The Impact of the Maine Magnet School on Improving Equity of Academic Opportunities: Early Results

David L. Silvernail
Center for Educational Policy, Applied Research, and Evaluation, University of Southern Maine

Follow this and additional works at: https://digitalcommons.library.umaine.edu/mepri

Part of the Early Childhood Education Commons, Higher Education Commons, and the Teacher Education and Professional Development Commons

Repository Citation
https://digitalcommons.library.umaine.edu/mepri/112

This Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine Education Policy Research Institute by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
This paper examines whether the Maine School of Science and Mathematics, a magnet school in its second year of operation, has improved equity of opportunities for Maine students to participate in advanced mathematics and science courses. Data on per pupil expenditures, state aid to school districts, and course offerings were obtained from the state department of education and from a survey of 118 Maine high schools (92 percent of public secondary schools). Data indicate that while some of Maine's smallest high schools are represented in the magnet school's student body, a majority of the students come from larger high schools. Only 31 percent of the smallest schools (less than 151 students) are represented at the magnet school, compared to 71 percent of the largest schools (more than 750 students). About 27 percent of the 74 school districts represented at the magnet school are in Maine's four most rural counties, while about one third are from Maine's four most populated counties. The 74 school districts' expenditures per secondary student ranged from $2,800 to $5,800, with one third spending more than the state average. About half of the districts offered no advanced mathematics courses, and about half offered no advanced science courses. This report concludes that the magnet school has increased equity of opportunity for all of Maine's secondary students. Includes data tables detailing representation at the magnet school by school size, county, and district financial characteristics. (SV)
The Impact of the Maine Magnet School on Improving Equity of Academic Opportunities: Early Results

(Revised 12/96)

Dr. David L. Silvernail
Director
Center for Educational Policy, Applied Research, and Evaluation
College of Education and Human Development
University of Southern Maine

NOTE: Some of the information used in this report was provided by the Maine Education Policy Research Institute, a partnership of the University of Maine System and the Maine Legislature. Statements and opinions by the author do not necessarily reflect a position or policy of the partnership members, and no official endorsement by them should be inferred.
The Impact of the Maine Magnet School on Improving Equity of Academic Opportunities: Early Results

(Revised 12/96)

Dr. David L. Silvernail
Director
Center for Educational Policy, Applied Research, and Evaluation
College of Education and Human Development
University of Southern Maine

NOTE: Some of the information used in this report was provided by the Maine Education Policy Research Institute, a partnership of the University of Maine System and the Maine Legislature. Statements and opinions by the author do not necessarily reflect a position or policy of the partnership members, and no official endorsement by them should be inferred.
ABSTRACT

The Impact of the Maine Magnet School on Improving Equity of Academic Opportunities

Early Results

The Maine School of Science and Mathematics is now in its second year of operation. One key public policy question is: Has the magnet school improved equity of opportunities for Maine students to participate in challenging advanced mathematics and science courses? This study attempted to answer this question by analyzing information about the district of residence of the first- and second-year students enrolled in the magnet school. The evidence indicates that many of the students enrolled in the magnet school come from small, rural high schools in resource- and program-poorer school districts. The data also reveals that many of the students come from wealthier, more urban districts. Accordingly, the evidence reported here suggests that the creation of the magnet school has improved the opportunities for some students from small, rural high schools in resource- and program-poorer districts. At the same time it has enhanced the opportunities for other students from more prosperous school districts. Thus, one may conclude that the magnet school has increased equity of opportunity for all of Maine’s secondary students.
The Impact of the Maine Magnet School on Improving Equity of Academic Opportunities
Early Results

David L. Silvernail
University of Southern Maine

INTRODUCTION

The Maine School of Science and Mathematics is now in its second year of operation, and many policymakers, educators, and citizens alike are eager to learn about the impact of Maine’s first and only magnet secondary school. Many indicators will be useful in assessing the impact of the school, some which are available now and others which will only be available over time. From a public policy perspective, one key question is: Has the magnet school improved equity of opportunities for Maine students to participate in challenging advanced mathematics and science courses?

Although most of Maine is rural and sparsely populated, there are considerable differences between school districts. According to Maine State Board of Education information (1995), approximately 25% of Maine’s high schools enroll 300 or fewer students while an equal percent enroll over 700 students. In 1994-95, the smallest high school enrolled 28 students and the largest enrolled 1340 students. The percentage of state aid distributed to school districts ranges from under 5% to a high of over 95%, and in 1994-95, district per pupil operating costs ranged from a high of over $9500 to a low of under $4000 (Maine Department of Education, 1995). And a survey completed by the Maine Education Policy Research Institute (1996) revealed that some schools offer a full array of mathematics and science courses, including several advanced level courses, while others offer a limited number of courses and few if any advanced level courses.
What impact has the new magnet school had on this disparity between schools? Has it been an effective tool in improving equity of academic opportunities for Maine secondary students, some of whom reside in resource- and program-poorer school districts? This study attempted to answer this question by analyzing information about the district of residence of the first- and second-year students enrolled in the Maine School of Science and Mathematics. More specifically, the study attempted to answer the following questions:

1. Are most of the magnet school students from small, rural school districts?

2. Are most students from districts with lower per pupil expenditures and higher levels of state aid?

3. Are most students from districts offering few, if any, advanced mathematics and science courses?

Some of the information used in this analysis was data compiled by the Maine Education Policy Research Institute, a collaborative institute of the Maine State Legislature and the University of Maine System. Information about course offerings was taken from surveys completed in 1995-96 by high school principals. Useable surveys were received from 118 high schools, a number that represents approximately 92% of Maine public secondary schools. Data on per pupil costs and state aid was compiled from information school districts submit annually to the Maine Department of Education.

RESULTS

Are most of the magnet school students from small, rural schools?

Tables 1 and 2 provide information for answering this question. Table 1 reports the number of Maine high schools by varying size (for which course offering data is available), and the number and percentage of these different size schools that are represented in the student body.
of the magnet school. The data indicates that while some of Maine’s smallest high schools are represented in the student body, a majority of the students are from larger high schools. For example, only 31% (5 of 16) of the smallest schools (less than 151 students) are represented in

Table 1

<table>
<thead>
<tr>
<th>HIGH SCHOOL SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students in High School</td>
</tr>
<tr>
<td>Less than 50</td>
</tr>
<tr>
<td>51-150</td>
</tr>
<tr>
<td>151-300</td>
</tr>
<tr>
<td>301-450</td>
</tr>
<tr>
<td>451-600</td>
</tr>
<tr>
<td>601-750</td>
</tr>
<tr>
<td>751-900</td>
</tr>
<tr>
<td>More than 900</td>
</tr>
</tbody>
</table>

the student body, while 71% (15 of 21) of the largest schools (greater than 751 students) have representation. And of the 74 different school districts represented in the first two classes enrolled at the magnet school, approximately one-third (n=25) are from Maine’s high schools that enroll 601 or more students.

Table 2 reports the distribution by county of school districts represented at the magnet school. Analysis of this data reveals that approximately 27% of the 74 (n=20) different districts represented at the magnet school are in four of the most sparsely populated counties (Aroostook, Franklin, Piscataquis, and Washington). On the other hand, approximately one third (n=27) of the
districts represented are from four of the most populous counties (Androscoggin, Cumberland, Sagadahoc, and York).

To summarize the findings with regard to the first question then, the evidence suggests that some students from small school districts in rural counties are enrolling in the mathematics and science magnet school. However, the evidence also shows that a large number of the school districts represented in the magnet school student body have some of the largest high schools in the state and many of these are located in the most populated counties.

Table 2

<table>
<thead>
<tr>
<th>County</th>
<th>Persons per Square Mile (1990 census)</th>
<th>Number of Maine High Schools</th>
<th>Number of High Schools Represented in Magnet-School Student Body</th>
<th>Percentage Represented in Magnet-School Student Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androscoggin</td>
<td>217</td>
<td>8</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>Aroostook</td>
<td>28</td>
<td>15</td>
<td>11</td>
<td>73%</td>
</tr>
<tr>
<td>Cumberland</td>
<td>404</td>
<td>15</td>
<td>12</td>
<td>80%</td>
</tr>
<tr>
<td>Franklin</td>
<td>30</td>
<td>4</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Hancock</td>
<td>54</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Kennebec</td>
<td>154</td>
<td>10</td>
<td>6</td>
<td>60%</td>
</tr>
<tr>
<td>Knox</td>
<td>130</td>
<td>3</td>
<td>2</td>
<td>66%</td>
</tr>
<tr>
<td>Lincoln</td>
<td>89</td>
<td>4</td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>Oxford</td>
<td>34</td>
<td>4</td>
<td>3</td>
<td>75%</td>
</tr>
<tr>
<td>Penobscot</td>
<td>85</td>
<td>14</td>
<td>8</td>
<td>57%</td>
</tr>
<tr>
<td>Piscataquis</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>Sagadahoc</td>
<td>181</td>
<td>3</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>Somerset</td>
<td>39</td>
<td>7</td>
<td>4</td>
<td>57%</td>
</tr>
<tr>
<td>Waldo</td>
<td>41</td>
<td>4</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Washington</td>
<td>57</td>
<td>10</td>
<td>8</td>
<td>80%</td>
</tr>
<tr>
<td>York</td>
<td>158</td>
<td>9</td>
<td>7</td>
<td>78%</td>
</tr>
</tbody>
</table>
Are most students enrolled in the magnet school from districts with lower per pupil expenditures and higher levels of state aid?

Average expenditures per secondary student in 1993-94, and the average percent of state aid to districts are reported in Table 3. The state average was approximately $3578 per pupil, and the average state aid was approximately 60%. The table also reports per pupil expenditures and state aid for districts that have students enrolled in the magnet school and those not represented in the magnet school. In the case of per pupil expenditures, the median for the schools represented in the magnet school population is within $100 of the state average. But, this median is approximately $575 less than the average secondary per pupil expenditures for districts which have no student enrolled in the magnet schools. Turning to state aid, the represented schools receive a higher percentage of state aid. It was approximately 6% higher than the state average and 15% higher than the non-represented schools.

This data suggests that many students enrolling in the magnet school are coming from some of Maine’s poorer districts, relatively speaking. However, further analysis indicates considerable

<table>
<thead>
<tr>
<th>Schools</th>
<th>N</th>
<th>1993-94 Median per Secondary Pupil Expenditure</th>
<th>1993-94 Median Percentage of State Aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>All secondary schools/districts</td>
<td>118</td>
<td>$3578.20</td>
<td>60.2%</td>
</tr>
<tr>
<td>Secondary schools represented in magnet school</td>
<td>74</td>
<td>$3486.20</td>
<td>66.2%</td>
</tr>
<tr>
<td>Secondary schools NOT represented in magnet school</td>
<td>44</td>
<td>$4063.00</td>
<td>51.2%</td>
</tr>
</tbody>
</table>
differences in district wealth within the 74 schools represented in the magnet school. The range in per secondary pupil expenditures within the 74 districts is approximately $2800 to $5800 with 1 in 3 districts spending more than the state average. And for state aid, the range within the 74 districts is from about 4% to 88% with 1 in 3 districts receiving less than one-third of their school funding from state aid. Thus, the answer to the second question is similar to the answer to the first question. That is to say, while many students enrolling in the magnet school are coming from less wealthy school districts, many also are coming from more wealthy districts.

Are most students enrolled in the magnet school from districts offering few, if any, advanced mathematics and science courses?

Table 4 summarizes some of the course information principals reported on surveys for the 1995-96 school year. As indicated in the table, approximately one half (46%) of the districts

<table>
<thead>
<tr>
<th>Course Offerings</th>
<th>Percentage of Districts Represented at Magnet School</th>
<th>Percentage of Districts Enrolling No Students in Magnet School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of districts offering no advanced mathematics courses</td>
<td>46%</td>
<td>55%</td>
</tr>
<tr>
<td>Percentage of districts offering AP Calculus</td>
<td>54%</td>
<td>45%</td>
</tr>
<tr>
<td>Percentage of districts offering no advanced science courses</td>
<td>51%</td>
<td>56%</td>
</tr>
<tr>
<td>Percentage of districts offering 1-3 AP science courses or some other advanced science courses</td>
<td>49%</td>
<td>44%</td>
</tr>
</tbody>
</table>
represented in the magnet school student body do not offer advanced mathematics courses. A similar percentage (51%) offer no advanced science courses. And further analysis indicates that approximately one third offer **neither** advanced mathematics nor science courses.

Interestingly, this pattern is even more pronounced for those districts not having students enrolled in the magnet school. More than one half (55%) offer no advanced mathematics courses and 56% offer no advanced science courses. And 36% offer **neither** advanced mathematics nor science courses. Thus, it does not appear that a clear majority of the students attending the magnet school come from districts offering few, if any, advanced mathematics and science courses. About one half of the student body does come from these districts, but an equal number come from districts offering advanced courses.

CONCLUSION

In conclusion, the information compiled to answer the three research questions in this study indicates that many of the students enrolled in the magnet school come from small, rural high schools in resource- and program-poorer school districts. However, the data also reveals that many of the students come from wealthier, more urban districts. Thus, the broader question remains: has the creation of the magnet school been an effective tool in improving equity of academic opportunities for Maine high school students?

According to Webster’s dictionary, *equity* is defined as “anything that is fair or just.” Given this definition, one may argue that *equity* of opportunities has, in fact, improved. All Maine high school students are being treated fairly and justly. All have an equal opportunity to enroll in the magnet school and all are given an opportunity to gain more advanced mathematics and science courses. For some students this means access to advanced courses for the first time, and for others it means access to more advanced courses. Rawls (1971) describes an appropriate redress for
inequalities as one in which “Those who have been favored by nature, whoever they are, may gain from their own good fortune only in terms that improve the situation of those who have lost out (p.100).” The evidence reported here suggests that the creation of the magnet school has improved the opportunities of the disadvantaged while at the same time allowed other students to gain from their own good fortune of living in wealthier school districts. Thus, one may conclude that the magnet school has improved equity for all Maine’s secondary students.
REFERENCES

THE IMPACT OF MAINE'S MAGNET SCHOOL ON EQUITY OF ACADEMIC OPPORTUNITIES: EARLY RESULTS (REVISED 12/96)

David L. Silvernail

I. DOCUMENT IDENTIFICATION:

Title: THE MAINE IMPROVING
THE IMPACT OF MAINE'S MAGNET SCHOOL ON EQUITY OF ACADEMIC OPPORTUNITIES: EARLY RESULTS (REVISED 12/96)

Author(s): David L. Silvernail

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following two options and sign at the bottom of the page.

Check here
For Level 1 Release:
Permitting reproduction in microfiche (4" x 6" film) or other ERIC archival media (e.g., electronic or optical) and paper copy.

The sample sticker shown below will be affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Check here
For Level 2 Release:
Permitting reproduction in microfiche (4" x 6" film) or other ERIC archival media (e.g., electronic or optical), but not in paper copy.

The sample sticker shown below will be affixed to all Level 2 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

"I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries."

Signature:

David L. Silvernail

Organization/Address:

118 BAILEY HALL
UNIVERSITY OF SOUTHERN MAINE
GOCHAM, MAINE 04038

Printed Name/Position/Title:

David L. Silvernail, Director, Center for Educational Policy, Applied Research and Evaluation

Telephone:

(207) 780-5297

E-Mail Address:

Davids@maine.edu

Date:

1/3/97

RC020793
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

ERIC/CRESS AT AEL
1031 QUARRIER STREET - 8TH FLOOR
P O BOX 1348
CHARLESTON WV 25325
phone: 800/624-9120

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2d Floor
Laurel, Maryland 20707-3598

Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
e-mail: ericfac@inet.ed.gov
WWW: http://ericfac.piccard.csc.com

(Rev. 6/96)