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ABSTRACT 

Introduced invasive pests are perhaps the most important and persistent catalyst for changes in 

forest composition. Infestation and outbreak of the hemlock woolly adelgid (Adelges tsugae; 

HWA) along the eastern coast of the USA, has led to widespread loss of hemlock (Tsuga 

canadensis (L.) Carr.), and a shift in tree species composition toward hardwood stands.   

 

Developing an understanding of the geographic distribution of individual species can inform 

conservation practices that seek to maintain functional capabilities of ecosystems. Modeling is 

necessary for understanding changes in forest composition, and subsequent changes in 

biodiversity, and one that can be implemented at the species level. By integrating the use of 

remote sensing, modeling, and Geographic Information Systems (GIS) coupled with expert 

knowledge in forest ecology and disturbance, we can advance the methodologies currently 

available in the literature on predictive modeling.  

 

This paper describes an approach to modeling the spatial distribution of the less common but 

foundational tree species eastern hemlock throughout the state of Maine (~84,000 km2) at a high 

resolution. There are currently no published accuracy assessments on predictive models for  high 

resolution continuous distribution of eastern hemlock relative basal area that span the geographic 

extent covered by our model, which is at the northern limit of the species’ range. A two stage 

mapping approach was used where presence/absence was predicted with an overall accuracy of 

85% and the continuous distribution (percent basal area) was predicted with an accuracy of 84%. 
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Overall, these findings are quite good despite high variability in the training dataset and the 

general minor component that eastern hemlock represents in the primary forest types in Maine.  

 

Eastern hemlock occurs along the southern half of the state stretching the east-west span with 

little to no occurrence in the northern regions. Several environmental and site characteristics, 

particularly average yearly maximum and minimum temperatures, were found to be positively 

correlated with hemlock occurrence. Eastern hemlock dominated stands appeared predominantly 

in the southwest corner of the state where HWA monitoring efforts can be focused. Given the 

importance of climate variables in predicting eastern hemlock, forecasts of future range shifts 

should be possible using data generated from climate scenarios. 
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INTRODUCTION 

 

Motivation 

 

We are experiencing a significant loss in biodiversity worldwide, this is considered to be 

important for a variety of reasons (Randall, 1991; Rolston, 2000), but recent attention has 

focused on its potential importance for the adequate functioning of the Earth’s ecosystems 

(Schulze and Mooney, 1994; Heywood and Watson, 1995). Forest ecosystems are losing 

biodiversity through a variety of disturbances that are numerous, including land use, climate 

change, fire, and wind. In particular, invasive introduced species are disturbance agents to which 

temperate forests appear to have relatively little resistance (Richardson, 1998, but see Simberloff 

et al., 2002 for a treatment of tropical forests). As many as 19 introduced insect pests and 

pathogens are causing changes to forest structure, species composition, and ecosystem function 

of North American forests and it is anticipated that a warming climate will amplify the effects of 

these forest pests (Dukes et al., 2009).  

 

In the northeastern United States, mean annual temperatures have increased by 0.8 C over  the 

last century with estimates that they will continue to increase from 2.1 to 5.3 C by 2100 

(Campbell et al., 2009). Changes in our climate will precipitate changes in biogeochemical 

cycling, resulting in potentially dramatic changes in forest composition and productivity 

(Weiskittel et al., 2011). These climate driven alterations will be coupled with the effects of other 

disturbances such as forest pathogens and forest management strategies (e.g., harvesting). 
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Consequently, it is important to understand and forecast both current and future potential species 

habitat. 

 

In particular, New England forests are currently experiencing a decline in eastern hemlock 

(Tsuga canadensis (L.) Carr.) due to the hemlock woolly adelgid (Adelges tsugae; HWA), an 

invasive, aphid-like pest introduced to the United States from Asia (Ellison et al., 2005). HWA 

can be found in 15 states along the eastern seaboard from Georgia to Maine (Stadler et al., 2005) 

including several counties in southern and mid-coast Maine (Maine Forest Service, 2014). 

Albani et al. (2010) predict that HWA will continue to move northward and will be established 

throughout the eastern hemlock range in Maine in the next 30 years. 

 

Eastern hemlock is a late successional conifer that, because of its deep shade and acidic litter, 

shapes stand microclimate and influences community and ecosystem characteristics (Eschtruth et 

al., 2006; Orwig et al., 2002). This strong influence on microclimate affects vegetation 

organization, successional dynamics, species diversity, and microenvironmental characteristics 

(Orwig and Foster, 1998). Eastern hemlock dominated forests represent unique characteristics 

that serve as critical wildlife habitat (Orwig et al., 2002). 

 

Predicting eastern hemlock occurrence is complicated by the fact that it is difficult to distinguish 

from other conifers by spectral response alone (Doucette et al., 2009) particularly in mixed 

conifer stands, which is where it tends to occur in Maine. Ancillary GIS data representing 
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environmental characteristics are often used in conjunction with satellite imagery to define 

patterns in vegetation cover (Kong et al., 2008). Narayanaraj et al.  (2010) found strong 

relationships between eastern hemlock density (# ha-1), basal area (m2 ha-1) and elevation, 

distance to streams, and soil moisture. Boyce (2000) also found a strong relationship between the 

location of eastern hemlock trees and elevation, slope, and NW aspect. These previous analyses 

highlight the importance of topographic variables in describing the distribution of eastern 

hemlock, but acknowledge the diverse array of factors that influence it. Given the geographic 

extent of the study area in this present study, several potential predictors should be evaluated to 

find the most robust model. A working hypothesis for this analysis was that remote sensing, 

climatic, and topographic variables would be equally important for predicting both eastern 

hemlock occurrence and abundance. 

 

Objectives 

 

Developing an understanding of the geographic distribution of individual tree species can inform 

conservation practices that seek to maintain biodiversity of ecosystems. Mapping eastern 

hemlock in Maine will be crucial to response efforts by anticipating where HWA infestations 

will occur. The methodology developed and used here can also be applied to other species level 

inquiries in northern forests. The primary objectives for this paper were to: (1) predict the 

occurrence of a less common tree species, eastern hemlock across a large geographic extent that 

includes the species’ northern range, (2) predict percent basal area of eastern hemlock where it 

occurs, and (3) map the species occurrence and percent basal area at a high resolution. 
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METHODS 

 

Study area 

 

The state of Maine (~84,000 km2) is located in the northeast corner of the New England region 

of the U.S. It is bordered by the Canadian provinces of Quebec and New Brunswick, the Atlantic 

Ocean, and by New Hampshire (see Fig. 1). It falls within mapping zone 66 (42 580 N to 47 280 

N and 66 570 W to 71 50 W).  Maine is nearly 90% forested and dominated by mixed northern 

hardwood stands comprised of over 62 tree species. The most prevalent of these species being 

balsam fir (Abies balsamea L.) Mill.), red  maple (Acer  rubrum  L.), red  (Picea rubens Sarg.), 

white  (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.), sugar 

maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britton), and American 

beech (Fagus grandifolia Ehrh.) (Maine Forest Service 2013). Maine forests are bordered by 

Boreal Forests in the north and Central Hardwood Forests to the south and are sometimes 

referred to as ‘‘Acadian Forests”. 

 

Spatial database 

 

A relatively comprehensive spatial database was compiled for the state of Maine comprised of 

satellite imagery, digital elevation models, and ancillary GIS data. Most of these data can be 

found and downloaded from the Natural Resources Conservation Services (NRCS)  Geospatial 
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Data Gateway (http://datagateway.nrcs. usda.gov). Over 30 different spatial data layers depicting 

ecological (e.g., biomass) or environmental (e.g., precipitation) phenomenon were explored to 

find good predictors for eastern hemlock. Predictor variables were selected by evaluating the 

coefficient of determination and variable importance plots produced by the random Forest 

algorithm with a threshold mean decrease in accuracy value of 20%. Preliminary analysis 

indicated eleven predictors that were most influential in describing eastern hemlock distribution, 

these were used in the final model and are described in detail below. 

 

Remote Sensing and Google Earth Engine 

 

The use of satellite imagery and remote sensing in ecological and resource management research 

has been increasing steadily since the 1990s (Fassnacht et al., 2006). Multi-spectral imagery is 

helpful in discerning land cover types as different wavelengths of electromagnetic energy are 

reflected differently from different types of land cover. In choosing a remote sensing system 

some important considerations for researchers are: (1) cost, (2) temporal resolution (frequency of 

image acquisition), (3) spatial resolution (cell size), and (4) spectral resolution (number of 

wavebands detected). We chose Landsat-5 thematic mapper (TM), which is, arguably, the most 

popular mid resolution, passive remote sensor used in natural resource applications prior to the 

launch of Landsat 8 OLI in February 2013, a similar sensor that has replaced TM. For the study 

area the size of Maine, Landsat TM offers cost-effective imagery that has a revisit period of 16 

days, 30 m pixel resolution (cell size), and is multi-spectral with 7 wavebands detected (3 visible, 

http://datagateway.nrcs.usda.gov/
http://datagateway.nrcs.usda.gov/
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1 near infrared, 2 mid-infrared, 1 thermal infrared). An individual Landsat TM scene covers 

approximately 26,000 km2. 

 

For complete coverage of the state of Maine, nine individual scenes are needed from 3 paths and 

4 rows (listed here as Word-wide Reference System path/row: 10/29, 11/27, 11/28, 11/29, 11/30, 

12/27, 12/28, 12/29, 12/30). Acquiring Landsat TM imagery for the state of Maine would 

generally involve hours of searching for scenes and assessing both their cloud content and 

date/time characteristics. The use of multiple Landsat scenes would also require radiometric 

normalization and geometrically co-referencing to minimize mosaic seam lines (Cohen et al., 

2001). With the advent of the Google Earth Engine much of this pre- processing is already 

completed and searching the Landsat database can be streamlined. Google’s Earth Engine is a 

cloud-based platform that allows planetary level data storage, mining, and analysis 

(https://earthengine.google.org). The platform allows unprecedented speed and efficient 

computing by making use of Google’s existing computing infrastructure, it is currently freely 

available to non-profit and educational institutions, and access is available through both a 

Javascript and a Python application programming interface (API). Within Earth Engine’s data 

archive exists all publicly available digital Landsat data. These data were provided by the EROS 

data center in Souix Fall, SD, and georeferenced/corrected by Google using standard image 

processing routines. Using Earth Engine’s processing capabilities, we produced a Landsat TM 

cloud-free mosaic for the state Maine by compositing the best, cloud-free, pixels through time 

for the years 2007–2011 during both summer (leaf-on) and winter (leaf-off) seasonal conditions. 

 

https://earthengine.google.org/
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Tasseled cap is a spectral vegetation index (SVI) derived from satellite imagery and originally 

introduced by Kauth and Thomas (1976), that includes brightness, greenness, and wetness 

(designed to describe water content in soil) (Crist and Cicone, 1984). All three transformations 

were evaluated in this analysis, only tasseled cap greenness was used in the predictive model. 

 

Soil Survey Geographic (SSURGO) dataset 

 

Soil moisture has been identified as a good predictor of hemlock abundance (Narayanaraj et al., 

2010). The SSURGO dataset contains available water storage variables at varying depths (25 cm, 

50 cm, 100 cm, 150 cm), which accounts for soil texture and coarse fragment content. All of 

these depths were assessed as potential predictors, but only 25 cm was used in model 

calibrations. 

 

Climate 

 

Climate variables including average annual precipitation, average annual maximum temperature, 

and average annual minimum temperature have been estimated by the Oregon State University’s 

PRISM Climate Group (http://www.prism.oregonstate.edu/). These data represent 30 year 

normal estimates for 1981–2010 in rasterdata (grid) at a resolution of ~800 m. Estimates of 

climatic parameters were derived using analytical models that incorporate point data and a digital 

elevation model (DEM). Although these data are at a much coarser scale than the other eight 

http://www.prism.oregonstate.edu/
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predictors (10–30 m; see Table 1), it was decided to make predictions at 30 m resolution 

reasoning that climate variables do not vary drastically at finer scales. 

 

National biomass and carbon dataset 

 

Scientists at the Woods Hole  Research Center (WHRC) developed a 30 m resolution GIS 

dataset describing forest height, above ground biomass and carbon stock in the conterminous 

U.S. for the year 2010 (WHRC, 2012). We used above ground biomass in this analysis. 

 

Reference data 

 

A reference database was compiled that includes forest measurements from the Penobscot 

Experimental Forest (PEF), the Maine Forest Service (MFS), the Hemlock Ecosystem 

Management Study (HEMS), and US Forest Service, Forest Inventory and Analysis (FIA) 

program to identify stand composition of geographically defined study plots located across 

Maine (see Table 2). Each dataset is briefly described below. 

 

USFS Forest Inventory and Analysis (FIA) program 

 

The US Forest Service (USFS) conducts a comprehensive Forest Inventory and Analysis (FIA) 

program across the US. This program consists of long-term forest monitoring research plots 
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established through stratified systematic sampling across public and private lands. Each plot 

consists of four 1/24th acre (0.02 ha) fixed- radius (24.0 ft/7.3 m) subplots. Plot coordinate 

accuracy is reported to be within 10 m of the actual site Hoppus and Lister, 2005). Although 

actual FIA plot coordinates are not publicly available, we utilized them here as this study was 

sponsored with an MOU by the Northern Research Station FIA program. Field data are collected 

at the plot-level and include forest type, tree species, tree diameter at breast height (dbh), tree 

height, and condition (for more information on the FIA program and a complete list of data 

collected please see www.fia.fs.fed.us). The data used in this study are taken from forested plots 

in Maine (n = 2607) that were measured during an inventory cycle from 2006 to 2010 (see Fig. 

1).  

 

 Penobscot Experimental Forest (PEF)  

 

The PEF is located in the towns of Bradley and Eddington, Maine. This forest is dominated by 

mixed northern conifers, including eastern hemlock and is the site of various research endeavors 

making forest composition well documented. The data used here were taken during surveys from 

2000 to 2009 on 807 m2 (0.08 ha) fixed radius plots (n = 502).  

 

Maine Forest Service (MFS) 

 

http://www.fia.fs.fed.us/
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These data were taken from HWA impact plots from hemlock dominated stands in York, 

Cumberland, and Lincoln counties. Data were recorded at each of the five sites within three 

400m² (0.04 ha) circular plots (n = 15) located on a transect line oriented along the central axis of 

the stand.  

 

Hemlock Ecosystem Management Study (HEMS)  

HEMS is a multi-year study of the ecological and socioeconomic implications of changes in 

mixed hemlock-hardwood forests being conducted by faculty at Unity College in Unity, Maine. 

These data consist of 100 m2 (0.01 ha) experimental plots in hemlock dominated stands spread 

across four sites in Waldo County, Maine (n = 33). For all plot data sources, combined total basal 

area (m2) and percent eastern hemlock basal area (m2) were calculated for each observation used 

(n = 3157) (Tables 2 and 3). 

 

Data extraction 

 

Because of the spatial layout of FIA plots (described above), a 3 x 3 pixel neighborhood window 

around the first subplot was used to calculate and extract values from the predictor spatial data 

layers in order to capture all four subplots. The center points from the other field reference plots 

(one plot per point) were used to extract values from the predictor spatial data layers within 

ArcGIS software v10.1 by ESRI. Spatial joins were used to combine attributes into a single 
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database for model development. A subset containing 10% (n = 312) of reference points were 

randomly selected and reserved for map validation (see Fig. 2). 

 

Regression  trees 

 

Regression trees are a deviation from the linear model that allow more flexible regression 

modeling of the response variable by combining predictors in a nonparametric approach. Trees 

are formed by partitioning an individual variable (predictor) at a node along the range of that 

variable. A simple average is taken in that partition so that: residual sum of squares (RSS) 

(partition) = RSS (part1) + RSS (part2) and the partition that has the smallest RSS is chosen for 

the tree ensemble. These partitions are  partitioned again recursively to construct expert trees 

(Faraway, 2006). 

 

Multivariate tree-based regression models have evolved with improved accuracy in predicting 

forest structural attributes (Walker et al., 2007). These improvements include processes for 

bagging (from bootstrap aggregate) and boosting. Bagging involves sampling the dataset with 

replacement to produce replicate training sets. In this way, all cases are used to construct each 

tree with more weight placed on cases that are more difficult to predict. Boosting assigns 

different weights (voting strengths) to trees based on accuracy. 

 

Random forest 
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A regression tree is best described by the algorithm used to construct it. The random forest 

algorithm, first introduced by Briemen (2001), draws a bootstrap sample Z of size  N from the 

training data set (with replacement) so that each tree is constructed with a random subset of the 

data. Out of bag (OOB) predictions of error are calculated from reserved cases (about 1/3rd) 

from each training data set. The best split among the random subset of predictors is chosen at 

each node and recursively until the minimum node size is reached. The output is then an 

ensemble of trees. This process reduces prediction variance of trees, decreases bias (if the trees 

are sufficiently deep) and increases accuracy through decorrelation. Random forest will not over 

fit data and can compute variable importance which is an advantage over other modeling 

techniques (Briemen, 2001). For this analysis, the ‘random Forest’ package (Liaw and Weiner, 

2007) in R v 3.1.3 (R Core Team, 2015). 

 

Model evaluation 

 

Presence/absence 

 

The predictor variables can be organized into five broad categories: climate, satellite imagery, 

biomass, elevation, and soils (Table 1). Predictor variables were assessed for  importance using 

variable importance plots. For the presence/absence model, the Gini coefficient and mean 

decrease in accuracy were used. The Gini coefficient is a measure of homogeneity from 0 

(homogeneous) to 1 (heterogeneous). Variables that result in nodes with higher purity have a 

higher decrease in Gini coefficient. The mean decrease in accuracy measures the accuracy of the 
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model if that variable were to be removed. The resulting binary model was assessed using a 

Kappa statistic and the Area Under the Curve (AUC). The Kappa statistic (or value) is a metric 

that measures whether the observed accuracy could be a result of random chance, where a Kappa 

of 1 indicates perfect agreement and a kappa of 0 indicates agreement equivalent to chance. The 

AUC is generated from a Receiver Operator Curve (ROC) that assesses model sensitivity and 

specificity with an  AUC of 1 being a perfect model and an AUC of less  than 0.5 being a poor 

model. 

 

Continuous model 

 

The predictor variables for the continuous model remained the same and were evaluated using 

variable importance plots with measures of percent increase in mean square error in the model 

(in absence of a given variable) and node purity. The percent increase in mean square error is a 

permutation (i.e., based on sampling without replacement) calculated during the OOB error 

phase and considers how the removal of individual predictor variables degrades prediction 

accuracy (Boulesteix et al., 2012). The more important the variable is in classification, the larger 

the mean decrease in accuracy. Node purity is based on the criteria used to split the nodes 

(important predictors are often selected for splitting) so that node purity is calculated by taking 

the total decrease in node impurities from splitting on each variable, averaged over all trees 

measured by the residual sum of squares (Boulesteix et al., 2012). 
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The continuous model was evaluated using coefficient of determination (R2) and root mean 

square error (RMSE). The average and standard error were calculated on a bootstrap sample of 

500 with 100 repetitions where confidence intervals were also obtained. In general, the most 

parsimonious and robust model was selected for predictions. 

 

Map production 

 

Given the skewed distribution of eastern hemlock basal area in reference plots (see Tables 1 and 

2), and the desire to produce an accurate continuous distribution, a two-step map making process 

was adopted. First, a map depicting presence/absence of eastern hemlock at 30 m resolution was 

produced in R (ModelMap package) using the categorical model described above. All raster data 

layers representing the 11 predictor variables were projected to WGS 84 and geographic extents 

were snapped. Raster data layers depicting climate, soils, and elevation (see  Table 1) were 

resampled to 30 m resolution using bilinear interpolation. This map was then used as a mask 

where only presence pixels were used to produce a 30 m resolution map of percent basal area 

eastern hemlock using the continuous model described above (see  Fig. 2). 

 

RESULTS 

 

A total number of 3157 reference plots (Fig. 1) were available for analysis with an average basal 

area eastern hemlock of 10.1% (Tables 2 and 3). Of these reference plots 2815 were used in 

model calibration and 312 were used in the final map accuracy assessment. 
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Presence/absence 

 

The predicted probability of occurrence was consistent with the reference data (Fig. 4a and b). 

The Area Under the Curve (AUC) for this categorical model was 0.91 with 95% confidence 

interval of 0.90–0.92 (Fig. 4c). The Kappa statistic was 0.65 and 85% of pixels were classified 

correctly at a 30 m resolution (Fig. 4d). 

 

The 30-year normal average maximum temperature was clearly the most important predictor 

variable used in the model (see Fig. 3). Hemlock present plots had an average maximum 

temperature of 12.2 C, whereas hemlock absent plots had an average maximum temperature of 

10.6 C. Elevation and winter satellite imagery representing the visible red band were also 

consistently among the most important predictor variables. The average elevation differed 

between the two groups by more than 46 m with hemlock present plots having the lower average. 

The visible red imagery taken during the winter (leaf-off) had a lower average reflectance digital 

number (i.e., DN, more visible red being absorbed, less being reflected) for hemlock present 

plots than hemlock absent plots. 

 

The random forest model predicts presence of eastern hemlock with a threshold average 

maximum temperature of 10.6 C below which eastern hemlock ceased to be predicted. A similar 
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threshold exists for minimum temperatures of 2.8 C. The probability of the model predicting 

eastern hemlock occurrence decreased at elevations greater than 91.4 m (see Fig. 7). 

 

Continuous model 

 

Temperature continues to be the most important predictor variable for the hemlock model as well 

as winter visible red imagery (see Fig. 5). Elevation was also an important predictor for the 

continuous model. Average maximum and minimum temperature, have positive statistically 

significant correlations (at the .001 level) with hemlock abundance (Pearson correlation 

coefficients: 0.43, 0.38 respectively). Elevation and winter red imagery have negative 

statistically significant correlations (at the .001 level) with hemlock abundance (Pearson 

correlation coefficients: -0.36, -0.22 respectively; see Fig. 7). 

 

The continuous model explained 57% of the variation in the dependent variable, but there was 

some variability in model bias. The continuous predictive model appeared to have the necessary 

variance to produce a map product with acceptable local accuracy. Fig. 6 displays observed 

versus predicted values of percent basal area for  training reference plots (n = 2815). A RMSE of 

less than 13% was obtained. 

 

Overall map accuracy 
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The overall accuracy of the final map depicting the continuous distribution of eastern hemlock 

density (basal area) in Maine was 84% (see Fig. 8). Map accuracy was also tested using 

reference plots (n = 312). Fig. 9 shows the predicted versus observed values for the continuous 

distribution of eastern hemlock basal area. The R2 value obtained (0.56) was similar to that of 

the continuous model calibrated with 2815 reference plots. Of the predicted values for pixels in 

the final map product, 84% were within ±13% of the observed value and 92% were within ±26% 

of the observed values. 

 

The two stage mapping approach had a positive impact on the continuous map product by 

removing the prediction of low level hemlock abundance throughout the entirety of the state. The 

presence mask reduced the geographic extent of predicted eastern hemlock by 25%. 

 

Predicted distribution 

 

The binary model predicted hemlock occurrence in approximately 20% of pixels that cover the 

state of Maine at 30 m resolution with a geographic extent that covers 75% of the state. Within 

those presence pixels, eastern hemlock abundance (% basal area) was predicted with a range of 

2–78% with a mean of 18% (see Fig. 8). Eastern hemlock trees occur along the southern half of 

the state stretching the east-west span with little to no occurrence in the northern regions with a 

northern extent of 46 520 N. Eastern hemlock dominated stands appeared predominantly in the 

south-west corner of the state (see Fig. 8). The continuous model predicts the highest abundance 
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(% basal area) of eastern hemlock in areas with an average yearly maximum temperature P12.8 

C and average yearly minimum temperature of P1.7 C (see Fig. 7). 

 

DICUSSION 

 

Overall, our model indicated that eastern hemlock occurrence and abundance could be 

effectively modeled using remote sensing, climate, and soil variables. In general, the climate and 

remote sensing variables were the most important, which rejects our null hypothesis that 

topographic variables would be equally important. In fact, the primary environmental variables 

(i.e., slope, aspect, and distance to streams) that have been associated with eastern hemlock 

occurrence in past studies (Narayanaraj et al., 2010; Boyce, 2000) were not found to be 

important predictors. This may be a function of scale and particularly geographic extent. 

However, elevation tended to be an important factor even after accounting for climate and soils, 

which would suggest that topography has some influence on eastern hemlock occurrence. 

 

The natural variation in the physical structure of an area increases with geographic extent. The 

geographic extent of this study (~84,000 km2) no doubt contributed to the low R2 values 

obtained by the continuous predictive model. Landscape analyses deal with heterogeneous land 

areas with interacting ecosystems. In this case, state boundaries are arbitrary to ecosystem 

interactions and are used here to define the landscape under investigation for practical and 

political considerations. Field data are generally measured at the stand level and Roberts et al. 

(2004) found that plant species were the least distinct at the stand scale using remotely sensed 
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structural measures (e.g., NDVI). Stand level tree species predictions have historically had lower 

R2 values (see Song et al., 2007; Cohen et al., 2001), which illustrates the necessity that the 

results of large scale modeling and mapping projects be reviewed with other accuracy metrics 

(e.g., map product accuracy) and the intended use of the product. 

 

Species level forest cover predictions, and in particular eastern hemlock, have been undertaken 

in the past with varying results. The most common prediction of eastern hemlock is that of 

presence/absence with more limited studies for abundance. Two studies used decision tree 

models to predict eastern hemlock presence in the southeast USA with overall accuracies 

reported to be 70% (see Clark et al., 2012; Kong et al., 2008). A similar study using fuzzy 

boundary accuracy assessment reports 70-80% accuracy in hemlock presence classification (see 

Koch et al., 2005). These values are generally consistent with the findings of this analysis.  

 

For abundance, Pontius et al. (2005) predicted percent basal area eastern hemlock across 2800 

km2 using linear regression and Mixture Tuned Matched Filtering (MTMF;used to quantify the 

hemlock component of each pixel) with an R2 of 0.65 and RMSE of 12%. Scientists from the 

USFS Northern Research Station created a suite of species specific maps depicting continuous(% 

basal area) distribution at coarse (250 m) resolution from FIA data that are  publicly available for 

download (see Wilson et al., 2013). Wilson et al. (2012) used MODIS imagery and 

environmental parameters to predict tree species abundance using a weighting of nearest 

neighbors (k-nearest neighbor and canonical correspondence). The assessment of eastern 

hemlock prediction reports an R2 value (at 25 km scale) of 0.72 and RMSE of1.63 ft2/acre. As 



24 
 

the authors point out, these models are less accurate for less frequent tree species and species at 

the limits of their ranges, which both apply to eastern hemlock in Maine. This can be seen in 

what is likely over-estimation in the northern limits of the eastern hemlock range in Maine. The 

map presented in this analysis does not predict any occurrence of eastern hemlock in this area. 

 

CONCLUSION 

 

In this study, the continuous distribution of eastern hemlock basal area was predicted and 

mapped at high resolution with a high level of accuracy (see Fig. 8). The products and methods 

used here are cost-effective and accessible to the public. 

 

The two stage mapping approach had a positive impact on the continuous map product by 

removing the prediction of low level hemlock abundance throughout the entirety of the state. 

This effectively reduced the geographic extent of predicted eastern hemlock by 25%, which is 

more consistent with the observed data. We believe that this two-stage approach is useful when 

mapping a less frequent tree species where masking out absence pixels will help minimize over 

predictions of occurrence. 

 

A primary limitation of using a nonparametric approach (i.e., random Forest) in modeling a 

continuous variable (i.e., percent basal area) is that the model cannot extrapolate beyond the 

observed values. This is evident in Fig. 8 where the predicted values are truncated at 78%. This 
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is not a major concern for this particular application as land managers will likely be interested in 

monitoring stands that are hemlock dominated (e.g., P50% eastern hemlock basal area). 

 

The decision to map continuous data (% basal area) as opposed to categorical (classes of %basal 

area) data was made so as not to impose an artificial class structure (Fassnacht et al., 2006) and 

more accurately represent the true spatial distribution of eastern hemlock (Cohen et al., 2001). 

Representing this information with continuous data also enables other projects to use these data 

and impose their own classes as needed. An example of this is the management of HWA in 

Maine. Land managers may be particularly interested in monitoring hemlock dominated stands. 

Those decision makers can impose the limits that they qualify as hemlock dominated and classify 

the continuous distribution to meet their needs. 

 

Climate variables (i.e., average maximum temperature, average minimum temperature) were 

consistently among the most important predictors for eastern hemlock. This is an important 

consideration as we are faced with warming temperatures and redistribution of moisture in a 

changing climate. As data depicting future climate projections generated by climate scenarios 

become available, forecasts of future range shifts should be possible with a high degree of 

accuracy. 
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Fig. 1. Shows the geographic extent of the study area and all reference plots (N = 3157) used in 

model calibrations and accuracy assessments. 
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Table 1 

Lists  the independent variables that proved most important in  explaining percent basal area eastern hemlock. 
 

 Predictor Abbrev. Resolution (m) Description Source 

Climate Maximum temperature tempmax 800 The  30-yr normal average maximum temperature (1961–1990) PRISM 

 Minimum temperature tempmin 800 The  30-yr normal average minimum temperature (1961–1990) PRISM 

 Precipitation precip 800 The  30-yr normal yearly precipitation (1961–1990) PRISM 

Satellite imagery Visible red wred 30 Winter (leaf-off) visible red band Landsat  TM 

 Greenness tcgreen 30 Summer (leaf-on) tasseled cap ‘‘greenness” Landsat  TM 

 Mid-IR wmir 30 Winter (leaf-off) mid-IR band Landsat  TM 

 Near-IR snir 30 Summer (leaf-on) near-IR band Landsat  TM 

 Thermal-IR stir 30 Summer (leaf-on) thermal-IR band Landsat  TM 

Biomass Biomass biomass 30 Above ground biomass WHRC 

Elevation Digital elevation model elevation 10 Elevation USGS 

Soils Available water storage aws25 10 Available water storage at 25 cm SSURGO 
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Table  2 

Various field data sources/sites and a summary of the number of plots where eastern hemlock 

were present, absent, and dominant. We  used measurements including tree species and diameter 

at breast height (dbh) to calculate percent eastern hemlock basal area per plot. 

Source Hemlock-Dominated² Hemlock 

Present 

Hemlock 

absent 

Total 

Forest inventory and 

analysis 

57 656 1951   2607 

Hemlock ecosystem 

management study 

24 33 0 33 

Penobscot experimental 

forest     

120 434 68 502 

Maine Forest Service 12 15 0 15 

Total 247 1138 2019 3157 

²P50% eastern hemlock basal area. 
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Table 3 

Source Mean Min Max SD 

Forest inventory and 

analysis 

5.3 0.0 100.0 13.0 

Hemlock ecosystem 

management study 

68.1 16.8 100.0 25.1 

Penobscot experimental 

forest 

31.0 0.0 94.3 24.9 

Maine forest service 63.1 11.8 93.2 20.8 

Overall 10.1 0.0 100.0 19.4 

 

 

 

 

 

 

 

 

 

 

  



39 
 

Fig. 2. A conceptual model illustrating the general workflow undertaken in the two stage 

mapping approach.  
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Fig. 3. Graphs of variable importance in the binary model for presence/absence of eastern 

hemlock in Maine. (a) Mean decrease in the accuracy of the model if that variable were to be 

removed. (b) Mean decrease in the Gini coefficient. Variables that result in nodes with higher 

purity have a higher decrease in Gini coefficient. The variables are described in Table 2. 
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Fig. 4. Accuracy assessment measures for the binary presence/absence model of eastern hemlock 

in Maine. (a) A presence/absence histogram of observed values as a function of predicted 

probability. (b) Shows observed vs predicted values in terms of bins, where the y-axis is a ratio 

of observed # plots that have hemlock present/total # in bin, and the x-axis is the predicted 

probability of occurrence. The numbers above each point give the total # of plots in that bin. (c) 

Receiver Operator Characteristic (ROC) curve and the associated area under the curve (AUC), a 

threshold independent measure of model quality. (d) Shows error (sensitivity, specificity, Kappa) 

as a function of threshold, where sensitivity and specificity cross at a high value indicating 

quality model. The Kappa statistic stays relatively high over a range of threshold values. 
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Fig. 5. Variable importance plots for predicted hemlock abundance (% basal area). (a) Percent 

increase in mean squared error in the model in absence of a given variable. (b) Shows the 

importance of the first four variables over the remaining eight. The  variables are described in 

Table 1 
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Fig. 6. Observed versus predicted values of hemlock abundance (% basal area) for training 

reference plots (n = 2815). 
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Fig. 7. Shows the spatial relationships between the random Forest model predictions of eastern 

hemlock(% basal area) and the four most important predictor variables 
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Fig. 8. The estimated distribution of eastern hemlock (% basal area) at 30 m resolution 

throughout the state of Maine, located in the northeastern corner of the U.S. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 9. Final map product accuracy assessment showing observed vs predicted values of hemlock 

abundance (% basal area) for  test plots (n = 312). 
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