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Abstract. Developed coastal areas often exhibit a strong sys-
temic coupling between shoreline dynamics and economic
dynamics. “Beach nourishment”, a common erosion-control
practice, involves mechanically depositing sediment from
outside the local littoral system onto an actively eroding
shoreline to alter shoreline morphology. Natural sediment-
transport processes quickly rework the newly engineered
beach, causing further changes to the shoreline that in turn
affect subsequent beach-nourishment decisions. To the lim-
ited extent that this landscape/economic coupling has been
considered, evidence suggests that towns tend to employ
spatially myopic economic strategies under which individ-
ual towns make isolated decisions that do not account for
their neighbors. What happens when an optimization strat-
egy that explicitly ignores spatial interactions is incorporated
into a physical model that is spatially dynamic? The long-
term attractor that develops for the coupled system (the state
and behavior to which the system evolves over time) is un-
clear. We link an economic model, in which town-manager
agents choose economically optimal beach-nourishment in-
tervals according to past observations of their immediate
shoreline, to a simplified coastal-dynamics model that in-
cludes alongshore sediment transport and background ero-
sion (e.g. from sea-level rise). Simulations suggest that feed-
backs between these human and natural coastal processes can
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generate emergent behaviors. When alongshore sediment
transport and spatially myopic nourishment decisions are
coupled, increases in the rate of sea-level rise can destabilize
economically optimal nourishment practices into a regime
characterized by the emergence of chaotic shoreline evolu-
tion.

1 Introduction

Along sandy shorelines where erosion threatens waterfront
property and infrastructure, beach nourishment is a com-
monly employed land-management strategy and engineering
practice. Nourishment involves taking sand from a source
site and depositing it onto an eroded beach, as a so-called
“soft” alternative to permanent rock or concrete emplace-
ments such as groynes and seawalls; groynes corral sand
by locally obstructing sediment transport, while seawalls ar-
mor the shoreline outright (Pilkey and Wright, 1988). In the
US, beach nourishment has cost more than $2.5 billion since
1950 (NOAA, 2006). The number and cost of nourishment
projects have increased markedly in the last decade – a trend
that is likely to continue given estimates for economic im-
pacts of sea-level rise (NOAA, 2006; Smith et al., 2009; Ti-
tus et al., 1991; Sugiyama, 2007).

Beach nourishment tends to occur where there is real es-
tate development along a dynamic sandy coastline. If natural
fluctuations in shoreline position are predominantly erosive
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and impinge upon development, town managers may opt for
beach nourishment as a mitigation strategy and artificially
build out the beach to a predetermined maximum width. But
a beach-nourishment project is rarely an isolated event. Wave
action and gravity gradually rework and redistribute the en-
gineered beach until erosion again poses a threat to water-
front development, setting in motion a repetitive cycle of ero-
sion, impingement, and nourishment. If local coastal erosion
is persistent, a town that nourishes its beach will typically
need to nourish again within a few years (NRC, 1995; PSDS,
2010). Long-term beach-nourishment projects incorporate
50-year timetables to account for periodic re-nourishment
maintenance (NRC, 1995; Pilkey and Dixon, 1996).

Beach nourishment is thus the linking action that powers a
coupled human-landscape system wherein beach dynamics
include interactions between the economics of coastal de-
velopment and the physical processes of shoreline change.
The economic motivation behind beach nourishment is that a
beach can be viewed as natural capital. A wide beach, which
affords storm protection to oceanfront property and provides
recreational value to tourists, is worth money. Tourism-
related businesses and property owners who risk erosion or
flooding are direct beneficiaries, but so is the town to which
the beach belongs, through real-estate values, hotel occu-
pancy, and sales taxes. The value of amenities provided
by a wide beach is capitalized into coastal property values
(Edwards and Gable, 1991; Gopalakrishnan et al., 2011;
Kreisel et al., 2005; Landry et al., 2003; Parsons and Powell,
2001; Pompe and Rinehart, 1995) and influences shoreline
stabilization strategies. A recent economic model of beach
nourishment incorporates the value of natural capital (based
on previous empirical studies) into a parameter for beach
width, and then employs this encapsulation in a cost-benefit
analysis that optimizes the frequency of beach nourishment
as a function of erosion rate, property value, project costs,
and financial discounting (Smith et al., 2009). The result is
the economically optimal interval over which a town should
nourish its beach to maximize its net benefits through infinite
time, assuming physical and economic parameters remain
constant. The theoretical model predictions are consistent
with empirical data on nourishment intervals in North Car-
olina (Gopalakrishnan et al., 2011). The optimization model,
however, is spatially myopic, designed for a town that acts
without considering how its neighbors manage their beaches.
This economic myopia is a real phenomenon and continues
to be standard practice on managed coastlines where beach
nourishment is commonplace (PSDS, 2010; Psuty and Ofi-
ara, 2002).

One investigative approach to coupled human and natu-
ral systems rests on the premise that to better understand
a particular physical or ecological system, the dynamics of
human interactions require consideration (e.g. Parker et al.,
2003; Wilson, 2006; Werner and McNamara, 2007). For this
work, we adopt the inverse perspective: Fresh insight into
human-driven landscape patterns needs to account for certain

dynamic physical processes. What happens when a spatially
isolated but widely practiced landscape-management deci-
sion operates in a spatially extended, physically integrated
environment? If the economic optimization framework for
beach nourishment from Smith et al. (2009) is placed in a
spatially extended domain (a string of neighboring towns,
each with its own coastal manager) influenced by simple
physical processes (the lateral redistribution of sand between
neighboring towns by alongshore sediment transport), how
does the system behave through time?

We present results from an exploratory numerical model
in which manager agents for a string of neighboring coastal
towns choose economically optimal beach-nourishment in-
tervals according to past observations of shoreline change at
their beaches. Simplified coastal dynamics for the physical
setting are implemented as (1) alongshore sediment trans-
port, and (2) background erosion that represents, for exam-
ple, the expected results of sea-level rise and consequent
cross-shore sediment redistribution (e.g. Wolinsky and Mur-
ray, 2009). Theoretical and empirical precedent for this ap-
proach is a spatially-extended, coupled model examining the
linked dynamics of resort development and beach nourish-
ment on barrier islands, like those along the US Mid-Atlantic
Seaboard (McNamara and Werner, 2008a, 2008b). Examples
of other resource-optimization analyses in spatially-extended
settings can be found in contexts of land use (e.g. Irwin and
Bockstael, 2002; Bell and Irwin, 2002; Parker and Munroe,
2007; Albers et al., 2008), forestry (e.g. Swallow et al.,
1997), and fisheries (e.g. Sanchirico and Wilen, 2005; Wil-
son et al., 2007).

We find that when lateral diffusion of sediment is endoge-
nous in the system, such that one town’s beach changes at
a rate that depends on the relative positions of other towns’
beaches, emergent patterns can arise in shoreline behavior
over time. Furthermore, increases in the rate of sea-level rise
can destabilize what appeared to be economically optimal
nourishment practices into a chaotic regime. If spatially my-
opic economic optimization leads to unanticipated outcomes,
emergent behaviors of the coupled spatial system may inval-
idate the assumptions underpinning the optimization frame-
work. In essence, towns make decisions that impact neigh-
boring towns in ways that result in emergent, long-time-scale
dynamics different from those they presumed would occur.
This process raises questions about how towns actually be-
have when spatial myopia feeds back on their own (and not
just their neighbors’) future prospects.

Nonlin. Processes Geophys., 18, 989–999, 2011 www.nonlin-processes-geophys.net/18/989/2011/
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2 Methods

2.1 Model

2.1.1 Economically driven management of beach width

Beach nourishment decisions for a given town are made by
manager agents who act according to the capital accumu-
lation model for beach nourishment in Smith et al. (2009).
Manager agents determine the nourishment interval (τ ) that
maximizes the net benefits (NB) derived from beach nourish-
ment in their respective towns:

NB(τ ) = B(τ)−C(τ) (1)

whereB(τ ) is the benefits function andC(τ ) is the cost of
a nourishment project. The cost function includes the vari-
able cost of a project, which is a function of the amount of
sand required to build the beach out to a chosen “maximum”
cross-shore width (x0), and the fixed cost of a project (c),

which includes assessment, permitting, and equipment for
dredging and spreading:

C(τ) = c+φ(x0−x(τ)), (2)

whereϕ is the cost of sand per cross-shore meter of beach
added. Note thatx0 can be specified exogenously or cho-
sen endogenously in the Smith et al. (2009) framework. The
benefits function,

B(τ) =

τ∫
0

e−δtδα[c(τ )β ]dt (3)

incorporates a discount rate (δ), the base value (the value of
all attributes except beach width) of beachfront property (α),
and the hedonic price of beach width (β). A hedonic pricing
model breaks down the price of a residential (or commer-
cial) property as a function of property characteristics (e.g.
number of rooms, lot size, year built), neighborhood charac-
teristics (e.g. school district, crime rates), and environmental
attributes (beach width) (Rosen, 1974). The discount rate (δ)
is also assumed to be the capitalization rate to convert beach
value into amenity flows.

Manager agents in the model assess cross-shore beach-
width change in their towns according to two principal pa-
rameters: a linear erosion rate (γ ), and an exponential ero-
sion rate (θ ),

x(t) = (1−µ)x0+µe−θtx0−γ t, (4)

whereµ (0≤ µ ≤ 1) is the fraction of the maximum beach
width that erodes exponentially. The exponential term cap-
tures the approximate time scale of a nourishment event
(Dean, 2002; Smith et al., 2009) such that erosion is high-
est immediately after nourishment, consistent with the way
nourished beaches tend to relax from an initially steep cross-
shore profile into a wave-carved, equilibrium profile (Dean

and Dalrymple, 2002). The remainder of the beach width
(1−µ) erodes linearly at rateγ . Linear erosion could repre-
sent a consequence of sea-level rise. Note thatt in Eqs. (3)
and (4) represents time since the last nourishment event, not
total time, and therefore is periodically reset. Differentiating
Eq. (4) with respect to time yields the manager agents’ state
equation for beach width:

ẋ(t) = −µθeθtx0−γ. (5)

As the widths of town beaches change, manager agents try
to determine how often to nourish, on an interval that max-
imizes their net benefits through time. For a total present
value (v),

v(τ1,τ2,τ3,...τn) = NB(τ1)+e−δθ1NB(τ2)+eδτ2NB(τe)

+...+e−δτnNB(τn), (6)

where each (τi) represents total time from when planning be-
gins. Assuming erosion dynamics remain constant, the value
of an infinite nourishment rotation can be written as an infi-
nite geometric series,

v(τ) =

∞∑
k=0

e−δkτ NB(τ ) = NB(τ )/(1−eδτ ), (7)

whereτ is the length of time since the previous nourishment
event. Manager agents therefore choose an optimalτ that
solves the maximization problem:

maxv(τ) = (B(τ)−C(τ))/(1−eδt ). (8)

“Optimal” in this case is from the perspective of a given
manager in a given location, responding to the particular be-
havior of that town’s beach, and it ignores the ecological con-
sequences of nourishment.

Figure 1 shows the parameter space for the optimal nour-
ishment interval (τ ) as a function of linear (γ ) and exponen-
tial (θ ) rates of erosion. The contour shape is informed by
the economic parameters in Eqs. (2) and (3), which here we
hold constant in keeping with Smith et al. (2009):α = 200,
β = 0.25, δ = 0.06, c = 10, andφ = 1. Manager agents in
the model use the parameter space plotted in Fig. 1 to cal-
culate their respective optimal nourishment intervals on the
basis of changes they observe in their beach widths, or their
linear (γ ) and exponential (θ) erosion rates. When the time
elapsed since the previous nourishment is equal to a town’s
intervalτ , the town nourishes its beach out to the maximum
width (x0). The model assumes that towns roundτ to the
nearest integer (they do not nourish mid-year).

2.1.2 Shoreline dynamics

We simulate a highly simplified oceanfront landscape by
parceling a linear shoreline into a series of neighboring
towns, each overseen by its own manager agent. We assume
towns have equal alongshore extents ofy = 10 km and peri-
odic boundary conditions. The key amendment we make to

www.nonlin-processes-geophys.net/18/989/2011/ Nonlin. Processes Geophys., 18, 989–999, 2011



992 E. D. Lazarus et al.: Emergent behavior in a coupled economic and coastline model

Fig. 1. Parameter space of optimal nourishment interval (τ ) plotted
as a function of linear erosion rate (γr) and the exponential relax-
ation rate of the cross-shore beach profile (θr).

the physical behavior of a given beach within the spatially
extended shoreline is the addition of a diffusion term due
to alongshore sediment transport into the state equation for
beach width, Eq. (5),

ẋ(t) = K
∂2x

∂y2
−µθeθtx0−γ (9)

whereK is a diffusivity coefficient. Our treatment ofK
follows an argument for wave-driven diffusivity detailed in
Ashton and Murray (2006a, b), and represents the sediment-
transport effects of shore-incident waves approaching pre-
dominantly from low angles relative to the shoreline (ap-
proximately> −45◦ and<45◦ from shore-normal). For the
results presented here, we useK = 30 000 m s−1.

Introducing diffusion from alongshore sediment transport
to the model landscape makes it necessary to distinguish be-
tween the “real” erosion rate at a given beach, determined by
Eq. (9), and the “perceived” linear and exponential erosion
rates that a manager agent observes. A manager agent mea-
sures linear and exponential erosion rates by fitting a curve
to a time series of town beach widths; the time series for
curve fitting extends from the town’s most recent nourish-
ment event to the present. In the case of a single town (or
equivalently, if the entire domain of towns acts in unison),
the plan-view shoreline changes as a uniform block; with no
plan-view perturbations on which to act,∂2x/∂y2

= 0. The
erosion rates “perceived” by the manager agents, labeled as
γp andθp,

ẋ(t)−µθpe
−θptx0−γp (10)

are the same as the “real” (operator-fixed) erosion rates,γr
andθr,

ẋ(t) = K
∂2x

∂y2
−µθre

−θrtx0−γr (11)

However, if one town in the domain nourishes its beach
out of turn, perturbing the plan-view shoreline with a sharp

seaward-projecting bump, Eq. (11) demonstrates that dif-
fusion from alongshore sediment transport acting on the
perturbation will give rise to an erosion rate at that beach
that is greater than the fixed rate. Sand from the nour-
ished beach is redistributed alongshore to neighboring towns
whose beaches consequently erode less rapidly than the fixed
rate.

Active alongshore sediment transport therefore guarantees
that towns gain or lose sand as a result of their neighbors’
nourishment decisions. However, because manager agents in
this model operate independently of each other (one man-
ager agent does not know when another plans to nourish)
and calculate their optimal nourishment intervals according
to the spatially isolated relationship in Eq. (10), they have to
adjust their perceived linear (γp) and exponential (θp) ero-
sion rates to reconcile the neighbor-influenced beach-width
changes they observe. Such adjustments can result in man-
ager agents calculating different optimal nourishment inter-
vals even in the absence of economic heterogeneity, changing
their positions in the parameter space shown in Fig. 1. That
is, otherwise economically identical towns could choose dif-
ferent nourishment intervals solely as artifacts of past timings
of neighboring nourishments.

2.2 Chaotic time-series analysis

We utilize a nonlinear time series forecasting technique to
evaluate the degree of nonlinearity in a time series of mod-
eled beach width,sn (Abarbanel, 1986). Specifically, a time
series of beach width from a single town in the modeled
coastline is split into two halves. One half is deemed the
“training set” and the other half the “predicting set”. The
training set is embedded in anm-dimensional phase space
with vector positions,Xn, in the phase space given by

Xn = [wn,wn+l,wn+2l,...,wn+(d−1)l], (12)

wherel is a time lag andd is the embedding dimension. The
value of the time lag can be found by finding the first min-
imum in the average mutual information function, and the
embedding dimension can be found by using the false near-
neighbors test (Abarbanel, 1986).

A forecast is made by first choosing a vector from the pre-
diction set and placing it in them-dimensional phase space.
A prediction from this vector lookingh steps forward in time
is made using the autoregressive model (Casdagli, 1989)

wn+h = ao +

j=d−1∑
j=0

aj+1wn−j l . (13)

Coefficients for the autoregressive model are found using
points from the training set that, in the phase space, are near
the point from which the predictions are made. The degree
of nonlinearity in the time series is determined by expressing
the accuracy of the prediction as a function of the variation
in the number of training-set near-neighbors used to train the

Nonlin. Processes Geophys., 18, 989–999, 2011 www.nonlin-processes-geophys.net/18/989/2011/
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Fig. 2. Beach width (i) and nourishment-interval choice (ii) plotted through time for three example scenarios. Color in (i) indicates beach
width, wide (reds) to narrow (blues). In(a), τ is homogenous over the whole domain. The effect of forcing the middle town to nourish out
of turn differs depending on external forcing conditions:(b) shows beach width andτ through time forγr = 0.5 m yr−1; (c) shows the onset
of instability if background erosion is increased toγr = 1.5 m yr−1.

prediction model (Casdagli, 1989; Sugihara and May, 1990).
For example, a noisy, linear time series would yield the high-
est prediction accuracy when using all points in the phase
space for training. If prediction accuracy is highest for a
small to intermediate number of near neighbors used to train
the data set, then this suggests localization of the phase space
behavior and that the time series is nonlinear.

3 Results

In the simplest case, given a uniform plan-view shoreline
with γr = 0.5 m yr−1 andθr = 0.05, manager agents all cal-
culate correctlyγp = γr and θp = θr to find a nourishment
interval of τ = 10 yr (Fig. 2a), which is the corresponding
optimal nourishment solution prescribed by Fig. 1. Because
the uniform shoreline nullifies diffusion, the domain operates
according to the imposedγr, θr, and correspondingτ , demon-
strating a steady state for the coupled system in the absence
of spatial interactions between town beaches.

www.nonlin-processes-geophys.net/18/989/2011/ Nonlin. Processes Geophys., 18, 989–999, 2011
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Figure 2b shows the spatiotemporal pattern that results
from forcing one town in the domain (here, the middle town)
to nourish initially out of sync with its neighbors, so that dif-
fusion acts on the resulting plan-view shoreline perturbation.
As in Fig. 2a,γr = 0.5 m yr−1 andθr = 0.05, and even though
they do not all nourish in unison, manager agents still find
the steady-state interval ofτ = 10 yr. When the middle town
nourishes ahead of its neighbors, the neighbors benefit from
the receipt of “free” sand via diffusion; when other towns
nourish but the middle town lags, the middle town receives
free sand diffused from its neighbors. The effect of diffusion
on beach widths in Fig. 2b is not so great that manager agents
calculate incorrectly their rates of linear and exponential ero-
sion. Having perturbed the coupled-system steady state with-
out changing the forcing, we find the steady state ofτ = 10 yr
behaves like an attractor. To see how the attractor evolves, we
probe the response of the steady state to changes in the ex-
ternal forcing – for this system, by incrementally increasing
sea-level rise (represented by the rate of linear erosion,γr).

Figure 2c shows the evolution of beach widths through
time when linear erosion is increased toγr = 1.5 m yr−1 (ex-
ponential erosion remains fixed atθr = 0.05). The economic
net-benefit analysis in Smith et al. (2009) shows that towns
will nourish more frequently (choose shorter optimal nour-
ishment intervals) as linear erosion increases (Fig. 1). This is
reflected in Fig. 2c by the towns at the margins of the domain,
where nourishment events occur at closer intervals than un-
der the lower erosion rates imposed in Fig. 2b. With linear
erosion increased in Fig. 2c, contrary to the attractor behavior
in Fig. 2b, the asynchronous initial nourishment by the mid-
dle town now affects neighboring towns in a way that triggers
a dynamic instability that propagates across the domain. (Re-
ducing the step size in the numerical scheme (not shown) ver-
ifies that the pattern in Fig. 2c is not the result of a numerical
instability.) Once the middle town nourishes first, the insta-
bility propagates as follows: (1) sand from the middle town
diffuses to its neighbors; (2) manager agents in those neigh-
boring towns register a slower erosion rate, prompting them
to amend their calculations ofγp andθp to choose a longer
optimal nourishment interval (τ ); (3) the choice of a longer
interval (τ ) forces those towns out of sync withtheir neigh-
bors to the north and south, respectively. Beginning with
manager agents’ misinterpretation of diffusion-altered ero-
sion rates and consequent selection of a non-optimal, longer
nourishment interval, this desynchronization spreads later-
ally as an edge effect from the initial perturbation.

Why does the instability not occur in the Fig. 2b scenario,
where diffusion is also active? The forced linear erosion rate
(γr) plays an important role, as does the timing of when, in
a given nourishment period, a delivery of unexpected sand
arrives. A manager agent calculatesγp and θp by curve-
fitting the town’s beach-width data since its most recent nour-
ishment event. The instability is in part a function of how
many previous beach-width data points manager agents have
at their disposal when sand diffuses in from a neighboring

Fig. 3. Schematic of beach-width through time for a given model
town. If a delivery of diffused sand arrives late in the erosion cycle
(open circle), where linear erosion predominates, manager agents
decreaseγp. Agents interpret an early-cycle delivery of sand (closed
circle) as a change in the exponential erosion rate, prompting them
to increaseθp and decreaseγp.

nourishment project. Figure 3 illustrates the dynamical dif-
ference between the scenarios in Fig. 2b and c. If the attractor
for the coupled system in the absence of spatial interactions
between town beaches is a long nourishment interval and the
unexpected sand arrives relatively late in the nourishment pe-
riod (e.g. Fig. 2b), then a manager agent has enough informa-
tion to differentiate between exponential and linear erosion in
the beach-width curve, and interprets the change as a small
decrease inγp (the open circle in Fig. 3). With many data
points informing the interpolation, a late-stage adjustment
in the linear erosion rate has a negligible influence on the
agent’s calculated nourishment interval. The town stays on
the attractor. However, if the “optimal” nourishment interval
is shorter (e.g. Fig. 2c) and sand diffused from neighboring
towns arrives early in a nourishment cycle (the closed circle
in Fig. 3), a manager agent attributes the new the beach width
primarily to a change in the rate of exponential erosion. The
agent increasesθp and decreasesγp, and calculates a longer
– erroneous – intervalτ .

Manager calculations are not sensitive simply to the tim-
ing of an unexpected delivery within a nourishment cycle –
the linear erosion rate is a key variable. When erosion rates
are low (Fig. 2b), towns stay on the attractor even if unex-
pected sand arrives early in the nourishment cycle. The rela-
tive offset in beach widths between neighbors is small under
these conditions, and diffusion has only a minor influence
when offsets are small. The less influence diffusion has on
beach-width change, the more accurate a manager agent’s
calculations are. When erosion rates are high, the relative

Nonlin. Processes Geophys., 18, 989–999, 2011 www.nonlin-processes-geophys.net/18/989/2011/
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Fig. 4. (a)Beach width through time for 100 towns over 1000 yr forγr = 3.5 m yr−1. Insets highlight two quasi-stable states:(b) checker-
board patterning; and(c) dissipative grouping.

offset between nourishing and non-nourishing towns is in-
creased (Fig. 2c): The maximum width of a nourished beach
(x0) is unchanged, but towns are losing more sand annually
to erosion. Large offsets between neighboring towns intensi-
fies diffusion, tending to make manager agents miscalculate
their optimal nourishment intervals.

The same dynamic that propagates the marginal edge-
effect also prevents groups of towns in the domain interior
from restabilizing their nourishment patterns. Note in Fig. 2c
that the middle town, once its immediate neighbors nourish
and diffuse (Year 26), perceives a slower erosion rate and
chooses aτ so long that its immediate neighbors nourish
again (Year 35) before the middle town reaches the end of
its interval (Year 36). As a result of this localized stutter-
stepping, the middle town and a growing line of local neigh-
bors nourish almost in unison during Years 35–50, shortening
their nourishment intervals in closer correspondence to the
higher, “real” erosion rate. However, the partially reformed
line triggers the edge effect at both ends. By Year 70, the
partially reformed line has narrowed and broken up. Though
a new line forms again briefly between Years 80–90, by

Year 100 that line too is fragmented into a checkerboard pat-
tern, and by Year 120 the initial instability has propagated
across the entire domain.

Once triggered, the instability in Fig. 2c perturbs the cou-
pled system to a new attractor that switches unpredictably
between two states – one characterized by strings of towns
nourishing frequently and in unison, and the other by towns
nourishing over long cycles out of phase with their neigh-
bors (Fig. 4). For erosion ratesγr = 1.2–2.2 m yr−1, non-
linear time series analysis of a given town’s beach width
through time shows the dynamic of this new attractor is
chaotic (Fig. 5). A nonlinear time series forecast was pro-
duced using a lag ofl = 20 yr (the first minimum in the av-
erage mutual information) and an embedding dimension of
d = 3 (found from the false near-neighbor test). A mid-range
number of nearest neighbors used in time series predictions
(Eq. 13) yields the highest prediction accuracy (Fig. 5). The
strength of predictability falls off with increasing lag. Both
characteristics are expected for a chaotic time series.

A bifurcation diagram ofτ states over a range ofγr val-
ues highlights the critical threshold (e.g. Feigenbaum, 1978;
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Fig. 5. Correlation between forecasted and observed beach width
for town at alongshore location 50 (of 100 towns, withγr =

1.5 m yr−1, for a 5000-yr time series), plotted against the number
of neighbors used to generate the prediction. Predictions are made
at 1 (solid), 2 (large dash), 3 (small dash), and 4 (dotted) years for-
ward in the time series.

Sornette, 2006) into chaotic behavior (Fig. 6). At low values
of γr (≤1.1 m yr−1) towns settle into a nourishment-interval
attractor aroundτ = ∼10 yr. But atγr = 1.2 m yr−1, the num-
ber ofτ states explodes. The moreτ states represented at a
givenγr condition, the more erratic the nourishment actions.

Values ofγr ≥∼ 2.3 m yr−1 confine towns to nourishment
intervals in the NW quadrant of the parameter space (Fig. 1),
whereτ contours are flatter and small adjustments inγr and
θr have less effect on a town’s choice ofτ . Under these more
restricted nourishment intervals, the two-state pattern of in-
phase groups and out-of-phase checkerboards becomes in-
creasingly more regular and densely configured (e.g. Fig. 4).
By contrast, a consequence of the steep contour gradient ev-
ident in the SW quadrant of Fig. 1 is that relatively small
changes in a town’s perceivedγp and θp can result inτ

choices that differ by a factor of 2 or more (Fig. 2c). Un-
der background erosion rates ofγr = 1.2–2.2 m yr−1, near
the chaotic threshold, manager agents choose nourishment
intervals from the region of the parameter space where the
τ gradient is steepest (Fig. 1), making their calculations es-
pecially sensitive to diffusion-related changes in their beach
widths affected by their neighbors (Fig. 2c).

4 Discussion

4.1 Initial conditions

Instability in the model is not sensitive to initial conditions.
For example, it does not matter which towns in the domain
nourish first, or precisely when. Initial conditions affect the

Fig. 6. Bifurcation-type plot summarizing nourishment-interval
choices (τ ) by 100 model towns over 1000 time steps for a range
of linear erosion rates (γr). A critical transition from single-state to
a “chaotic” pattern of multiple states occurs atγr = 1.2 m yr−1.

details of the resulting patterns, but the dynamics represented
in the patterns remain the same.

Perturbing the system economically can also destabilize
shoreline behavior. Though we do not present the results
here, we experimented with a variety of economic-parameter
settings. For example, randomly introducing “wealthy”
towns with an elevated property value (α) into a domain
of non-wealthy towns perturbs shoreline behavior because
τ choices available to manager agents of wealthy and non-
wealthy towns derive from different parameter spaces. In-
creasing the property value (α) shortens optimal nourishment
intervals; the steep gradient that dominates the SW quadrant
of Fig. 1 shifts down and off the parameter space, giving way
to the shorter nourishment intervals and widely spaced con-
tours that comprise the comparatively flat NW quadrant. The
economic argument for this shift is that wealthy towns tend to
nourish their beaches more frequently because the marginal
benefits (which depend on base property values) from a wide
beach are higher (Smith et al., 2009).

4.2 Diffusivity and time scales of attractors

Adjusting the diffusion constantK by an order of magnitude
higher or lower affects how rapidly the domain settles into an
attractor. At low values ofK, little sediment is shared across
towns and the domain finds the attractors quickly. Alterna-
tively, whenK is high, so much sand is distributed across
towns that manager agents’ interpretations of beach behav-
ior tend to be inaccurate, and the domain takes longer to find
the attractors. Our upper-bound for the diffusion constant is
analogous to the high-energy environment of the US West
Coast, and the lower-bound is arguably more typical of the
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low-energy environment of the US Gulf Coast. Intermediate
values ofK used here are comparable to the diffusivity of the
US Eastern Seaboard (e.g. Ashton and Murray, 2006b).

4.3 Caveats

Our beach-dynamics model does not explicitly incorporate
a number of characteristics and processes that are important
to real coastlines, such as wave refraction over hydrography
near the shore or storm events. Nevertheless, exponential
cross-shore relaxation of the beach profile (θ) and lateral dif-
fusion of sand are behaviors that capture shoreline dynamics
relevant at large spatial scales (Dette et al., 1994; Dean, 2002;
Falqúes and Calvete, 2005; Lazarus et al., 2011).

Likewise, we keep several physical parameters constant,
includingx0, the full (“maximum”) width to which a beach is
nourished, andµ, the fraction of the maximum beach width
that erodes exponentially. In reality, the width to which a
beach is nourished depends on a host of project-specific cir-
cumstances – the price of sand, the availability of equipment,
the source of funding for the project, et cetera. That said, the
fixed costs of beach nourishment (hiring a dredge, acquir-
ing a permit, marshalling materials) are high enough to force
economies of scale – a large nourishment project is gener-
ally more cost effective than a small one (e.g. Smith et al.,
2009). Though outside the scope of this model, related work
does consider dynamic economic elements such as variable
costs driven by a competitive market for sand (McNamara
and Werner, 2008a; McNamara et al., 2011).

4.4 Collectively undershooting the economic optimum

The possibility of even weakly chaotic behavior among
neighboring beach towns carries sobering implications for
management strategies. The rates of linear erosion we ex-
plore in our model are within the range of plausible envi-
ronmental conditions: Along the low-lying coast of North
Carolina, for example, 50-yr average beach erosion rates (ex-
cluding inlets) range from<0.5 m to>4 m yr−1 (NC DCM,
2010), which future sea-level rise will only tend to exacer-
bate.

Optimizing net benefits assumes fundamentally that the
optimization calculation, which projects forward into infi-
nite time (Eq. 7), occurs only once (e.g. Fig. 2a). A town
with perfect information about its physical coastal condi-
tions should determine a single optimal interval over which
to nourish its beach for the rest of time. But when placed
in even a highly stylized physical setting in which sand is
shared among neighboring towns by diffusion, a given town’s
information about shoreline conditions becomes imperfect.
The frequently changing conditions that occur in a chaotic
regime require that towns adjust and readjust their calculated
nourishment intervals. By extension, no town can act in a
truly economically optimal way by using a spatially myopic
decision-making process. Towns that wait out long intervals

between nourishment events, as they do when caught in a
checkerboard pattern (Fig. 4), will tend to have narrower
mean beach widths with lower associated economic benefits
(Smith et al., 2009). As towns search independently for what
is economically optimal, spatially myopic management in a
context of diffusion and high erosion rates affects a collective
decrease in net benefits for all towns in the domain.

This systemic undershooting of the optimum is similar to
problems encountered in the context of spatially incompat-
ible land-use practices (Parker, 1999). A case study of or-
ganic and non-organic farms in the Central Valley of Califor-
nia by Parker and Monroe (2007) describes the spatial im-
pact that non-organic farms have on their organic neighbors.
Because non-organic farms use chemical fertilizers and pes-
ticides as part of their farming practices, neighboring organic
farms must ensure that a buffering strip of fallow land sepa-
rates the two kinds of fields to maintain organic certifiability.
This impinging partition is termed an “edge-effect external-
ity”, a spatial phenomenon defined by a marginal impact that
is inversely related to the distance from the border generat-
ing the externality (Parker, 1999). A geometric thought ex-
periment demonstrates that spatially heterogeneous arrange-
ments of organic and non-organic farms that minimize in-
compatible borders thereby maximize the amount of arable
land in production. Realizing a maximally beneficial ar-
rangement, however, requires some measure of cooperation
among farmers in the system, and not a simple reliance on
“free market land use patterns” (Parker and Munroe, 2007).

The initial instability and two-state pattern in our beach-
nourishment model (Figs. 2c and 4) could be described as
a “propagating” edge-effect externality. Groups of towns
that nourish in unison locally increase their compatible bor-
ders and thereby approach the gains suggested by the opti-
mal scenario, in which all towns nourish in unison for all
time (Fig. 2a). The consequence of independent operation is
that when a few towns do nourish as a coherent group, those
towns at the edges experience higher rates of erosion and so
must change their nourishment strategies, ultimately paring
down the group size and pushing the possibility of collective
economic optimum farther away.

We do not presume that coastal managers of real towns
measure linear versus exponential erosion on their beaches
and then literally calculate a target nourishment interval, or
that beach-nourishment projects reflect the unilateral deci-
sions of a particular person. Even so, the economic model
by Smith et al. (2009) that guides manager-agent behavior
in our coupled model is not an esoteric abstraction. Beach-
nourishment records (PSDS, 2010) and discussions with
coastal town managers (A. Coburn, PSDS, personal com-
munication, 2008) suggest a lack of nourishment coordi-
nation between neighboring towns is typical, currently and
historically. Some nourishment projects are implemented
as emergency responses to storm events (PSDS, 2010), and
some managers may be aware of larger scale, multi-town pat-
terns over time – but if strategic behavior has arisen from
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perception of those spatial patterns, it has either not persisted
or is simply not apparent in the records. Though expressed
in parameters that do not fully represent the nuances of real-
ity, the spatial myopia underpinning the model by Smith et
al. (2009) captures the salient dynamics of real municipali-
ties trying to manage coastal erosion (e.g. Psuty and Ofiara,
2002).

Less myopic interactions among managers could pro-
duce different results. Recent evidence suggests beach-
nourishment strategies in some areas of the US are mov-
ing, however tentatively, from independent actions toward
more cooperative management arrangements. On the south-
ern North Carolina coast, a board of town commissioners for
the developed barrier island of Bogue Banks, which consists
of five communities spanning approximately 40 km of beach
frontage, recently approved a preliminary pact that would
place the entire island under a single, comprehensive, 30-yr
“master beach nourishment plan” (Kemp, 2010). Opposition
to the plan hinges on its costs and concerns regarding entan-
gled obligations to other municipalities (Kemp, 2010); the
outcome of the proposed cooperation remains to be seen.

4.5 Broader insights

Though manager-agent behavior in this model is driven by
the parameter relationships illustrated in Fig. 1, the emer-
gent patterns that our model produces suggest some broader
lessons regarding coupled human-landscape systems. Fun-
damentally, an optimal nourishment interval is a quantity in-
formed by properties of a physical environment that corre-
sponds to a certain kind of management action. In more gen-
eral terms, the parameter space in Fig. 1 could be called a
“decision space”. Our results illustrate, in a way obliquely
related to Feigenbaum (1978), that a decision space charac-
terized by steep gradients, wherein small differences in en-
vironmental parameters can result in widely differing man-
agement behavior, can result in highly disorganized, even
chaotic coupled-system behavior. When management deci-
sions are less sensitive to environmental parameters (gradi-
ents in the decision space are shallow), the coupled system
may be more likely to lock into a simple attractor.

4.6 Future directions

Records of beach-nourishment projects up and down the US
seaboards exist (e.g. PSDS, 2010), but multi-decadal time-
frames are exceptional cases, complicating comparison of
our simulations to empirical evidence. The fact that long-
term nourishment projects are codified by multi-decadal per-
mits suggests that our dynamical predictions might take sev-
eral more decades to play out, unless environmental factors
accelerate systemic behavior. Further explorations of this
coastal setting already underway will introduce additional
layers of dynamic physical influences, such as shoreline ori-
entation and a variable wave environment (e.g. Ashton et

al., 2001), as well as address higher-order economic ques-
tions set aside in this discussion, such as how wealth dispari-
ties among neighboring municipalities affect competition for
limited sand resources (McNamara et al., 2011) and the im-
plications of strategic interactions in neighboring nourishing
communities.

5 Conclusion

Our model of a coupled economic-beach system demon-
strates a chaotic threshold and the emergence of new attrac-
tors with changes in external forcing. When town-scale, spa-
tially myopic beach management occurs in a spatially ex-
tended setting shared by multiple towns, one town’s beach
conditions (and resulting management actions) become a
function of the management actions taken by its neighbors.
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