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Abstract Patients with basal ganglia (BG) pathology are consistently found to be impaired on 
rule-based category learning tasks in which learning is thought to depend upon the use of an 
explicit, hypothesis-guided strategy. The factors that influence this impairment remain unclear. 
Moreover, it remains unknown if the impairments observed in patients with degenerative 
disorders such as Parkinson’s disease (PD) are also observed in those with focal BG lesions. In 
the present study, we tested patients with either focal BG lesions or PD on two categorization 
tasks that varied in terms of their demands on selective attention and working memory. 
Individuals with focal BG lesions were impaired on the task in which working memory demand 
was high and performed similarly to healthy controls on the task in which selective-attention 
demand was high. In contrast, individuals with PD were impaired on both tasks, and accuracy 
rates did not differ between on and off medication states for a subset of patients who were also 
tested after abstaining from dopaminergic medication. Quantitative, model-based analyses 
attributed the performance deficit for both groups in the task with high working memory demand 
to the utilization of suboptimal strategies, whereas the PD-specific impairment on the task with 
high selective-attention demand was driven by the inconsistent use of an optimal strategy. These 
data suggest that the demands on selective attention and working memory affect the presence of 
impairment in patients with focal BG lesions and the nature of the impairment in patients with 
PD. 
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Introduction 

 
The role of the basal ganglia (BG) in 

category learning has been the subject of 
considerable study. Patients with BG 
pathology such as Parkinson’s disease have 
been found to be impaired on category 
learning tasks, but the underlying nature of the 
deficit has not been well-characterized. Two 
consistent findings stand out in this literature. 
First, BG dysfunction impairs learning on 
rule-based, category learning tasks—i.e., 
categorization tasks where learning entails the 
use of an explicit, hypothesis-guided strategy 
(seeAshby &Maddox, 2005; Price, Filoteo, & 
Maddox, 2009; Seger, 2008 for reviews).  

 
 

Second, the magnitude of this impairment is 
related to the demands on selective attention 
(Filoteo, Maddox, Ing, & Song, 2007; Filoteo, 
Maddox, Ing, Zizak, & Song, 2005). The 
results of these neuropsychological studies fit 
well with a number of neurocomputational 
models that emphasize the role of the BG in 
category learning (e.g., Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Frank, 
2005; Moustafa & Gluck, in press). For 
instance, the COVIS model of Ashby and 
colleagues posits that a hypothesis-testing 
system that involves working memory and 
cognitive control processes is specialized to 



Rule-Based Categorization 
 

mediate learning in rule-based tasks. In the 
current instantiation of the model, the caudate 
nucleus plays a critical role in maintaining the 
current rule and dopamine facilitates the 
selection and modification of rules in response 
to corrective feedback.  

The neuropsychological evidence in 
support of BG-based computational models of 
category learning comes, predominantly, from 
studies involving patients with Parkinson’s 
disease (PD). An alternative approach is to 
evaluate the performance of individuals with 
focal lesions of the BG. While the number of 
such studies is small, the results have shown 
that these patients are impaired on rule-based 
categorization tasks (Ell, Marchant, & Ivry, 
2006; Keri et al., 2002; Swainson & Robbins, 
2001). No studies, however, have directly 
compared the performance of patients with 
focal BG lesions and patients with PD on the 
same set of rule-based, category learning 
tasks. One goal of the present study was to 
systematically investigate the performance of 
patients with focal basal ganglia lesions, 
comparing them to patients with PD on rule-
based categorization tasks. Given the 
importance of dopamine in 
neurocomputational models of rule-based 
category learning, we also investigated the 
extent to which PD patient performance is 
dependent upon dopaminergic medication. 

Comparing multiple models of BG 
dysfunction has several advantages compared 
to focusing on a single patient group. 
Degenerative disorders such as PD are not 
pure models of BG dysfunction. Although the 
dopamine depletion that results from PD is 
thought to occur earlier and be most extensive 
in the BG, prefrontal dopamine is also reduced 
in PD (Agid, Ruberg, Dubois, & Pillon, 1987). 
Furthermore, PD directly affects other 
neurotransmitter systems as well as other 
subcortical regions (e.g., Braak et al., 2003). 
Focal BG lesions provide a model in which 
the pathology can be more precisely 
characterized. This also entails its own costs: 

the pathology is limited to a single 
hemisphere, raising the possibility that the 
intact hemisphere might prove sufficient for 
performance or compensate for the damaged 
basal ganglia. In addition, the size and 
location of the damage will vary across 
participants. Nonetheless, testing different 
models of BG dysfunction allows an 
assessment of whether task-specific 
impairments are a general feature of BG 
dysfunction or, alternatively, associated with 
one form of pathology.  

In the present paper, we focus on the effect 
of BG dysfunction on rule-based, category 
learning tasks that vary in terms of their 
demands on selective attention. More 
specifically, the tasks vary in the extent to 
which they require the participant to ignore 
irrelevant information (i.e., decisional 
selective attention, see Maddox, Ashby, & 
Waldron, 2002). Consider, for example, 
stimuli that vary continuously along two 
dimensions. A categorization task with high 
demands on selective attention would require 
the participant to attend to a relevant stimulus 
dimension and ignore an irrelevant stimulus 
dimension as is the case with the 
unidimensional task in Fig. 1A. Optimal 
performance on this task requires learning the 
decision criterion on dimension 1 while 
ignoring irrelevant variation on dimension 2. 
In contrast, the conjunction task in Fig. 1B 
places low demands on selective attention 
because both dimensions are relevant for 
successful performance. 

In addition to varying the demands on 
selective attention, the unidimensional and 
conjunction tasks may also vary in terms of 
the demand on working memory (Maddox, 
Filoteo, Hejl, & Ing, 2004). Successful 
performance on the unidimensional task 
requires the participant to learn a single 
decision criterion. In contrast, successful 
performance on the conjunction task requires 
the participant to learn two decision criteria. 
Thus, relative to the unidimensional task, the  
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conjunction task is thought to place greater 
demand on working memory because of the 
increased number of decision criteria (e.g., 
Filoteo et al., 2007).  

The current literature reveals a mixed 
picture in terms of a comparison between the 
effects of PD and focal BG lesions on rule-
based categorization tasks. As shown in 
previous studies, PD patients are impaired on 
unidimensional, categorization tasks, perhaps 
due to a deficit in selective attention (Ashby, 
Noble, Filoteo, Waldron, & Ell, 2003; Filoteo, 
Maddox, Ing et al., 2005; Filoteo et al., 2007). 
In contrast, they perform similar to matched 
controls on conjunction tasks (Filoteo et al., 
2007). Focal BG lesion patients have been 
shown to be impaired on a four-category 
version of the conjunction task (i.e., the 

stimuli in the four quadrants inFig. 1B were 
assigned to four contrasting categories, Ell et 
al., 2006); thus, we might predict that they 
would also be impaired on the current 
conjunction task. This population has not been 
tested on a unidimensional categorization task, 
and the existing empirical literature precludes 
a strong prediction given the heterogeneity in 
methodology and results across previous 
studies. Current neurocomputational models, 
in contrast, predict a more general pattern of 
impairment resulting from PD and focal BG 
lesions (e.g., Ashby et al., 1998; Frank, 2005; 
Moustafa & Gluck, in press).  

The PD literature is further complicated by 
the fact that performance on many cognitive 
tasks is modulated by the participants’ 
dopaminergic medication state (e.g., Cools, 

Figure 1. Scatterplot of the stimuli in the A) unidimensional and B) conjunction tasks. Each point represents a single 
stimulus. Category A exemplars are plotted as black circles and Category B as gray squares. The solid lines are the 
optimal decision boundaries. In order to minimize carry-over effects between the tasks, two sets of stimuli 
(counterbalanced across the two tasks) were used: lines varying across trials in length and orientation, or lines varying 
in brightness and vertical position. Example stimuli from the unidimensional task for C) lines varying in length and 
orientation and D) lines varying in brightness and vertical position. 
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Barker, Sahakian, & Robbins, 2001; 
Jahanshahi, Wilkinson, Gahir, Dharminda, & 
Lagnado, 2010). Given the prominent role of 
dopamine in neurocomputational models of 
rule-based category learning dopaminergic 
medications would be expected to influence 
learning on rule-based tasks. In COVIS, for 
example, dopamine is critical for rule 
selection and switching. The ability to flexibly 
implement rules should be important for rule-
based categorization: for example, an initial 
hypothesis may need to be altered based on 
feedback. These considerations led us to 
evaluate the effects of dopaminergic 
medication on rule-based category learning 
tasks by testing a subset of PD patients in both 
on and off medication states. 
 
1. Method  
 
1.1. Participants and design  
 

Six patients (one female) with unilateral 
damage to the BG resulting from stroke were 
tested. The patients were recruited from the 
VA Medical Center in Martinez, CA. The 
lesion was restricted to the left side for four of 
the patients and to the right side in the other 
two patients. Lesion reconstructions for five of 
the patients are presented in Fig. 2. We were 
unable to obtain access to a digital copy of the 
scan for one patient (BG01). The pathology 
was centered in the BG, with evidence of 
putamen involvement in all six patients. The 
lesion also included the caudate for one 
patient (BG01). The lesions extended into 
white matter (internal, external, and extreme 
capsules) for some of the patients, insular 
cortex in one patient (BG11), and thalamic 
nuclei in two patients (BG01, BG12). Testing 
was conducted at least 12 months after the 
time of stroke, and for most of the patients 
many years post-stroke (average interval = 6.7 
years, SD = 8.1). Five of the six BG patients 
participated in a prior study on a related topic 
(Ell et al., 2006). 

Seventeen patients (seven female) with 
idiopathic PD were tested. The patients were 
recruited by referrals from neurologists or 
through Parkinson’s support groups. Nine of 
the PD patients were tested in California and 
eight in Maine. The patients had been 
diagnosed an average of 7.4 years (SD = 4.8) 
prior to testing. Disease severity based on 
Hoehn and Yahr (1967) ratings averaged 1.6 
(SD = .7) with 15 of the 17 patients at stages 1 
or 2 (on the five-point scale). Disease severity 
was also evaluated with the motor subscale of 
the Unified Parkinson’s Disease Rating Scale 
(UPDRS—Fahn, Elton, & Members of the 
UPDRS Development Committee, 1987) and 
averaged 24.9 (SD = 7.4) on the 0–108 point 
scale.  

At the time of the experiment, sixteen of 
the PD patients were taking daily doses of L-
dopa and/or dopamine receptor agonist 
medications. One PD patient was not taking 
any medication. Several of the PD patients 
were taking additional medications: 
Amantadine (n = 1), MAO-B inhibitor (n = 1), 
COMT inhibitor (n = 4), anticholinergic (n = 
1). Ten of the 17 PD patients were tested, in 
separate sessions, both on and off their 
medications. For the off session, the 
participant abstained from all medication for 
at least 18 h prior to testing. This time interval 
is commonly used in investigations of the 
effects of medication withdrawal (Cools, 
Barker, Sahakian, & Robbins, 2003; Frank, 
Seeberger, & O’Reilly, 2004; Kehagia, Cools, 
Barker, & Robbins, 2009; Shohamy, Myers, 
Geghman, Sage, & Gluck, 2006) and is well 
beyond the halflife of the medications 
(Cedarbaum, 1987; Dingemanse et al., 1995; 
Holm & Spencer, 1999; Kompoliti et al., 
2002). For the patients tested on and off 
medication, the order of the two sessions was 
counterbalanced and the sessions were 
separated by a minimum of 2 weeks.  

A control group (n = 23, 6 female) was 
recruited from the communities surrounding 
the University of California, Berkeley and the 
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Figure 2. Lesion reconstruction (in white) for five of the patients with focal lesions of the basal ganglia, presented 
on 11 axial slices corresponding to Talairach coordinates of -24,  
-16, -8, 0, 8, 16, 24, 32, 40, 50, and 60 mm. The striatum (putamen and caudate) is present in sections -8 through 24; 
the globus pallidus in sections -8 through 16. Figures were generated with the MRIcro software package (Rorden & 
Brett, 2000) using procedures described in (Brett et al., 2001). We were unable to obtain access to a digital copy of 
the scan for one patient, BG01. 
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University of Maine (see Table 1). None of 
the controls reported a history of neurological 
or psychiatric disorders and were selected to 
span the range of the patients in terms of age 
and education (see Table 1). Given the 
possibility that the BG and PD patient groups 
would differ on any number of demographic 
variables, separate groups of control 
participants were recruited for comparison to 
each patient group. Analysis of the 
demographic variables from the patient and 
control groups, however, did not reveal any 
substantial group differences. Thus, for 
simplicity, the control participants were 
combined into a single group and the results 
below are presented as a single experiment.  

The study protocol was approved by the 
institutional review boards of the VA Medical 
Center in Martinez, University of California, 
Berkeley, and the University of Maine. 
Neither the patients nor controls had any signs 
of dementia (as indicated by the Mini Mental 
State Exam, all scores >28—Folstein, 
Folstein, & McHugh, 1975) or symptoms of 
clinical depression (as assessed by the Beck 
Depression Inventory—Beck, Steer, & Brown, 
1996). All participants reported 20/20 vision 
or vision corrected to 20/20. 

 
1.2. Neuropsychological assessment  
 

A battery of neuropsychological tests was 
used to assess different aspects of cognitive 
function in both patients and controls. We 
added the National Adult Reading Test 
(NART—Nelson, 1982) to the battery after 
testing had commenced, desiring a tool that 
could provide an estimate of pre-morbid 
verbal intelligence. Given this change in 
method, we obtained NART data for 13 PD 
patients, all 6 focal BG patients, and 22 
controls.  

In rule-based tasks, learning is assumed to 
be highly dependent upon working memory 
and executive function (see Ashby et al., 
1998; Ashby & Maddox, 2005 for reviews). 

Thus, neuropsychological tests were included 
to assess these processes. The digit span 
subtest (backward) of the Wechsler Adult 
Intelligence Scale—Third Edition (Wechsler, 
1997a) and the spatial span subtest (backward) 
of the Wechsler Memory Scale—Third 
Edition (Wechsler, 1997b) provided an index 
of working memory. Executive functions were 
evaluated with the color-word interference 
(CWI) subtest from the Delis-Kaplan 
Executive Function System (DKEFS—Delis, 
Kaplan, & Kramer, 2001).1

                                                 
1 The Wisconsin Card Sorting Task (WCST—Berg, 1948; Heaton et 
al., 1993) and Trail-Making (TM) subtest from the DKEFS were 
included as additional measures of executive function for the BG and 
PD patients, respectively. The difference in neuropsychological test 
batteries between the two patient groups is the result of the original 
design of two, patient-specific experiments. The BG patients did not 
significantly differ from control participants on the WCST [number 
of categories: t (11) = .56, p = .59, SE = 1.33; perseverative errors: t 
(11) = 1.12, p = .29, SE = 6.46; set-loss errors: t (11) = .36, p = .72, 
SE = .55] nor was performance on the WCST significantly associated 
with average accuracy on the conjunction task [number of categories: 
r (5) = .51, p = .38; perseverative errors: r (5) = −.58, p = .31; set-loss 
errors: r (5) = .11, p = .87]. Similarly, the PD patients did not 
significantly differ from control participants on the TM test [set 
shifting: t (31) = 1.52, p = .14, SE = 21.49] nor was performance on 
the TM test significantly associated with average accuracy on the 
unidimensional [set shifting: r (15) = −.11, p = .70] or conjunction 
tasks [set shifting: r (15) = .08, p = .77]. 

 The CWI 
comprises four subtests. The first two are 
baseline measures of the time to name a list of 
colors and the time to read a list of color 
words. The third is a modified version of the 
traditional Stroop (1935) task, designed to 
assess the role of response conflict and 
inhibitory processes when naming the ink 
color of dissonant color words (e.g., the word 
“green” in red ink). The fourth subtest 
incorporates a task switching component in 
which participants are asked to alternate 
(irregularly) between naming the ink color and 
reading the word. We used the third (i.e., 
inhibition) and fourth (i.e., switching + 
inhibition) subtests as indices of executive 
functioning. Inhibition scores, and switching + 
inhibition scores, were computed by 
subtracting the average time to complete the 
two baseline subtests. Higher numbers 
indicate a greater cost, or reduced executive 
functioning.  
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The motor subscale of the UPDRS and a 
maximum-rate tapping task were used as 
indices of the effect of medication withdrawal 
on motor functioning in eight of the 10 
patients tested both on and off their 
medications. On the tapping task, participants 
were instructed to tap as fast as possible with 
the index finger on a response key. The trial 
was initiated when the participant made the 
first keypress and continued until 31 taps were 
recorded. At the end of each trial, feedback 
was provided indicating the mean intertap 
interval (ITI) and the standard deviation of the 
ITIs. This procedure was repeated six times 
for each hand. An average tapping score was 
calculated for each participant (separately for 
each hand) by computing the mean ITI for the 
last five trials and averaging the ITIs across 
trials. The experimenter monitored 
performance to ensure that scores were not 
artificially inflated by the failure to activate 
the response key.  

 
1.3. Categorization tasks  
 

The participants were tested on the 
unidimensional and conjunction tasks in the 
same session. The order of the categorization 
tasks was counterbalanced across participants. 
In order to minimize carry-over effects 
between the tasks, two sets of stimuli 
(counterbalanced across the two tasks) were 
used (Fig. 1). One set involved lines that 
varied in length and orientation; the other set 
involved lines that varied in brightness and 
vertical position. Length was defined in 
pixels. Orientation was defined as the 
counterclockwise rotation in degrees from 
horizontal. Brightness was defined as the 
intensity in RGB units. Vertical position was 
defined as the vertical location in pixels of the 
center of the lines. For the length-orientation 
stimuli, length was relevant and orientation 
irrelevant for the unidimensional task. For the 
conjunction task with these stimuli, the 
quadrant assigned to category B was high on 

length and low on orientation, with all other 
stimuli assigned to category A. For the 
brightness-position stimuli, brightness was 
relevant and position irrelevant for the 
unidimensional task and the quadrant assigned 
to category B was high on position and low on 
brightness for the conjunction task.2

Ninety-six stimuli were used in the 
unidimensional and conjunction tasks, with 48 
assigned to each of the two response 
categories. To create these structures, we used 
the randomization technique introduced by 
Ashby and Gott (1988). Each category was 
defined as a bivariate normal distribution with 
a mean and a variance on each dimension, and 
by a covariance between dimensions. The 
exact parameter values were taken from 
previous work (Ell et al., 2006; Maddox et al., 
2004). To generate the stimuli for the 
unidimensional task, 24 pseudo-random 
samples (x, y) were drawn from the 
distribution for each of the four quadrants. For 
the length-orientation stimuli, the length range 
was selected to roughly match the range of 
visual angles used in previous work and the 
orientation range was selected to equate the 
discriminability of changes in perceived 
length to changes in perceived orientation 
(Ashby, Queller, & Berretty, 1999). For the 
brightness-position stimuli, the RGB intensity 
of the stimulus ranged from 75 to 225 (of a 
possible range of 0–255 in RGB units) and the 
vertical position range was selected such that 
the optimal position criterion was above the 
center of the monitor. These values were again 
based on pilot work in which we sought to 
equate discriminability of the two dimensions.  

 

Each stimulus was presented on a black 
background and subtended a visual angle 
ranging from 0.7◦ to 7.3◦ at a viewing distance 
of approximately 60 cm. The stimuli were 

                                                 
2 Pilot testing with healthy young controls revealed no difference in 
task difficulty as a function of stimulus type. There was a trend in 
both experiments for the patients and controls to perform worse with 
the rectangles varying in brightness and position. Importantly, the 
pattern of data for the patients in both experiments was present 
regardless of stimulus type. 
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generated and presented using the 
Psychophysics Toolbox extensions (Brainard, 
1997; Pelli, 1997) for MATLAB. The stimuli 
were displayed on either a 
15
                                                                           
                                                                            
CRT with 1024 × 768 pixel resolution in a 
dimly lit room or on a laptop LCD of the same 
resolution when testing was conducted in the 
participants’ home. In the latter case, the 
stimuli were scaled to equate the visual angle.  

On each trial, a single stimulus was 
presented and the participant was instructed to 
make a category assignment by pressing one 
of two response keys (labeled ‘A’ or ‘B’) with 
either the left or right index finger. 
Participants were instructed that their goal was 
to learn the categories by trial-and-error. 
Participants were informed that there were 
two equally likely categories and that the best 
possible accuracy was 95% (i.e., optimal 
accuracy). The instructions emphasized 
accuracy and there was no response time limit. 
After responding, feedback was provided. 
When the response was correct, the word 
“CORRECT” appeared in green and was 
accompanied by a 1 s, 500 Hz tone; when 
incorrect, the word “WRONG” appeared in 
red and was accompanied by a 1 s, 200 Hz 
tone. The screen was then blanked for 500 ms 
prior to the appearance of the next stimulus. In 
addition to trial-by-trial feedback, summary 
feedback was given at the end of each 96-trial 
block, indicating overall accuracy for that 
block.  

A standard keyboard was used to collect 
responses. The keyboard characters ‘s’ and ‘l’ 
were assigned to categories ‘A’ and ‘B’, 
respectively. Following, previous work (Ell et 
al., 2006; Maddox et al., 2004), the response 
mappings were fixed across participants. We 
did not expect performance to vary between 
the two hands given that the response 
requirements were minimal (e.g., speed was 
not emphasized) and that all of the patients 

had no overt difficulty producing the finger 
movements. Indeed, error rates did not differ 
as a function of the hand used to respond in 
the current study.  

Each participant completed 3 blocks of 96 
trials, with the presentation order of the 
stimuli randomized within each block. After 
completing one of the two categorization tasks 
with one set of stimuli (e.g., the 
unidimensional task with lines varying in 
length and orientation), the participant 
completed neuropsychological testing, 
followed by the other categorization task with 
the other set of stimuli (e.g., the conjunction 
task with lines varying in brightness and 
position). As noted above, the order of the two 
categorization tasks and the categorization 
task-stimulus set pairings were 
counterbalanced across participants. Each 
session lasted approximately 2.5 h, including 
neuropsychological testing and multiple 
breaks.  

 
2. Results  

 
2.1. Accuracy-based analyses: patients vs. 
controls  

 
The learning curves for the unidimensional 

task suggest a late-training impairment for the 
PD patients and no indication of impairment 
for the focal BG patients (Fig. 3A).3

                                                 
3 On the unidimensional task, one PD patient and three control 
participants performed much worse than the average for their 
respective group means (>2SD difference on overall accuracy and 
during the final block). These four participants were excluded from 
the analyses of these data. This PD patient was also tested OFF 
medication and was also excluded from the analysis of the effect of 
medication. On the conjunction task, one PD patient and one control 
were outliers and were excluded from the analyses of these data. 

 
Consistent with this observation, a 3 block × 3 
group mixed ANOVA revealed a significant 
block × group interaction [F (3.04, 59.36) = 
3.09, p = .03, MSE = 70.11, 2 p = .14] that 
was driven by decreased accuracy for the PD 
patients relative to controls during the final 
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training block (p = .02).4

                                                 
4 A Huynh–Feldt correction for violation of the sphericity assumption 
has been applied to this, and subsequent, mixed ANOVAs (when 
appropriate). Sidak multiple comparison correction used for these and 
all subsequent post hoc tests. 

 The PD patients did 
not perform significantly worse than the focal 
BG patients during the final block (p = .33). 
The main effect of block was significant 
reflecting the general increase in accuracy 
with training for all groups [F (1.52, 59.36) = 
20.90, p < .01, MSE = 70.11, 2 p = .35]. 

Neither the main effect of group [F (2, 39) = 
.4, p = .68, MSE = 389.78, 2 p = .02] nor the 
other pairwise comparisons (p’s > .33) were 
significant.  

The learning curves for the conjunction 
task suggest that both patient groups were 
impaired throughout training relative to 
controls (Fig. 3B). Consistent with this 
observation, a 3 block × 3 group mixed 
ANOVA revealed a significant main effect of 
group [F (2, 41) = 3.68, p = .03, MSE = 

Figure 3. Average accuracy (+/- SEM) for the controls (CO), the basal ganglia lesion patients (BG), and the 
Parkinson’s disease patients (PD) on the A) unidimensional and B) conjunction tasks. Average accuracy for the 
subset of PD patients tested both on and off their medications on the C) unidimensional and D) conjunction tasks. 
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236.69, 2 p = .15] that was driven by lower 
accuracy (averaged across blocks) for the PD 
patients (M = 73.52, SE = 2.22) and focal BG 
patients (M = 73.08, SE = 3.63) relative to 
controls (M = 80.66, SE = 1.89). The 
comparison of the PD group and controls was 
significant (p = .02); the comparison of the 
focal BG group and controls was only 
marginally significant (p = .07). The main 
effect of block was significant reflecting the 
general increase in accuracy with training for 
all groups [F (2, 82) = 18.96, p < .01, MSE = 
29.56, 2 p = .32]. The block × group 
interaction was not significant by traditional 
standards [F (4, 82) = 2.06, p = .09, MSE = 
29.56, 2 p = .09]. To directly test the 
hypothesis that the BG patients would have an 
impairment early in training as would be 
predicted from our previous work (Ell et al., 
2006) and related findings of a pronounced 
early-training dependence on the BG in rule-
based tasks (e.g., Knowlton, Mangels, & 
Squire, 1996; Pasupathy & Miller, 2005), we 
conducted a planned comparison of the focal 
BG patients and controls during the first 
training block. This analysis revealed a 
significant impairment for the BG group (p = 
.02).  

It is important to consider whether the 
pattern of impairment in the two patient 
groups can be attributed to differences in task 
difficulty. We assessed this by examining the 
data from the control participants. Nineteen 
controls contributed data for both tasks (i.e., 
were not outliers on either task—see footnote 
3). A 3 block × 2 task within-subjects 
ANOVA conducted on the data from these 19 
participants did not reveal a significant effect 
of task [F (1, 22) = .003, p = .96, MSE = 
545.45, 2 p = 0]. The block × task interaction 
was marginally significant [F (1.21, 26.57) = 
3.47, p = .07, MSE = 81.98,2 p = .14], but 
control accuracy on the two tasks did not 
significantly differ for any block (p’s > .41). 
Further evidence that the tasks were of similar 
difficulty is given by the fact that 11 of the 23 

controls had higher average accuracy on the 
conjunction task and 12 had higher average 
accuracy on the unidimensional task.  

We also asked if there was evidence of a 
difference in task difficulty in the response 
time data. Consistent with the accuracy data, 
an analysis of the response time data (response 
times were calculated for each participant by 
computing the median response time across 
trials) provided no support for the task 
difficulty hypothesis. A 3 block × 2 task 
within-subjects ANOVA indicated that neither 
the main effect of task [F (1, 22) = .07, p = 
.79, MSE = 181271.05, 2 p = .07] nor the task 
× block interaction [F (2, 44) = 1.56, p = .22, 
MSE = 27970.58, 2 p = .07] was significant 
[main effect of block: F (2, 44) = 10.93, p < 
.001, MSE = 56436.82, 2 p = .33. The analysis 
of the RT data, however, is limited given that 
there was no response deadline.  

 
2.2. Accuracy-based analyses: medication 
effects for PD patients  
 

The learning curves for the subset of PD 
patients tested both on and off their 
dopaminergic medication suggests that 
abstaining from dopaminergic medication had 
a negligible effect on categorization accuracy 
(Fig. 3C and D). Separate 3 block × 2 
medication state repeated-measures ANOVAs 
conducted on the two tasks showed no 
difference of medication state on either the 
unidimensional task [main effect of 
medication state: F (1, 8) = .15, p = .71, MSE 
= 439.62, 2 p = .02; medication state × block 
interaction: F (1.33, 10.65) = .12, p = .80, 
MSE = 6.82, 2 p = .02; main effect of block: F 
(1.25, 10.01) = 14.58, p < .01, MSE = 49.25, 2 
p = .65 or the conjunction task [main effect of 
medication state: F (1, 9) = .12, p = .73, MSE 
= 307.94, 2 p = .01; medication state × block 
interaction: F (2, 18) = .91, p = .42,MSE = 
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43.8,2 p = .09; main effect of block: F (2, 18) 
= 3.01, p < .01, MSE = 18.64, 2 p = .25.5

Surprisingly, the patients did not show 
dramatic changes in symptomology following 
18 h of medication withdrawal. Their score on 
the motor subscale of the UPDRS [MON = 
23.9, SEON = 2.5; MOFF = 28.1, SEOFF = 3; 
t (7) = 1.4, p = .2, SE = 3] was slightly 
elevated. Similar modest, and non-significant, 
increases in ITI were observed on the tapping 
task for both the right [MON = 247.3, SEON 
= 19.5; MOFF = 253.8, SEOFF = 20.3; t (7) = 
1, p = .4, SE = 6.6] and left [MON = 273.1, 
SEON = 20.9; MOFF = 279.3, SEOFF = 24.9; 
t (7) = .6, p = .5, SE = 9.9] hands.  

  

 
2.3. Model-based analyses  
 

The analysis of the accuracy data revealed 
a selective impairment of the BG patients on 
the conjunction task and a more general 
impairment for the PD patients on both tasks. 
To further explore the basis of these 
impairments, we used model-based analyses 
to evaluate different ways in which the 
patients might have difficulty on rule-based 
tasks. For example, a failure of selective 
attention on the unidimensional task might 
result in a decision strategy that was sensitive 
to both stimulus dimensions. Similarly, a 
failure to attend to both dimensions on the 
conjunction task would result in a decision 
strategy overly sensitive to a single dimension. 
Alternatively, a learning impairment may be 
driven by the inconsistent application of an 
optimal strategy. The following analyses 
represent a quantitative approach to evaluating 
these hypotheses.  

                                                 
5 Counterbalancing medication state across the two testing sessions 
successfully minimized the impact of order effects as the difference in 
average accuracy (across blocks and participants) did not vary across 
testing sessions [Unidimensional: t(8) = -.31, p = .76, SE = 5.73; : t(9) 
= -.85, p = .42, SE = 4.39]. In addition, the use of different stimulus 
sets successfully minimized carry over effects between testing 
sessions as the correlations in average accuracy between testing 
sessions were small and non-significant [Unidimensional: r(9) = -.16, 
p = .69; Conjunction: r(10) = .1, p = .77]. 
 

Three different types of models were 
evaluated, each based on a different 
assumption concerning the participant’s 
strategy (see Appendix A for a more detailed 
description of the models and fitting 
procedure). Rule-based models assume that 
the participant either attends selectively to one 
dimension (unidimensional classifiers; e.g., if 
the line is long, respond B; otherwise respond 
A) or makes independent decisions about the 
stimulus on both dimensions (conjunctive 
classifiers; e.g., if the line is long and low in 
angle respond B; otherwise respond A). For 
the unidimensional task, there were two 
versions of the unidimensional classifier, one 
assuming participants used the optimal 
decision strategy in Fig. 1A (optimal 
classifier) and one assuming participants used 
a unidimensional classifier with a suboptimal 
intercept on the relevant dimension 
(unidimensional classifier). Similarly, for the 
conjunction task there were two versions of 
the conjunctive classifier: one assuming 
participants used the optimal conjunctive 
classifier in Fig. 1B (optimal classifier) and 
one assuming participants used a conjunctive 
classifier with suboptimal intercepts on the 
two stimulus dimensions (conjunctive 
classifier). Information–integration models 
(linear and minimum distance classifiers) 
assume that the participant combines the 
stimulus information from both dimensions 
prior to making a categorization decision. 
Finally, random responder models assume that 
the participant guesses.  

These models make no detailed processing 
assumptions in the sense that a number of 
different process-based accounts are 
compatible with each of the models (e.g., 
Ashby, 1992a; Ashby & Waldron, 1999). 
Thus, the modeling described in this section 
provides a formal vehicle to test hypotheses 
about the decision strategies used by 
participants, and gain insight into the 
underlying deficits observed in the patient 
groups. For example, for the unidimensional 
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task, if either the conjunctive classifier or 
information–integration models provide a 
better fit than the unidimensional classifier, 
then we would have evidence of a failure of 
selective attention. For the PD patients, all 
model-based analyses were limited to the data 
to the session in which the patients were on 
medication given the lack of an effect of 
medication withdrawal. 

On the unidimensional task, the majority 
of the data sets were best fit by the optimal 
classifier and all but one participant was best 
fit by a model assuming selective attention 
(optimal and unidimensional classifiers, Fig. 
4A). Thus, both patient groups were able to 
attend selectively to the relevant stimulus 
dimension. Moreover, the late-training 
impairment observed for the PD patients was 
not driven by a pure failure of selective 
attention. Rather, the PD impairment was 
attributed to the inconsistent use of this 
strategy. This could arise from an increase in 
trial-by-trial variability in the representation 
and/or application of the decision criterion 
(i.e., internal noise).6

                                                 
6 All of the models include a free parameter to reflect the combined 
trial-by-trial variability in perceptual and criterial noise (see the 
Appendix for details). Given that the duration of stimulus 
presentation was unlimited, it is reasonable to assume that this 
internal noise primarily reflects variability in the decision criteria. 

 Consistent with the 

hypothesis of increased decision criterion 
variability, the average noise parameter 
estimate was higher on block 3 for the PD 
patients than the controls (Fig. 5A) [t(33) = 
3.2, p < .01, SE = .13]. In addition, increased 
noise was associated with decreased accuracy 
as evidenced by a significant negative 
correlation between the estimate of internal 
noise and block 3 accuracy [r (16) = −.54, p < 
.05].  

On the conjunction task, the majority of 
controls were best fit by the conjunctive 
classifier during block 1, but this pattern 
shifted in favor of the optimal classifier during 
blocks 2 and 3 (Fig. 4B). During block 1, only 
33% of the focal BG patients were best fit by 
a model assuming a conjunctive strategy (i.e., 
optimal and conjunctive classifiers) as 
compared to 68% of controls. As would be 
expected, the BG patients who were best fit by 
the unidimensional classifier or responding 
randomly averaged low accuracy (Mblock 1 = 
66.8%, SEblock 1 = 5.4). Moreover, criterial 
noise estimates were larger for the BG patients 
relative to controls during block 1 [t (24) = 

Figure 4. Percentage of participants in the (A) unidimensional and (B) conjunction tasks whose data were best fit by the 
optimal classifier (OC), the suboptimal unidimensional classifier (UC), the suboptimal conjunctive classifier (CC), or a model 
assuming that participants were responding randomly (RR). None of the data sets were best fit by the information-integration 
models. The models provided a reasonable account of these data as indexed by the average (over blocks and participants) 
percent of responses accounted for by the best-fitting model: unidimensional task: CO (M = 89.02, SD = 9.4), BG (M = 88.7, 
SD = 8.1), PD (M = 83.9, SD = 11.1); conjunction task: CO (M = 85.2, SD = 7.1), BG (M = 80.7, SD = 10.6), PD (M = 81.0, 
SD = 6.9). The best-fitting models accounted for a far greater percentage of the responses than would be predicted by chance 
(i.e., 50% of responses accounted for) for all groups. CO: control participants; BG: basal ganglia lesion patients; PD: 
Parkinson’s disease patients. 
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2.32, p < .05, SE = .08], but not block 3 [t (25) 
= .99, p = .33, SE = .08] (Fig. 5B). The noise 
estimates were negatively correlated with 
accuracy during block 1[r (5) = −.87, p = .05]. 
Although limited by a small sample size, these 
data suggest that the impairment for the focal 
BG group during block 1 was driven by the 
inefficient use of non-optimal strategies.  

Similar to the BG patients, only 44% of 
the PD patients were best fit by a model 
assuming a conjunctive strategy during block 
1 (i.e., conjunctive and optimal classifiers, 
Fig. 4B). By block 3, however, a similar 
percentage of PD patients and controls were 
best fit by a model assuming a conjunctive 
strategy. During block 3, the majority of 
controls were best fit by the optimal classifier 
whereas the majority of PD patients were best 
fit by the conjunctive classifier and performed 
similarly to the group average for all PD 
patients (M = 72.3, SE = .6). Criterial noise 
estimates were also higher for PD patients 
than controls during block 3 [t(35) = 4.46, p < 
.001, SE = .05], but not block 1 [t (33) = .51, p 
= .62, SE = .06] or block 2 [t (34) = 1.77, p = 
.09, SE = .07] (Fig. 5B). Importantly, 
however, the increased noise during block 3 
did not appear to have any functional 
significance as neither noise estimates from 
the best-fitting model [r (15) = −.28, p = .31] 
nor noise estimates from the subset of patients 
best fit by models assuming a conjunctive 
strategy [r (16) = .02, p = .95] were 
significantly correlated with accuracy. In 
short, these data suggest that the PD 
impairment on the conjunction task was 
driven primarily by the use of suboptimal 
decision strategies.  
 
2.4. Relationship between accuracy on 
categorization tasks and demographic, 
neuropsychological, and neuropathological 
variables  
 

A summary of the demographic and 
neuropsychological variables is given in Table 

1. Omnibus analyses of these data were 
conducted using separate one-way ANOVAs 
evaluated at a criterion of p = .05 
(uncorrected) (see Table 1). There was a 
significant group difference on IQ that was 
driven by lower IQ for the focal BG patients 
relative to the controls and PD patients. There 
was also a significant group difference on 
digit span (backward) that was driven by an 
impairment for the PD patients relative to 
controls and a marginally significant 
impairment for the focal BG patients relative 
to controls. None of the remaining variables 
significantly differed across groups (p’s > 
.17).  

To investigate the relationship between the 
demographic and neuropsychological 
variables and category learning, correlations 
were computed with accuracy (averaged over 
blocks) on the unidimensional and conjunction 
tasks evaluated at a criterion of p = .05 
(uncorrected) (see Table 1). Lower inhibition 
scores on the CWI (indicating better 
inhibition) were associated with higher 
accuracy on the unidimensional task for the 
PD patients suggesting that those patients that 
were better able to inhibit a pre-potent 
response were more accurate on a 
categorization task requiring the inhibition of 
irrelevant information. None of the other 
correlations were significant.  

For the focal BG patients, lesion volume 
was weakly related to accuracy on the 
conjunction task [averaged over blocks: r (6) 
= −.36, p = .55; block 1: r (6) = −.2, p = .75]. 
Average accuracy on the conjunction task was 
similar for the two patients with right-sided 
lesions (M = 72.86, SE = 2.03) compared to 
the four with left-sided lesions (M = 73.19, SE 
= 7.32).  
For the PD patients, increasing disease 
severity (i.e., UPDRS) was associated with 
decreased accuracy on the unidimensional task 
with the correlation being significant for block 
3 accuracy [averaged over blocks: r (16) = 
−.44, p = .09; block 3: r (16) = −.56, p < .05]. 
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In contrast, there was no association between 
disease severity and accuracy on the 
conjunction task [averaged over blocks: r (16) 
= .08, p = .76; block 3: r (16) = .09, p = .75]. 
There was a trend for PD patients with 
bilateral involvement (block 3: n = 8, M = 
78.2, SEM = 4.3) to perform worse than 
patients with only unilateral involvement 
(block 3: n = 8, M = 87.9, SEM = 2.6) on the 
unidimensional task, but this difference was 
only marginally significant [t (14) = 1.94, p = 
.07, SE = 5.0]. PD patients with bilateral 
(averaged over blocks: n = 7, M = 72.1, SEM 
= 2.8) involvement performed comparably to 
PD patients with unilateral involvement 
(averaged over blocks: n = 9, M = 74.6, SEM 
= 10.6) on the conjunction task [t (14) = .54, p 
= .6, SE = 4.7]. PD patients with bilateral 
involvement also performed worse on the 
inhibition [t (14) = 2.13, p = .05, SE = 6.93] 
and inhibition + switching [t (14) = 2.13, p = 
.05, SE = 8.2] subtests of the CWI test.   
 
3. General discussion  
 

Converging lines of evidence are 
consistent with the hypothesis that the basal 
ganglia play an important role in rule-based 
category learning (Ashby & Maddox, 2005; 
Price et al., 2009; Seger, 2008). However, a 
comparison of neuropsychological studies 
suggests that the pattern of impairment may 
differ across patient models of BG 
dysfunction (Ell et al., 2006; Filoteo et al., 
2007). The present study addressed this issue 
by testing patients with focal lesions of the 
BG due to stroke and patients with PD on an 
identical set of tasks. The individuals with 
focal BG lesions were impaired on the 
conjunction task and performed similar to 
controls on the unidimensional task. In 
contrast, the PD patients were impaired on 
both tasks, although a model-based analysis 
suggests that the source of the PD impairment 
differed across the two tasks.  

Consistent with our previous work 
involving a four-dimensional, conjunction task 
(Ell et al., 2006), patients with focal BG 
lesions were impaired on the two-dimensional, 
conjunction task used in the present study. In 
both studies, the impairment was only present 
early in training. This stands in contrast to the 
finding that the BG patients performed similar 
to matched controls on the unidimensional 
task. The results of the model-based analyses 
suggest that the selective early impairment of 
the BG patients on the conjunction task was 
driven primarily by the inefficient use of 
suboptimal decision strategies.  

A more general impairment on both tasks 
was observed for the PD patients. The results 
of the model-based analyses suggest that the 
impairment on the two tasks occurred for 
different reasons. The impairment on the 
unidimensional task was manifest late in 
training and was attributed to instability in the 
setting of the decision criterion. In contrast, 
the consistent impairment on the conjunction 
task was driven by the use of suboptimal 
strategies. Furthermore, accuracy on the 
unidimensional task, but not the conjunction 
task, was associated with increased disease 
severity and a decreased ability to inhibit pre-
potent responses. We did not observe any 
consistent change in performance in the PD 
patients when they were tested off medication.  
 
3.1. Selective attention, working memory, and 
rule-based categorization  
 

Our selection of the conjunction and 
unidimensional tasks was motivated by 
consideration of the demands these tasks place 
on selective attention (Ashby & Townsend, 
1986; Maddox, 1992; Maddox et al., 2002). 
To perform optimally on the conjunction task, 
the participant must attend to the stimulus 
value on both dimensions. As such, this task 
places low demands on selective attention; 
selectively attending to one dimension at the 
expense of the other would impair 
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performance. In contrast, optimal performance 
on the unidimensional task requires that the 
participant attend to the stimulus value on 
only the task-relevant dimension. As such, this 
task places a high demand on selective 
attention.  

The conjunction and unidimensional tasks 
may also differ in their demand on working 
memory (Maddox et al., 2004). To perform 
optimally the participant must learn two 
decision criteria in the conjunction task 
whereas the participant need only learn a 
single decision criterion in the unidimensional 
task. Consistent with this hypothesis, many 
studies have shown that learning multiple 
criteria on different dimensions is more 
difficult than learning one criterion on a single 
dimension (Maddox et al., 2004; Salatas & 
Bourne, 1974; Shepard et al., 1961), although 
it is unclear if this difference can be attributed 
to differences in working memory demand. 
Furthermore, the relationship between 
working memory and the present tasks is not 
straightforward. While increasing the number 
of decision criteria may tax working memory, 
this increase is at least partially offset by 
splitting the decision criteria across multiple 
stimulus dimensions (Ell, Ing, & Maddox, 
2009).  

Intuitively, the conjunction task would 
appear more difficult due to the increased 
complexity of the optimal decision strategy; 
thus, one might argue that the observed 
dissociation for the focal lesion group is 
related to difficulty rather than a failure to 
attend to both dimensions. While we cannot 
rule out this possibility, the performance of 
the control participants was not consistent 
with a difficulty hypothesis. Accuracy, as well 
as response time did not differ in a consistent 
manner between tasks. Moreover, previous 
studies involving patients with BG 
dysfunction have observed selective 
impairment on easier rule-based tasks (Ashby 
et al., 2003; Filoteo et al., 2007)  

On the unidimensional task, the focal BG 
patients performed similar to matched controls 
but the PD patients were impaired, at least late 
in training. The PD impairment was not driven 
by a failure of selective attention (e.g., the use 
of a two-dimensional classifier). Instead, the 
deficit was more subtle, being attributed to an 
increase in variability in the representation of 
the decision criterion. This increased 
variability was associated with decreased 
categorization accuracy. Interestingly, those 
PD patients who were better able to inhibit 
pre-potent responses (as assessed by the CWI 
subtest of the DKEFS) were more accurate on 
a categorization task requiring the inhibition 
of irrelevant information. Thus, it would 
appear that variation in selective attention 
ability was relevant for the PD deficit, even if 
they were able to selectively attend to the 
relevant dimension in the categorization task.  

Both patient groups were impaired on the 
conjunction task. Our model-based analyses 
indicate that the impairment for the focal 
lesion group was driven by the use and 
inconsistent application of suboptimal 
decision strategies. This pattern is consistent 
with a previous study involving focal BG 
patients (5 of 6 were tested in the present 
study, Ell et al., 2006). One departure from Ell 
et al. is that, in the present study, a subset of 
BG patients was best fit by the unidimensional 
classifier (i.e., they ignored one of the 
stimulus dimensions). We attribute this to 
differences in the category structure. Ell et al. 
used a four-category, conjunction task where 
the most accurate unidimensional strategy 
would result in only 25% correct. In the 
present paper, we used a two-category, 
conjunction task where the most accurate 
unidimensional strategy would result in 75% 
correct. The PD impairment on the 
conjunction task was also attributed to the use 
of suboptimal decision strategies. Moreover, 
for the PD patients, variation in criterial noise 
was not predictive of overall accuracy.  
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While the focal BG group demonstrated an 
impairment during the first phase of testing 
with the conjunction task, their performance 
was normal across all blocks on the 
unidimensional task. This finding may appear 
to be at odds with previous reports of 
impairment of focal BG lesion patients on the 
WCST, a unidimensional task with many, 
discrete-valued dimensions (Benke, Delazer, 
Bartha, & Auer, 2003; Keri et al., 2002; 
Pickett, Kuniholm, Protopapas, Friedman, & 
Lieberman, 1998). It is unlikely that the 
discrepant findings are due to methodological 
differences between the WCST and the 
unidimensional task as the present sample of 
focal BG lesion patients were not impaired on 
the WCST (see footnote 1).  

PD patients, on the other hand, are 
consistently impaired on unidimensional tasks 
and this impairment is robust to 
methodological differences (Ashby et al., 
2003; Filoteo et al., 2007; Filoteo, Maddox, 
Ing et al., 2005; Price, 2006). In contrast to the 
present results, Filoteo et al. (2007) found that 
PD patients performed similar to matched 
controls on two conjunction tasks, suggesting 
that the PD impairment may be restricted to 
rule-based tasks with high selective-attention 
demand. The methodology in the present 
study is very similar to that used by Filoteo et 
al., with the exception of the specific stimulus 
dimensions. In the present study, two stimulus 
sets were used: lines varying across trials in 
length and orientation, and rectangles varying 
across trials in brightness and position. Filoteo 
et al. used Gabor filters (i.e., sine-wave 
gratings weighted by a circular Gaussian filter 
that vary across trials in spatial frequency and 
orientation). PD patients experience a number 
of visual processing deficits (Davidsdottir, 
Cronin-Golomb, & Lee, 2005) with reduced 
contrast sensitivity functions (e.g., Bodis-
Wollner et al., 1987) being one of the more 
prominent impairments. Although visual 
processing deficits should have a negative 
impact on all of the stimulus sets, Gabor filters 

would appear to be particularly susceptible 
given the importance of contrast in resolving 
spatial frequency differences (e.g., Blakemore 
& Campbell, 1969). Thus, it seems unlikely 
that the discrepant results are due to 
methodological differences.  

Although our results suggest that the PD 
impairment on rule-based tasks may be more 
general than previously thought, the 
neuropsychological data argue against a 
general cognitive deficit. Relative to controls 
(and the focal BG patients), the PD patients 
were not impaired on measures of IQ, spatial 
working memory, or executive function. Of 
course, these tasks do not test learning per se, 
but rather component processes that are 
thought to be important for learning. Thus we 
cannot rule out the possibility that the PD 
patients have a more general learning deficit 
that might be driven by the online use of these 
component processes.  

 
3.2. Basal ganglia contributions to rule-based 
categorization  
 

The focal BG and PD groups differ in a 
number of substantive ways. The former have 
suffered an acute neurological episode, have 
damage limited to one side, and the pathology 
is relatively focal. The latter have had an on-
going degenerative process, generally bilateral 
symptoms, and pathology that may be more 
diffuse. Assuming the BG contribute to rule-
based categorization, one might suppose that 
the PD patients would demonstrate a more 
general deficit than patients with focal BG 
lesions. Indeed, our data are consistent with 
this hypothesis.  

The focal BG group, although small in 
number, does provide some insight into the 
contribution of different subregions of the BG 
in rule-based categorization. The current 
results suggest that the impairment on the 
conjunction task, the task hypothesized to 
place relatively high demands on working 
memory demand (Filoteo et al., 2007), may be 
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related to putamen damage. Putamen 
dysfunction is observed early in PD (Brooks 
& Piccini, 2006; Kish, Shannak, & 
Hornykiewicz, 1988) and this nucleus showed 
S.W. Ell et al. / Neuropsychologia 48 (2010) 
2974–2986 2983 the greatest overlap of 
pathology in our sample of focal BG lesion 
patients. Converging lines of evidence point to 
a role for the putamen in rule-based tasks. In 
neuroimaging studies, activation levels in the 
putamen have been associated with working 
memory maintenance (Chang, Crottaz-
Herbette, & Menon, 2007), the manipulation 
of information during retrieval (Dodds et al., 
2009), and feedback processing during rule-
based categorization (Monchi, Petrides, Petre, 
Worsley, & Dagher, 2001; Seger & Cincotta, 
2006). Moreover, putamen activity is 
positively correlated with working memory 
load (Chang et al., 2007). The conjunction 
task may place greater demand on working 
memory processes than the unidimensional 
task given the need to combine information 
from two dimensions.  

The observation that only the PD patients 
were impaired on the unidimensional task 
suggests three possible hypotheses concerning 
the neuroanatomical locus of impairment on 
selective-attention-demanding, categorization 
tasks. First, it may be related to pathology in 
other basal ganglia nuclei. For instance, 
dopamine depletion in the caudate nucleus 
may be critical. Consistent with this 
hypothesis, previous studies involving focal 
BG lesion patients on rule-based tasks with 
high selective-attention demand, had shown 
that the impairment was associated with 
pathology in the caudate nucleus (e.g., 
Swainson & Robbins, 2001).  

Second, selective-attention impairments 
may require bilateral pathology in the basal 
ganglia. Consistent with this argument, there 
was a trend for PD patients with bilateral 
involvement to perform worse on the 
unidimensional task than PD patients with 
unilateral involvement. In addition, bilateral 

patients had more difficulty inhibiting a pre-
potent response and with task switching.  

Third, the PD impairment might arise from 
dysfunction in structures outside the basal 
ganglia. For instance, although cortical 
dopamine depletion is thought to be less 
severe and occur in the later stages of the 
disease (Agid et al., 1987), it is impossible to 
rule out the hypothesis that the PD deficits are 
related to prefrontal dysfunction in our sample 
of mild-to-moderate PD patients. Indeed, as 
might be expected if the PD impairment on 
the unidimensional task were related to 
disruption of processing in prefrontal cortex, 
the patients demonstrated a significant 
correlation between disease severity and 
accuracy on the unidimensional task. 
Although there were no group differences in 
measures of executive functioning that are 
commonly associated with frontal function, 
the ability to inhibit a pre-potent response was 
related to accuracy on the unidimensional 
task. Testing patients with focal prefrontal 
lesions on unidimensional and conjunction 
tasks will be important for clarifying the 
respective contributions of the basal ganglia 
and prefrontal cortex to rule-based 
categorization.  

Interestingly, we did not observe any 
consistent change in performance in the PD 
patients when they were tested after abstaining 
from their medication for at least 18 h (M = 
20.1 hrs, SD = 3). Although based upon a null 
result, these data suggest that rule-based 
category learning may not be dependent upon 
global dopamine levels. This interpretation, 
however, is complicated by the observation 
that patients also showed very mild and non-
reliable changes in motor performance after 
abstaining from their medication.  

It is important to interpret these data 
within the broader context of 
neurocomputational models of category 
learning. Particularly relevant is the COVIS 
model of category learning proposed by 
Ashby and colleagues. According to COVIS, 
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learning in rule-based tasks requires the 
maintenance of decision strategies in working 
memory, the selection of novel rules, and the 
ability to switch attention among competing 
rules (Ashby et al., 1998). In theory, basal 
ganglia dysfunction may have interfered with 
any of these sub-processes. The increased 
criterial noise that was observed for the PD 
patients on the unidimensional task and BG 
patients on the conjunction task suggests, 
however, that the impairment was driven by 
impaired maintenance or an increased 
propensity to switch attention from one rule to 
another. Although speculative, this hypothesis 
does tie in with conjectures on how the basal 
ganglia contribute to rule-based processing in 
a variety of other domains such as working 
memory (Ashby, Ell, Valentin, & Casale, 
2005; Lawrence, Watkins, Sahakian, Hodges, 
& Robbins, 2000), executive functioning 
(Cools, 2006; Crone, Wendelken, Donohue, & 
Bunge, 2006; Owen et al., 1993), and 
language use (Longworth, Keenan, Barker, 
MarslenWilson, & Tyler, 2005; Teichmann et 
al., 2005; Ullman, 2004).  

One caveat to point out, though, is that, 
COVIS focuses on the caudate nucleus as the 
critical BG component for rule-based learning, 
a hypothesis motivated by the neuroimaging 
literature (e.g., Filoteo, Maddox, Simmons et 
al., 2005; Hikosaka, Sakamoto, & Sadanari, 
1989; Rao et al., 1997; Seger & Cincotta, 
2006). The one patient in our sample whose 
lesion also included the caudate performed 
normally on the unidimensional task (Macross 
blocks = 86.5%), but was severely impaired 
on the conjunction task (Macross blocks = 
53.1%). The present results suggest that the 
role of the putamen in rule-based 
categorization may need to be reevaluated. As 
noted above, the putamen has been associated 
with many of the component processes 
thought to be critical for rule-based tasks. 
Alternatively, the putamen may influence 
processing within the caudate nucleus via 
striatal cell bridges (Martin, 1996) or other 

local networks within the basal ganglia (e.g., 
striato-nigralstriatal projections, see Haber, 
2003). Another hypothesis is that the putamen 
may be involved in resolving competition 
between multiple learning systems engaged 
during categorization (Ashby et al., 1998).  

 
4. Conclusions 
 

Patients with BG lesions demonstrated an 
early-training impairment on a rule-based task 
in which the demands on working memory 
demand were high, but not on a rule-based 
task that required selectively attending to one 
dimension. In contrast, the PD patients were 
impaired on both tasks, although the cause of 
this impairment, as inferred from a model-
based analysis, differed for the two tasks. The 
PD impairment on the task with high working 
memory demand was driven by the use of 
suboptimal decision strategies. In contrast, the 
impairment on the task with high selective-
attention demand was driven by the 
inconsistent application of an appropriate 
decision strategy. These data suggest that 
demands on selective attention and working 
memory influence the presence of impairment 
in patients with focal BG lesions and the 
nature of the impairment in patients with PD. 
Moreover, these data highlight the value of 
comparing multiple models of BG 
dysfunction.  
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Appendix A. Appendix  
 

To get a more detailed description of how 
participants categorized the stimuli, a number 
of different decision bound models (Ashby, 
1992a; Maddox & Ashby, 1993) were fit 
separately to the data for each participant from 
every block. Decision bound models are 
derived from general recognition theory 
(Ashby & Townsend, 1986), a multivariate 
generalization of signal detection theory 
(Green & Swets, 1966). It is assumed that, on 
each trial, the percept can be represented as a 
point in a multidimensional psychological 
space and that each participant constructs a 
decision bound to partition the perceptual 
space into response regions. The participant 
determines which region the percept is in, and 
then makes the corresponding response. While 
this decision strategy is deterministic, decision 
bound models predict probabilistic responding 
because of trial-by-trial perceptual and 
criterial noise (Ashby & Lee, 1993).  

The appendix briefly describes the 
decision bound models. For more details, see 
Ashby (1992a) or Maddox and Ashby (1993). 
The classification of these models as either 
rule-based or information–integration models 
is designed to reflect current theories of how 
these strategies are learned (e.g., Ashby et al., 
1998) and has received considerable empirical 
support (see Ashby & Maddox, 2005; Maddox 
& Ashby, 2004 for reviews).  

 
A.1. Rule-based models  
 

Unidimensional classifier (UC). This 
model assumes that the stimulus space is 

partitioned into two regions by setting a 
criterion on one of the stimulus dimensions. 
Two versions of the UC were fit to these data. 
For example, for the line stimuli, one version 
assumes that participants attended selectively 
to length and the other version assumes 
participants attended selectively to orientation. 
The UC has two free parameters, one 
corresponds to the decision criterion on the 
relevant dimension and the other corresponds 
to the variance of internal (perceptual and 
criterial) noise (2). For the unidimensional 
task, a special case of the UC, the optimal 
unidimensional classifier, assumes that 
participants use the unidimensional decision 
bound that maximizes accuracy. This special 
case has one free parameter (2).  

 
Conjunctive classifier (CC). A more 

appropriate rule-based strategy in the 
conjunction task is a conjunction rule 
involving separate decisions about the 
stimulus value on the two dimensions with the 
response assignment based on the outcome of 
these two decisions (Ashby & Gott, 1988). 
The CC assumes that the participant partitions 
the stimulus space into four regions in a 
manner consistent with the optimal decision 
strategy. For example, for the line stimuli, the 
CC would assume that individuals assigned a 
stimulus to category B if it was high in length 
and low in orientation (i.e., the lines are long 
and shallow); otherwise the stimulus would be 
assigned to category A. The CC has three free 
parameters: the decision criteria on the two 
dimensions and a common value of 2 for the 
two dimensions. The optimal conjunctive 
classifier assumes that participants use 
decision bounds that maximize accuracy. This 
special case has one free parameter (2)  

 
A.2. Information–integration model  
 

The linear classifier (LC). This model 
assumes that a linear decision bound partitions 
the stimulus space into two regions. The LC 
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differs from the CC in that the LC does not 
assume decisional selective-attention (Ashby 
& Townsend, 1986). This produces an 
information–integration decision strategy 
because it requires linear integration of the 
perceived values on the stimulus dimensions. 
The LC has three parameters, slope and 
intercept of the linear bound, and 2.  

 
The minimum distance classifier (MDC). 

This model assumes that there are a number of 
units representing a low-resolution map of the 
stimulus space (Ashby &Waldron, 1999; 
Ashby, Waldron, Lee, & Berkman, 2001; 
Maddox et al., 2004). On each trial, the 
participant determines which unit is closest to 
the perceived stimulus and produces the 
associated response. The version of the MDC 
tested here assumed four units because the 
category structures were generated from four 
multivariate normal distributions. Because the 
location of one of the units can be fixed, and 
because a uniform expansion or contraction of 
the space will not affect the location of the 
minimum distance decision bounds, the MDC 
has six free parameters (five determining the 
location of the units and 2). 

  
A.3. Random responder models  
 

Equal response frequency (ERF). This 
model assumes that participants randomly 
assign stimuli to the two response frequencies 
in a manner that preserves the category base 
rates (i.e., 50% of the stimuli in each 
category). This model has no free parameters  

Biased response frequency (BRF). This 
model assumes that participants randomly 
assign stimuli to the two response frequencies 
in a manner that matches the participant’s 
categorization response frequencies (i.e., the 
percentage of stimuli in each category is 
computed from the observed response 
frequencies). This model has no free 
parameters.  

 

A.4. Model fitting  
 

The model parameters were estimated 
using maximum likelihood (Ashby, 1992b; 
Wickens, 1982) and the goodness-of-fit 
statistic was 

 BIC = r ln N − 2 ln L 
 

where N is the sample size, r is the number of 
free parameters, and L is the likelihood of the 
model given the data (Schwarz, 1978). The 
BIC statistic penalizes a model for poor fit and 
for extra free parameters. To find the best 
model among a set of competitors, one simply 
computes a BIC value for each model, and 
then chooses the model with the smallest BIC. 
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