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Focal Putamen Lesions Impair Learning in Rule-Based, but not 
Information-Integration Categorization Tasks 
 
Shawn W. Ell, Natalie L. Marchant, Richard B. Ivry 
 
Abstract Previous research on the role of the basal ganglia in category learning has focused on 
patients with Parkinson’s and Huntington’s Disease, neurodegenerative diseases frequently 
accompanied by additional cortical pathology. The goal of the present study was to extend this 
work to patients with basal ganglia lesions due to stroke, asking if similar changes in 
performance would be observed in patients with more focal pathology. Patients with basal 
ganglia lesions centered in the putamen (6 left side, 1 right side) were tested on rule-based and 
information-integration visual categorization tasks. In rule-based tasks, it is assumed that 
participants can learn the category structures through an explicit reasoning process. In 
information-integration tasks, optimal performance requires the integration of information from 
two or more stimulus components, and participants are typically unaware of the category rules. 
Consistent with previous studies involving patients with degenerative disorders of the basal 
ganglia, the stroke patients were impaired on the rule-based task, and quantitative, model-based 
analyses indicate that this deficit was due to the inefficient application of decision strategies. In 
contrast, the patients were unimpaired on the information-integration task. This pattern of results 
provides converging evidence supporting a role of the basal ganglia and, in particular, the 
putamen in rule-based category learning. 
 
Keywords: Basal ganglia, neostriatum, strategy, explicit, implicit 
 
Introduction 
 

Category learning has been one of the 
cornerstone areas of study in cognitive 
psychology. With the emergence of cognitive 
neuroscience, the neural substrates of this 
ability have received much attention over the 
past decade (see Ashby & Spiering, 2004; 
Keri, 2003 for reviews). The basal ganglia 
have been a focal point of inquiry in this 
research, behaviorally (e.g., Knowlton, 
Mangels, & Squire, 1996; Shohamy, Myers, 
Onlaor, & Gluck, 2004), computationally 
(Ashby, Alfonso-Reese, Turken, & Waldron, 
1998; Brown, Bullock, & Grossberg, 1999; 
Frank, 2005), and in neuroimaging studies 
(Poldrack et al., 2001; Seger & Cincotta, 
2002). To date, neuropsychological studies of 
the role of the basal ganglia in category 
learning have focused on patients with 
degenerative disorders of the basal ganglia, 

and in particular, patients with Parkinson’s 
disease. In the current study, we extend this 
work by testing patients with focal lesions of 
the basal ganglia due to stroke.  

Testing patients with focal lesions has 
several advantages compared to those with 
degenerative disorders. First, unlike Parkinson 
patients, dopaminergic projections to 
prefrontal cortex are likely to be normal as 
long as the lesion excludes the substantia nigra 
pars compacta, ventral tegmental area, and 
internal capsule. Second, patients with focal 
lesions offer a better opportunity to relate 
structure to function in that one can ask if 
observed deficits are related to the site of the 
lesion. Third, they provide an opportunity to 
evaluate if deficits require bilateral basal 
ganglia pathology.  
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An additional goal of the present study is 
to determine whether focal basal ganglia 
lesions affect learning in both rule-based and 
information-integration category learning 
tasks (Ashby & Ell, 2001). Rule-based tasks 
are those in which the categories can be 
learned by an explicit reasoning process. 
Frequently, the rule that maximizes accuracy 
(i.e., the optimal rule) can easily be described 
verbally (Ashby et al., 1998). In many 
applications, only one stimulus dimension is 
relevant (e.g., line length), and the 
participant’s task is to identify the relevant 
dimension and then map the different 
dimensional values to the relevant categories. 
Rule-based tasks are assumed to be learned 
via a hypothesis-testing process that is 
dependent on working memory and executive 
functions (Ashby et al., 1998). Indeed, the 
Wisconsin Card Sorting task, one of the 
standard tools for assessing executive 
function, is in essence a rule-based 
categorization task.  

In contrast, information-integration tasks 
are those in which accuracy is maximized 
when information from two or more 
dimensions (e.g., line length and orientation) 
is integrated at some pre-decisional stage 
(Ashby et al., 1998). The type of integration 
required could take any number of forms, 
from a weighted combination of the two 
dimensions (Ashby & Gott, 1988; Garner, 
1974) to more holistic processing (e.g., 
Kemler Nelson, 1993) to the incremental 
acquisition of stimulus-response associations 
(Ashby & Waldron, 1999), but the critical 
point is that integration occurs prior to any 
decision processes (Ashby et al., 1998). 
Unlike rule-based tasks, participants have 
difficulty verbalizing the optimal decision 
strategy in information-integration tasks, 
despite being able to successfully learn the 
categories (Ashby et al., 1998).  

Behavioral evidence suggests that 
qualitatively different systems are engaged 
during category learning in rule-based and 

information-integration tasks (see Ashby & 
Maddox, 2005; Maddox & Ashby, 2004 for 
reviews). Learning in information-integration 
tasks is more sensitive to the timing (Maddox, 
Ashby, & Bohil, 2003) and nature of trial-by-
trial feedback (Ashby, Maddox, & Bohil, 
2002), and more closely linked to motor 
systems (Ashby, Ell, & Waldron, 2003). Rule-
based tasks are more sensitive to dual task 
interference (Waldron & Ashby, 2001; 
Zeithamova & Maddox, in press) and other 
manipulations designed to tax working 
memory (Maddox, Filoteo, Hejl, & Ing, 2004).  

In contrast to the wealth of behavioral data 
comparing rule-based and information-
integration tasks, there is a paucity of studies 
investigating the neural substrates of these two 
tasks. The available neuroimaging data 
suggest that activity in the basal ganglia is 
correlated with learning in both tasks (Filoteo, 
Maddox, Simmons et al., 2005; Nomura et al., 
in press; Seger & Cincotta, 2002). For 
instance, Nomura and colleagues observed 
that successful categorization (i.e., correct – 
incorrect trials) was correlated with activity in 
the right body of the caudate nucleus in a rule-
based task and bilateral activity in the body 
and tail of the caudate in an information-
integration task.  

The role of the basal ganglia in 
categorization has been the focus of several 
neuropsychological studies. Patients with 
Parkinson’s disease have consistently been 
found to be impaired on rule-based tasks 
(Brown & Marsden, 1988; Cools, van den 
Bercken, Horstink, van Spaendonck, & 
Berger, 1984; Downes et al., 1989; Maddox, 
Aparicio, Marchant, & Ivry, 2005). 
Interestingly, these studies have all used tasks 
that required selective attention to a single 
stimulus dimension in order to maximize 
accuracy. At least for Parkinson’s patients, 
this detail may be critical as the degree of their 
impairment increases with the number of 
irrelevant dimensions (Filoteo, Maddox, Ing, 
Zizak, & Song, 2005). Moreover, no 
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impairment was observed on a rule-based task 
that required the participants to attend to all 
stimulus dimensions (Filoteo, Maddox, Ing, & 
Song, 2005; Maddox & Filoteo, 2001). 

Patients with degenerative disorders of the 
basal ganglia have been found to be impaired 
on information-integration tasks as well 
(Filoteo, Maddox, & Davis, 2001; Filoteo, 
Maddox, Salmon, & Song, 2005). The 
information-integration tasks used in these 
studies comprised two categories and either 
required the linear or nonlinear integration of 
the stimulus dimensions. Filoteo et al. 
(Filoteo, Maddox, Salmon et al., 2005; see 
also Maddox & Filoteo, 2001) reported an 
intriguing dissociation in that Parkinson’s 
patients were only impaired on an 
information-integration task involving a 
nonlinear decision bound. However, patients 
with Huntington’s disease were impaired in 
both the linear and nonlinear cases, although 
the former deficit was limited to the initial 
training blocks (Filoteo et al., 2001). 

Two studies have investigated rule-based 
and information-integration category learning 
in the same sample of patients. Ashby and 
colleagues (Ashby, Noble, Filoteo, Waldron, 
& Ell, 2003) compared the performance of 
patients with Parkinson’s disease to control 
participants on rule-based and information-
integration tasks. The stimuli comprised four 
binary-valued dimensions. For successful 
performance on the rule-based task, 
participants had to attend to a single relevant 
dimension and ignore three irrelevant 
dimensions. Conversely, on the information-
integration task, participants had to attend to 
three dimensions and ignore a single irrelevant 
dimension. Parkinson’s patients were 
selectively impaired on the rule-based task. 
Surprisingly, when rule-based and 
information-integration tasks were equated for 
the number of relevant dimensions, 
Parkinson’s patients were unimpaired in both 
tasks (Filoteo, Maddox, Ing, & Song, 2005).  

To our knowledge, only one study has 
investigated the impact of a focal basal 
ganglia lesion on category learning (Keri et 
al., 2002). Compared to a group of control 
participants, a patient with a lesion of the right 
neostriatum (i.e., caudate and putamen) was 
impaired on a probabilistic classification task 
(i.e., the weather prediction task, Knowlton, 
Squire, & Gluck, 1994) . This task is typically 
considered a type of an information-
integration task given that optimal 
performance requires integrating information 
from four cues (Ashby & Ell, 2001). 
However, analyses of individual differences 
suggests that participants frequently rely upon 
unidimensional rule-based strategies and 
memorization (Gluck, Shohamy, & Myers, 
2002).  

In sum, while the neuropsychological 
studies indicate that degenerative disorders of 
the basal ganglia impair category learning, it 
remains unclear if this deficit extends to both 
rule-based and information-integration tasks. 
One problem in comparing performance on 
rule-based and information-integration tasks is 
that they frequently differ in terms of 
difficulty, optimal accuracy, and/or the 
number of relevant dimensions. Moreover, the 
literature indicates that various factors 
influence the degree of the observed 
impairments even within these two broad 
classes. 

In the current study, we test a group of 
patients with focal basal ganglia lesions on the 
rule-based and information-integration 
categorization tasks introduced by Maddox et 
al. (2004). The stimuli were lines that varied 
in length and orientation, assigned to one of 
four categories (Figure 1). We selected 
stimulus sets such that the two tasks were 
equated on task difficulty, optimal accuracy, 
and the number of relevant dimensions 
(Maddox, Filoteo et al., 2004). For both tasks, 
participants should attend to both length and 
orientation. Optimal performance on the rule-
based task requires that the participants adopt 
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Figure 1. Scatterplot of the stimuli in length-orientation space in the two tasks (left panels) along with 
example stimuli (right panels). Each point in the scatterplot represents a single stimulus. Category 1 
exemplars are plotted as plus signs, Category 2 exemplars as circles, Category 3 exemplars as diamonds, 
and Category 4 as x’s. The solid lines are the optimal decision boundaries. 
 
a conjunction strategy that involves a two-
stage decision process (Ashby & Gott, 1988; 
Shaw, 1982). First, separate decisions should 
be made about the value of the stimulus on 
length and orientation (e.g., “Is the line short 
or long?”; “Is the line shallow or steep?”). 
Second, the outputs of the first stage decision 
process should be combined to make a 
categorization decision (e.g., “If the line is 
short and shallow, respond 1”; “If the line is 
short and steep; respond 2”; etc …) – that is, 
the integration of length and orientation is 
post-decisional. Similar to rule-based tasks  
used in previous work (e.g., Ashby et al., 
1998), it has been argued that the optimal  
 
 
 

 
decision rule can be easily verbalized 
(Maddox, Filoteo et al., 2004).  

For the information-integration task, the 
categories were created by rotating the rule-
based categories 45 degrees counterclockwise. 
Optimal performance in this task requires the 
integration of length and orientation 
information. The strategies that maximize 
accuracy in the information-integration task 
assume that integration occurs prior to making 
a categorization decision – that is, the 
integration is pre-decisional (Ashby et al., 
1998; Ashby & Gott, 1988; Maddox, Filoteo 
et al., 2004)1

                                                 
1 Note that we are using a more restricted definition of a rule than is 
common in the psychological literature (e.g., see Bunge, 2004). 
Specifically, we use the term rule to refer to an explicit reasoning 
process. Such a definition places no limit on the complexity of a rule 
(e.g., the number of “and” and “or” operators in a logical expression 

. That is not to say that rule-based 
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strategies are never used in information-
integration tasks. Indeed, rule-based strategies, 
such as the conjunction rule shown in the top 
half of Figure 1, are often used early in 
training with information-integration tasks. 
Performance with such rule-based strategies is 
non-optimal and, over time, most participants 
shift to an information-integration strategy 
(e.g., Ell & Ashby, in press). The latter do not 
lend themselves to a simple and coherent 
verbal description (Maddox, Filoteo et al., 
2004). 
 
Method 
  
Participants and Design 

Seven patients (one female) with unilateral 
damage to the basal ganglia resulting from 
stroke were recruited for this experiment. The 
patients were recruited from the VA Medical 
Center in Martinez, CA. The lesion was 
restricted to the left side for six of the patients 
and to the right side in the other patient. The 
greater representation of patients with left-
sided damage was due to the fact that some 
referrals came from a speech rehabilitation 
clinic.  

Lesion reconstructions for six of the 
patients are presented in Figure 2. The 
pathology was centered in the basal ganglia, 
with evidence of putamen involvement in all 
seven patients. The lesion extended into the 
caudate for one patient, BG01. There was 
evidence that the lesions also extended into 
white matter (internal, external, and extreme 
capsules) for some patients and may have 

                                                                            
of the rule).  Nonetheless, it is reasonable to assume that as 
complexity increases, the salience of a rule will decrease (Alfonso-
Reese, 1997) as will the likelihood that participants will use an 
explicit reasoning process (Ashby et al., 1998). To be certain, the 
boundary conditions on what exactly constitutes a rule are fuzzy. 
However, our claim that conjunction strategies involve an explicit 
reasoning process is consistent with previous work (Ashby & Gott, 
1988; Maddox, Filoteo et al., 2004; Salatas & Bourne, 1974; Shaw, 
1982; Shepard, Hovland, & Jenkins, 1961). Importantly, recent 
evidence supports the distinction we make between conjunction 
strategies and information-integration strategies (Filoteo, Maddox, 
Ing, & Song, 2005; Maddox, Bohil, & Ing, 2004; Zeithamova & 
Maddox, in press). 
 

included insular cortex for one patient 
(BG11). Patient BG09 displayed slight 
cerebellar atrophy. We decided to include this 
patient in the basal ganglia group because 
previous research has shown that, across a 
variety of tasks, patients with cerebellar 
lesions are unimpaired in category learning 
(Ell & Ivry, 2005; Maddox et al., 2005; Witt, 
Nuhsman, & Deuschl, 2002). Thus, any 
impairment in this patient’s performance is 
unlikely to result from the cerebellar atrophy. 
Based on medical histories, patients BG01 and 
BG12 may have experienced an additional 
stroke in the thalamic region. However, these 
lesions were contiguous with damage from the 
basal ganglia strokes. We opted to include 
these patients in the study.  

Nine (four female) control participants 
were recruited from the Berkeley community. 
The controls were screened for the presence of 
a neurological disorder or a history of 
psychiatric illness and selected to span the 
range of the patients in terms of age, 
education, and IQ. Demographic information 
for the patients and controls is provided in 
Table 1. Basal ganglia and control groups 
were reasonably matched on age [t (14) = 1.0, 
p = .4] and education [t (14) = -.4, p = .7]. All 
participants reported 20/20 vision or vision 
corrected to 20/20. 

The participants were tested on the rule-
based and information-integration tasks in two 
different sessions. The sessions were 
separated by a minimum of 1 week to 
minimize interference between the two tasks. 
Each session lasted approximately 2 hours, 
including an hour of neuropsychological 
testing. The order of the categorization tasks 
between sessions and the order of the within-
session tasks (categorization and 
neuropsychological assessment) were 
counterbalanced across participants. 
Participants were monetarily compensated.  

The study protocol was approved by the 
institutional review boards of the VA Medical  
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Figure 2. Lesion reconstruction (in white) for six of the patients with lesions of the basal ganglia, 
presented on 11 axial slices corresponding to Talairach coordinates of -24, -16, -8, 0, 8, 16, 24, 32, 40, 50, 
and 60 mm. The striatum (putamen and caudate) is present in sections -8 through 24; the globus pallidus 
in sections -8 through 16. Figures were generated with the MRIcro software package (Rorden & Brett, 
2000) using procedures described in (Brett et al., 2001). We were unable to obtain access to a digital copy 
of the scan for one patient, BG01. BG – basal ganglia patients. 
  

-24        -16        -8          0           8          16         24         32        40         50        60 
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Table 1. Participant Demographic Information 
Basal Ganglia Patients  Control Participants 

ID Age at 
Test 

 
ED 

 

Lesion 
Hemisphere 

Year of 
Stroke 

 
ID Age at 

Test 
 

ED 
 

BG09 56 13 Left 1997  MP04 57 17 
BG10 68 13 Left 1994  MP03 54 14 
BG01 80 14 Left 1974 & 

1983 
 MP15 59 16 

BG02 54 16 Right 2001  MP05 50 12 
BG11 46 8 Left 2002  MP11 53 13 
BG12 55 17 Left 1992 & 

2002 
 MP30 58 14 

BG13 63 14 Left 2003  OP30 65 12 
      OP31 63 17 
      MP10 46 12 

Mean 60.3 13.6    Mean 56.1 14.1 
SD 11.2 2.9    SD 6.1 2.1 

Note. ID – participant identification code; BG – basal ganglia patients; MP – middle-aged participants; OP – older 
participants ED – years of education.
 
Center in Martinez and University of 
California, Berkeley. 
 
Neuropsychological Assessment 

A battery of neuropsychological tests was 
used to assess different aspects of cognitive 
function in both patients and controls. The 
Mini Mental State Exam (MMSE) was used to 
screen for dementia. Subtests of the Wechsler 
Adult Intelligence Scale – Third Edition 
(WAIS-III, Wechsler, 1997) were used to 
calculate verbal IQ, performance IQ, and full 
scale IQ. Standardized scores from the 
Vocabulary, Similarities, Arithmetic, Digit 
Span, and Information WAIS-III subtests 
generated a prorated verbal IQ. Standardized 
scores from the Picture Completion, Matrix 
Reasoning, Picture Arrangement, Symbol 
Search WAIS-III subtests generated a prorated 
performance IQ. Verbal learning and memory 
was assessed using the California Verbal 
Learning Test (CVLT, Delis, Kramer, Kaplan, 
& Ober, 1984). The CVLT includes an initial 
learning phase comprising a 16 item word list 
(repeated over 5 blocks). Recall and 

recognition memory were subsequently 
probed following a delay. 

 
In rule-based tasks (and possibly to a 

lesser extent in information-integration tasks), 
learning is assumed to be highly dependent 
upon working memory and executive 
processes (see Ashby et al., 1998; Ashby & 
Maddox, 2005 for reviews). Thus, 
neuropsychological tests were included to 
assess these functions. Standardized scores 
from the Digit Span, Arithmetic, and Letter-
Number Sequencing subtests provided a 
working memory index. Language production 
and executive abilities were assessed using the 
verbal fluency subtest from the Delis-Kaplan 
Executive Function System (D-KEFS - Delis, 
Kaplan, & Kramer, 2001) which includes 
phonemic, semantic, and a more complex 
semantic switching task. We did not include a 
specific test for aphasia. Some of the patients 
had been treated in a speech and language 
clinic prior to their referral to our study (and 
thus, the greater representation of patients 
with left-sided lesions). However, informal 
observation indicated that none of the patients 
demonstrated overt aphasic problems, and all 
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were able to readily understand the task 
instructions. As assessed by the Beck 
Depression Inventory (2nd Ed.) (BDI - Beck, 
Steer, & Brown, 1996), none of the patients or 
control participants was found to have 
symptoms of clinical depression. 

 
Stimuli and Stimulus Generation 

One-hundred stimuli were used in the rule-
based or information-integration tasks, with 
25 assigned to each of the four response 
categories (see Figure 1). To create these 
structures, we used the randomization 
technique introduced by Ashby and Gott 
(1988) in which each category was defined as 
a bivariate normal distribution with a mean 
and a variance on each dimension, and by a 
covariance between dimensions. The exact 
parameter values were taken from Maddox et 
al. (2004). Random samples (x, y) were drawn 
from the distribution for one of the four 
categories, and these values were used to 
construct lines of length x pixels and 
orientation y × (π/500) radians. The scale 
factor (π /500) was selected based upon past 
research in an effort to equate the 
discriminability of changes in perceived 
length to changes in perceived orientation. 
The information-integration category structure 
was generated by rotating the rule-based 
category structure 45 degrees clockwise 
around a central point located at 150 pixels in 
length (4 degrees of visual angle) and 150 
orientation units (i.e., 54 degrees from 
horizontal). Twenty-five stimuli were 
randomly sampled, from each of the four 
category distributions to select the set of 100 
stimuli for each task. A linear transformation 
was performed to ensure that the sample and 
population means, variances, and covariances 
were identical. The order of the resulting 100 
stimuli was randomized separately for each 
block and each participant.  

Each stimulus was presented on a black 
background and subtended a visual angle 
ranging from 0.7 to 7.3 degrees at a viewing 

distance of approximately 60 cm. The stimuli 
were generated and presented using the 
Psychophysics Toolbox extensions for 
MATLAB (Brainard, 1997; Pelli, 1997). The 
stimuli were displayed on either a 15” CRT 
with 1024 × 768 pixel resolution in a dimly lit 
room or on a laptop LCD of the same 
resolution when patients were tested in their 
home. The length of the stimuli were scaled to 
equate the range of visual angles in the present 
experiment to those used by Maddox et al. 
(2004).  
 
Procedure 

On each trial, a single stimulus was 
presented and the participant was instructed to 
make a category assignment by pressing one 
of four response keys with either index finger. 
The instructions emphasized accuracy and 
there was no response time limit. After 
responding, feedback regarding the 
correctness of the response (correct: green 
cross; incorrect: red cross) along with the 
correct category label was presented in the 
center of the screen for 1 s. The screen was 
then blanked for 500 ms prior to the 
appearance of the next stimulus. In addition to 
trial-by-trial feedback, feedback was given at 
the end of each block of 100 trials regarding 
the participant’s accuracy during that block. 
The participant was told that there were four 
equally likely categories and informed that the 
best possible accuracy was 95% (i.e., optimal 
accuracy). 

A standard keyboard was used to collect 
responses. The keyboard characters ‘z’, ‘w’, 
‘/’, and ‘p’ were assigned to categories 1-4, 
respectively. Following, Maddox et al.(2004), 
the category numbers did not appear on the 
response keys and the response mappings 
were fixed across participants. Great care was 
taken to instruct the participants as to the 
category-response key mappings.  

Each participant completed one practice 
and five test blocks of 100 trials for each task. 
Within each block, the ordering of the 100 
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stimuli was randomized. The experimenter 
closely monitored performance during the 
practice block, repeating the instructions as 
needed and providing encouragement. When 
necessary, the experimenter would remind the 
participants of the category – response key 
mappings during the practice block. All 
participants were able to accurately produce 
the category – response key mappings by the 
end of the practice block. They then 
completed the five test blocks without further 
interruption other than a brief break between 
blocks.  
We requested that participants respond using 
both hands (left hand for the ‘z’ and ‘w’ keys 
and right hand for the ‘/’ and ‘p’ keys). We 
did not expect performance to vary between 
the two hands given that the response 
requirements were minimal (e.g., speed was 
not emphasized) and that patients with chronic 
focal basal ganglia lesions show little 
evidence of motor impairment (e.g., Aparicio, 
Diedrichsen, & Ivry, 2005). Indeed, error rates 
did not differ as a function of the hand used to 
respond in the current study. One participant 
(BG10) reported discomfort in using his 
contralesional hand and thus made all 
responses with the ipsilesional hand. 
 
Results and Discussion 
 
Accuracy-Based Analyses 

Inspection of the learning curves suggests 
that the basal ganglia patients were impaired 
on the rule-based task, but not on the 
information-integration task (Figure 3). 
Interestingly, this impairment appeared to be 
limited to early in training. These observations 
were confirmed by separate 5 block x 2 group 
mixed ANOVAs. In the rule-based task, the 
main effect of block was significant [F (4, 56) 
= 53.34, p < .001, MSE = 25.95, ηp

2 = .79], but 
this was qualified by a significant block x 
group interaction [F (4, 56) = 7.31, p < .001, 
MSE = 25.95, ηp

2 = .34]. The main effect of 
group was not significant [F (1, 14) = 1.68, p 

= .22, MSE = 1301.82, ηp
2 = .11]. Pairwise 

comparisons revealed that the interaction was 
driven by accuracy rates in the basal ganglia 
group that were significantly lower than the 
control group during block 1 (p = .03) and 
marginally significant during block 2 (p = 
.08). None of the remaining pairwise 
comparisons were significant (block 3: p = 
.40; block 4: p = .53; block 5: p = .63).  

 

Figure 3. Average accuracy (+/- SEM) in the rule-
based and information-integration tasks. BG – 
basal ganglia patients; CO – control participants. 

 
The individual accuracy rates from blocks 

1 and 2 of the rule-based task are given in 
Table 2. With chance performance at 25%, it 
is evident that some learning had occurred by 
the end of the first block. Three of the seven 
patients were responding correctly on at least 
half of the trials; the same was true for seven 
of the nine control participants. While there is 
considerable overlap between the two 
distributions, five of the patients performed 
below the mean of the control group across 
blocks 1 and 2. 
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  WAIS-III D-KEFS CVLT Accuracy in RB 
task 

ID MMSE VIQ PIQ FSIQ WM 
Index 

Letter 
Fluency 

CR 

Category 
Fluency 

CR 

Switching 
Fluency 

CR 

Number 
of Correct 
Switches 

CR During 
Learning 

(raw score/80) 

Long Delay 
Free Recall  

Recognition 
Discriminability 

Index 
Block 1 Block 2 

Basal Ganglia Patients 
BG09 29 105 99 103 88 26 37 12 11 42 13 3.4 27.3 39.0 
BG10 28 119 107 115 113 --- --- --- --- 36 7 2.9 69.0 77.0 
BG01 28 116 114 116 109 36 23 14 12 40 13 3.7 35.0 47.0 
BG02 28 117 98 109 111 37 31 15 14 40 6 1.8 43.0 66.0 
BG11 29 75 79 80 80 27 34 7 5 36 7 2.3 28.9 32.0 
BG12 29 111 117 114 94 30 36 17 15 56 13 3.7 53.0 60.0 
BG13 29 111 97 104 97 33 33 12 12 27 10 3.1 65.0 86.0 
Mean 28.6 107.7 101.6 105.9 98.9 31.5 32.3 12.8 11.5 39.6 9.9 3.0 45.9 58.1 

SD .5 15.2 12.7 12.5 12.6 4.6 5.1 3.4 3.5 8.8 3.2 0.7 16.9 19.9 
Control Participants 
MP04 30 143 117 135 136 56 44 15 14 --- --- --- 77.0 92.0 
MP03 30 119 105 113 117 37 37 14 13 60 15 3.70 85.0 91.0 
MP15 30 119 130 127 111 53 44 19 18 --- --- --- 85.0 94.0 
MP05 30 117 127 123 109 65 67 17 15 64 13 3.70 64.0 82.0 
MP11 26 113 105 110 99 71 49 12 13 53 14 3.70 48.0 55.0 
MP30 30 133 127 134 117 63 57 14 12 44 11 2.70 59.0 68.0 
OP30 29 104 105 104 102 49 42 16 15 35 7 2.80 43.0 47.0 
OP31 29 124 94 111 108 --- --- --- --- 44 10 3.00 68.0 79.0 
MP10 28 72 76 72 90 42 37 13 10 45 7 2.20 54.0 69.7 
Mean 29.1 116.0 110.0 114.3 110.0 54.5 47.1 15.0 13.8 49.3 11.0 3.1 64.8 75.3 

SD 1.4 20.0 17.7 19.3 13.1 11.7 10.3 2.3 2.4 10.2 3.2 0.6 17.1 19.1 
t -1.0 -0.9 -1.0 -1.0 -1.7 -4.5 -3.2 -1.4 -1.4 -1.9 -.67 -.4   
p 0.3 0.4 0.3 0.3 0.1 .001* .008* 0.2 0.2 .08 .52 .7   

Note. ID – participant identification code; BG – basal ganglia patients; MP – middle-aged participants; OP – older participants; MMSE = Mini Mental State 
Exam; WAIS-III – Wechsler Adult Intelligence Scale III; VIQ - Verbal IQ; PIQ – Performance IQ; FSIQ – Full-Scale IQ; D-KEFS – Delis-Kaplan Executive 
Functioning System; CR – correct responses; CVLT – California Verbal Learning Test; RB – rule based. All t-tests computed as BG-CO. * - significant 
difference between BG and CO groups at p = .05.

Table 2 
Neuropsychological Assessment 
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In the information-integration task, the 
main effect of block was significant [F (4, 56) 
= 11.70, p < .001, MSE = 41.89, ηp

2 = .46]. 
However, neither the block x group interaction 
[F (4, 56) = .23, p = .92, MSE = 41.89, ηp

2 = 
.02] nor the main effect of group [F (1, 14) = 
0, p = .99, MSE = 763.06, ηp

2 = 0] were 
significant.2

One possible explanation for the selective 
impairment in the rule-based task is that it was 
simply more difficult than the information-
integration task. To address this question, a 5 
block x 2 task repeated measures ANOVA 
was conducted on the data from the control 
participants. The main effect of block was 
significant [F (4, 32) = 24.89, p < .001, MSE = 
25.43, ηp

2 = .76]. Importantly, neither the 
main effect of task [F (1, 8) = 1.95, p < .20, 
MSE = 150.75, ηp

2 = .20] nor the block x task 
interaction [F (4, 32) = .97, p = .44, MSE = 
40.20, ηp

2 = .11] were significant. Thus, while 
based on a null result, the results from the 
control participants indicate that the tasks 
were of comparable difficulty.  

 Post-hoc analyses revealed that 
accuracy significantly increased from block 1 
to block 2 (p = .02), block 2 to block 3 (p = 
.02), block 3 to block 4 (p = .01), but not from 
block 4 to block 5 (p = .88). 

 
Relationship between Accuracy on 
Categorization Tasks and Demographic, 
Neuropsychological, and Neuropathological 
Variables  

As shown in Table 2, the groups were 
within one standard deviation of each other on 
most of the neuropsychological assessments. 
In general, there was a trend for the patients to 
perform worse on the CVLT, working 
memory, and executive function assessments. 
The patients were marginally impaired in the 

                                                 
2 We performed a more fine-grained analysis to test whether an early 
learning impairment on the information-integration task might be 
found across the 100 trials of Block 1. Repeating the ANOVAs with 
25-trial mini-blocks yielded the same results as in the main analyses: 
The group x block interaction was only significant for the rule-based 
task. 
 

learning phase of the CVLT. This difference 
did not extend to subsequent tests of recall and 
recognition. Overall, the patients’ score on the 
working memory index was not significantly 
lower than the controls, but the patients were 
significantly worse on the Arithmetic and 
Letter-Number Sequencing subtests. 
[Arithmetic: t (11) = -2.24, p = .05; Letter-
Number Sequencing: t (11) = -2.7, p = .02; 
Digit Span Forward: t (11) = -.96, p = .36; 
Digit Span Backward: t (11) = -.88, p = .40]. 
Within the D-KEFS, the patients were 
significantly worse than control group in the 
letter and category fluency tasks. In general, 
the picture of a mild to moderate deficit in 
executive functioning for patients with focal 
basal ganglia lesions is consistent with 
previous assessments (Keri et al., 2002; 
Troyer, Black, Armilio, & Moscovitch, 2004) 

Given the individual variability in 
accuracy in the basal ganglia group, we asked 
whether any of the neuropsychological 
variables may be related to the observed 
impairment in category learning. To assess 
this question, accuracy on the rule-based task, 
averaged over blocks 1 and 2, was correlated 
with these variables. The same analysis was 
performed on the data from the control group 
for comparison purposes. As can be seen in 
Table 3, the correlations for the patients were 
generally positive, especially those between 
accuracy and measures of intelligence and 
executive function, although they failed to 
achieve standard significance levels. 
Interestingly, there was also a marginally 
significant correlation between accuracy and 
the working memory index for the control 
participants. In light of the sizeable, albeit 
non-significant difference between the basal 
ganglia and control groups on the working 
memory index, it is possible that a working 
memory deficit may underlie the impairment 
in the rule-based task. This analysis is far from 
conclusive given the inconsistent pattern of 
results across the various working memory 
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subtests and the low reliability of these 
correlations due to the small sample size. 

There was also considerable variability in 
lesion volume across participants. Therefore,  

 
Table 3 
Correlations Between Demographic and 
Neuropsychological Variables and Accuracy, 
Averaged Across Blocks 1 and 2, in the Rule-
Based Task. 
 
 BG CO 
 r p r p 
Age .30 .52 .08 .85 
ED .47 .29 .65 .06 

WAIS III 
VIQ .62 .14 .45 .23 
PIQ .34 .46 .35 .36 
FSIQ .51 .24 .45 .23 
WM Index .56 .19 .62 .07 
Arithmetic .71 .11 .69 .09 
Letter-Number 
Sequencing 

.77 .08 .49 .27 

Digit Span Forward .61 .20 .76 .05* 
Digit Span Backward .67 .15 .05 .92 

DKEFS 
Letter Fluency CR .50 .32 .30 .47 
Category Fluency CR .02 .97 .10 .82 
Switching Fluency CR .46 .36 .45 .27 
Number of Correct 
Switches 

.60 .21 .36 .38 

CVLT 
CR During Learning -

.28 
.54 .65 .11 

Long Delay Free Recall -
.24 

.60 .54 .21 

Recognition 
Discriminability Index 

0 1 .37 .42 

     
Lesion Volume .05 .92 --- --- 
 
Note. BG – basal ganglia patients; CO – control 
participants; WAIS-III – Wechsler Adult Intelligence 
Scale III; ED – years of education; VIQ - Verbal IQ; 
PIQ – Performance IQ; FSIQ – Full-Scale IQ; WM – 
working memory; D-KEFS – Delis-Kaplan Executive 
Functioning System; CR – correct responses; CVLT – 

California Verbal Learning Test; * – significant 
correlation at p = .05 

 
 

one hypothesis is that the impairment in the 
rule-based task may be related to the size of 
the pathology. However, lesion volume was 
not significantly correlated with accuracy in 
the rule-based task (see Table 3). The 
characteristics of our sample of patients (i.e., 
six individuals with lesions to the left basal 
ganglia and only one with a lesion to the right 
basal ganglia) did not permit a test of the 
relative importance of the left and right basal 
ganglia in rule-based and information-
integration category learning tasks. BG02, the 
one patient with a right-sided lesion 
performed near the basal ganglia group 
average during blocks 1 and 2 in the rule-
based task (see Table 2) and consistently 
above average in the remaining blocks (block 
3: 86.9; block 4: 91; block 5: 87.9). 
 
Model-Based Analyses 

The analysis of the accuracy data revealed 
a selective impairment of the basal ganglia 
patients early in performance on the rule-
based task. To further explore the basis of this 
impairment, we now turn to model-based 
analyses that can evaluate different ways in 
which the patients might have difficulty on the 
rule-based task. For example, a learning 
impairment might result from the use of a 
suboptimal strategy. Alternatively, the 
participant might choose the correct strategy, 
but apply it inconsistently. The following 
analyses present a quantitative approach to 
evaluating these hypotheses.  

To get a more detailed description of how 
participants categorized the stimuli, a number 
of different decision bound models (Ashby, 
1992a; Maddox & Ashby, 1993) were fit 
separately to the data for every participant 
from every block. Decision bound models are 
derived from general recognition theory 
(Ashby & Townsend, 1986), a multivariate 
generalization of signal detection theory  



PUTAMEN AND CATEGORY LEARNING 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 4 
Summary of the Results of the Model-Based Analyses from the Rule-Based and Information-
Integration Tasks. 

Note. %Rule-based – percent of participants whose data were best-fit by an rule-based model; %RA – percent of 
responses accounted for by the best-fitting model. 

 
(Green & Swets, 1966). It is assumed that, on 
each trial, the percept can be represented as a 
point in a multidimensional psychological  
space and that each participant partitions the 
perceptual space into response regions by 
constructing a decision bound. The participant 
determines which region the percept is in, and 
then makes the corresponding response. 
Despite this deterministic decision strategy, 
decision bound models predict probabilistic 
responding because of trial-by-trial perceptual 
and criterial noise (Ashby & Lee, 1993). 

Two different types of decision bound 
models were fit to each participant’s 
responses. One type assumes that participants 
use a rule-based decision strategy and one 
type assumes an information-integration 
strategy (see the Appendix for details of the  

 
specific models and model fitting procedures). 
These models make no detailed processing 
assumptions in the sense that a number of 
different process-based accounts are 
compatible with each of the models (e.g., 
Ashby, 1992a; Ashby & Waldron, 1999). 
Thus, if an information-integration model fits 
significantly better than a rule-based model, 
we can be confident that participants did not 
use a rule-based strategy even though we 
cannot specify which information-integration 
strategy was used. Similarly, if a rule-based 
model fits significantly better than the 
information-integration models, we gain 
evidence that the participant used a rule-based 
strategy, although we cannot rule out all 
information -integration strategies because 
some of these can mimic rule-based  

Rule-Based Task 
Basal Ganglia Patients (n=7)   Controls (n=9) 

  %RA     %RA 
Block %Rule-Based Mean SEM   Block %Rule-

Based 
Mean SEM 

1 85.7 49.9 6.8   1 67.7 72.9 3.7 
2 71.4 59.9 8.7   2 88.9 76.7 5.5 
3 85.7 73.3 6.1   3 67.7 80.6 5.3 
4 71.4 78.4 5.0   4 88.9 85.2 4.0 
5 85.7 80.8 4.4   5 88.9 84.2 5.5 
          

Information-Integration Task 
  %RA     %RA 

Block %Rule-Based Mean SEM   Block %Rule-
Based 

Mean SEM 

1 14.3 72.1 8.6   1 44.4 73.3 6.8 
2 28.6 70.4 5.8   2 33.3 74.2 6.3 
3 14.3 77.1 4.2   3 44.4 81.7 3.6 
4 0 85.9 2.5   4 33.3 82.0 5.1 
5 14.3 88.4 2.6   5 44.4 79.4 4.8 
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Figure 4. Average criterial noise estimates (+/- 
SEM) from the optimal rule-based model. These 
data have been log transformed to correct for a 
positive skew in the sample distributions. BG – 
basal ganglia patients; CO – control participants  
 
 
responding. Thus, the modeling described in 
this section provides a formal vehicle to test 
hypotheses about the decision strategies used 
by participants, even though it has little to say 
about psychological process. 

The percentage of data sets best accounted 
for by rule-based decision strategies in the 
rule-based and information-integration tasks is 
given in Table 4. As expected, the majority of 
participants in the rule-based task were best-fit 
by rule-based strategies and the majority of 
the participants in the information-integration 
task were best-fit by information-integration 
strategies. In addition, the average percent of 
responses accounted for by the best-fitting 
model is listed in Table 4. For the models 
investigated here, this statistic has a lower 
bound of 25% (i.e., random responding) and 
an upper bound of 100%. While it is clear that 
the models did not provide a perfect account 
of these data, on average, the best-fitting 
models accounted for a greater percentage of 
the responses than would be predicted by 
chance for both groups.  

A comparison of basal ganglia and control 
groups in the rule-based task reveals no 
differences in the frequency of use of rule-
based strategies [block 1: χ2 (1) = .38, p = .59; 
block 2: χ2 (1) = .38, p = .55; block 3: χ2 (1) = 
.38, p = .59; block 4: χ2 (1) = .38, p = .55; 
block 5: χ2 (1) = .85, p = 1.0] 3

3

. Interestingly, 
in the information-integration task there was a 
consistent trend across blocks for basal 
ganglia patients to be less likely to use rule-
based strategies (i.e., more likely to use 
information-integration strategies) than 
control participants. This difference, however, 
did not reach statistical significance in any 
block [block 1: χ2 (1) = .20, p = .31; block 2: 
χ2 (1) = .84, p = 1.0; block 3: χ2 (1) = .20, p = 
.31; block 4: χ2 (1) = .09, p = .21; block 5: χ2 
(1) = .20, p = .31] . Nevertheless, the 
increased use of information-integration 
strategies by the basal ganglia patients may 
reflect a competitive process – an issue to 
which we return in the General Discussion. 

While limited by the small sample size, it 
would appear that a qualitative difference in 
strategy cannot explain the impairment of the 
basal ganglia patients early in training on the 
rule-based task. Another possibility is that 
patients may have been attending selectively 
to either length or orientation when making 
categorization decisions. Such a 
unidimensional strategy is highly suboptimal 
when compared to the optimal strategy – i.e., a 
conjunction rule in which there is a single 
decision criterion on length and orientation 
(see Appendix). Comparing the number of 
participants using unidimensional strategies, 
however, reveals little difference between 
groups (basal ganglia patients: block 1 – 0/7, 
block 2 – 1/7; control participants: block 1 – 
1/9, block 2 – 3/9). These data suggest that the 
impairment in the basal ganglia patients was 
not driven by the use of suboptimal, 
unidimensional decision strategies.  
                                                 
3 Fisher’s exact test was used because there were fewer than five 
cases in at least one cell. 
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A different source of the learning 
impairment for the patients may be increased 
trial-by-trial variability in the decision strategy 
(or criterial noise). Consistent with analyses 
performed in previous work (e.g., Maddox et 
al., 2005), we used the noise estimates from 
the optimal rule-based model as a measure of 
criterial noise (Figure 4)4. Throughout the 
experiment, the patients exhibited increased 
criterial noise relative to controls. The greatest 
deficit, however, occurred during the blocks in 
which accuracy was also impaired. An 
analysis of the Figure 4 data showed a main 
effect of block [F (4, 56) = 40.74, p < .001, 
MSE = .01, ηp

2 = .74], but not group [F (1, 14) 
= 2.50, p = .14, MSE = .43, ηp

2 .15]. However, 
there was a significant block x group 
interaction [F (4, 56) = 5.32, p = .001, MSE = 
.01, ηp

2 = .28], driven by a significant 
difference in criterial noise during block 1 (p 
= .02) and a marginally significant difference 
during block 2 (p = .07). None of the 
remaining pairwise comparisons were 
significant (p > .14)5

The finding of increased criterial noise for 
the basal ganglia patients has multiple 
interpretations. If the increased noise 
represented increased variability in the 
application of near-optimal decision strategies, 
then the error rates should be greatest for 
stimuli near the category boundaries. Such 
errors would likely reflect on-going tuning of 
this decision strategy. In contrast, increased 
noise could be driven by frequent shifts 

. 

                                                 
4 All of the models investigated include a free parameter to reflect 
the combined trial-by-trial variability in perceptual and criterial noise 
(Ashby, 1992a). Given that the stimuli were displayed at high contrast 
and that the duration of stimulus presentation was unlimited, it is 
reasonable to assume that this internal noise primarily reflects 
variability in the decision criteria. Furthermore, the success of the 
basal ganglia patients in the information-integration task would also 
argue against a general perceptual deficit.  
 
5 A similar pattern of results was observed when analyzing the 
criterial noise estimates from the best-fitting rule-based model. 
Specifically, a significant block x group interaction [F (4, 56) = 6.76, 
p = .001, MSE = .15, ηp

2 = .33] driven by a marginally significant 
difference during block 2 (p = .07) and a significant difference during 
block 3 (p = .001). 
 

between qualitatively different decision 
strategies. For example, within the initial 
block of 100 trials, participants may begin by 
using a highly suboptimal conjunction strategy 
(e.g., length intercept = 50 pixels, orientation  
 

Figure 5. Probability of a correct response for 
each stimulus. The shading of each point 
represents the probability that the stimulus was 
correctly classified. Darker colors indicate stimuli 
with a lower probability of correct classification. 
The dashed lines are the optimal decision 
boundaries. BG – basal ganglia patients; CO – 
control participants. 

 
intercept = 80 degrees). After several trials, 
they may switch to quite a different 
suboptimal strategy (e.g., length intercept = 
250 pixels, orientation intercept = 20 degrees), 
eventually settling on the optimal strategy 
(length intercept = 150 pixels, orientation 
intercept = 54 degrees). Such switches in 
decision strategy would predict that error rates 
would be distributed more uniformly in the 
length – orientation space. 

Investigation of the distribution of errors 
in the stimulus space provides some insight 
into this question. The accuracy rate for each 
stimulus across blocks is plotted for the basal 
ganglia and control groups in Figure 5. The 
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grayscale of each stimulus represents the 
proportion of correct responses (across 
participants) with darker shades of gray 
indicating more errors. The distribution of 
errors was quite broad for both groups on 
block 1, although the control data already 
indicate that the highest error rates are for 
stimuli near the category boundary. By the 
end of training, the distribution of errors in the 
two groups was indistinguishable with stimuli 
with the highest error rates being near the 
category boundary, suggesting refinement in 
the estimates of the decision criteria.  

Although the inspection of the Figure 5 
data supports the hypothesis that the increased 
criterial noise in the patient group was driven 
by large, frequent shifts in decision strategy, a 
quantitative analysis would be more 
compelling. Towards this goal, the correlation 
between the proportion of correct responses 
and the distance to the optimal decision 
strategy was computed across stimuli. If the 
increased noise represented increased 
variability in the application of near-optimal 
decision strategies, then this correlation 
should be large and positive. On the other 
hand, if the distribution of error data is driven 
by frequent shifts between qualitatively 
different decision strategies, as we have 
argued, this correlation should be close to 
zero. Indeed, this is what was observed for the 
basal ganglia patients in block 1 (r = .11, p = 
.29). By block 5, the correlation was 
significant, consistent with what would be 
expected if a near-optimal strategy was being 
employed, but with some inconsistency (r = 
.54, p = .0001). The controls also showed an 
increase in the correlation over blocks, 
although the correlation was already reliable 
in the first block (block 1: r = .39, p = 0001; 
block 5: r = .56, p = 0)6

The above analysis suggests that the basal 
ganglia patients took longer than the control 

.  

                                                 
6 We are indebted to an anonymous reviewer for suggesting this 
analysis. 
 

participants to stabilize their decision bounds. 
A different form of a decision-based 
suboptimality arises if participants prefer 
some category responses over others; that is, if 
there is are systematic biases even though the 
appropriate strategy is adopted. A fairly 
simple method to address the question of 
response bias is to compare the relative 
category response frequencies across the two 
groups (Maddox et al., 2005). A response bias 
statistic was computed by subtracting the 
number of responses given to the least 
preferred category from the number given to 
the most preferred category. This difference 
score was computed for each participant 
separately and the group averages are 
presented in Table 5. There was little 
difference between groups, suggesting that a 
response bias was not driving the impairment 
during blocks 1 and 2. In fact, the only 
substantial group difference occurred during 
block 4.  

 
Table 5. 
Relative Response Frequencies in the Rule-
Based Task 

Basal Ganglia Patients 
Block Mean SEM 

1 15.1 2.5 
2 13.9 1.8 
3 14.7 2.0 
4 14.3 2.7 
5 13.0 1.8 
   

Control Participants  
Block Mean SEM 

1 13.1 1.6 
2 12.9 1.8 
3 12.6 1.5 
4 9.9 1.6 
5 11.1 2.0 
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General Discussion 
 
Considerable evidence implicates the basal 

ganglia in category learning (Ashby, Noble et 
al., 2003; Filoteo, Maddox, Salmon et al., 
2005; Knowlton et al., 1996; Poldrack et al., 
2001; Price, 2005; Seger & Cincotta, in press). 
Previous patient work, however, has relied on 
individuals with degenerative disorders of the 
basal ganglia such as Parkinson’s and 
Huntington’s disease. The present paper 
complements this work by testing the category 
learning ability of a group of patients with 
focal lesions of the basal ganglia. The results 
show that these individuals do not manifest a 
generic deficit in all category learning tasks. 
Instead, the basal ganglia patients were 
selectively impaired on the rule-based task 
and only during the first few hundred trials.  

The model-based analyses reveal that the 
deficit in the rule-based task was not due to 
the use of qualitatively different decision 
strategies (i.e., information-integration 
strategies) in the basal ganglia and control 
groups. Instead, the patients were suboptimal 
in their use of rule-based decision strategies. 
Specifically, patients were more likely to 
make large shifts in their decision criteria 
during the initial phase of learning. Later in 
training, however, the patients were able to 
reach levels of performance comparable to the 
control participants by becoming more 
consistent in their use of rule-based strategies.  
 
Selective Impairment in Rule-Based Category 
Learning 

The bulk of previous research 
investigating the role of the basal ganglia in 
rule-based category learning has relied upon 
tasks where only a single dimension is 
relevant and participants must discover the 
relevant dimension while ignoring irrelevant 
dimensions in order to maximize accuracy. 
These types of rule-based tasks are difficult to 
compare with information-integration tasks 
given that, by definition, such tasks require the 

integration of information from multiple 
dimensions. Accordingly, we opted to use 
rule-based and information-integration tasks 
that required attending to two dimensions. We 
also selected tasks that were equated on task 
difficulty, optimal accuracy, and the statistical 
properties of the categories (i.e., within- and 
between-category discriminability). Thus, the 
selective impairment on the rule-based task 
cannot be attributed to methodological 
differences.  

This finding may appear at odds, however, 
with related research demonstrating no 
impairment among Parkinson’s patients in a 
multi-dimensional rule based task (Filoteo, 
Maddox, Ing, & Song, 2005; Maddox & 
Filoteo, 2001). Although it is possible that this 
discrepancy represents a difference in the 
nature of the pathology (i.e., dopamine 
depletion in the basal ganglia and/or frontal 
regions vs. lesions of the basal ganglia), a 
number of methodological differences make 
such a conclusion premature. For example, the 
rule-based task of Maddox and Filoteo (2001) 
required participants to directly compare two 
stimulus dimensions measured in the same 
units (i.e., line length) which may have 
resulted in the optimal decision strategy being 
conceptualized as a unidimensional strategy 
defined on the psychological dimension of 
relative line length. In contrast, the present 
task required participants to attend to two 
separable stimulus dimensions (i.e., line 
length and orientation). 

The results of previous work investigating 
the ability of patients with degenerative 
disorders of the basal ganglia to learn 
information-integration tasks have been mixed 
(Ashby, Noble et al., 2003; Filoteo et al., 
2001; Filoteo, Maddox, Salmon et al., 2005; 
Price, 2005). This inconsistency would seem 
to stem from the complexity of the optimal 
decision strategy, with patients being impaired 
when the decision strategy is sufficiently 
complex (Filoteo, Maddox, Salmon et al., 
2005; Price, 2005). Strategy complexity has 
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been a notoriously difficult concept to define 
and operationalize, and it may be that the 
patients in the present information-integration 
task were not impaired because the optimal 
strategy was not sufficiently complex. We 
acknowledge that given the small sample size 
it is difficult to draw strong conclusions based 
upon a null effect in the information-
integration task. However, it is also difficult to 
imagine that a realistic increase in sample size 
would result in impairment in the basal 
ganglia group given the almost nonexistent 
effect observed in the present data. 

 Other types of information-integration 
tasks have yielded inconsistent results with 
respect to the role of the basal ganglia in 
category learning. For instance, patients with 
basal ganglia dysfunction have been found to 
be impaired on the weather prediction task 
(e.g., Keri et al., 2002; Knowlton et al., 1996; 
Shohamy et al., 2004; Witt et al., 2002), a task 
in which probabilistic cue-outcome 
relationships must be integrated for optimal 
performance(Knowlton et al., 1994). Other 
studies using the weather prediction task, 
however, have failed to observe any deficits in 
similar patient groups (Moody, Bookheimer, 
Vanek, & Knowlton, 2004; Price, 2005; Sage 
et al., 2003). It has been argued that this 
variability, at least for patients with 
Parkinson’s disease, may be attributed to 
differences in disease severity (Moody et al., 
2004) or, more specifically, the severity of 
executive dysfunction (Price, 2005).  
 
Multiple Systems in Category Learning 

It is important to interpret these data 
within the broader context of biologically-
plausible models of category learning (e.g., 
Ashby et al., 1998; Frank, 2005). The present 
data are particularly relevant to the COVIS 
(COmpetition between Verbal and Implicit 
Systems) model of category learning (Ashby 
et al., 1998). COVIS hypothesizes that 
category learning is a competition between an 
explicit, hypothesis-testing system and an 

implicit, procedural-based system. The 
hypothesis-testing system is thought to 
dominate learning in rule-based tasks whereas 
the procedural-based system is thought to 
dominate learning in information-integration 
tasks.  

The two systems operate in parallel and 
compete for control of the observable 
categorization response, although this 
competition is biased in favor of the 
hypothesis-testing system. Therefore, a 
reasonable prediction would be that damage to 
the hypothesis-testing system (as indexed by 
impairment on a rule-based task) would result 
in an increase in the use of information-
integration strategies. In fact, such a trend, 
although nonsignificant, was observed in the 
information-integration task. The fact that this 
pattern was not observed in the rule-based task 
is not surprising given that the procedural-
based system is capable of learning rule-based 
tasks (Ashby et al., 1998). Thus, perhaps the 
procedural-based system was driving 
successful performance late in the rule-based 
task. Alternatively, it may be the case that the 
hypothesis-testing system was impaired, but 
this impairment was not severe enough for the 
procedural-based system to dominate 
responding in the rule-based task. Consistent 
with this assumption, previous efforts to 
disrupt learning in the hypothesis-testing 
system by increasing working memory load 
have resulted in a decrease in the relative 
dominance of the hypothesis-testing system 
rather than a shift in dominance to the 
procedural-based system (Ashby & Ell, 2002). 

According to COVIS, learning in rule-
based tasks requires the maintenance of 
decision strategies in working memory, the 
selection of novel rules, and the ability to 
switch attention among competing rules 
(Ashby et al., 1998). In theory, lesions of the 
putamen may have interfered with any of 
these sub-processes. The increased criterial 
noise that was observed for the patients 
suggests, however, that the impairment in the 
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rule-based task was driven by impaired 
maintenance or an increased propensity to 
switch attention from one rule to another. 
Although such a conclusion is speculative it is 
consistent with the hypothesized role of the 
basal ganglia in rule-based processing in a 
variety of other domains: e.g., working 
memory (Ashby, Ell, Valentin, & Casale, 
2005; Lawrence, Watkins, Sahakian, Hodges, 
& Robbins, 2000), executive functioning 
(Cools, 2006; Crone, Wendelken, Donohue, & 
Bunge, in press; Owen et al., 1993), and 
language use (Longworth, Keenan, Barker, 
Marslen-Wilson, & Tyler, 2005; Teichmann et 
al., 2005; Ullman, 2004). 

In COVIS, the hypothesis-testing and 
procedural-based systems are assumed to 
depend upon separate, yet partially 
overlapping, neural networks (see Ashby et 
al., 1998 for a review). Of particular relevance 
to the present study, the model posits that, 
within the basal ganglia, the head of the 
caudate nucleus is part of the hypothesis-
testing system. This assumption is consistent 
with the results from a number of studies (e.g., 
Filoteo, Maddox, Simmons et al., 2005; 
Hikosaka, Sakamoto, & Sadanari, 1989; Rao, 
1997; Seger & Cincotta, in press). The present 
finding showing that lesions of the putamen 
selectively impair learning in rule-based tasks 
would appear to be odds with this aspect of 
COVIS. The critical test, however, would 
require patients with lesions encompassing the 
caudate. Moreover, Ashby and colleagues 
(Ashby et al., 1998) acknowledge that ventral-
posterior portions of the putamen may also be 
involved in category learning and, 
furthermore, that the putamen may be 
involved in resolving competition between the 
hypothesis-testing and procedural-based 
systems.  

A variety of data support a role for the 
putamen in rule-based tasks. For example, the 
firing rate of cells in the putamen predicts 
category membership in a rule-based 
categorization task using tactile stimuli 

(Merchant, Zainos, Hernandez, Salinas, & 
Romo, 1997). Putamen activity has also been 
correlated with feedback processing in rule-
based tasks (Monchi, Petrides, Petre, Worsley, 
& Dagher, 2001; Seger & Cincotta, in press), 
perhaps reflecting the switching of attention 
among competing rules. In addition, the 
reduction in neostriatal (caudate and putamen) 
dopamine levels in patients with Parkinson’s 
disease has been shown to result in impaired 
learning in rule-based tasks (Ashby, Noble et 
al., 2003; Brown & Marsden, 1988; Maddox 
et al., 2005).  

The exact role of the putamen in rule-
based tasks is unclear. One possibility is that 
the putamen may be affecting processing 
within the caudate nucleus via striatal cell 
bridges (Martin, 1996) or other local networks 
within the basal ganglia (e.g., striato-nigral-
striatal projections) (Haber, 2003). The 
putamen also receives input from prefrontal 
cortical structures thought to be important in 
rule-based category learning (Selemon & 
Goldman-Rakic, 1985, 1988). As might be 
expected if the impairment in the rule-based 
task were related to disruption of processing in 
prefrontal regions, the patients demonstrated 
deficits in some of the neuropsychological 
tests designed to assess working memory and 
executive functioning. There was also a 
sizeable, but non-significant correlation 
between working memory measures and 
accuracy during the blocks in which the basal 
ganglia patients were impaired. This 
argument, however, is indirect and limited by 
the small sample size. Future work is needed 
in patients with prefrontal damage to more 
directly address this issue.  

It is important to keep in mind that for all 
of the patients, the lesions were restricted to 
one hemisphere. We cannot rule out the 
possibility that unilateral basal ganglia 
damage produced a subtle deficit in the 
information-integration task that would be 
revealed following bilateral damage. 
Furthermore, because only one of the patients 
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had damage in the right hemisphere, 
asymmetrical functions of the left and right 
basal ganglia in rule-based and information-
integration tasks remains unclear. Our 
understanding of the functional contribution to 
category learning of the various basal ganglia 
nuclei of both hemispheres would, of course, 
benefit from testing with a wider range of 
patient groups. The current data represent an 
important initial step in relating the structure 
of the basal ganglia to function. 
 
Conclusions 

Patients with lesions of the putamen were 
selectively impaired on a rule-based 
categorization task during the first few 
hundred trials. The impairment was driven by 
an increased tendency for the patients to make 
large, suboptimal shifts in their decision 
strategy. It is important to note that these data 
do not directly address the involvement of 
other neural structures in category learning 
(i.e., prefrontal cortex, caudate nucleus, 
medial temporal lobes). Instead, these data 
argue for a greater consideration of the 
putamen in theories of rule-based category 
learning (e.g., the hypothesis-testing system of 
COVIS) and cognitive functioning in general.  
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Appendix 
 

This appendix briefly describes the 
decision bound models. For more details, see 
Ashby (1992a) or Maddox and Ashby (1993). 
The classification of these models as either 
rule-based or information-integration models 
is designed to reflect current theories of how 
these strategies are learned (e.g., Ashby et al., 
1998) and has received considerable empirical 
support (see Ashby & Maddox, 2005; Maddox 
& Ashby, 2004 for reviews). 

 
Rule-Based Models 
 
Unidimensional Models.  

This model assumes that the length x 
orientation space is partitioned into four 
regions by setting three criteria on length or 
orientation. Two versions of the 
unidimensional model were fit to these data: 
one assumed that participants attended 
selectively to length and the other assumed 
participants attended selectively to orientation. 
The unidimensional models have four free 
parameters: three decision criteria on the 
relevant perceptual dimension and the 
variance of internal (perceptual and criterial) 
noise (σ2).  

 
Conjunction models. A more appropriate rule-
based strategy given the current stimulus 
configuration is a conjunction rule involving 
separate decisions about the stimulus value on 
the two dimensions with the response 
assignment based on the outcome of these two 
decisions. All conjunction models assume the 
participant partitions the length x orientation 
space into four regions in a manner consistent 
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with the optimal decision strategy (see Figure 
1).  

Based upon inspection of the data from the 
individual participants, four different 
conjunction models varying in flexibility were 
investigated. The optimal rule-based model 
assumes that the participant uses the optimal 
decision criteria and has one free parameter 
(σ2). The remaining conjunction models were 
generalizations of the optimal model and 
assumed that either the length criterion, the 
orientation criterion, or both criteria were free 
to vary.  

 
Conjunction+ models. This class of models is 
similar to the conjunction models with the 
exception that they assume two criteria on 
either the length or orientation dimensions. 
The first model assumes that the length 
dimension is partitioned into three regions and 
that an orientation criterion is used for stimuli 
intermediate in length resulting in the 
following rule: Respond 1 if the line is short; 
Respond 4 if the line is long; Respond 3 if the 
line is intermediate in length and shallow; 
Respond 2 if the line is intermediate in length 
and steep. A similar model assumes that the 
orientation dimension is partitioned into three 
regions and that a length criterion is used for 
stimuli intermediate in orientation (i.e., a 90 
degree rotation of the first model) resulting in 
the following rule: Respond 1 if the line is 
intermediate in orientation and short; Respond 
4 if the line is shallow; Respond 3 if the line is 
intermediate in orientation and long; Respond 
2 if the line is steep. The models have four 
free parameters (two criteria on 
length/orientation, one criterion on 
orientation/length, and σ2). Two additional 
models were simply generalizations where it 
was assumed that the two length or two 
orientation criteria were free to vary.  

The final model assumes that the length 
dimension is partitioned into three regions and 
that an orientation criterion is used only for 
relatively long stimuli. This model assumes 

the participant uses the following rule: 
Respond 1 if the line is short, Respond 2 if the 
line is intermediate in length, Respond 3 if the 
line is long and steep, Respond 4 if the line is 
long and shallow. This model has four free 
parameters (two criteria on length, one 
criterion on orientation, and σ2).  

 
Information-Integration Models 
 
The General Linear Classifier (GLC). This 
model assumes that two linear decision 
bounds partition the length x orientation space 
into four regions. The GLC differs from the 
conjunction models in that the decision 
bounds are not constrained to be orthogonal to 
the axes of the physical dimensions – i.e., the 
GLC does not assume decisional selective 
attention (Ashby & Townsend, 1986). This 
produces an information-integration decision 
strategy because it requires linear integration 
of perceived length and orientation. The GLC 
has five parameters (the slope and intercept of 
the two linear bounds and a common noise 
parameter, σ2). In the information-integration 
task, a special case of the GLC assumes 
participants use the linear bound that 
maximizes accuracy (i.e., the diagonal bounds 
shown in Figure 1). This optimal model has 
only one free parameter (σ2). 

 
The Minimum Distance Classifier (MDC).                                                                                            
This model assumes that the participant 
constructs four decision bounds to partition 
the length x orientation space into four 
response regions. An equivalent, and 
computationally simple, approach is to assume 
that there are four units in the length-
orientation space (Ashby & Waldron, 1999; 
Ashby, Waldron, Lee, & Berkman, 2001; 
Maddox, Filoteo et al., 2004). On each trial, 
the participant determines which unit is 
closest to the perceived stimulus and produces 
the associated response. Because the location 
of one of the units can be fixed, and because a 
uniform expansion or contraction of the space 
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will not affect the location of the minimum-
distance decision bounds, the MDC has six 
free parameters (five determining the location 
of the units and σ2). 
 
Model Fitting 
 

The model parameters were estimated 
using maximum likelihood (Ashby, 1992b; 
Wickens, 1982) and the goodness-of-fit 

statistic was BIC = r lnN - 2lnL, where N is 
the sample size, r is the number of free 
parameters, and L is the likelihood of the 
model given the data (Schwarz, 1978). The 
BIC statistic penalizes a model for poor fit and 
for extra free parameters. To find the best 
model among a set of competitors, one simply 
computes a BIC value for each model, and 
then chooses the model with the smallest BIC. 
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