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Targeted Training of the Decision Rule Benefits Rule-Guided  

Behavior in Parkinson’s Disease 

Shawn W. Ell 

University of Maine, Orono 

The impact of Parkinson’s disease (PD) on rule-guided behavior has received considerable attention in 
cognitive neuroscience. The majority of research has used PD as a model of dysfunction in fronto-striatal 
networks, but very few attempts have been made to investigate the possibility of adapting common 
experimental techniques in an effort to identify the conditions that are most likely to facilitate successful 
performance. The present study investigated a targeted training paradigm designed to facilitate rule 
learning and application using rule-based categorization as a model task. Participants received targeted 
training in which there was no selective attention demand (i.e., stimuli varied along a single, relevant 
dimension) or non-targeted training in which there was selective-attention demand (i.e., stimuli varied 
along a relevant dimension as well as an irrelevant dimension). Following training, all participants were 
tested on a rule-based task with selective attention demand. During the test phase, PD patients that 
received targeted training performed similar to control participants and outperformed patients that did not 
receive targeted training. As a preliminary test of the generalizability of the benefit of targeted training, a 
subset of the PD patients were tested on the Wisconsin Card Sorting Task (WCST). PD patients that 
received targeted training outperformed PD patients that did not receive targeted training on several 
WCST performance measures. These data further characterize the contribution of fronto-striatal circuitry 
to rule-guided behavior. Importantly, these data also suggest that PD patient impairment, on selective-
attention-demanding tasks of rule-guided behavior, is not inevitable and highlight the potential benefit of 
targeted training. 
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Introduction 
 

 

The contribution of fronto-striatal circuitry to rule-
guided behavior has been an area of intense 
research in recent years. Neuropsychological work 
has focused largely on patients with Parkinson’s 
disease (PD) – a neurodegenerative disease 
affecting several neurotransmitter systems that are 
critical for normal fronto-striatal function (Braak et 
al., 2003). Although much has been learned about 
fronto-striatal contributions to rule-guided behavior 
from the study of individuals with PD, very few 
attempts have been made to investigate the 
possibility of adapting common experimental 
techniques in an effort to identify the conditions 
that are most likely to facilitate successful 
performance. Moreover, with few exceptions, 
previous attempts to improve the ability of PD 
patients to cope with the cognitive symptoms of 
the disease have used fairly coarse training 
protocols, making it difficult to determine which 
aspects of training were critical for improvement 
and what cognitive processes were affected 
(Hindle, Petrelli, Clare, & Kalbe, 2013). The goals 
of the present work are to further characterize the 
PD impairment in a task of rule-guided behavior 

and to conduct an initial investigation of the impact 
of targeted training on tasks of rule-guided 
behavior.  

Rule-guided behavior is a very broad construct 
and, not surprisingly, has been studied using a 
variety of techniques (e.g., Bunge & Wallis, 2007). 
The approach taken here is to operationalize rule-
guided behavior in the context of rule-based 
categorization. Rule-based categorization tasks 
are often designed such that optimal performance 
can be obtained if participants learn to attend to 
the relevant stimulus dimensions, ignore the 
irrelevant stimulus dimensions (if necessary), and 
learn the placement of decision criteria on the 
relevant dimensions (Ashby & Ell, 2001). An 
example of a category structure for a 
unidimensional, rule-based task is plotted in 
Figure 1. Each of the points in Figure 1 represents 
a sine-wave grating of a particular spatial 
frequency and orientation from one of two 
contrasting categories. To learn this category 
structure, participants would need to learn to 
attend selectively to spatial frequency and learn 
the placement of the criterion on spatial frequency 



TARGETED TRAINING OF RULES 

Figure 1. An example of a unidimensional, 

rule-based category structure. Each point in 

the graph represents a sine-wave grating of 

a particular spatial frequency (bar width) 

and orientation (bar angle). ‘+’ symbols 

represent category A stimuli and ‘o’ 

symbols represent category B stimuli. The 

vertical line is the optimal decision criterion. 

The decision rule could be described as: 

“Respond A if the bars are thick, otherwise 

respond B”. The insets are example stimuli. 

 

(i.e., decisional selective attention - Ashby & 
Townsend, 1986; Maddox, 1992; Maddox, Ashby, 
& Waldron, 2002). Thus, in the present work, rule-
guided behavior refers to the learning and 
application of a decision criterion on a perceptual 
dimension (i.e., spatial frequency in Figure 1) that 
can be used to support classification. Furthermore, 
selective attention demand refers to the 
requirement to ignore variability along an irrelevant 
stimulus dimension (i.e., orientation in Figure 1). 

PD patients have demonstrated a remarkably 
consistent impairment in unidimensional tasks 
(Ashby, Noble, Filoteo, Waldron, & Ell, 2003; Ell, 
Weinstein, & Ivry, 2010; Filoteo, Maddox, Ing, & 
Song, 2007; Filoteo, Maddox, Ing, Zizak, & Song, 
2005; Price, Filoteo, & Maddox, 2009). 
Interestingly, analyses of individual differences in 
decision strategy revealed that this impairment is 
not characterized by a total failure of selective 
attention (i.e., an inability to distinguish between 
relevant and irrelevant information), but rather by 
instability in the representation of the decision rule 
(Ell, et al., 2010; Filoteo, et al., 2007). For 
example, Ell et al. (2010) found that estimates of 
internal variability in the representation of the 
decision rule were larger for PD patients than 
matched controls in a unidimensional task similar 
to the one described in Figure 1. There appears to 
be some specificity of this effect as there have 
been reports that this impairment may be absent 
(Filoteo, et al., 2007), or not related to decision 
rule variability (Ell, et al., 2010), in rule-based 
tasks without selective attention demand.  

 
Targeted Training of Rule-Guided Behavior 

Although limited, previous work suggests 
optimism for using behavioral training paradigms 
to improve cognition in PD patients (see Hindle, et 
al., 2013 for a review). The vast majority of these 
paradigms, however, have used non-targeted 
approaches that make it unclear which cognitive 
processes should be the focus of future 
interventions. For instance, Sinforiani and 
colleagues (2004) trained a group of PD patients 
using a set of computerized tasks designed to 
provide training in a variety of cognitive domains 
(e.g., attention, reasoning, memory). Relative to 
pre-training baseline, PD patients demonstrated 
improvement in reasoning and verbal fluency, but 
there was no benefit for working memory (e.g., 
digit span) or executive functioning (e.g., WCST, 
Stroop). Sammer and colleagues (2006) took a 
slightly more focused approach by training a group 
of PD patients in a collection of working memory 
and executive function tasks. Relative to pre-
training baseline levels, PD patients demonstrated  

some limited improvement in executive 
functioning. There was no improvement, however, 
relative to a group of PD patients that did not 
receive cognitive training (i.e., receiving physical 
and occupational therapy). Although these studies 
suggest that it may be possible to improve some 
aspects of cognition via non-targeted training, they 
do not permit a detailed characterization of the 
affected cognitive processes or the critical 
components of the training paradigm. 

More recent work by Disbrow and colleagues 
(Disbrow et al., 2012) suggests that targeted 
training of a specific cognitive process (i.e., 
sequence generation) can benefit more general 
aspects of cognition (i.e., executive function) that 
depend on the trained process. The goal of the 
present study is to take a related approach. More 
specifically, to investigate the impact of targeted 
vs. non-targeted training on a subsequent 
unidimensional, rule-based categorization task. An 
additional goal is to present a preliminary 
investigation of generalization  to another task of 
rule-guided behavior – i.e., the Wisconsin Card 
Sorting Task (WCST - Grant & Berg, 1948; 
Heaton, Chelune, Talley, Kay, & Curtiss, 1993). 
This study is an important step in comparing the 
efficacy of targeted vs. non-targeted training and 
has the potential to inform the design of future 
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interventions for improving cognition in individuals 
with PD.  

The extant data suggest that pre-training PD 
patients on the decision rule with reduced 
selective attention demand may be one way in 
which to target training. Indeed, the PD patient 
impairment in the ability to maintain a stable 
representation of the decision rule has only been 
observed in the presence of selective attention 
demand (Ell, et al., 2010; Filoteo, et al., 2007). 
Moreover, several studies have found that PD 
patients perform normally in rule-based tasks 
when selective attention demand is reduced 
(Filoteo, et al., 2007; Maddox, Filoteo, Delis, & 
Salmon, 1996).  

Would PD patients that receive targeted 
training of the decision rule have any advantage 
over PD patients that receive non-targeted training 
on a subsequent unidimensional, rule-based task? 
Although this hypothesis has not been directly 
tested, several studies suggest that providing 
strategic information can mitigate the negative 
impact of selective attention demand. First, 
informing patients of the optimal rule appears to 
reduce the magnitude of the PD impairment in 
rule-based tasks (Maddox, et al., 1996) relative to 
studies in which participants have no a priori 
knowledge of the optimal rule (Filoteo, et al., 
2007). Second, PD patients perform normally 
when they have a priori knowledge of the target in 
a selective attention-demanding, visual search 
task (Horowitz, Choi, Horvitz, Côté, & Mangels, 
2006). Thus, it seems plausible that PD patients 
would be able to learn the optimal rule with 
reduced selective attention demand and apply this 
rule during a subsequent test phase in which 
selective attention demand is increased.  

To test this hypothesis, patients and controls 
will participate in one of three training conditions 
(Figure 2). In the control (CON) condition, 
participants will be trained on a prototypical 
unidimensional task (i.e., both spatial frequency 
and orientation will vary during training). In the 
relevant-dimension variation (RDV) condition, the 
stimuli will vary only along the relevant dimension, 
thereby providing an opportunity for the patients to 
learn the optimal decision rule without selective 
attention demand (i.e., orientation will be constant 
during training). The CON and RDV categories 
differ only in the variance along the irrelevant 
dimension. To control for the possibility that simply 
reducing variance improves PD patient 
performance, we will also include an irrelevant-
dimension variation (IDV) condition in which 
variance along the irrelevant dimension is the 
same as in the CON condition, but the stimuli will  

Figure 2. The category structures for the three 

training conditions investigated in the present 

experiment. CON – Control; RDV – Relevant 

Dimension Variation; IDV – Irrelevant 

Dimension Variation. ‘+’ symbols represent 

category A stimuli and ‘o’ symbols represent 

category B stimuli. The vertical line is the 

optimal decision rule and is identical across the 

three conditions. Participants were trained on 

one of these three category structures and 

then immediately tested on the CON category. 
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be binary-valued along the relevant 
dimension. Following training, all participants will 
complete a test phase using the CON categories. 
Thus, for participants in the CON condition, the 
categories will not change. For participants in the 
RDV condition, selective attention demand will be 
increased. For participants in the IDV condition, 
variance will increase along the relevant 
dimension. The category structure will vary across 
conditions during the training phase, but the 
category structure will be identical for all 
participants during the test phase. 

In the non-targeted training conditions (i.e., the 
CON and IDV conditions), patients will be trained 
in the presence of selective attention demand. 
Therefore, PD patients are expected to be 
impaired during the training and test phases. In 
contrast, in the targeted training condition (i.e., the 
RDV condition), participants will receive training in 
the absence of selective attention demand. Based 
on previous work, PD patients are expected to 
learn the decision rule in the absence of selective 
attention demand and perform similar to control 
participants during training. As participants 
transition to the test phase, selective attention 
demand will be increased. If increasing selective 
attention demand disrupts the application of a 
learned decision rule, PD patients would be 
impaired relative to controls during the test phase. 
If, instead, the negative impact of selective 
attention demand on unidimensional tasks is 
restricted to learning of the decision rule, PD 
patients would be expected to continue to perform 
similar to control participants during the test 
phase. In addition, if targeted training is 
successful, PD patients receiving targeted training 
would be expected to perform better than PD 
patients receiving non-targeted training. This 
approach has the advantage of enabling the 
characterization of specific aspects of cognitive 
dysfunction in PD patients (e.g., the use of a 
suboptimal decision rule versus the failure to 
maintain a stable representation of a decision rule 
- Ell, et al., 2010).  

Will any benefit of targeted training generalize 
to other tasks of rule-guided behavior? As a 
preliminary investigation of this question, a subset 
of the PD patients completed the WCST 
immediately following the test phase. The WCST 
is ideal because successful performance depends 
upon rule-guided behavior in the presence of 
selective attention demand, and has been 
extensively used as a neuropsychological 
instrument to assess cognition in PD. PD patients 
receiving targeted training are expected to perform 
better than PD patients receiving non-targeted 

training on the WCST. 
 

Method 
 
Participants 

The study procedures were approved by the 
University of Maine Institutional Review Board and 
are consistent with the Helsinki Declaration. Thirty-
eight patients (15 female) with idiopathic PD were 
recruited for participation. The patients were 
recruited by referrals from neurologists or through 
Parkinson’s support groups throughout Maine. 
Patients were screened for a history of 
neurological dysfunction unrelated to Parkinson’s 
disease, dementia (scores < 25 on the Mini Mental 
State Exam,  Folstein, Folstein, & McHugh, 1975), 
and symptoms of depression (scores > 20 on the 
Beck Depression Inventory - Beck, Steer, & 
Brown, 1996) resulting in the exclusion of two 
patients based on high depression scores.  

Disease stage based on Hoehn and Yahr 
ratings (Hoehn & Yahr, 1967) indicated that the 
patients were in the mild-to-moderate stages of 
the disease with 32 of the 36 patients at stages 1 
or 2 (on the five-point scale). Disease severity was 
evaluated with the motor subscale of the Unified 
Parkinson’s Disease Rating Scale (UPDRS - 
Fahn, Elton, & Members of the UPDRS 
Development Committee, 1987). See Table 1 for 
patient demographics and assessments of disease 
stage and severity.  

Given that most PD patients take some form 
of dopaminergic medication, and that PD 
impairment on the Figure 1 task has been shown 
to be insensitive to withdrawal of dopaminergic 
medication (Ell, et al., 2010), the PD patients were 
tested while on their normal medication regimen. 
At the time of the experiment, 35 of the 36 patients 
were taking daily doses of L-dopa medications. 
Seventeen of the patients were also taking a 
mixed D2/D3 receptor agonist. Several of the PD 
patients were taking additional medications: MAO-
B inhibitor (n=9), COMT inhibitor (n=6), 
antidepressants (n=11), anticholinergic (n=5). One 
PD patient was not taking any medication. The 
time since the last dose of dopaminergic 
medications prior to testing is given in Table 1. 
A control group (n=35, 26 female) was recruited 
from the communities surrounding the University 
of Maine. As with the patients, controls were 
screened for a history of neurological dysfunction, 
dementia, and symptoms of depression resulting 
in the exclusion of one control participant based 
on a high depression score. None of the controls 
reported a history of neurological disorders. Six 
controls were being medicated for symptoms of  
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depression at the time of testing. See Table 1 for 
control demographics. 
 
Neuropsychological Assessment 
A battery of neuropsychological tests was used to 
assess different aspects of cognitive function in 
both patients and controls. The National Adult 
Reading Test (NART - Nelson, 1982) was used to 
provide an estimate of pre-morbid verbal 
intelligence. In rule-based tasks, learning is 
argued to be highly dependent upon working 
memory and executive function (Ashby & Maddox, 
2005). Thus, neuropsychological tests were 
included to assess these processes. The digit 
span subtest (backward) of the Wechsler Adult 
Intelligence Scale – Third Edition (Wechsler, 
1997b) and the spatial span subtest (backward) of 
the Wechsler Memory Scale – Third Edition 
(Wechsler, 1997a) provided an index of working 
memory.  

Executive functions were evaluated with the 
Color-Word Interference (CWI) subtest from the 
Delis-Kaplan Executive Function System (DKEFS 
- Delis, Kaplan, & Kramer, 2001). The CWI 
comprises four subtests. The first two were 
baseline measures of the time to name a list of 
colors and the time to read a list of color words. 
The third was a modified version of the traditional 
Stroop task (Stroop, 1935), designed to assess 
the role of response conflict and inhibitory 
processes when naming the ink color of dissonant 
color words (e.g., the word “green” in red ink). The 
fourth subtest incorporates a task switching 
component in which participants were asked to 
alternate (irregularly) between naming the ink 
color and reading the word. The third (i.e., 
inhibition) and fourth (i.e., switching + inhibition) 
subtests were used as indices of executive 
functioning. Inhibition scores were computed by 
subtracting the average time to complete the two 
baseline subtests. Switching scores were 
computed by subtracting the time to complete the 
inhibition subtest from the switching + inhibition 
subtest. For both measures, higher numbers 
indicated a greater cost, or reduced executive 
functioning.  
 
Experimental Tasks 

The patients (nCON = 13, nRDV = 11, nIDV = 12) 
and controls (nCON = 10, nRDV = 11, nIDV = 13) were 

randomly assigned to complete one of the three 
categorization training conditions. The stimuli were 
sine-wave gratings that varied across trials in 
spatial frequency and orientation 
(counterclockwise from horizontal). Eighty stimuli 
were used in each condition, with 40 assigned to 
each of the two response categories. To create 
these category structures, a variation of the 
randomization technique introduced by Ashby and 
Gott (1988) was used. Each category was defined 
as a bivariate normal distribution with a mean and 
a variance on each dimension, and by a 
covariance between dimensions (see Table 2 for 
the category parameters and Figure 2 for the 
category structures). The category means for the 
IDV condition were selected to equate the 
observed minimum inter-category distance across 
conditions as distance to the category boundary is 
a critical determinant of performance (Ashby & 
Maddox, 1994; Ell & Ashby, 2006, 2012). 

To generate the stimuli, 40 pseudo-random 
samples (x1, x2) were drawn from each category 
distribution. Each random sample (x1, x2) was 
converted to a stimulus by deriving the frequency, 
f = .25 + (x1/50) cycles/degree of visual angle, and 
orientation, o = x2( /500) radians. The scaling 
factors were chosen from previous work (e.g., Ell, 
Ing, & Maddox, 2009) in an attempt to equate the 
salience of frequency and orientation. Each 
stimulus was presented on a gray background and 
subtended a visual angle of 4.35 degrees at a 
viewing distance of approximately 51 cm. The 
stimuli were generated and presented using the 
Psychophysics Toolbox extensions (Brainard, 
1997; Pelli, 1997) for MATLAB. The stimuli were 
displayed on either a 20” LCD with a 1600 × 1200 
resolution in a dimly lit room or on a 17” laptop 
LCD with a 1680 x 1050 resolution when testing 
was conducted in the participants' home. In the 
latter case, the stimuli were scaled to equate the 
visual angle. 

On each trial, a single stimulus was presented 
and the participant was instructed to make a 
category assignment by pressing one of two 
response keys (labeled ‘A’ or ‘B’) with either the 
left or right index finger. A standard keyboard was 
used to collect responses. The keyboard 
characters ‘d’ and ‘k’ were assigned to categories 
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‘A’ and ‘B’, respectively (the assignment of 
category labels to response keys was 
counterbalanced across participants). We did not 
expect performance to vary between the two 
hands given that the response requirements were 
minimal (e.g., speed was not emphasized) and 
that all of the patients had no overt difficulty 
producing the finger movements. Participants 
were instructed that their goal was to learn the 
categories by trial-and-error. Participants were 
informed that there were two equally likely 
categories and that the best possible accuracy 
was 100% (i.e., optimal accuracy). The 
instructions emphasized accuracy and there was 
no response time limit. After responding, feedback 
was provided. When the response was correct, the 
word “CORRECT” appeared in green and was 
accompanied by a 1 s, 500 Hz tone; when 
incorrect, the word “WRONG” appeared in red and 
was accompanied by a 1 s, 200 Hz tone. The 
screen was then blanked for 500 ms prior to the 
appearance of the next stimulus. In addition to 
trial-by-trial feedback, summary feedback was 
given at the end of each 80-trial block, indicating 
overall accuracy for that block. The presentation 
order of the 80 stimuli was randomized within each 
block, separately for each participant. 

Each participant was trained for three blocks 
of 80 trials on the CON, RDV, or IDV category 
structures (Figure 2). At the completion of training, 
participants were informed that they would now 
complete three more blocks designed to test the 
knowledge they gained during training. Feedback 
was omitted during the first test block in an effort 
to determine the impact of training on the test 
categories while minimizing new learning. 
Participants were informed that trial-by-trial 
feedback would be omitted during the first test  
 
 

 
block and that trial-by-trial feedback would be 
reinstated during the final two test blocks. 

In order to investigate if the benefits of 
targeted training would generalize to another task 
of rule-guided behavior, a subset (n=15) of the 
patients completed the WCST immediately after 
the categorization task. It was not possible to test 
all PD patients on the WCST because the WCST 
was added to the protocol midway through data 
collection. In the WCST, the participant attempted  
to learn the correct rule for matching 
multidimensional card stimuli (varying across trials 
in color, form, and number) to one of four key 
cards by trial-and-error. On each trial, the 
participant indicated which of the four key cards 
was the correct match for the current stimulus and 
immediately received feedback indicating whether 
their response was correct or incorrect.  
Unbeknownst to the participant, once the rule was 
learned (i.e., after achieving 10 consecutive 
correct trials), the rule was changed. The WCST 
was selected because successful performance 
depends upon rule-guided behavior in the 
presence of selective attention demand, and 
because the WCST has been extensively used as 
a neuropsychological instrument to assess 
cognition in PD patients (e.g., Price, et al., 2009). 
Five common performance measures from the 
WCST were computed: the number of trials to 
learn the first rule, the number of total errors (in 
128 trials), the number of rules learned (in 128 
trials), the number of sets (i.e., five consecutive 
correct responses), and the number of set-loss 
errors (i.e., the number of errors following the 
acquisition of a set). 

In an experimental session, participants also 
completed neuropsychological testing either 
directly before or after the experimental tasks. Due 
to time constraints during testing, not all 
participants completed all neuropsychological 
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assessments. As a result, the degrees-of-freedom 
vary by neuropsychological assessment in the 
analysis of the Table 1 data. Each session lasted 
approximately 2.5 hours, including 
neuropsychological testing and multiple breaks. 
 
Results 
 
Preliminary Analyses 

In order to proceed with testing the primary 
hypotheses, it is necessary to first determine if 
there were any baseline differences in 
demographic, neuropsychological, or 
neuropathological variables. Gender (see 
Methods) was not equally represented across the 

patient and control groups [   
(75) = 10.14, p < 

.05]. The relevant statistics for all other baseline 
comparisons are reported in Table 1. With the 
exception of the number of depressive symptoms, 
PD patients and controls did not differ on any of 
the baseline measures. For the PD patient specific 
variables, disease duration was the only variable 
to significantly differ across conditions with 
patients in the IDV condition having a longer 
disease duration than the CON condition (p = .02). 
Baseline differences on these three variables, 
however, were not consistent with the pattern of 
condition and group differences on accuracy 
during the critical test phase (see subsequent 
analyses and the General Discussion). 
 
Categorization Analyses 

Participants were randomly assigned to be 
trained on one of the Figure 2 category structures. 
Following training, all participants were tested on 
the CON category structure (top panel of Figure 
2). It was predicted that during the test phase, PD 
patients that received targeted training in the 
absence of selective attention demand (RDV 
condition) would not be impaired whereas PD 
patients that received non-targeted training (CON 
and IDV conditions) would be impaired (relative to 
neurologically healthy control participants). 
Because the primary predictions were focused on 
within-condition comparisons between PD patients 
and control participants during the test phase, we 
opted to use the focused, planned comparisons 
approach recommended by Rosenthal and 
colleagues (Rosenthal, Rosnow, & Rubin, 2000) to 
analyze the accuracy data. More specifically, we 
conducted participant group (control vs. PD 
patient) x test block mixed ANOVAs separately for 
each training condition (CON, RDV, IDV). For 
consistency, the same analysis strategy was used 
for the training data. 

Training Phase. Inspection of the training 
accuracy (Figure 3) suggests that PD patients 
were less accurate than controls only in the CON 
condition

1
.  In the CON condition, the main effects 

of group and block were significant [group: F (1, 
21) = 8.34, p < .05, η_p^2= .28; block: F (1.58, 
33.18) = 9.24, p < .05, η_p^2= .31; group x block: 

                                                            
1
  The data were screened for outliers by comparing each 

participant’s average accuracy across the test phase and final 
test block accuracy to the means for their condition (e.g., 
healthy controls in the IDV condition). Participants were 
excluded from further analysis if they were more than 2 SD 
away from the mean on both accuracy measures. This criterion 
resulted in the exclusion of one control participant from the IDV 
condition. 

Figure 3. Average accuracy for the Parkinson’s 

disease patients (PD) and the controls (CO) 

during the training and test phases of the 

categorization task. Corrective feedback was 

omitted during the first test block and re-

introduced during the remainder of the test 

phase. 

 



TARGETED TRAINING OF RULES 

F (1.58, 33.18) = .43, p = .61, η_p^2= .02]
2
.  In the 

RDV condition, only the main effect of block was 
significant [group: F (1, 20) = .67, p = .42, η_p^2= 
.03; block: F (1.60, 31.92) = 6.30, p < .05, η_p^2= 
.24; group x block: F (1.60, 31.92) = .12, p = .84, 
η_p^2= .006]. The same pattern was observed in 
the IDV condition [group: F (1, 22) = .30, p = .59, 
η_p^2= .01; block: F (1.66, 36.59) = 6.32, p < .05, 
η_p^2= .22; group x block: F (1.66, 36.59) = .76, p 
= .45, η_p^2= .03]. Relative to control participants, 
PD patients were impaired in the CON condition, 
but their performance was spared in the IDV 
condition suggesting that the mere presence of 
selective attention demand is insufficient to impair 
categorization accuracy. As expected, PD patients 
performed similar to controls in the absence of 
selective attention demand (RDV condition). 

Test Phase. Inspection of test accuracy 
(Figure 3) suggests that that the PD patients that 
received non-targeted training (CON, IDV) were 
impaired whereas the PD patients that received 
targeted training (RDV) were not impaired. In the 
CON condition, the main effect of group was 
significant [group: F (1, 21) = 6.01, p < .05, η_p^2= 
.22; block: F (2, 42) = 1.09, p = .35, η_p^2= .05; 
group x block: F (2, 42) = .30, p = .75, η_p^2= 
.01]. In the RDV condition, none of the effects 
were significant [group: F (1, 20) = 1.57, p = .22, 
η_p^2= .07; block: F (1.38, 27.41) = 1.82, p = .19, 
η_p^2= .08; group x block: F (1.38, 27.41) = 2.28, 
p = .14, η_p^2= .10]. In contrast, to the 
assessment based on the initial inspection of the 
Figure 3 data, the main effect of group was not 
significant in the IDV condition  [group: F (1, 22) = 
2.91, p = .10, η_p^2= .12; block: F (2, 44) = 3.07, 
p = .06, η_p^2= .12; group x block: F (2, 44) = 
1.65, p = .20, η_p^2= .07]. This may be a 
consequence of the similar performance of 
patients and controls during the first test block (in 
which corrective feedback was omitted) relative to 
the subsequent test blocks (when feedback was 
introduced). Consistent with this argument, a 2 
group x 2 block ANOVA focusing on the final test 
blocks suggested that there may have been a 
more subtle PD impairment in the IDV condition 
[main effect of group: F (1, 22) = 4.40, p < .05, 
η_p^2= .17]. In sum, consistent with predictions, 
PD patients that received targeted training in the 
RDV condition were not impaired at test whereas 
PD patients in the CON condition were impaired at 
test. The data from the IDV condition were less 

                                                            
2 A Huynh-Feldt correction for violation of the sphericity 

assumption has been applied to all mixed ANOVAs (when 
appropriate). Post-hoc comparisons were Sidak corrected. 

clear, but the results suggest that the PD patients 
may have been impaired in this condition as well.  

The above analyses suggest that PD patients 
that received targeted training performed as well 
as matched controls. Another prediction was that 
PD patients that received targeted training would 
perform better than patients in the non-targeted 
conditions (i.e., CON and IDV). This a priori 
prediction was tested by comparing test phase 
accuracy (i.e., average accuracy during the test 
blocks when corrective feedback was provided) for 
patients in the CON and IDV conditions to test 
phase accuracy for patients in the RDV condition. 
Consistent with this prediction, PD patients in the 
RDV condition outperformed PD patients in the 
CON condition [t (15.35) = 2.16, p < .05, d = 1.1] 
and PD patients in the IDV condition [t (12.97) = 
2.57, p < .05, d = 1.43]

3
.  In sum, PD patients that 

received targeted training were as accurate as 
control participants and more accurate than PD 
patients that received non-targeted training. 
 
Categorization Decision Strategy 

The analysis of the categorization accuracy 
during the test phase suggests that the PD 
patients may have benefited from targeted 
training. To further explore these data, we used 
model-based analyses to evaluate variability in the 
decision strategies used to perform the 
categorization task. For example, patients may 
have differed across conditions in their ability to 
attend selectively to spatial frequency (e.g., 
resulting in a decision rule that was sensitive to 
both dimensions) or their ability to consistently 
apply a decision rule. Alternatively, some patients 
may demonstrate a more general inability to 
perform the categorization task. The following 
analyses represent a quantitative approach to 
evaluating these hypotheses. 

Three different types of models were 
evaluated, each based on a different assumption 
concerning the participant's strategy. The rule-
based models assume that the participant attends 
selectively to one dimension (unidimensional 
classifiers; e.g., if the bars are thin, respond B; 
otherwise respond A). There were two versions of 
the unidimensional classifier, one assuming 
participants used the optimal decision rule in 
Figure 2 (optimal classifier, OC) and one 
assuming participants used a unidimensional rule 
with a suboptimal intercept on the spatial 
frequency dimension (unidimensional classifier, 

                                                            
3 Welch’s t-test was used for these, and subsequent, 

comparisons in which homogeneity of variance could not be 
assumed, resulting in non-integer degrees-of-freedom values. 
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UC). Information-integration (II) models (linear 
classifier and minimum-distance classifiers) 
assume that the participant combines the stimulus 
information from both dimensions prior to making 
a categorization decision. Finally, random-
responder (RR) models assume that the 
participant simply guesses or frequently switches 
among a number of different strategies. Each of 
these models was fit separately to the data from 
every block for all participants using a standard 
maximum likelihood procedure for parameter 
estimation (Ashby, 1992a; Wickens, 1982) and the 
Bayes information criterion for goodness-of-fit 
(Schwarz, 1978). See the Appendix for a 
description of the models and fitting procedures. 

The percentage of participants best fit by each 
model is given in Figure 4, but for brevity, we 
focus this analysis on the final test block. There 
were no significant differences in the distribution of 
best fitting models between patients and controls 
in any of the conditions, but the difference 
approached significance in the IDV condition 
[CON: χ^2(3) = 3.06, p = .38; RDV: χ^2(2) = 1.25, 
p = .54; IDV:χ^2(3) = 7.53, p = .06]. Notably, the 

random-responder models provided the best fit to  
 
the PD patient data only in the CON and IDV 

conditions. Thus, although the distribution of best 
fitting models did not significantly differ between 
patients and controls, the numerically greater use 
of suboptimal strategies by PD patients in the 
CON and IDV conditions may partially explain the 
lower test accuracy by these patients. Consistent 
with this interpretation, in the CON and IDV 
conditions, patients best fit by a UC (CON: M = 
84.79, SEM = 8.33; IDV: M = 80.71, SEM = 14.25) 
or a RR model (CON: M = 53.28, SEM = 5.19; 
IDV: M = 47.92, SEM = 5.51) had lower accuracy 
than patients best fit by the OC (CON: M = 93.24, 
SEM = 1.41; IDV: M = 88.84, SEM = 5.78). 

 
The PD impairment in the CON and IDV 

conditions during test may have also been driven 
by instability in the representation of the decision 
rule. This could arise from an increase in trial-by-
trial variability in the representation and/or 
application of the decision rule (i.e., internal 
noise)

4
.  This was investigated by conducting a  

                                                            
4 The models include a parameter to reflect trial-by-trial 

variability in perceptual and decisional processes. Given that 
the duration of stimulus presentation was unlimited and there 
was no response deadline, it is reasonable to assume that this 
parameter primarily reflects variability in the decision process. 

Figure 4. Percentage of participants in the CON, RDV, and IDV conditions whose data were best fit by 

the optimal classifier (OC), the suboptimal unidimensional classifier on spatial frequency (UC), an 

information integration model (II), or a model assuming that participants were responding randomly (RR). 

For ease of presentation, the unidimensional classifier on orientation has been omitted as the data from 

only one participant (a PD participant in the RDV condition during the first test block) was best fit by this 

model. 
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series of 2 group x 2 block (test block 2, test block 
3) mixed ANOVAs on the average noise 
parameter estimate, excluding participants that 
were best fit by a RR model (Figure 5). Consistent 
with the hypothesis of increased decision rule 
variability, the average noise parameter estimate 
was consistently higher for the PD patients than 
the controls in the CON condition [group: F (1, 18) 
= 4.58, p < .05, η_p^2= .20; block: F (1, 18) = 
1.99, p = .87, η_p^2= .002; group x block: F (1, 18) 
= .33, p = .56, η_p^2= .02], but not in the RDV 
condition [group: F (1, 20) = 2.43, p = .14, η_p^2= 
.11; block: F (1, 20) = .64, p = .43, η_p^2= .03; 
group x block: F (1, 20) = 1.71, p = .21, η_p^2= 
.08]. In the IDV condition, however, there were no 
group differences in rule variability [group: F (1, 
16) = .08, p = .78, η_p^2= .01; block: F (1, 16) = 
2.09, p = .17, η_p^2= .12; group x block: F (1, 16) 
= .01, p = .93, η_p^2= .00]. Thus, consistent with 
previous work, PD patients demonstrated 
increased instability in the representation of the 
decision rule in a prototypical unidimensional task 
(i.e., CON condition). In addition, PD patients that 
received targeted training did not significantly 
differ from controls. 
 
WCST Accuracy 

In order to test the generalization of the benefit 
of targeted training on a rule-based task, a subset 
of the PD patients in the non-targeted training 
conditions (CON and IDV, n=8) and the targeted 
training condition (RDV, n=7) were tested on a 
modified version of the WCST immediately 
following completion of the test phase. Five 
measures were used to assess performance on 
the WCST and are plotted in Figure 6. PD patients 
that received targeted training numerically 
outperformed PD patients that received non-
targeted training on all but the number of set-loss  

 
 
errors. These differences reached statistical 

significance, however, for the number of trials 
needed to learn the first rule [t (13) = 2.12, p = .05, 
d = 1.10], total number of errors [t (13) = 2.27, p =  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. Average criterial noise estimates from the best-fitting model (excluding random 

responders) during final two test blocks for the CON, RDV, and IDV conditions. PD: Parkinson’s 

disease patients; CO: control participants. 

Figure 6. Average performance (+/- 

SEM) for the subset of Parkinson’s 

disease patients from the targeted 

training condition and the non-targeted 

conditions tested on the WCST 

following the categorization task.  
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.04, d = 1.18], and total number of sets [t (13) = 
2.41, p = .03, d = 1.26]. The number of rules 
learned [t (13) = 1.16, p = .27, d = .60] and the 
number of set-loss errors [t (13) = .93, p = .37, d = 
.48] did not significantly differ. Although limited by 
small sample size, these preliminary data suggest 
that the benefits of targeted training on a 
unidimensional task may generalize to another 
task of rule-guided behavior. 
 
 
General Discussion 
 
The impact of PD on cognition has received 
considerable attention in cognitive neuroscience. 
The majority of research has used PD as a model 
of dysfunction in fronto-striatal circuitry, thereby 
emphasizing its contribution to cognition in 
neurologically healthy individuals. Often 
overlooked, however, are the implications of such 
research for identifying the specific manipulations 
most likely to promote cognitive functioning. The 
present study addressed this issue in the context 
of rule-guided behavior, using rule-based 
categorization as a model task. PD patients that 
received targeted training of the decision rule (i.e., 
an opportunity to learn a decision rule in the 
absence of selective attention demand) performed 
similar to healthy control participants during a test 
phase in which selective attention demand was 
increased. These PD patients also outperformed 
PD patients that received non-targeted training 
(i.e., an opportunity to learn the decision rule in the 
presence of selective attention demand). 
Moreover, patients that received targeted training 
outperformed patients that received non-targeted 
training on a subsequent task of rule-guided 
behavior. This study is an important step in 
comparing the efficacy of targeted vs. non-
targeted training and has the potential to inform 
the design of more targeted interventions for 
improving cognition in individuals with PD. 

Consistent with previous work (Ashby, et al., 
2003; Ell, et al., 2010; Filoteo, et al., 2007; Filoteo, 
et al., 2005; Price, et al., 2009), PD patients were 
impaired relative to control participants throughout 
the training and test phases in the CON condition. 
As predicted from the results of Maddox and 
colleagues (Maddox, et al., 1996), PD patients that 
received targeted training were able to learn the 
categorization rule . Importantly, PD patients that 
received targeted training were able to continue to 
use the categorization rule during the test phase, 
when selective attention demand was increased; 
resulting in test phase performance that was 
similar to control participants and that exceeded 

the performance of PD patients that received non-
targeted training.  

Targeted training may have shielded the 
decision rule from the interfering effects of 
irrelevant information introduced during the test 
phase. Recall that during targeted training, there 
was no irrelevant dimension (i.e., stimuli only 
varied on spatial frequency), thus it would seem 
reasonable to assume that the benefit of targeted 
training was mediated by enhanced selective 
attention to the relevant dimension. During the test 
phase, however, there was variation on orientation 
that would have been novel for participants that 
received targeted training. Given that at least 
some PD patients demonstrate enhanced 
sensitivity to novel stimuli (e.g., Djamshidian, 
O'Sullivan, Wittmann, Lees, & Averbeck, 2011), it 
seems unlikely that PD patients would have 
completely ignored novel variation in orientation 
during the test phase. Rather, the benefit of 
targeted training may have facilitated the ability to 
learn to ignore irrelevant variation on orientation 
during the test phase.  

Interestingly, training phase performance 
varied across the non-targeted training conditions. 
Patients in the CON condition, but not the IDV 
condition were impaired relative to controls 
throughout the training phase, suggesting that the 
mere presence of selective attention demand is 
not sufficient to impair PD patient performance. 
Recall that the category means for the IDV training 
categories were selected to equate the observed 
inter-category distance across conditions because 
distance to the category boundary is a critical 
determinant of performance (Ashby & Maddox, 
1994; Ell & Ashby, 2006, 2012). One consequence 
of this choice is that training accuracy was lower 
for control participants in the IDV condition than for 
control participants in the CON condition [average 
training accuracy: t (20) = 5.26, p < .05, d = 2.35]. 
Nevertheless, it would still have been possible to 
detect an impairment given that control participant 
accuracy was well above chance (Figure 3). 
During the IDV test phase, PD patients were 
impaired relative to control participants (when 
focusing on the feedback blocks) suggesting that 
simply reducing variance during training is not 
sufficient to benefit subsequent performance at 
test. It may be possible, however, that PD patients 
would have benefitted from a variant of IDV 
training in which task difficulty was reduced (e.g., 
by increasing inter-category distance). 

The results of the model-based analyses 
suggest that the test phase accuracy impairment 
for patients that received non-targeted training 
may be related to the use of highly suboptimal 
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decision rules by a subset of the patients. In 
addition, PD patients in one of the non-targeted 
training conditions (i.e., CON) demonstrated 
increased variability in the representation of the 
decision rule relative to control participants during 
the test phase [note, however, that the difference 
between PD patients in the CON and RDV 
conditions was not statistically significant; average 
variability across blocks: t (20) = 1.38, p = .18, d = 
.62]. Increased rule variability for PD patients in 
the CON condition could have been driven by 
impaired memory for the current rule, frequent 
adjustment in the decision rule, and/or impaired 
application of the decision rule. The relative 
contribution of these possible sources of increased 
rule variability cannot be directly assessed with the 
present data, but previous work on the impact of 
PD on cognition provides some guidance. For 
instance, working memory would seem to be an 
unlikely cause given the absence of a general 
impairment in working memory in the present 
patient sample (see Table 1), and that working 
memory is generally spared in medicated PD 
patients (Cools, Miyakawa, Sheridan, & 
D'Esposito, 2010; Kehagia, Barker, & Robbins, 
2010; Lewis, Slabosz, Robbins, Barker, & Owen, 
2005; Slabosz et al., 2006). In addition, the ability 
of PD patients to adjust a decision rule along a 
stimulus dimension in order to classify highly 
discriminable stimuli (i.e., intra-dimensional 
shifting) is also typically spared, but preliminary 
data suggests that PD patients may have an intra-
dimensional shifting impairment when stimulus 
discriminability is reduced, as in the present tasks 
(Ell & Zilioli, 2010). Thus, PD patients in the CON 
condition may have had an impaired ability to shift 
and/or apply a decision rule relative to control 
participants. 
 
Potential Limitations of the Current Study 

With the exception of gender and self-reported 
depressive symptomotology, there were no 
significant differences in baseline demographic or 
neuropsychological variables between the patient 
and control groups. Neither of these differences, 
however, can explain the benefit of targeted 
training. For instance, gender was not predictive of 
performance during the critical test phase for 
either the patient [r (36) = .16, p = .36] or control 
groups [r (34) = -.11, p = .54]. In addition, 
depressive symptomotology did not differ by 
condition as would have been expected given the 
superior performance of the patients that received 
targeted relative to patients that received non-
targeted training. 

Given the small sample size, however, it is 
likely that the analyses were underpowered for 
detecting differences in demographic and 
neuropsychological variables. For example, the 
patients in the CON condition were older than 
control participants in the CON condition and 
patients that received targeted training, but the 
group x condition interaction did not reach 
statistical significance. A power analysis 
conducted using G*power 3 (Faul, Erdfelder, 
Lang, & Buchner, 2007) indicated that 235 total 
participants (i.e., approximately 40 participants in 
each level of group and condition) would be 
required to achieve an appropriate level of power 
(i.e., 1-β = .8) to detect the interaction given the 
current effect size. In addition, the small sample 
size should also be considered when interpreting 
the statistically significant results as it is possible 
that the current data could represent extreme 
values (e.g., sampling from extreme regions of the 
distribution of Parkinson’s disease patients). 

For the categorization data, it is possible that 
the relatively normal test phase performance of 
the PD patients that received targeted training was 
driven by a ceiling effect as control participant 
accuracy was near perfect throughout the training 
and test phases. It is important to note, however, 
that the test categories were identical across 
conditions. Thus, a potential ceiling effect cannot 
account for the finding that PD patients that 
received targeted training outperformed PD 
patients that received non-targeted training. 

The category structure used for targeted 
training was designed to equate objective 
accuracy (e.g., ideal observer accuracy) with the 
CON category structure. There was, however, a 
clear subjective task difficulty difference across 
conditions. It would have been possible to 
artificially increase task difficulty in the targeted 
training condition by increasing category overlap. 
Given that previous work has not investigated the 
impact of category overlap (Ashby, et al., 2003; 
Ell, et al., 2010; Filoteo, et al., 2007; Filoteo, et al., 
2005; Price, et al., 2009) and that category overlap 
can impact decision processes in healthy 
individuals (e.g., Ell & Ashby, 2006, 2012) such an 
option was not pursued in the present study.  

Nevertheless, the difference in task difficulty 
suggests at least two possible alternative 
interpretations of the current data. First, 
differences between targeted and non-targeted 
training could be due to variability across 
conditions in categorization ability. In an effort to 
limit patient fatigue due to extended task 
performance, the patients were not pre-tested on 
the test categories prior to training. One 
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consequence of this approach, however, is that it 
is unclear if the apparent benefit of targeted 
training was driven by the structure of the training 
categories or by an inherent difference in 
categorization ability across conditions for these 
patients (i.e., a failure of random assignment). The 
latter interpretation would seem unlikely given that 
were no significant differences between the 
targeted and non-targeted training groups in 
working memory and executive function (cognitive 
abilities demonstrated to be critical for rule-based 
categorization) (Ashby & Maddox, 2005).  

Second, differences between targeted and 
non-targeted training could be due to non-specific 
effects of task success. In other words, targeted 
training may have trained the patients to be 
successful, and this success is contagious. A 
similar concept, “learning-to-learn”, has been 
described in the context of animal behavior 
(Harlow, 1949) and motor learning (Braun, 
Aertsen, Wolpert, & Mehring, 2009), and has been 
associated with a similar sort of non-specific 
practice effect. A related argument has been made 
in the cognitive rehabilitation literature in which it 
has been suggested that an effective method of 
rehabilitating individuals with neurological 
dysfunction is to begin with stimuli that minimize 
the likelihood of making an error and steadily 
increase task difficulty (i.e., the method of 
errorless learning - Baddeley, 1992; Terrace, 
1964; Wilson, Baddeley, Evans, & Shiel, 1994). 
The impact of successful performance cannot be 
completely ruled out given that higher average 
training accuracy was associated with higher 
average test accuracy for PD patients in the CON 
[r(13) = .92, p < .05] and RDV conditions [r(12) = 
.82, p < .05]. Nevertheless, successful 
performance does not provide a complete account 
of the present data as the association between 
training and test accuracy was not significant for 
PD patients in the IDV condition [r(13) = .17, p = 
.56]. 
 
Targeted Training of Cognition 

The efficacy of cognitive training has received 
considerable attention in recent years. In the 
context of neurologically healthy individuals, there 
is an ongoing debate on whether cognitive training 
benefits performance (e.g., Jaeggi, Buschkuehl, 
Jonides, & Shah, 2011; Redick et al., 2012). Many 
of the experimental design issues raised in this 
debate (e.g., selecting the appropriate comparison 
conditions) have been echoed in the 
neuropsychological literature on cognitive training 
(Hart, Fann, & Novack, 2008; Kennedy & Turkstra, 
2006; Schutz & Trainor, 2007). Despite the 

numerous challenges for investigating the efficacy 
of cognitive training as a non-pharmacological tool 
for treating neurological dysfunction, there are 
examples of well-designed experiments that have 
utilized cognitive training (e.g., Constantinidou, 
Thomas, & Robinson, 2008; Constantinidou et al., 
2005; Disbrow, et al., 2012). For example, 
Constantinidou and colleagues demonstrated that 
an expanded training protocol (including 
perceptual discrimination, object recognition, and 
categorization) benefitted categorization 
performance and generalized to a variety of tasks 
of rule-guided behavior in patients with traumatic 
brain injury. 

It could be argued that many of the attempts to 
apply cognitive training to individuals with PD 
suffer from many of the experimental design 
limitations that have been discussed in the 
broader literature on the efficacy of cognitive 
training (see Hindle, et al., 2013 for a review). 
Furthermore, the majority of these studies have 
used non-targeted approaches that make it 
unclear which cognitive processes should be the 
focus of future interventions. Consistent with a 
more recent intervention (Disbrow, et al., 2012), 
the approach investigated in the present study 
was to use targeted training of a specific aspect of 
cognition. The emphasis on rule-guided behavior 
was driven by its importance for cognition in 
general (Bunge & Wallis, 2007) and the consistent 
findings of PD patient impairment on a model task 
of rule-guided behavior (i.e., rule-based 
categorization - Ashby, et al., 2003; Ell, et al., 
2010; Filoteo, et al., 2007; Filoteo, et al., 2005; 
Price, 2006). The present data suggest that rule-
guided behavior may be a cognitive process on 
which to focus future intervention work.  

Practical considerations regarding the use of 
cognitive training in applied settings require that 
the effects of cognitive training protocols 
generalize beyond the specific context of training. 
This consideration was the motivation for including 
a preliminary investigation of the generalizability of 
targeted training to the WCST. The WCST was 
selected because successful performance 
depends upon rule-guided behavior in the 
presence of selective attention demand and 
because of its frequent use in the study of fronto-
striatal dysfunction. In addition, the WCST is 
predictive of future cognitive decline (Woods & 
Tröster, 2003) and health status (Schieshser et al., 
in press) in PD patients, making it an important 
marker of functioning. Although limited by a small 
sample size, the preliminary WCST data suggest 
that targeted training may have a more general 
effect on rule-guided behavior and highlight the 
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potential benefit of focusing future interventions on 
specific cognitive processes. 
 
Implications for the Study of Rule-Guided Behavior 

An assumption underlying the interpretation of 
the present data is that participants are, in fact, 
learning a rule in the unidimensional task. This is a 
potentially critical issue given that computational 
models with quite different representational 
assumptions can provide equivalent accounts of 
the data in many categorization tasks (Ashby & 
Maddox, 1998; Townsend, 1992). The Figure 2 
category structures were not designed to test 
between competing theories of categorization so 
the evidence supporting the use of rule-based 
strategies should be carefully considered. First, 
the model-based analyses indicate that rule-based 
models consistently provided a better account of 
individual response profiles than an information-
integration model that assumed participants 
represented category prototypes (i.e., the 
minimum distance classifier, see the Appendix for 
details). Second, given that the category means 
for the CON and RDV training categories are 
identical, it seems reasonable to assume that the 
representation of the category prototypes would 
be similar. If so, in contrast with the results, 
prototype theory would seem to predict equivalent 
performance for these conditions during the test 
phase (but see Anderson, 1991; Love, Medin, & 
Gureckis, 2004; Minda & Smith, 2001; Pothos & 
Chater, 2002 for possible alternatives). Finally, if 
PD patients were representing exemplars (e.g., as 
assumed by the Generalized Context Model - 
Nosofsky, 1986) rather than rules, test phase 
performance should have been greater in the CON 
condition than the RDV condition because the 
stimuli were identical. These arguments suggest 
that the assumption that PD patients are learning 
rules is reasonable, but the arguments themselves 
are indirect and more experimentation will be 
necessary to rule out alternative representational 
assumptions. 

In the context of rule-based categorization, 
fronto-striatal networks have been argued to 
support the maintenance and updating of rules 
necessary for learning (Ashby, Alfonso-Reese, 
Turken, & Waldron, 1998; Ashby, Ell, Valentin, & 
Casale, 2005; Hélie, Paul, & Ashby, 2012). For 
instance, the COVIS (COmpetition between Verbal 
and Implicit Systems - Ashby, et al., 1998) model 
of category learning assumes that dopamine 
depletion resulting from PD would impair the 
switching of attention away from the currently 
attended stimulus dimension, the selection of a 
new stimulus dimension to which to attend, and 

decision rule variability on the selected dimension 
(Hélie, et al., 2012). The latter is most relevant to 
the present discussion given that the PD 
impairment in unidimensional tasks has often been 
associated with increased decision rule variability 
(Ell, et al., 2010; Filoteo, et al., 2007). The PD 
impairment in the Figure 1 task, however, does not 
appear to be sensitive to the withdrawal of 
dopaminergic medication in PD patients (Ell, et al., 
2010). Thus, it may be the case that the PD 
impairment in unidimensional tasks is associated 
with dysfunction in other neurotransmitter systems 
that are critical for normal fronto-striatal 
functioning (Braak, et al., 2003; Kehagia, et al., 
2010) and/or abnormalities in frontal functioning in 
PD patients (Monchi, Petrides, Mejia-Constain, & 
Strafella, 2007). Furthermore, because COVIS 
was not designed to model transfer across tasks 
with different stimulus sets, it does not make a 
prediction for the generalizability of targeted 
training to the WCST that was observed in the 
present study. 

These data are generally consistent with the 
idea that rule-guided behavior is mediated, in part, 
by fronto-striatal networks (Badre & Frank, 2012; 
Bunge, 2004; Chudasama & Robbins, 2006; 
Pasupathy & Miller, 2005; Seger & Miller, 2010). 
More specifically, the present data suggest that 
targeted training benefits decision making in the 
presence of selective attention demand, but the 
specific neural locus of this effect is unclear. 
Broadly speaking, targeted training could have 
facilitated the use of a fundamentally different 
neural network and/or increased the efficiency of 
the network that typically mediates rule-based 
categorization (DeGutis & D'Esposito, 2009; Kelly 
& Garavan, 2005). For instance, deconstructing 
the task by allowing participants to first learn the 
criterion with minimal selective attention demand, 
and then apply the criterion as selective attention 
demand is increased, and finally, perform another 
rule-based task may have facilitated a rule 
abstraction process argued to depend upon the 
interaction of fronto-striatal networks (Badre & 
Frank, 2012; Badre, Kayser, & D'Esposito, 2010). 
 
Conclusions 

Consistent with previous work, PD patients 
were impaired in rule-based categorization in the 
presence of selective attention demand. This 
impairment, however, was not inevitable as 
patients that received targeted training of the 
decision rule under conditions of reduced selective 
attention demand outperformed patients that 
received non-targeted training during a test phase 
in which selective attention demand was present.
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Moreover, In contrast to some of the patients 
that received non-targeted training, PD patients 
that received targeted training demonstrated 
variability in the representation of the decision rule 
that was similar to control participants, possibly 
reflecting an improved ability to shift and/or apply 
a decision rule. Patients that received targeted 
training also outperformed patients that received  
non-targeted training on a subsequent task of rule-
guided behavior (i.e., the WCST). These data 
suggest the potential benefit of targeted training 
and may be useful in the development of large-
scale intervention studies. 
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Appendix 

To get a more detailed description of how participants categorized the stimuli, a number of 
different decision bound models (Ashby, 1992b; Maddox & Ashby, 1993) were fit separately to 
the data for each participant from every block. Decision bound models are derived from general 
recognition theory (Ashby & Townsend, 1986), a multivariate generalization of signal detection 
theory (Green & Swets, 1966). It is assumed that, on each trial, the percept can be represented 
as a point in a multidimensional psychological space and that each participant constructs a 
decision bound to partition the perceptual space into response regions. The participant 
determines which region the percept is in, and then makes the corresponding response. While 
this decision strategy is deterministic, decision bound models predict probabilistic responding 
because of trial-by-trial perceptual and criterial noise (Ashby & Lee, 1993). 

The appendix briefly describes the decision bound models. For more details, see Ashby 
(1992b) or Maddox and Ashby (1993). The classification of these models as either rule-based or 
information-integration models is designed to reflect current theories of how these strategies are 
learned (e.g., Ashby, et al., 1998) and has received considerable empirical support (see Ashby 
& Maddox, 2005; Maddox & Ashby, 2004 for reviews). 

Rule-Based Models 

Unidimensional Classifier (UC). This model assumes that the stimulus space is partitioned 
into two regions by setting a criterion on one of the stimulus dimensions. Two versions of the 
UC were fit to these data. One version assumes that participants attended selectively to spatial 
frequency and the other version assumes participants attended selectively to orientation. The 
UC has two free parameters, one corresponds to the decision criterion on the relevant 
dimension and the other corresponds to the variance of internal (perceptual and criterial) noise 

(  ). For the unidimensional task, a special case of the UC, the Optimal Unidimensional 
Classifier, assumes that participants use the unidimensional decision bound that maximizes 

accuracy. This special case has one free parameter (  ). 

Information-Integration Models 

 The Linear Classifier (LC). This model assumes that a linear decision bound partitions 
the stimulus space into two regions. This produces an information-integration decision strategy 
because it requires linear integration of the perceived values on the stimulus dimensions. The 

LC has three parameters, slope and intercept of the linear bound, and    .  

The Minimum Distance Classifier (MDC). This model assumes that there are a number of 
units representing a low-resolution map of the stimulus space (e.g., Ashby & Waldron, 1999). 
On each trial, the participant determines which unit is closest to the perceived stimulus and 
produces the associated response. The version of the MDC tested here assumed four units 
because the category structures were generated from four multivariate normal distributions. 
Because the location of one of the units can be fixed, and because a uniform expansion or 
contraction of the space will not affect the location of the minimum-distance decision bounds, 

the MDC has three free parameters (two determining the location of the units and    ). 

Random Responder Models 
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 Equal Response Frequency (ERF). This model assumes that participants randomly 
assign stimuli to the two response frequencies in a manner that preserves the category base 
rates (i.e., 50% of the stimuli in each category). This model has no free parameters. 

 Biased Response Frequency (BRF). This model assumes that participants randomly 
assign stimuli to the two response frequencies in a manner that matches the participant’s 
categorization response frequencies (i.e., the percentage of stimuli in each category is 
computed from the observed response frequencies). This model has no free parameters. 

Model Fitting 

 The model parameters were estimated using maximum likelihood (Ashby, 1992a; 
Wickens, 1982) and the goodness-of-fit statistic was 

BIC = r lnN - 2lnL, 

where N is the sample size, r is the number of free parameters, and L is the likelihood of the 
model given the data (Schwarz, 1978). The BIC statistic penalizes a model for poor fit and for 
extra free parameters. To find the best model among a set of competitors, one simply computes 
a BIC value for each model, and then chooses the model with the smallest BIC. 
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