
The University of Maine
DigitalCommons@UMaine

Publications Senator George J. Mitchell Center for Sustainability
Solutions

2013

Agent-Based Modeling of Harvest Decisions by
Small Scale Forest Landowners in Maine, USA
Jessica Leahy
University of Maine, jessica.leahy@maine.edu

Erika Reeves
University of Maine

Kathleen Bell
University of Maine

Crista L. Straub

Jeremy Wilson

Follow this and additional works at: https://digitalcommons.library.umaine.edu/
mitchellcenter_pubs

Part of the Forest Sciences Commons, Natural Resources and Conservation Commons, and the
Natural Resources Management and Policy Commons

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Publications by an
authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

Repository Citation
Leahy, Jessica; Reeves, Erika; Bell, Kathleen; Straub, Crista L.; and Wilson, Jeremy, "Agent-Based Modeling of Harvest Decisions by
Small Scale Forest Landowners in Maine, USA" (2013). Publications. 42.
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs/42

https://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/mitchellcenter_pubs/42?utm_source=digitalcommons.library.umaine.edu%2Fmitchellcenter_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


Hindawi Publishing Corporation
International Journal of Forestry Research
Volume 2013, Article ID 563068, 12 pages
http://dx.doi.org/10.1155/2013/563068

Research Article
Agent-Based Modeling of Harvest Decisions by Small Scale
Forest Landowners in Maine, USA

Jessica E. Leahy,1 Erika Gorczyca Reeves,1 Kathleen P. Bell,2

Crista L. Straub,3 and Jeremy S. Wilson4

1 School of Forest Resources, University of Maine, 241 Nutting Hall, Orono, ME 04469, USA
2 School of Economics, University of Maine, 200 Winslow Hall, Orono, ME 04469, USA
3 Sustainability Solutions Initiative, University of Maine, 104 Norman Smith Hall, Orono, ME 04469, USA
4Harris Center for Conservation Education, 83 King’s Highway, Hancock, NH 03449, USA

Correspondence should be addressed to Jessica E. Leahy; jessica.leahy@maine.edu

Received 15 February 2013; Accepted 3 June 2013

Academic Editor: Audrey L. Mayer

Copyright © 2013 Jessica E. Leahy et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Small-scale forests are an excellent example of coupled social-ecological systems, which involve human and biophysical subsystems
with complex two-way feedback interactions. The multifaceted nature of landowner decisions drives a significant need to better
understand decision-making processes, reactions to policy, and combined impacts on ecosystems in a comprehensive manner.
Small-scale forests require an integrated approach to modeling the social and biophysical components comprehensively. Agent-
based modeling involves modeling individualistic behavior and interpreting patterns that emerge. The interaction between agents
and their environments makes this a valuable tool to assess repeated decisions of individual landowners responding to changing
environmental conditions. Agent-based models can be used to determine potential ecological, economic, and social outcomes of
landowner decisions and reactions to changing conditions. A forest landowner agent-based model experiment was developed to
model timber harvesting in Maine, USA. We present baseline simulation results and compare the effect of a social change (an
increased tax rate) and a biophysical change (a pest outbreak resulting in increased tree mortality) on the system. These three
scenarios were analyzed using ANOVA and MANOVA tests on harvested hectares and landowner goal scores to assess landowner
behavior and priorities by action. We conclude by reviewing implications for future modeling efforts.

1. Introduction
Managed small-scale forests are an excellent example of a
coupled social-ecological system (SES). An SES is the one that
joins human andbiophysical subsystems in two-way feedback
interactions [1]. Small-scale forests are best described as
an SES because of the dynamic interactive feedback loops
between the social aspect of landowners and the biophysical
components of the forest itself. These systems are dynamic,
intricate, and complex to study, model, and manage. Small-
scale forest landowners have become a dominant form of
landownership in the United States, accounting for 106
million hectares. Much of these productive forests are held in
northeast USA where nearly 38 million hectares of forested
land are held by 4.8 million small-scale forest landowners
[2, 3]. Small-scale forests are generally considered to be
privately-owned forest parcels ranging between 4 and 405

hectares in size. Due to their nature, researchers need a new
strategy to study these coupled systems—an integrated mod-
eling approach—to best represent the multifaceted aspects of
landscapes dominated by forest ownerships.

Maine alone is estimated to have 2.3 million hectares of
forested land belonging to 88,000 small-scale forest landown-
ers [4]. Productive forests have a large impact on the state’s
economy [5]. With over 90% of 8 million hectares of Maine
in forest cover, it is the most heavily forested state in the
United States [6]. Furthermore, 97% of Maine’s forests are
classified as productive timberland, 95% of which is privately
owned [7, 8]. Small-scale forests account for approximately
34% of the forest area in Maine and about 25% of timber
harvested each year [5]. Maine possesses nearly half of
all woody biomass in the northeast. Positive net growth
of timber on privately owned properties is second only
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to nongovernmental organizations and tribal landowners.
Particularly with interest in the biomass and bioproducts
markets, small-scale forest landowners will be looked upon
to supply timber and fiber.

We chose to focus on small-scale forest landowner
timber harvesting behavior. Understanding landowner deci-
sions about whether to harvest their trees and supply tim-
ber to the forest products market is essential because of
its economic and ecological consequences. While timber
harvesting represents a significant economic value in Maine,
landowner harvest behavior does not always follow eco-
nomic or price considerations [9, 10]. Prediction of small-
scale forest timber harvesting trends has remained elusive.
Multiple researchers have had difficulty associating small-
scale forest motivations with behavior [11–14]. Erickson et al.
[15] found that landowner behavior was largely unrelated to
economic circumstances, such as timber prices.The disparity
of landowner harvesting intentions and actions has resulted
in behavior that is difficult to predict. Furthermore, these
actions suggest that there may be other motivations for
harvesting rather than solely a landowner’s management
beliefs. Landowner attitude surveys documented low priority
of timber harvesting and higher rated objectives of wildlife,
recreation, and scenery [16, 17]. Several studies have found
a disconnect between landowner intention to harvest and
actual behavior [11–14]. For instance, Massachusetts small-
scale forest landowners were found to have high responses
of wildlife, recreation, and scenery objectives instead of
harvesting [18]. Despite this, researchers found that 84%
of harvested hectares occurred on small-scale forests in a
region of Massachusetts [19]. If small-scale forest landowners
were truly disinterested in harvesting we would expect a
much smaller percentage of harvests occurring on small-scale
forests. This suggests harvesting decisions rely on more than
management beliefs and objectives. As a result of this seem-
ingly erratic behavior, researchers need a new technique to
better represent and understand landowner motivations and
actions.

Throughout past and present attempts to understand for-
estmanagement decisions,many differentmodelingmethods
have been employed. On the biophysical side, analysis tech-
niques often include demand and supply projections, forest
inventory analysis (FIA), and growth models at the regional
or state level. These are used to estimate available timber
resources, determine forest trends, and even forecast timber
harvesting. In contrast, the social science dimension of small-
scale forest research has been limited to surveys, focus groups,
and interviews. These often utilize economic analysis, social
theory and policy analysis, and occur at regional or state
levels [20, 21]. One key data source is the National Woodland
Owner Survey (NWOS) administered through the USDA
Forest Service. This survey is used to better understand
private forest landowners as part of the Forest Inventory
and Analysis (FIA) program, including information such
as demographics, attitudes, forest use and management,
concerns, and intentions. This annual survey initiated in
2002 compliments the FIA biological forest sampling [2].
Although theNWOS attempts to present both characteristics,
the national survey is not necessarily a representative sample

that can be used to extrapolate management decisions and
policies applicable to smaller scale issues such as statewide,
county, or local town management.

Agent-based modeling (ABM) offers an integrated
approach to modeling social and ecological systems. In our
ABM, social and biophysical modeling approaches were
combined. Our objectives are to, first, present an ABM of
Maine small-scale forest landowners according to the ODD
protocol set by Grimm et al. [22, 23]. Second, we employ two
system-wide shocks on the ABM: a social change (increased
taxes) and a biophysical change (a disturbance event with
high tree mortality). These two scenarios are compared to
the baseline to better understand small-scale forest timber
harvesting behavior and assess the potential of ABMs for use
in small-scale forest policy decisions. The complex nature
of forest landowner beliefs and perceptions, along with
limitations and opportunities of their land base, drives a
significant need to better understand decision making pro-
cesses, reactions to policy, contributions of resource condi-
tions, and combined impacts on ecosystems and other
inadvertent consequences in a comprehensive manner.

2. Literature Review

Although small-scale forests are one example of count-
less worldwide social-ecological systems, they are especially
suited for generative social science approaches such as agent-
based modeling. Generative social science provides a new
strategy to identify societal patterns and norms through the
use of simulating individual behavior from the base-level up
[24]. As a method of generative social science, agent-based
modeling (ABM) is a tool that could further understand
coupled social-ecological systems. Agent-based models are
“. . . computationally intensive dynamic simulation model(s)
of how individual agents (typically using simple behavioral
rules) interact with their environment and each other, giving
rise to system-wide macro patterns or emergent properties
which cannot be deduced from the individual agent’s rules”
[25]. The interaction between agents and their environments
makes ABM a valuable tool to assess repeated decisions of
individual landowners. ABM can be utilized to determine
potential ecological, economical and social outcomes of
landowner decisions and reactions to changing policies and
conditions. Furthermore, ABM can be used as a learning tool
for researchers and policy makers.

Societal patterns can be very difficult to model within the
relatively small range of social science techniques commonly
implemented (e.g., surveys, focus groups, and interviews).
Themajority of past small-scale forest research focuses solely
on either inductive- or deductive-based science; however,
generative social science is progressively being tested by
researchers. Essentially the concept is to determine how
societal patterns and norms arise based on a generative
approach. The method is to “Situate an initial population
of autonomous heterogeneous agents in a relevant spatial
environment; allow them to interact according to simple local
rules, and thereby generate—or “grow”—the macroscopic
regularity from the bottom up” [24, page 42]. Epstein [24]
presents agent-based modeling as a computational model



International Journal of Forestry Research 3

well suited to study this question due to five components:
heterogeneity, autonomy, explicit space, local interactions,
and bounded rationality. Agent-based modeling allows for
heterogeneous agents to essentially represent a diverse com-
bination of individuals. Autonomy refers to the lack of
“top-down” control over individual behavior, although forest
practice regulations can be incorporated into the modeling.
Essentially, individuals make individual decisions and act on
their own parcels, allowing patterns to coevolve in a “bottom-
up” fashion. Furthermore, agents act in defined space with
specific boundaries, interact with those around or near them,
and are bounded by personal rules and information (e.g.,
no global system-wide expectations, agents act on their own
parcels based on individual-level behavioral rules).

Small-scale forests offer an especially challenging inves-
tigation, with landowners often possessing very individu-
alistic and divergent management motivations. Based on
Epstein’s five factors, timber harvesting behavior is a perfect
opportunity for agent-based modeling. This conundrum of
individualized behavior is best described by Epstein’s [24,
page 41] generativist’s question: “How could the decentral-
ized local interactions of heterogeneous autonomous agents
generate the given regularity?” First, small-scale forests offer
a myriad of heterogeneity based on individual landowners;
they have multiple social and economic factors emanating
from diverse backgrounds. Small-scale forest landowners are
also autonomous agents in explicit space. Landowners take
actions only within their own parcels. In addition, small-
scale forest landowners involve dynamic interactions with
those around them or within their social networks, such as
neighbors, friends, and small-scale forest landowners. Based
on Epstein’s description, small-scale forests are a good fit for
agent-based modeling, with a spectrum of landowner types
and individuals that interact and are constrained to actions
within their parcel boundaries.

There have been several studies that set a precedent of
ABM in natural resource management. Pahl-Wostl and Hare
[26] found ABM to show great potential to improve social
learning and a more integrated method of assessment of
natural resource management. Land-use changes and their
impacts have also been simulated through the adaptive
approach of participatory and agent-based modeling [27].
Specifically, Castella et al. [27] created an ABM to study the
effect of development on local farm stakeholders in Vietnam.
On a larger regional scale, Valbuena et al. [28] employed
ABM to explore land use and cover change. Valbuena et al.’s
[28] case study demonstrated that ABM provides a useful
framework for diverse decision-making processes found in
social-ecological systems. More specifically, ABM is capable
of identifying key parameters and processes underlying adap-
tive forest management [29]. Gebetsroither et al.’s [29] study
modeled the use of forest resources through integrated
socioeconomic and forest succession submodels.

Although there have been several land use and forest
management related agent-based models, few have specif-
ically addressed small-scale timber harvesting and forest
management. Landowners, forest resource professionals, and
forest policy makers could greatly benefit from ABM due to
the ability to combine multiple models and allow interaction

between each. As a coupled SES, the complex nature of small-
scale forestmanagement suggests thatmodels aremissing key
interactions that drive decision-making processes. Common
forest growth models do not account for the landowner
behavior. Likewise, social theories usually do not take into
account the biophysical components of small-scale forest
land. The ability to model parcel-based biophysical elements
as well as socioeconomic factors would be a great advantage
for management and policy decisions.

3. Methods

To better understand small-scale forest landowner behavior,
we created the forest landowner agent-based model exper-
iment (FLAME). This model is presented according to a
modified version of overview, design concepts, and details
(ODD) protocol [22, 23]. Due to the complexity of ABM, use
of computer implementation and a desire to compare features
and functions across agent-based models, it is critical to
communicate model descriptions as consistently, effectively,
and clearly as possible.TheODDprotocol has emerged as the
most preferredway of presentingABMs. It uses a sequentially
organized technique of presenting ABMs through seven ele-
ments: purpose, state variables and scales, process overview
and scheduling, design concepts, initialization, input, and
submodels. The code and full documentation are available
from the lead author upon request.

3.1. Purpose. The purpose of FLAME was to model com-
plex small-scale forest landowners within a coupled social-
ecological system. Specifically, this model simulated social
and ecological changes over extended periods of time based
on landowner decisions. FLAME was designed to simulate
the behaviors of small forest landowners within small rural to
semirural communities within the state of Maine by focusing
on one community.The model consisted of landowners, who
in turn possessed land in a mapped landscape that had its
own attributes. As in real life, the land attributes, or resources,
that were available to a given landowner influenced what
they could do with their parcel. These landowners, or agents,
within their assigned parcel had the ability to interact with
each other as well interact with their parcel.The ultimate goal
of this system was to allow agents to autonomously make
decisions in an attempt to improve their own welfare. For
this study, we focused solely on landowner timber harvesting
behavior. Agent decisions are constrained by their beliefs in
the techniques available to them as well as their opinion of
other agents with whom they have communicated.

3.2. State Variables and Scales. FLAME was broken into two
main components, the static and dynamic models. The static
model consisted of the landscape and landowner parameters
at a given point in time. Information contained in the
static model was evaluated at the beginning of each yearly
period to drive the dynamic model. The dynamic model
was the construct that incorporates all interaction among
landowners, actions, and advancement of parameters each
year.
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Figure 1: The FLAME static constructs. At any given time period, a pool of agents was associated with households. Active agents and
households were those that own land. Inactive agents and households were those either deceased or no longer associated with land. The
landscape was broken down by multiple units ranging from parcels to tree lists. Methods included actions available to a given agent, such as
light or heavy harvesting.

3.3. Process Overview and Scheduling. The static model
provided the framework for connecting the landscape and
landowners within the model. For the purpose of this model,
the landscape was based on GIS data from the rural town
of Lincoln, Maine. This town was chosen based on data
availability, distribution of small-scale forest parcels, and rep-
resentativeness of the community to other rural communities
in Maine. The model’s landscape consisted of all land and
water within the model. Landscape was progressively broken
down by defined scales ranging from the household level to
patches, parcels, and operable units (Figure 1). A parcel was
defined as a single unit of land owned by a household as
defined by a tax map. In order for a parcel to have harvesting
occur, it needed to be at least 4 hectares in size, with a
minimum of 4.9 hectares if a residence was present. It was
assumed that 0.82 hectares of land would be removed due to
the structure of the residence, any associated outbuildings,
drives, yard areas, and visual buffers that would likely be
placed around such facilities.

Each parcel had a land cover class, such as hardwood,
softwood, or mixed-wood, that were associated within given
area. This data was derived from the National Land Cover
Data. Based on the land cover class, the parcels were popu-
lated with stand and tree list data using Forest Inventory and
Analysis National Program.The FIA data were selected based
onMaine survey plots and generalized to the town of Lincoln,
Maine. The parcels were grown over time and harvested
by utilizing the USDA Forest Service Forest Vegetation
Simulator (FVS).

FLAME assigns the landscape at the parcel level to
households. In this case, a household was comprised of

Table 1: The FLAME structure data sources by variables.

Construct Variable(s) Source(s)

Landscape

Parcel boundaries MEGIS1

Land cover NLCD2

Stand, tree lists FIA3

Landscape change FVS4

Landowner

Demographics Census5, PCLOS6, CDC7,
Goals PCLOS6, NWOS8, FGs9

Beliefs NWOS8, FGs9

Actions FGs9
1Maine Office of GIS, 2010. 2National Land Cover Dataset, 2001. 3Forest
Inventory and Analysis National Program, 2010. 4Forest Vegetation Simu-
lator, United States Department of Agriculture, Forest Service, 2010. 5U.S.
Census Bureau, 2010. 6Penobscot County Landowner Opinion Survey, 2010.
7Center for Disease Control, 2010. 8National Woodland Owner Survey
Table Maker, 2010. 9Focus Groups, Small-scale Forest Stakeholder Social
Involvement Processes, Gorczyca et al., 2011.

multiple individual agents as landowners. Each agent had
their own attributes, such as socioeconomic demographics,
goals, and beliefs (Table 1). The socioeconomic attributes of
agents were generated based on past survey data, the U.S.
Census, or random selections from normal distributions
(Table 1).

All modeling components were created using custom
Python 2.6.2 code, data storage and relations with Microsoft
Access via structured query language (SQL), and landscape
change with FVS. One module was created as the model
driver, or the main support that ran all intricacies of the
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Figure 2:The FLAME dynamic constructs.The static model parameters of landscape, landowner, andmethods ultimately drove the dynamic
system. Landowners evaluated their natural conditions and priority goal scores as well as communicated. Beliefs interacted with methods
(actions available) to represent their perception on how well a given action would meet their goal. The decision engine chose the perceived
optimal action that would improve landowners’ goal score.

model. The model utilized two databases: an agent database
and a support database. As the name implies, the agent
database held all information regarding the landowners.
Furthermore, as communication, decisions, and actions were
performed they were recorded in this database. The support
database held all forms of coefficients and other information
that were held constant throughout the model simulations.
These variables, such as tax rates, were held separately in
order to facilitate manipulation of starting variables.

The dynamic model consisted of a series of Python
modules that were assembled into a program that progresses
the model through time. As the name implies, the dynamic
model was where all landowner actions were implemented.
These actions then resulted in changes to the agent database
each year the model progressed. The key components of the
model were landowner beliefs, goals, communication, evalu-
ation, and action decisions (Figure 2). These components are
further described as submodels.

For the purpose of understanding small-scale forest
timber harvesting behavior, we implemented a one-year time
step in themodel.This time step advanced not only the agents
but also the parcel’s trees that were grown and/or cut. The
model was simulated on a 25-year cycle to allow biophysical
advancement (trees growth) and social advancement (death,
changes in goals, changes in perceptions, etc.) within the
model. The scheduling of the processes began with an eval-
uation of the static model for each agent. Agents would then
evaluate their conditions, communicate with other agents,
and make decisions. Once agents had decided on actions, the
model continued to execute actions and advance the agent
population and environment (Figure 3). Each of these steps
repeated for each yearly cycle.

3.4. Design Concepts

3.4.1. Initialization. At the beginning of the simulation, the
baseline database was called upon. This information con-
tained all parameters associated with the landscape, as a
compilation of parcels and landowners.

3.4.2. Input. The landscape contained approximately forty-
five hundred parcels and five thousand agents. By creating
five thousand starting agents, it was guaranteed there would
be sufficient agents to draw from as heirs when the original
agents passed away. The probability of death was determined
by using actuarial tables and the agent’s age.

A total of eight agent goals were definedwithin themodel.
Six of these were initially populated according to responses
of the Penobscot County Owner Survey and National Wood-
land Owner Survey. Each goal was summarized based on
combining ratings given to personal reasons for owning a
parcel of land (Table 2). Responses were on a five-point scale
ranging from 1 (very unimportant) to 5 (very important).The
scores were calculated by summing the response values for
the applicable questions and then dividing by the maximum
possible score (𝑛 ∗ 5) where 𝑛 is the number of relevant
questions, to produce a score scaled between 0 and 1. A mean
and standard deviation for each of these scores was calculated
and used as the basis to randomly generate the scores in the
database (Table 2).

A total of twelve beliefs were defined within the model
and consisted of harvesting, using a forester, allowing
motorized recreation, allowing non-motorized recreation,
buying or selling land, subdividing, placing a conservation
easement, establishing a family trust, moving, developing
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Figure 3:The FLAME scheduling process.Themodel process started with the evaluation of the static model from the previous year.The next
steps included communication, decisions, and action execution. The changes in the landscape and landowner parameters were then updated
based on action chosen. The end result was a new static model, used to drive the next year.

and building. With the focus on timber, we narrowed the
number of beliefs to just those related to harvesting, which
corresponded to three possible actions: heavy harvest, light
harvest, or no action (Table 3). Each of the beliefs was
filled with a decimal value between zero and two using a
uniform distribution of the given data range. This range
allows positive, negative, and neutral feelings about a belief to
be indicated and easily applied through various calculations.
A value of one, when multiplied would be neutral, as it
would keep everything the same. As the belief value increased
from one to two, the multiplication resulted in a stronger
positive believe. Conversely, as the belief value decreased
from one to zero, the reduced value indicated a negative
belief.

3.5. Submodels. The first major component of the model was
to evaluate the condition of all of the households. At the start
of every cycle, an initial evaluation of the goal equations was
conducted. This allowed the model to update the status of
all households to reflect any alterations due to actions that
occurred in the previous cycle. Eight primary goals were
identified to be of potential importance to the agents and
their households (Table 2). A separate deterministic function
was developed for each goal to determine how well each
household was achieving a given goal based on conditions
present. The evaluation process compared the actual goals
to the desired goal levels. Later, the landowner compared
goal discrepancies and made a prioritization or selection of
which goal to pursue. After completing the individual score
calculations, all goal scores were rescaled in order to allow
comparison. While FLAME contained a set of 8 goals, we
focus in this manuscript on the fiscal goal score.

After concluding the other goal score evaluations, the
model progressed into the financial section of the evaluations.
As part of this section, several financial evaluations were
conducted before the fiscal score was calculated. The first
preparatory calculation was an evaluation of land value. This
was necessary because, all land taxes were based on a land
valuation. After the land valuation, the next preparatory step
in the financial section was to determine any emergency
costs. The concept behind emergency costs was to represent
stochastic financial burdens, such as a car being wrecked, a
medical cost, a house fire, or other events that place a financial
burden on the household. The emergency cost was only
applied to randomly selected households, until 10% of agents
had some form of emergency cost ranging between $5,000–
50,000. With these two preparatory calculations completed,
the model completed the fiscal score calculation for each
household. Based on the ratio of debt to wealth, this score
represented an indication of the financial wellbeing and fiscal
responsibility for each household. The function began by
calculating the annual credits for the household, consisting
of the total income of the household, the interest from their
wealth account, and the previous year’s land income. Annual
debits included the living costs of adults in the household,
home ownership costs, property taxes, income taxes, costs
associatedwith having any children in college, the living costs
of any dependent children, emergency costs, and interest
accrued on unpaid debts. Annual debits included taxes, the
costs associated with having a child in college, the cost of
living for number of dependent children, the cost of living for
the adults in the household, the costs of a home, emergency
costs, income taxes, and interest accrued on unpaid debts.
After the calculation of annual credits and debits, the annual
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Table 2:The FLAME land ownership goals. A listing of the question
responses that were assigned to the initial 6 goals in order to
calculate initial goal scores. Intact parcel and home goals were
added based on stakeholder recommendations; however, they were
populated using similar data distributions as legacy and privacy.
The questions were based on the national woodland owner survey
regarding reasons for owning land on a 5-point Likert scale: “How
important to you are each of the following reasons for owning this
parcel?”.

Goals Surveyed land ownership reason applied to
goal

Conservation

To enjoy the scenery
To protect from development
To protect wildlife habitat
To protect the environment
To leave land unmanaged, letting nature
take its course

Fiscal

Income from timber
Income from nontimber forest products
Income from development
For land investment
As a place to live

Legacy/intact
parcel

To pass on to my children
To preserve small-scale tradition

Personal
recreation

Personal recreation
As a place to live
To have privacy

Public
recreation

To enjoy the scenery
Personal recreation

Privacy/home To have privacy
As a place to live

net income was calculated by the difference between credit
and debit totals. The results for each calculation and final
value were stored at the household level for each year in the
agent database.

For the purpose of this model, it was assumed an
individual landowner was typically unaware of all options
available. We proposed that individuals did not have the
ability to calculate the impact that every combination of
possible decisions would have. Instead, we modeled agent
decisions based on a variable named perceptions. Perceptions
were the agents’ views on how well an action will or will not
meet their goal. The perceptions were quantitative estimates
of how a given actionwill alter their wellbeing across the eight
goal scores held by each agent. Contained at the household
level, these perceptions were created from a summary of
the actions and conversations with other agents, where they
could be influenced in their perception by the social network
within the communication engine.

Perceptions were learned and updated based on the
evaluation of recent personal decisions. This was a form of
learning, as the agents were taking information from actions
they implemented in the past and used this information to

Table 3: The enabled beliefs and methods of FLAME. Beliefs
were distributed on a scale of 0–2, from “do not believe in” to
“fully believe in” taking a given action. Actions currently enabled
in the model range from harvesting and consulting forester to
implementing recreation access permission changes. These other
beliefs and actions were grouped into a category of no harvest.

Beliefs Methods (actions)

Harvesting
Heavy harvest
Light harvest
No harvest

Using a forester Consult forester
Allowing motor
recreation

Allow motorized recreation
Disallow motorized recreation

Allowing non-motor
recreation

Allow non-motorized recreation
Disallow non-motorized recreation

alter the way in which they would make future decisions.
For instance, if no decisions were made in the last yearly
cycle there were no changes in perception, if the past action
met or exceed the perception, then it created a positive
experience, and if the past action did not meet perceptions,
or expectations, then it created a negative experience.

After the agents evaluated conditions, calculated goal
scores, learned and adjusted perceptions, and communicated;
agents then made and implemented decisions. The FLAME
incorporated 15 actions available to agents in order to improve
goal scores. Of these, we have included only the first 7
actions to simplify harvesting behavior analysis (Table 3).The
decision engine was a complex string of calculations that
chose an action that optimized one or more priority goals
as perceived by each household. A household may choose
to have more than one action implemented in a year, but
the same action type could only be implemented once in a
given year. For instance, both a light and a heavy harvest
could be implemented in year 1, but each may only happen
once during that year. Once the action is implemented, the
parcel and household information was updated to reflect all
changes. This provided a new static model utilized to drive
the next yearly cycle. This process was continued each year
until a total of 25 years had been completed.

3.6. Simulation Analysis Methods. The FLAME approach for
understanding small-scale forest landowner behavior was
used to compare three scenarios of harvesting over a 25-year
period.The first scenario consisted of the baseline parameters
with default input values. The second scenario consisted
of a socio-economic change within the system, and was
implemented at the start of the simulation. To implement this
change, we evaluated the land tax structure and estimated
a new mill rate assuming the paper mill closed in Lincoln,
Maine. This resulted in a new mill rate that was increased
by 25 percent in order to retain the same town tax base.
Finally, a biophysical change was made within the model to
represent a major disturbance event such as a wind or ice
storm. To induce this shock, we randomly reduced stands by
0, 25, 50, or 75 percent across the entire landscape.This shock



8 International Journal of Forestry Research

Table 4: Harvesting and goal score ANOVA output. Mean standard deviations (between brackets), sample size and interactions of goal score
changes, and hectares harvested by scenario and action. Significant differences in means are bolded.

(a) ANOVA: scenario by action on fiscal goal score

Scenario Heavy harvest Light harvest No harvest Interaction effect
F 𝜌

Baseline −11623710
(7398318),𝑁 = 240

−6458109
(10513934),𝑁 = 212

−377276
(7904496),𝑁 = 1229 213.08 0.000

Socioeconomic −12985883
(8321021),𝑁 = 240

−7072157
(13760942),𝑁 = 211

−756019
(8462467),𝑁 = 1231 194.67 0.000

Biophysical −14304978
(8265848),𝑁 = 240

−10822391
(17840793),𝑁 = 198

−605034
(8013855),𝑁 = 1236 257.83 0.000

(b) One-way ANOVA: scenario on total harvested hectares, by heavy, light, and combined

Total hectares Baseline Socioeconomic Biophysical Interaction effect
F 𝜌

Heavy harvested
123.0
(73.2),
𝑁 = 250

122.0
(75.7),
𝑁 = 250

116.5 (52.6),
𝑁 = 250

0.65 0.522

Light harvested 41.2
(38.5),𝑁 = 250

37.0
(34.5),𝑁 = 250

31.3
(32.9),𝑁 = 250 4.98 0.007

Combined harvested 164.2
(76.6),𝑁 = 250

159.0
(81.5),𝑁 = 250

147.8
(66.3),𝑁 = 250 3.14 0.044

(c) MANOVA: fiscal goal score change by scenario, run, year, action, and interactions (𝑛 = 2451)

Interaction effect
F 𝜌

Scenario 17.988 0.000
Run 0.297 0.976
Year 23.763 0.000
Action 875.381 0.000
Scenario∗ action 7.319 0.000
Scenario∗ year 1.795 0.001
Year∗ action 14.536 0.000
Run∗ action 1.448 0.099

(d) MANOVA: total combined hectares harvested by scenario, year, and interactions (𝑛 = 336)

Interaction effect
𝐹 𝜌

Scenario 7.179 0.001
Year 33.415 0.000
Scenario∗ year 4.853 0.001

was implemented prior to the start of the simulation. This
was performed manually by subtracting the selected percent
reduction (0, 25, 50, or 75 percent) from the total tree count
of all stands. Each percentage reduction category was applied
to the same amount of stands; a single category was applied
to a random 25 percent of the stands within the model.
Therefore the disturbance had varied levels of intensity with
a total 36.5% reduction of the tree count. All other variables
within each scenario remained unchanged. Each of the 25-
year scenarios were simulated 10 times, for a total of 30 runs.
Harvested hectares and goal score data were extracted and
analyzed by year for the three scenarios.

4. Findings

4.1. Model Consistency and Validity. After the successful
completion of 10 iterative runs per scenario, we first checked
for reasonable consistency across runs. This was to ensure
that the model was not completely randomized. This anal-
ysis included interval plots across runs and checking for
significance using statistical tests. We found the plots to have
reasonable ranges within the model trend over time, and no
statistically significant difference (𝛼 = 0.05) using ANOVA
andMANOVA testswas found among runs in any of the three
scenarios (Table 4). This test implies that there is reasonable
consistency across iterative runs within each scenario.
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Figure 4: Interval plot of total harvested hectares by scenario and
year. A 95% confidence interval plot for the mean of the 10 runs
within each scenario of total harvested (combined light and heavy)
hectares by year. Here the shapes represent the mean, and the
perpendicular lines the interval of one standard error.

After verifying consistency, we evaluated the potential
validity of the model by comparing harvesting figures in
the baseline scenario with statewide Maine Forest Service
data [30]. By summarizing the 1982, 1995, 2003, 2004, and
2006 inventory data for small-scale forest harvests, a total of
1,851,830 hectares were harvested. This accounted for 20.56%
of small-scale forest land being harvested over a period of 23
years (2004–2006 was averaged to 2005), or 0.82% of forested
hectares harvested per year. In the baseline scenario, a total
of 4,105 hectares were harvested from the 13,716 operable
hectares of the model. This accounts for 29.93% of land, with
1.19% harvested per year. While higher than the statewide
figures, we felt comfortable accepting the 1.19% rate of harvest
per year as an indicator of model validity.

4.2. Harvesting Trends by Scenario. To answer the question of
whether our socioeconomic and biophysical changes on the
system caused significant impact on harvesting behavior, we
first analyzed harvested hectares.The total hectares harvested
were summarized for all households by year within every run
for all three scenarios. Total hectares were assessed by light
and heavy harvest treatments, which were also summed to
allow further analysis as combined total harvesting. Interval
plots of combined harvested, light harvested, and heavy
harvested total hectares by scenario and year were produced
in MINITAB (Figure 4).

An analysis of variance (ANOVA) was performed on
the heavy, light, and combined harvesting data by the three
scenarios. Heavy harvesting was not significantly different by
scenario (𝐹 = 0.65, 𝑃 = 0.522). However, light and com-
bined harvesting both had significant differences by sce-
nario, with the baseline being significantly different than
the biophysical change scenario. (𝐹 = 4.98, 𝑃 = 0.007
and 𝐹 = 3.14, 𝑃 = 0.044; Table 4). We found that for
both light and combined harvested hectares, the biophysical

change scenario significantly differed from the baseline.
Verifying these results, a multiple analysis of variance of
scenario, year, and interaction between the two were all
found to be significant (𝑃 < 0.01). This not only suggested
variance by scenario, but also through time. Thus there
were significant differences between scenario and the year
in terms of harvesting. When analyzing the interaction plot
by scenario, harvesting patterns of peaks and valleys every
few years became apparent (Figure 4).We identified the areas
where the biophysical change scenario differed from the
other two. Between years 1–5, the biophysical scenario had
significantly less total harvested hectares.Thebiophysical sce-
nario then caught up, and surpassed the other two between
years 10–12. After this point, the model began to level out
harvesting.These differences can potentially be caused due to
the goal score and stand reduction interaction. Furthermore,
the rise and falls of the trends across all three scenarios
were likely due to the properties of goal score. To better
understand this pattern, we also analyzed the fiscal wellness
goal.

4.3. Fiscal Goal Score Flux. To answer the question ofwhether
or not landowners were acting tomeet their goal, we analyzed
the fiscal goal score change by action taken across all three
scenarios. In FLAME, goal scores can have very high values
when goals are not being met. This means that a large reduc-
tion in goal score is an improvement in goal score satisfaction.
The change in goal score was calculated by subtracting the
second year goal score from the first, the third from the
second, and so on.Therefore, large negative goal score change
values represent an improved goal score the following year. As
before, actions were grouped by heavy harvest, light harvest,
and no harvest. Data were again graphed using MINITAB
interaction plots to estimate the range of variation of actions
within each scenario (Figure 5). Next, several ANOVA tests
were utilized to compare scenario fiscal goal scores by actions
taken. We found both heavy and light harvest actions to
be significantly different than the no harvest action for all
three scenarios (𝑃 = 0.000). This implies that harvesting
actions taken improved agent goal scores across all three
scenarios. However, no significant difference in fiscal goal
score was found between heavy and light harvesting actions
(𝑃 > 0.05, Table 4). Since both heavy and light harvesting
result in harvest revenue, both improve goal scores. However,
the effect of harvest revenue by both heavy and light harvest
treatments on the goal score was not statistically different.
Furthermore, a multiple analysis of variance was performed
to analyze fiscal goal score change by scenario, run, year,
action, and interactions between each. All were significant
(𝑃 < 0.001) except for run and run-action interaction (𝑃 =
0.099, 𝑃 = 0.967, Table 4). Having insignificance related
to difference among the runs is a sign that the model was
reliable within scenario simulations. If there was a significant
difference between the runs in the same scenario, we would
not be able to compare and contrast scenario trends. The
significance across year proves our former statement that
there are significant differences in specific years (e.g., years
1–5 for biophysical).
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Figure 5: Fiscal goal score change interval plots by scenario and year. This graph illustrates the one standard error intervals for the mean of
the 10 runs within each of the 3 scenarios: no. 1—baseline, no. 2—socioeconomic, and no. 3—biophysical change. Comparison across year by
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5. Discussion and Conclusions

As a coupled social-ecological system essential to Maine’s
economy, small-scale forests proved an intriguing area of
study.Their complexities havemade predicting behaviors and
ecological conditions difficult, especially timber harvesting.
New generative social science techniques are especially use-
ful, allowing agent-basedmodeling to help decipher the inter-
actions between resource conditions and human behavior.
This methods section presents FLAME as an ABM-based
approach to better understand small-scale forests. Our three
system-wide scenarios included a baseline and two shocks
to the system: a socioeconomic change of increased taxes
and a biophysical change of increased tree mortality. The
total harvested hectares by harvest type, model scenario, and
yearly time step were analyzed using ANOVA andMANOVA
tests. Furthermore, actions and their effect on fiscal goal
scores were summarized and also tested using ANOVA and
MANOVA. We found a significant difference in harvesting
trends by scenario and ultimately found that landownerswere
taking harvesting actions to meet financial responsibilities.

A significant difference was found in the harvesting
trends by scenario. These trends appeared to follow a pattern
of peaks and valleys every few years. A few differences should
be noted. First, the baseline and socioeconomic scenarios
had very high harvesting in the first year. This was likely
due to the model “burn in” and adjustment of the input
parameters. However, the biophysical scenario does not have
as high harvested hectares despite increased tree mortality. It
would be reasonable to assume that in a major disturbance
event landowners would be salvaging as much as possible.
By implementing the shock at the start of the simulation, the
standing volume was reduced, thereby leaving less to harvest
for the landowners and thus led to lower total harvested
hectares. If tree mortality was done in the middle of the
simulation, that could allow landowners to recognize the
disturbance as an opportunity for salvage harvesting. Instead,
it acted as a disturbance similar to that of an ice storm; it kills
and damages trees but ultimately does not provide salvage
or timber harvesting potential. Despite this, the biophysical

scenario quickly reached a larger and longer-lasting peak in
harvests than the other two scenarios. Less was available
to harvest at the beginning, so landowners with high fiscal
need harvested more as time progressed and the stands
grew. It is likely that their goal scores reached the point
where they had to harvest. This may have implications in our
current economy, where tight finances may lead to increased
harvesting among small-scale forest landowners in the future.
It is possible thatmany landowners and households have their
tipping point where they must obtain cash from their land
resources.

The fiscal goal scores corresponded with the trends
in harvesting. This contrasts findings by Koontz [10] that
economic motivations do not appear to influence harvesting
behavior. Increased harvesting corresponded with a sig-
nificant decrease in the goal score, thus bringing agents
closer to meeting their goal. In addition, the effects were
significantly different by scenario and action. It makes sense
that harvesting (both light and heavy) had an impact on
the fiscal goal, since other actions bring less revenue to the
agent. Ultimately the analysis of fiscal goal scores allowed
the pattern of high and low harvesting trends to emerge.
These actions suggest that when landowners face economic
hardships, theywill consider their land as a financial resource.
Erickson et al. [15] found that landowner behavior was
mostly unrelated to the timber market prices, and Koontz
[10] found no economic motivations for timber harvesting.
In contrast, our model was driven by economic motivations
and approximated historic harvest levels.This suggested that,
perhaps, past research has underestimated the role of eco-
nomic motivations in predicting small-scale forest harvests.
Furthermore, these findings are correlated with the findings
of Finley and Kittredge Jr. [18]; landowners who do not have
high harvesting values ultimately harvest regardless of their
beliefs. Additionally, resource managers must consider the
disconnect between landowner intentions and actions when
determining the effect of new policy decisions. Although
survey responses may give an appearance that landowners do
not have harvesting intentions, they ultimately take actions
that best suits their financial needs at any given time.
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As with any forecasting model, predicting the future can
be very complex to test and verify results. Generally, past data
is utilized in order to ascertain the predictive strength of the
model. Similarly, we utilized theMaine Forest Service harvest
notification data from 1982–2006. The model itself appeared
to follow a reasonable amount similarity of harvesting behav-
ior with past trends. However, it is important to note that
the harvest notification data was summarized statewide, and
not specifically in reference to Lincoln, Maine. Furthermore,
harvest notification data has limitations and assumptions, as
they are primarily intent to harvest and not a definite date
and quantity of harvesting actions. Another limitation of the
model is that we have not directly incorporated feedback
from landowners themselves. It would be most useful to hold
focus groups and conduct surveys of the small-scale forest
owners to assess their communication patterns, perceptions,
trust, and thoughts about goals and beliefs. This information
would provide a means to better understand and represent
the baseline parameters within the ABM.

The implication for researchers, forest managers, and
policy makers is that ABM is a powerful and useful tool but
must be used responsibly. End users must be aware of the
assumptions and limitations within the model. ABM should
be used to inform their decision-making processes, but not
use it as a sole determination. Future studies should continue
to enhance ABM analysis techniques in small-scale forests.
The ability to model a combination of resource conditions
parallel with demographic parameters and generative social
science theories creates a new and unprecedented method
of understanding small-scale forest behavior. Additional
research on baseline parameters, such as landowner com-
munication and perceptions can only improve the results of
ABM. In particular, our model included a basic communi-
cation engine, with simple social network that allowed agent
perceptions to change as a result of “talking” to other agents.
Future research should focus on understanding how social
networks influence landowner decision-making, and how
these influences can be effectively modeled. Advancements
to the model could be made by allowing beliefs, goals,
and perceptions to be interrelated to each other instead of
independent.

Agent-based modeling is still a relatively new field, and
this was one of the first attempts to use this technique
with small-scale forest landowner timber harvesting behav-
ior. As a result, valuable lessons were learned during our
experience of creating and working with FLAME. First, if
allowed, agent-based modeling can easily become computa-
tionally complex and almost burdensome research technique.
FLAME incorporated approximately 11,000 lines of Python
code, with Microsoft Access interactions through structured
query language (SQL) and the Forest Vegetation Simulator.
Second, documentation is especially important for agent-
based models (note: the code and full documentation are
available from the lead author upon request). Without ade-
quate documentation it is possible to lose track of the exact
calculations and model intricacies that create and modify the
landowner, landscape, and dynamic operations. Third, while
Python is freely available as an open-source coding language,
it is relatively slow in terms of processing speeds. Future ABM

endeavors may be greatly improved by collaboration with
computer scientists capable of writing programs in a faster
programming language such as C++. Other programs and
even agent-based modeling packages can be useful, but it is
important to consider their processing speed and flexibility
in terms of modeling parameters. Fourth, another important
consideration of agent-based modeling is the available data
resources.While we compiled a vast array of data sources into
the parameterization of FLAME, we still identified several
small-scale forest data gaps. Furthermore, it is important
to consider the measurability of the model output. We
were fortunate to have strong stakeholder relations with the
Maine Forest Service, and obtained harvest notification data.
This data allowed us to compare the harvesting trends in
Maine with that of FLAME. While this was one method
of validation, a more robust analysis could have brought
in the NLCD from additional years, and effectively run a
set of different land cover dates in the model. This would
allow us to better represent the spatial and biophysical
components of the landscape through time. Finally, future
research would benefit by continuing to include stakeholders
in their modeling process.

This study used agent-based modeling in an effort to
improve understanding of small-scale forest timber harvest-
ing behavior. We found there is great potential for the use of
ABM in small-scale forest resourcemanagement as a coupled
social-ecological system. It may be a useful approach to not
only study land use change but also the motivations and
behavior taken by a given small-scale forest landowner [26–
28]. These findings exemplify the culmination of studies of
land use change, resource management, and adaptive forest
management into one complex and dynamic model [26–
29]. As new models are created, the data and understanding
of small-scale forests will continue to improve. Researchers
and stakeholders will benefit by considering agent-based
modeling as a valuable tool with near endless possibilities
to increase understanding of small-scale forests and their
owners.
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