda Michaud, Mary Millard, Paul Mills, Mr.
and Mrs. Kenneth Moscone Jr., Mike Murphy, Jim Murray, John Neff, Tom Nelson, Roy
Douglas Nelson Jr., Paul Nevel, Robin and Barry Nevel, Sarah Oatly, William Patterson,
Andy and Janet Pease, Becky Pease, Robert Pelletier, Greg Pelligrini, Glen A. Perkins,
Ernest Perrow, John Allen Powers, Peter Pray, Don Pudney, Paul Raspante, Michael
Rishton, David Robinson, James Robinson, Jay Robinson, John R. Rodney, Candy
Russell, Tommy Russell, Mark de Saint-Rat, Steve Sanders, Edward Sargent, Gean G.
Sargent, Greg Sargent, Sarina Rodrigues, Greg Schute, Tom Shafer, David Simmerer,
Chuck Simpson, John Skillin, Richard T. Sleeper, Peter Smallidge, Sterling Smith, Gary
Stevens, Jim Strang, Frank Stratton, Jim Sullivan, Kyle Triplett, Robert Vidas, Richard
Waceken, Bill and Cindy Ware, Brad Wellman, Bryan Wentzel, Howard Weymouth,
Howard Whitcomb, Lori Ann Willey, Geoffrey Wing, Bill Wise, Ray Woodworth, Trudy
Wyman, Larry and Barbara Yeo, Anthony (Tony) York, Robbie York, George (Skip) and
Carol Young, and Rudi Zaninetti.
I want to offer an additional thank you to the following individuals for the printed matter they so kindly gave me: Jere Allen, Peter Bartley, Dana Brown, Tony Cesare, Tom Clark family heirs, Quinten Clark, David Erickson, Albert Fowler and family, Jack Hale, Chuck Harris, Sandy Haynes, Don Hibbs, Mike Higgins, James Lagassey, Rick Levasseur, Lowell Libby, Erv Marsden, Jean Megquier, Amanda Michaud, Paul Mills, Roy Nelson Jr., Tom Nelson, Dave Simmerer, Richard Sleeper, Peter Smallidge, Gary Stevens, Kyle Triplett, Geoffrey Wing, Skip and Carol Young, and Tony York.

Thank you all for your interest in capturing history and your contributions that enriched this work.
Migration into the Lower West Branch and Its Tributaries

The history of the lower portion of the West Branch of the Penobscot River region, Nicatou Island to the Ripogenus Lake outlet, is linked to the waterways. Native Americans, timber cruisers, loggers, trappers, and adventurers used the waterway as a highway traveling the long-established Native American canoe routes into the area. One canoe route came up the Penobscot River to the West Branch and followed it into the Lower Chain Lakes—Elbow, North Twin, South Twin, Pemadumcook, and Ambajejus lakes—and continued on to Ripogenus Lake.\footnote{Cook, David S. \textit{Above the Gravel Bar: The Indian Canoe Routes of Maine}, 2nd edition. Milo, ME: Milo Printing, 1985.} Another left the Penobscot River at its confluence with the Piscataquis River, which it followed to the Pleasant River to its east branch and on to Upper Ebeemee Lake and into Wangan Brook to reach the Jo-Mary Lake chain, the region’s southern portion, to gain access to the Lower Chain Lakes. Access from the west came via the Kennebec River into Moosehead Lake to Northeast Carry into the West Branch and the Upper Chain Lakes: Chesuncook, Caribou, and Ripogenus.
For centuries, the Native Americans canoed from their community at Penobscot (thought to be Indian Island at Old Town, Maine), “the place where the rocks and ledges descend and the river broadens out,” up their nameless river for 70 miles to where it split, a geographic location known to them as Nicatou (Nicatou Island), “the river fork.”\(^2\) One fork continued north and the other headed west-northwest. As they paddled up the west-northwest fork, they continued to name the river’s geographical landmarks. At Nolleseemic (Shad Pond), “resting place at the falls above a long stretch,” they stopped to prepare for the carry around the falls (Grand Falls). Above the falls, they paddled through P’Quakees (Quakish Lake), “rough strewn or boggy flooded place,” and back into some quick water before entering Numtsceenaganawis (Elbow Lake), “little cross pond,” at the acute bend. They soon arrived at Kep-chee-chee-wok (North Twin Lake with an unknown translation), where on its south side they passed Eptchedgewock, “where two currents from opposite directions meet,” the thoroughfare to Wallenipteweekek (South Twin Lake), “round coves surrounded by burnt land.” Beyond Kep-chee-chee-wok, they paddled through Pemadumcook (Pemadumcook Lake), “place of many sand bars,” to reach Ambajejus (Ambajejus Falls), “two currents one on either side,” where they carried on the north side. A short paddle brought them to Passamock (Passamagamet Lake), “place of many fish,” the next falls and nearby lake, and portage. The river then opened into a wide, long, open body of water followed by another carry, Katepsconeag (Debsconeag Deadwater), “ponds in the river,” “rocky place,” or “carrying place.” They continued on to Pockwockamus (Pockwockamus Deadwater), “little pond” or “slight expansion of the river,” passing through and near bodies of water on the river and

\(^2\) In this book the translations of the Native American place names are from Fanny Hardy Eckstorm personal papers at University of Maine Fogler Library Special Collections.
carrying at Pockwockamus Falls. The next carry was at Aboljacknegassic (Abol Falls), “bare and devoid of trees,” where they could see Kette-Adene’s (Mount Katahdin) “greatest or preeminent mountain.” The pitch of the river lessened until they reached the next falls and a large stream flowing from between the mountains to the north, Nesowadnehunk (Nesowadnehunk Stream), “swift stream between mountains.” They portaged at the next set of rapids, Ambejackmockamus, (Ambejackmockamus) “slantwise of the regular route.” At the eddy spanning the river (the Big Eddy), they carried to Ripogenus (Ripogenus Lake), “small rocks and gravel place.” The white men eventually named the waterway the West Branch of the Penobscot River.

The Native Americans guided many early adventurers whether they were coming upriver from Bangor to the southeast or going downriver from Greenville via Moosehead Lake from the north and west. In the summer of 1764, surveyor Joseph Chadwick, guided by Native Americans and charged by the then British territorial governor to scout a 400-mile road from Fort Pownal at the mouth of the Penobscot River to Quebec City, passed through this section of river.\(^3\) Knowledge of the Penobscot as a water link to Quebec had already been established as the advantageous north to south route. Chadwick reported that a road was not feasible.

In 1820, the first Maine governor, William King, sent Major Joseph Treat north to survey the Penobscot and St. John rivers and assess the timber.\(^4\) Treat did not report any

\(^3\) Eckstorm, Fanny Hardy. “Chadwick’s Survey.” *Sprague’s Journal of Maine History* 14, no. 2 (1926).

loggers on the West Branch, but did report burn areas on the south side of North Twin Lake, around Ambajejus Lake and the Debsconeag Deadwater. The Maine State Land Commissioners had the northern Maine townships surveyed in the mid-1820s. According to the surveyors’ West Branch watershed notes, no loggers had cut timber on lands between Nicatou Island and Ripogenus Lake. Sometime between 1824 and 1828, loggers cut and drove the first logs from the Nicatou Island area. About 1831, logs rode the river current from Ripogenus Lake to Bangor. Eventually logs fed into the West Branch from most of the watersheds flowing into the river between Nicatou Island and Ripogenus Lake. Crews drove the last long logs to Bangor area in 1928, and the pulpwood drives ended in 1976.

The earliest loggers entering the lower West Branch region worked their way north from Bangor. They used the waterways to transport their needed supplies and drive their logs to the Bangor market. As the demand for timber increased and loggers multiplied, they reached deeper into the wilderness and cut tote roads to deliver the supplies. Generally these tote roads followed the rivers and streams and connected them to the ponds and lakes near waterways. Loggers used the first tote roads only in winter when they cut and snow filled in around rocks and stumps that swampers did not remove. As the loggers reached deeper into the wilderness, teamsters reused the roads. With the roads’ reuse came improvements resulting in eventual summer travel with buckboards

The drive was for the Jordan Lumber Company in Old Town

6 In researching material for this book I quickly realized I needed to understand the logging process and how it developed over time. This chapter’s material is from publications listed in the “Sources of Information” content section one, “Publications devoted to understanding logging operations.”
and wagons. With further improvements, these roads became the stage roads connecting Bangor to Mattawamkeag, Brownville, and Greenville—the communities that sprang up on the region’s borders in support of the logging.

Tote roads first reached into the region from Mattawamkeag, then Brownville, and lastly Greenville. In 1829, Colonel Stanley built the first shanty, a stopping point for teamsters, at Mattawamkeag. Above this point, river men ferried supplies headed for the West Branch upriver to Nicatou Island where the nearly continuous rapids to the Lower Chain Lakes made the movement of supplies arduous. At Mattawamkeag where the Penobscot River switches from a northeast to a northwest course, the tote road continued north to Patten before swinging west to Shin Pond, Sebois farm, and, by 1879, reached Trout Brook and Nesowadnehunk Lake and stream, a distance of 55 miles. No tote road developed along the West Branch between Nicatou Island and the head of Grand Pitch and the Lower Chain Lakes until 1878.

The difficulty of moving supplies up the West Branch of the Penobscot River into the Lower Chain Lakes and above led to the development of two major tote roads from Brownville. About 1805, roads reached Brownville. The Nahmakanta Supply Road (completed c. 1835) continued, touching Schoodic Lake at its northwest bay and then passing along the east shore of Upper Ebeemee Lake before following the east shores of Upper Jo-Mary Lake and ending at South Twin Lake’s southwest bay and probably at the west side of the mouth of West Ragged Stream, whose current helped keep some dry-ki from blocking access to the lake. The first shanty was 6 miles above Brownville at Elisha Norton’s farm. In 1882, Norton was running the operation, but whether he took over what was a family operation is unknown. Ten miles farther, just north of Upper Ebeemee Lake,
was the Weld and Juliana Philbrook shanty (c. 1832) located on the west side between the road and Wangan Brook. Although no record of it has been found, a shanty or camp probably stood near South Twin Lake, the end of another 10-mile leg.

The second route, the Chamberlain Lake Tote Road or Old Shanty Road, ran from Brownville through Katahdin Iron Works (KIW), south of B Pond, and then northwest past the west end of Second Roach Pond, before turning north to the Ragged Lake outlet and ending at Chamberlain Lake. From the late 1840s to the early 1880s, empty supply wagons returning south carried iron piglets from KIW to Bangor. The shanties along this road were at 10-mile intervals; Spring Lake farm (1820) at KIW, Ten Mile shanty (1835) just below B Pond, the Shaw farm (1872) at Second Roach Pond, and the Grant farm (c. 1835) at the intersection with the Chesuncook Tote Road (c. 1837) near the foot of Ragged Lake.

Another key tote road branched off the Nahmakanta Tote Road a mile above the Philbrook shanty and had shanties at Jo-Mary Pond, Yoke Ponds, probably Wadleigh Pond, and ended at the Joe Morris farm on Caribou Lake. The precise dates of this road and the Morris farm are unknown, but by 1841, loggers had cut a two-mile swath around Caribou Lake and were already cutting on Caribou Brook and Kelly Pond to the southeast.

The typical 10 miles between shanties was what horses and oxen pulled per day. It included a storehouse, cabin, blacksmith shop, and animal shelter. Some shanties, such as the Philbrook shanty, were also farms that raised crops in support of the logging operations. Other shanties were only open during the winter season when loggers cut and needed supplies. The load for a four-horse team averaged four to five tons of material in
the winter when crews, using a horse-drawn water tank, purposely iced the main roads, and 1,500 pounds at other times.

Typical of most stops, the Jo-Mary Pond shanty had a large log storehouse, a large log barn, caretaker, and a resident oxen team. The team hauled a full load to Yoke Ponds. The following day, it returned with an empty sled and the Yoke Ponds team pulled with a loaded sled. One of the nighttime tasks of the caretaker, particularly at the Jo-Mary and Yoke Ponds shanties, was to keep the caribou from the feed that was on the sleds. Fred Heath was the caretaker in the late 1800s at Jo-Mary Pond.

To the west, the first tote roads reached Greenville from Bangor through Monson in 1826. Greenville’s first settlers built west of Little Wilson Pond in 1824. By 1831, the route went through Shirley and reached the foot of Moosehead Lake, crossed it to Lilly Bay, followed the Chesuncook Tote Road to the outlet of First Roach Pond, continued on to the Grant farm where it intersected the Chamberlain Lake Tote Road, and then went northeasterly to Chesuncook Dam and head of Ripogenus Lake. Logging around Moosehead Lake commenced around 1824.

For the first ninety years (c. 1840–1930) of north woods logging, these roads were the core supply routes. From these routes, loggers cut side routes into uncut areas to build camps. They then abandoned those, leaving areas with rough tote and drag roads that they reopened in future cutting cycles. Even with the advent of the railroad to Brownville (1882), Greenville (1884), and Norcross (1894), portions of these roads continued to be key links.

The only towns to form within the lower West Branch region were those on the perimeter; Nicatou (1826) (became town of Medway in 1875), Norcross (1893),
Millinocket (1899), and East Millinocket (1906) were at the eastern edge of the region, and Chesuncook Village (1847) was at the head of Ripogenus Lake at the western edge. From Norcross upriver, the only people who lived in the region year-round were a few who lived off the land and sporting camp operators who also trapped, hunted, cut wood, picked spruce gum, and acted as fire wardens.

The Logging Operations

The earliest loggers came to cut the large 2- to 3-foot diameter top-quality white pine, which grew close to the water, and were not in large tracts. These early loggers also took some hemlock for the bark, which tanneries needed. After loggers dropped a tree, they pulled it to the water’s edge. As these trees within easy reach of a waterway disappeared, the loggers moved away from the water to take other pine. Loggers returned in twenty to twenty-five years to cut the matured and the second-quality pine trees. By the late 1850s, loggers had culled most of the pine trees, pine’s importance in commerce ended between 1864 and 1874, and spruce became an acceptable saw log. Spruce logs were typically 2 feet in diameter and loggers left those less than 15 inches in diameter. Some old pictures suggest that in the latter part of the 1800s some cutters took nearly every tree. By about 1900, loggers were cutting second or third growth or areas once left untouched because they were hard to reach.

The yearly logging calendar remained relatively unchanged through the midpoint of the twentieth century. This calendar took advantage of the seasons, technology, and availability of men. In the late summer and early fall, preparations, which took the fewest men, commenced and included road, dam, and camp building. After the fall farm harvest, more men, oxen, and horses joined the crews and the cutting started. As time went on,
logging operations required far more men than were needed for farming the surrounding areas. By early January when the snow became deep, the men stopped cutting and shifted to hauling. The teamsters drove the oxen and horses, and others loaded and unloaded the sleds. They completed the hauling before mid-March when the ice on ponds, lakes, and streams began to soften. When the ice broke up, the loggers drove the logs down the waterways. Water, volume of logs, complexity of the waterway, and distance from Bangor determined the number of weeks of a drive. As the logging began to become more mechanized in the late 1920s and 1930s, logging operations began to shift to year-round with shut downs in mud season. The drive season always started at ice-out. Until about 1920, the drive in the lower West Branch region was generally over by early August.

The volume of cutting increased to the point in the late 1860s that it probably exceeded what could be driven with the usual spring runoff and the region’s only two dams, Chesuncook Dam (1840) and North Twin Dam (1841). Additional dams became the solution with the first in the region built at Nahmakanta Lake about 1867. In the next five years, the Maine state legislature chartered three different dam companies, which built the major dams used into the 1940s. Some of the dams were no longer needed after about 1920 when Great Northern Paper (GNP) changed to driving 4-foot wood.

These early dam charters did not allow for year-round water storage; there was no need for it. From 1840 to 1903, loggers left the gates open once the drives were over. Beginning in 1903, the Maine state legislature allowed water storage for the support of the GNP mill, which needed the water for an expanding number of grinders and paper machines and for electricity generation. For the next seventy years, GNP employed
numerous water storage and conservation practices. During drought conditions in the early 1950s, the company unsuccessfully experimented with rainmaking apparatus on Ragged Mountain. In the early 1980s, a billion cubic feet of water was worth a million dollars.

Construction crews built the large dams on large waterways, lakes, and ponds. These dams often had multiple gates, sluices, and aprons. Some dams were small, perhaps 50 feet long, but others stretched to more than 900 feet. Rock cribs, fundamental to any construction projects in the water, were created by setting two or more logs parallel to each other and putting cross logs such that they create one or more squares. Loggers put on another layer of parallel logs over the cross logs and then more cross logs, building a log cabin–type structure. They filled the empty squares with rocks. Some construction methods enabled the drivers to use dynamite to blast away a portion of a dam such as the top or a midsection so the dam might get another year’s use. Drivers used this strategy when they needed a single rush of water, sometimes at the end of a drive. On many water bodies, loggers built side dams that kept water from spilling out into another drainage system, spreading out over an extended low lying flat area, or flowing around either or both ends of the central dam. At difficult rocky portions of a stream, loggers built roll dams to flood them out. Such a dam had no gate, and water simply flowed over its top. Loggers built splash dams (squirt dams) at small pond outlets and on small streams where they wanted to control the water flow. Such dams generally had a simple central gate that extended from the floor of the stream to the top of the dam. On some streams, loggers built these dams at short intervals and during the drive worked upstream releasing and retaining water as needed. Loggers made horse dams on small
streams and at outlets of small ponds by dragging a couple big logs across an outlet and covering them with tar paper and other debris. The drivers dynamited them in the spring, and the one rush of water moved the logs piled on the impoundment, on the stream, or both.

Loggers also worked to improve the natural flow of water in streams and rivers, especially when they would be used for many years. With the aid of oxen, horses, and black powder, which preceded dynamite in 1879, loggers removed large rocks, straightened some sections, and created definitive channels. If the blasting disturbed the rock embankments, then loggers shored the embankments back up to prevent erosion. The small streams were clear-cut on both sides so the driven logs did not get hung up on the wooded banks.

Where a river broadened, drivers positioned rock cribs so that the string of boom logs connecting them created a channel for the logs. Loggers built rock cribs with hardwood logs in position on the ice in the winter. When the ice softened, the rock crib broke through and sank to the bottom; hard wood did not float. At other times of year, loggers built empty rock crib structures with a solid floor on the shore, floated them into place, and then filled them with rocks slowly sinking them into position. As the exposed portions became weak, perhaps after twenty years, crews removed the rocks above water, chopped out and replaced the rotted portions, and replaced the rocks. The water preserved the logs that remained underwater, some for more than a century.

Initially, river drivers used headworks to move logs across a flat body of water without current. A headworks was a large log raft with a capstan fitted to a keyhole near the center of the raft. Its base rested on a big piece of pork rind, a source of lubrication.
The crew kept the center post greased with heavy coats of lard. A team of ten to sixteen men pushed on wooden arms to turn the capstan. Using up to a 9-inch in circumference short hemp cable, the crew attached a raft’s 5-inch diameter hardwood snubbing post, set in a drilled hole at each end of the raft, to a log boom or boom bag that was a chain of cut logs attached end to end to form a circle around the floating logs. The boom logs were 28 feet long with a minimum 13-inch diameter and a drilled hole at each end. Yellow birch pins with maple plugs to hold them in place kept the boom logs connected. An alternating pinning style provided flexibility in these booms. Drivers pinned two logs vertically to enable horizontal movement. Drivers pinned them horizontally to the next one for vertical flexibility. Starting around 1886, boom chains, which weighed 65 pounds each, began to replace the birch pins.

Attached to the capstan was one end of a 1.5- to 2-inch thick 800- to 1,000-foot rope; at the other end was a 250- to 500-pound anchor. As a bateau crew of twelve men began moving the anchor in the desired direction, a crew of four men on the raft helped unwind the rope from the capstan. Once the rope was fully extended, they dropped the anchor. Men on the headworks then turned the capstan, which wound in the rope pulling the raft and boomed logs to the anchor. When the raft reached the anchor, the crew raised it; the bateau crew transported the anchor another rope’s length across the lake. They repeated the process until the boom reached its destination. During strong winds, the crew anchored the boomed logs to the shore; otherwise, they towed night and day in favorable weather.

In some instances, crews used two headworks lashed together. As they wound in one line, they unwound the other and dropped the second anchor as they lifted the first
anchor. This allowed the boom to maintain its momentum. When reaching the head of a strong current or a dam, the loggers opened the boom so the logs could pass on. The headworks moved either a boom of 2 to 3 million board feet of long logs or a boom of about 3,000 cords at about one-quarter mile per hour.

In 1893, steam-powered boats replaced headworks on the Lower Chain Lakes, but headworks remained in use elsewhere into the 1940s. A steam- or gas-powered towboat traveled at about 0.8-mile per hour when towing a boom of 2 to 3 million board feet of long logs or a boom of 2,500 to 4,000 cords. A towboat could not tow into the wind and generally tied up at night.

Loggers and river drivers got around on rivers, lakes, and ponds in double-ended bateaux of varying sizes. The typical bateau had a crew of four oarsmen and a man standing at each end. In some situations, two men poled the bateau. These boats transported men and supplies up and down and across rivers and lakes. Bateaux were a vital part of the log drives and used into the early 1940s on the West Branch of the Penobscot River log drive. Even though these boats were tough, their crews serviced them regularly given the pounding the boats took on rocks. About once a week, crews hauled the boats out, turned them over, and completely covered the bottom with a coating of warmed pitch mixed with lard that helped the pitch stay flexible once it cooled. Crews smoothed the coating with an L-shaped piece of heated iron.

By the 1840s, the amount of supplies needed in the woods eclipsed their transportation solely by bateau. Tote roads, which typically paralleled a waterway, were the supply lines and the road to a logging camp. If teamsters planned to use the tote road multiple years, then men with axes, hand shovels, and animal-drawn carts removed some
of the worst obstacles. Many early travelers preferred to walk and let the jumper (a sled made of logs with wooden runners for non-winter use) or buckboard carry the baggage. Beginning in 1910, GNP began graveling some of its key roads to support year-round traffic. Through 1929, most tote roads were primarily winter roads, which meant they were nearly impassable in other seasons.

The early tote and haul roads ran as straight as possible, and any turns had to accommodate a team of oxen or horses towing a sled with logs as long as 24 feet. Log hauling roads, haul roads, were ideally and typically on gentle slopes to the water source. Roads did not cut across a side hill because it took too much labor to make a flat cut necessary to prevent sleds from slipping sideways. When tote roads for supply routes went up or down some steep hillsides, teamsters often adjusted the load. On steep slopes, teamsters used several methods to slow the descent of the sled. The earliest winches were snubbing posts that were often a large tree trunk or two around which teamsters wrapped a rope attached to a sled. In winter, they also placed chains so that they dragged under the runners. A hay hiller put hay in the sled runner tracks each morning and removed it each night creating piles he kept covered with evergreen boughs. In winter, night crews purposely packed and iced a few main roads. Other roads were simply shoveled or later plowed.

Tote road construction generally bypassed swampy areas because the road building took substantial valuable timber, labor, and time. In wet areas, loggers made a corduroy road by placing three logs running the direction of the roadway and another set of logs crosswise on top of them. Such construction kept wagons from bogging down and later gave wheeled vehicles additional traction.
When men felled a tree, they limbed it, cut it to length, and stacked it in small piles close by in a yarding area. The cutting and yarding areas were usually within 1.5 miles of the landing to which teamsters hauled the logs for the spring drive. Landing areas included the surface of a frozen body of water or streambed or a flat area near the water’s edge. Crews of as many as twenty-five men or more shoveled paths for the horses to reach the yarded wood, pried apart the frozen logs, and loaded them on sleds. If crews were hauling to a landing on ice on a large body of water, then they positioned a chain of boom logs to keep the logs contained at ice out. Loggers were careful about how much they hauled out on the ice because of the weight of the horses and logs. Sometimes teams broke through the ice and the teamsters were not always successful in getting them out. The weight on the ice often sunk it and water flooded over the surface creating slush the horses could not haul through. An off-ice landing area required a large relatively flat space given that cuts could exceed 10,000 cords and that would require an area equivalent to nearly four football fields with the wood piled 8 feet high.

Oxen were the first animals used by loggers for yarding and hauling. For the early loggers, oxen had several advantages. They did not need grain, ate forty pounds of hay per day, and could forage on just about anything growing in the woods. Their hauling capacity exceeded that of horses in both distance and weight. In winter, oxen pushed their way through un-shoveled snow. One disadvantage as crews began to work out of the valleys was that oxen could not haul down hills given the nature of the yoke. By 1890, horses had replaced most of the oxen. Whereas oxen might have hauled as far as 3 to 4 miles to a landing, horses typically did not haul more than a couple miles. The horses, which required thirty pounds of hay and twenty pounds of oats per day, remained the
predominant means for yarding logs through the 1930s, and some loggers continued to use them into the 1960s.

Each operation had a blacksmith who shoed the oxen and horses with shoes appropriate to the conditions. He also made and repaired the needed tools. Hand tools prevailed into the twentieth century. The ax remained the predominant means of felling a tree until the 1920s. The two-man crosscut saw got some use starting in 1900, as did the bucksaw, which became available in 1912. By 1915, a one-man crosscut was an option.

Until about 1900, runners and canoers carried communications to and from the camps. The first phone use in the area was between Chesuncook Dam and the GNP mill in Millinocket in 1901 or 1903 and remained in use until 1952. Soon a vast network of phone lines connected logging and sporting camps. The connection to the sporting camps helped with fire watch and communication in case of a fire, particularly in summers when loggers were largely absent. The lines took regular maintenance because any tree or branch that fell on the line shorted it out at a minimum or broke the line. When moose got their antlers tangled in the wires, they were strong enough to pull down hundreds of feet of line. Sporting camp owners in the Rainbow, Nahmakanta, and Debsconeag watersheds were still maintaining the lines in 1968.

The mechanical age for logging in this area started about 1908 when Perkins & Danforth Spoolwood Company used Lombards to haul hardwood to their mills on the Lower Chain Lakes. A steam-powered Lombard was the first vehicle used by loggers to haul wood. It looked like a train engine except the cab with the driver was in front of the boiler, its front wheels were skis attached to the steering wheel, and caterpillar-like treads at the rear moved it forward. Three years after the invention of the outboard motor in
1912, GNP had seven motorboats. In 1916, the company built its first boom jumper, a motorboat that could ride over the booms without damage to the propeller. About 1918, GNP began to use Lombards to haul supplies and plow roads on relatively flat terrain over distances of more than 10 miles, a distance that proved economically feasible. The terrain of the lower West Branch region precluded their widespread use. About this same time, tractors with caterpillar treads were available, with loggers using them for more than just hauling supplies. Some steam shovels operated in the early 1920s. Later in the decade, GNP built conveyors and stackers to carry unloaded wood from a landing and pile it on frozen lakes. Between 1930 and 1935, the bulldozer became available to assist in road construction. Loggers also used it to push landing log piles into streams and onto ice. By 1939, trucks hauled wood from the stump to the nearest waterway. GNP crews toted diesel and kerosene fuels in 50-gallon barrels and gas in 50-gallon galvanized barrels from Bragdon Energy Services in Millinocket. At the start, the company had only twenty gas barrels so they were in constant use. In the early 1940s, Bragdon’s men began installing large tanks at the depot camps. With the advent of improved roads came prefabricated camps, which could be disassembled and moved to the next logging site. The bateaux gave way to outboard motorboats on the West Branch drive in the early 1940s. The two-man power saw was in use in 1945 and the one-man power saw in 1947. With the exception of some conveyors, loggers loaded pulp on sleds by hand until they had grappling hooks soon after World War II. Loggers continued to ice roads through the 1960s—some with tank trucks, which crews first used in the mid-1930s, and others with the traditional wooden tanks on a sled.
During the 1940s and World War II, logging was difficult. Many men were away, gas was limited, and few trucks were available. Men cut the needed pulp as close to the mill or a major waterway as possible. The small stream drives had for the most part ended and never resumed. By the early 1950s, crews hauled more wood by truck to key landings on the major waterways. In the late 1960s, loggers delivered wood directly to the mill. The O.A. Harkness towed the last boom across Pemadumcook Lake from Maher Landing in 1966. Five years later, the O.A. Harkness took the last boom from Ambajejus Falls to North Twin Dam, and in 1976, a crew drove the last logs from Shad Pond to the East Millinocket Mill.