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Introduction

In the last three decades, major calving events shown in 
Fig. 1 have taken place in the large ice shelves that form
when the marine West Antarctic Ice Sheet, grounded up to
2.5 km below sea level, becomes afloat in deep water
around its northern, eastern, and western perimeter. These
events began inauspiciously in 1989 with complete
disintegration of the small Wordie Ice Shelf on the west side
of the Antarctic Peninsula (Doake & Vaughan 1991)
followed by partial disintegration of George VI Ice Shelf in
1995 and Wilkins Ice Shelf in 1998 (Scambos et al. 2000).
Disintegration of the much larger Larsen Ice Shelf on the
east side of the Antarctic Peninsula began in 1995 (Rott 
et al. 1996) and has been propagating southward, with the
central portion disintegrating catastrophically within days
during 2002, and the remaining portion now showing early
signs of disintegration (De Angelis & Skvarca 2003). The
largest calving events have been from the huge ice shelves
on the eastern and western flanks of the West Antarctic Ice
Sheet. Enormous icebergs calved from the Filchner Ice
Shelf north of the Grand Chasms in 1986 (Ferrigno &
Gould 1987), from the Ronne Ice Shelf in 2002, as
predicted by Rignot & MacAyeal (1998), and from the Ross
Ice Shelf in 1987 (Keys et al. 1998), in 2000, and in 2002,
as predicted by Lazzara et al. (1999). In the Amundsen Sea
sector, Thwaites Iceberg Tongue, 100 km long, was released
from its moorings in 1986 (Lucchitta et al. 1994). The
floating tongues of both Thwaites Glacier and Pine Island
Glacier calved in 2002 (Rabus et al. 2003).

These calving events have occurred at a time when rapid
melting rates have been observed on Antarctic ice shelves
(Scambos et al. 2000), especially bottom melting (Rignot &
Jacobs 2002), often associated with rapid retreat of ice-shelf
grounding lines (Rignot 1998a, 1998b, 2001, 2002, Thomas
et al. 1998, Bindschadler & Vornberger 1998) and

downdraw of interior ice (Bindschadler 1997, 1998,
Shepherd et al. 2001, Zwally et al. 2002, De Angelis &
Skvarca 2003). These observations link large-scale calving
to long-term instability of the West Antarctic Ice Sheet
(Conway et al. 1999) that may point to substantial
gravitational collapse and a rise in sea level of up to 5 m,
perhaps in this century (Mercer 1978, Thomas et al. 1979,
Hughes 1981). Climatic changes may take place as these
giant icebergs enter the Southern Ocean and melt by
extracting heat from the CircumAntarctic Current
(Anderson 1999, fig. 1.21).
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Fig. 1. Location map showing calved regions from ice shelves in
West Antarctica since 1985. Black regions have calved.



Glaciological studies of icebergs calving from ice shelves
began with a theoretical investigation of the stress field at
the calving front (Reeh 1968). Nye (1957), Smith (1976),
and Weertman (1977) studied the depth and spacing of
surface crevasses, including deeper penetration when water
enters crevasses (Weertman 1973). Weertman (1980) then
showed that water-filled bottom crevasses can fracture most
of the thickness of ice shelves. Vaughan (1993) applied
yielding criteria to surface strain rates and Van der Veen
(1998a, 1998b) applied principles of fracture mechanics to
these studies. Rist et al. (1999, 2002) introduced a new
analysis of fracture mechanics and applied it to calculating
the stress field on the Ronne Ice Shelf in Antarctica, using
the finite-element model of ice-shelf dynamics developed
by MacAyeal & Thomas (1982). Published field data
controlled the model, with experimental determinations of
fracture toughness in ice determined by Rist et al. (1996),
using techniques in rock mechanics. Satellite images of
crevasse fields were used to compare with stress fields and
crevasse patterns generated by the model. Most recently,
MacAyeal et al. (2003) have presented a theory to show
how closely spaced water-filled crevasses is leading to
catastrophic disintegration of the Larsen Ice Shelf.

None of these studies addresses the problem of how giant
icebergs are released from Antarctic ice shelves, yet they
contain the essential elements for a solution to this problem.
Simply stated, the problem consists in linking three types of
crack propagation in ice. The first type is propagation of
surface or basal crevasses that are transverse to ice flow
near the calving front. These crevasses can be hundreds of
kilometers long. They propagate laterally with little or no
increase in depth, so the ice overburden pressure is not a
critical variable in determining the speed or length of their
propagation. The second type is propagation of surface or
basal crevasses that are parallel to ice flow near the calving
front. These crevasses typically open when the calving front
extends beyond an embayment or basal pinning points that
confined the ice shelf laterally, so it can spread by both
longitudinal and transverse extension. Then longitudinal
crevasses open at the calving front and migrate backward to
intersect the long transverse crevasses. Alternatively, shear
crevasses opening at 45 degrees to the calving front and to
sidewalls of the ice-shelf embayment can rotate to a
longitudinal orientation in simple shear and migrate back to
intersect the long transverse crevasses. The third type of
crevasse propagation is vertically downward from the top
surface or vertically upward from the bottom surface.
Downward propagation will encounter increasing pressure
from the ice overburden, unless surface meltwater fills the
top crevasses, whereas the ice overburden pressure is
always exceeded by water pressure in bottom crevasses that
propagate upward, until they reach sea level. Giant
Antarctic icebergs calve when all three types of crevasse
propagation intersect through the whole ice thickness. A
first step toward the goal of treating all three types of

crevasses holistically is taken here. Our approach combines
earlier work for brittle and ductile fracture.

Pioneering work in brittle fracture

Griffith (1920, 1924) expanded upon previous work in
elasticity by Inglis (1913) to determine the factors that
control brittle fracture in solids. The initial step was a study
of the stress field around an elliptical flaw contained within
a solid, subjected to far-field stresses that acted
perpendicular to the major axis of the ellipse. The ellipse
corresponds to a transverse crevasse, and a half-ellipse
corresponds to longitudinal crevasses extending to the
calving front and to vertical propagation of both types of
crevasses. The Inglis elastic fracture solution to this
problem relates applied tensile stress σ to yield stress σY of
the material and geometric properties of the elliptical flaw.

The stress intensity approach pioneered by Irwin (1948)
employs the normal and shear stresses at the tip of a crack in
an infinite elastic solid being acted upon by a far field
tensile stress σ. These stresses are derived in standard texts
on fracture mechanics, such as Kanninen & Popelar (1985),
Broek (1978, 1988), and Lawn (1993). They are used to
obtain a stress intensity factor K for cracks opened in
tension, shear, or torsion. The tension mode has been
examined by glaciologists who study calving, for which K =
KI. The condition for fracture is that KI must exceed some
critical value KIc, which is a material property called the
fracture toughness.

Derivations of stress intensity factors can be found in Sih
(1973a, 1973b), Tada et al. (1973), and Rooke & Cartwright
(1976). Solutions exist for single edge crevasses, equally
spaced crevasses, crevasses filled with water, and crevasses
through firn into ice (e.g. Weertman 1973, 1977, 1980,
Smith 1976, Nemat-Nasser et al. 1979, Van der Veen 1996,
1997, 1998a, 1998b, Rist et al. 1996, 1999, 2002).

Crevasses filled with water lead to catastrophic
disintegration of an ice shelf (Scambos et al. 2000,
MacAyeal et al. 2003). The most obvious example of a
water-filled crevasse is a basal crevasse in a floating ice
shelf. Seawater fills the crevasse, allowing it to penetrate
upward through most of the ice thickness and close to sea
level (Weertman 1980, Van der Veen 1998b).

Linear elastic fracture mechanics employs an energy
balance to obtain the rate of crack growth in terms of
material properties and system variables. These results have
application to iceberg calving. Griffith (1920) assumed
cracks would grow when it was energetically favourable to
do so, namely, the potential energy of the system would
decrease. The total energy of the system is the sum of the
potential energy of the load on the system, the elastic energy
stored in the material (together this is the mechanical
energy), and the work energy required to form new crack
surfaces. A necessary and sufficient condition for a crack
opening in simple tension is minimizing the total energy per
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unit area of the crack surfaces (Griffith 1920, 1924).
Mott (1948) assumed that since the total energy must be

constant, its derivative with respect to crack length will be
zero. From this assumption, Mott obtained the crack
velocity through the material, which was near the speed of
sound in the material. Roberts & Wells (1954), Berry
(1960), and Dulaney & Brace (1960) found shortcomings in
the pioneering formulation of Mott. Their work reduced the
crack velocity to 38% of the sonic velocity for a Poisson’s
ratio of one-fourth.

These studies indicate that a crack will form in a solid in
very little time. Consider this account from Swithinbank
(1999, p. 96) reporting the formation of a new crevasse on
an ice shelf in Antarctica: “As I was hammering in a tent
peg, there was an alarming splitting sound that lasted
seconds, rose in a crescendo, and ended with a crack like a
rifle shot. I leapt away thinking that I had broken the snow
bridge over a crevasse. I must have initiated a crack which
then propagated because the surface was under tension.
Next morning I found a 2 millimetre wide crack extending
35 metres from the tent peg that had given me a moment of
terror.”

Our contribution to crack propagation in ice shelves by
brittle fracture is based on this observation by Swithinbank
(Kenneally & Hughes 2004).

Pioneering work in ductile fracture

There are limitations to the use of linear elastic fracture
mechanics in describing actual processes. In particular,
stress is infinite at the crack tip, whereas ductile
deformation occurs at the crack tip and imposes a finite
yield stress.

An alternate yet equivalent treatment of crack formation

in a crystalline solid is based on dislocation theory, which
makes use of the ductile zone. The problem is analysed by
considering a build-up of dislocations in a system. Where
fracture mechanics considers that the stresses at a crack tip
become infinite, dislocation theory treats the infinite stress
build-up as a collection of discrete dislocations at the crack
tip and along the crack surface. When used in conjunction
with linear elastic fracture mechanics, where the depths of
crevasses in ice were determined, a more complete picture
of crevasse formation is obtained. The results show that
newly formed crevasses in ice are actually quite benign, and
dangerous crevasse fields appear only after ductile
deformation of the ice due to creep processes. Since ductile
fracture by dislocations is rather new to studying calving of
icebergs, the basic approach will now be reviewed and then
extended.

The Burgers vector defines a dislocation mathematically,
when an edge dislocation distorts a crystalline solid, as
illustrated in Fig. 2. This is consistent with the Griffith-
Inglis crack. When a large number of dislocations are
present within a solid, the collection of Burgers vectors can
be represented by a distribution function B(xi) where xi can
be either x, y, or z. The total Burgers vector of dislocations
located between xi and xi + δxi is B(xi) δxi. The total
displacement across a crack plane when dislocations pile up
at xi can then be written as:

since the net displacement is the total Burgers vector. The
traction stress at xi produced on the plane of a discrete
dislocation Burgers vector located at is (Weertman
1996): 

where G is the shear modulus and αj is dependent on the
type of dislocation being considered (j = e for edge
dislocations and j = s for screw dislocations). If the total
distribution of the Burgers vector can be written as B(xi) as
defined earlier, then the stress is:

The inverse of Eq. (3) is:

Equations (3) & (4) are Hilbert transforms of one another.
An explicit form for the dislocation distribution given in the
pioneering work by Muskhelishvili (1953) is:
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Fig. 2. Illustration of a dislocation and Burgers vector b. The
lattice is distorted the dislocation ⊥, causing a displacement b to
the right. Overall displacement bT results from a number of
individual dislocations.

(1)

(2)

(3)

(4)

(5)



where the distribution is defined to exist between the points
- c < xi < c and is zero at all other points. The stress in
regions where |xi| > c is given as:

With these expressions, the dislocation density and stress
are known everywhere along the crack plane. The term c
must satisfy the following relations (Weertman 1996):

In these relations, bT = bR + bL is the net Burgers vector of
all dislocations, bR is the net Burgers vector in the region 
0 < xi < ∞ and bL is the net Burgers vector in the region 
– ∞ < xi < 0.

Explicit forms for the solutions to Eqs (5) & (6) are given
in pioneering work by Weertman (1996) for the case of an
infinite stress at the crack tip. Using his convention, the
following relations for “mean stress” from +a to –a in the
crack plane are defined for notational convenience (in the
limit c → a, the crack length):

With these definitions, Eqs (5) & (6) can be written as:

and 

2 2 2 2
– .

2– –
i i T

A A B
i ji i

x x G a
x aa x a x

bσ σ σ
α π

⎡ ⎤⎛ ⎞
⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( ) ( )
( )

2 2

2 2

– ' '

– ' –

ai i ii
i a

i i i i

a x x dxxx
x x x a x

σ
σ

π −
= ∫

2 2 2 2

2
2– –

j i T
A B

ji i

x G a
G aa x a x

bα
σ σ

α π

⎡ ⎤⎛ ⎞
⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( ) ( )
( )

2 2

2 2

2 – ' '
–

– ' – '

aj i i i
i a

i i i

a x x dx
B x

G x x a x

α σ
π −

= ∫

( )
2 2

1– .
–

a i i i
B a

i

x x dx
a a x

σ
σ

π −
= ∫

( )
2 2

1–
–

a i i
A a

i

x dx

a x

σ
σ

π −
= ∫

( ) ( )i i

2 2–
i

x dx –
.

2c – x

c i R L

c
j

x G b bσ
α

=∫

( )i i

2 2–
i

x dx
2c – x

c i T
c

j

x Gbσ
α

=∫

( )i i

2 2–
i

x dx
0

c – x

c

c

σ
=∫

( ) ( )
( )

2 2

2 2–

– ' '
– .

– ' – '

ci i ii
i c

i i i i

x c x dxxx
x x x c x

σ
σ

π
= ∫

Using the relation given by Eq. (1), the displacement can be
solved as a function of depth into the material (or length in
the map plane) up to a maximum dictated by the overall
depth (or length) of the crevasse. All that remains is to
determine the functional forms for Eq. (8) and plug these
into Eq. (9) so that the integral in Eq. (1) can be evaluated.

As illustrated in Fig. 3, Weertman (1996) defines an
“image” crack of height L located exactly above a real crack
penetrating a depth L into the ice. The “image” crack is also
real for transverse crevasses. The real and imaginary
crevasses are then subjected to an applied stress:

where σ is the deviatoric tensile pulling stress in the glacier
and ρi g|z| represents the ice overburden pressure, taken as
linearly increasing with depth, which will be amended later
to take into account variations of the ice density with depth.
The absolute value of z is necessary to insure proper
symmetry. This applied stress is inserted into Eq. (9) with a
change of variables appropriate to a more intuitive
coordinate system, i.e. vertical direction z in the direction of
crack growth:
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Fig. 3. Illustration of an image crevasse situated directly above a
real crevasse of depth L. The image crevasse also contains
image dislocations, which are equal in number and opposite in
orientation to the real dislocations, ⊥. In the map plane, L is the
length of a longitudinal crevasse and 2L is the length of a
transverse crevasse.

(6)

(7a)

(7b)

(7c)

(8a)

(8b)

(9)

(10)

(11)

(12)



In this expression, σ (z’) = – σapp(z'), the net Burgers vector
bT = 0 (the image crevasse cancels all contributions from the
real crevasse), σj = σe = 1 – υ for edge dislocations
illustrated in Fig. 2 (where υ is Poisson’s ratio)  and 
are

The dislocation distribution is obtained by inserting Eq. (11)
into Eq. (12) and the displacement of the crevasse is found
by then inserting Bx(z) into Eq. (1) and integrating.

The dislocation distribution is found to be:

The displacement is then:

where  and .
In this constant density model, the total depth to which

the crevasse penetrates is found by solving for L in the
relation given by Eq. (13a):

The typical value for the tensile stress σ 1 bar (0.1 MPa) is
used and the density of ice is ρI = 917 kg m-3. A value of 0.3
is taken for Poisson’s ratio υ and the shear modulus G is 
3.6 GPa (Simmons & Wang 1971). The stress intensity
factor (SIF) at the tip of the crevasse is , the
SIF for the simple case of a crack with length 2L contained
in a solid. Writing this relation in terms of the critical stress
intensity factor Kc (taken here as 0.1 MPa·m1/2) and
inserting it into Eq. (16) yields a value L ≈ 15 m. When this
total depth is inserted into Eq. (15) this yields a maximum
opening width Dx(0) of only 0.33 mm!

Weertman (1996) used a constant ice density in his
calculation of the stress acting on a crevasse. For most
glaciological applications Eq. (17) shows how density
increases with depth, with constant C determined by field
observation for densities ρi and ρS of ice and surface snow,
respectively (Paterson 1994). 

The applied stress at a depth z will now be (with absolute
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values still required to preserve symmetry between the real
and imaginary crevasse):

This new stress needs to be inserted into the relations given
by Eqs (8) & (9), which can then be integrated to yield a
new displacement function Dx(z).

By inspection it can be seen Eq. (8b) will be zero, since
the integration is done for an odd function over a symmetric
range. The mean stress still needs to be calculated.
Integration of the first two terms on the right hand side of
Eq. (18) is trivial, but the third term presents more
difficulty. In its current form, the integral:

cannot be analytically determined. However, maximum
penetration depths of crevasses are on the order of tens of
metres and C is on the order of 0.02. This means the
argument of the exponential will be on the order of 0.2,
which is small enough that a series expansion of few terms
is a valid approximation:

with all terms greater than O(z2) ignored. The explicit form
for the mean stress is then:

The new stress Eq. (18) is inserted into Eq. (9) to yield:

The first two terms on the right hand side of Eq. (22) are the
same as the terms in the Weertman constant density model
distribution, Eq. (14), with the only difference being ρi → ρs
in the second term. The last term is a correction to take into
account the variation of density with depth. Finally, to get
the lateral width of the crevasse as a function of depth z, 
Eq. (1) is utilized, with z replacing x:

The final form for Dx(z) is:
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which will be considered a valid approximation for crevasse
depths L ≤ 35 m. The maximum depth L is taken from
earlier calculations in linear elastic fracture mechanics.
Again, the maximum width of the crevasse Dx, max = Dx(0) is
quite small; a crevasse of depth 25 m only opens to 0.38 mm
at the surface (Kenneally & Hughes 2004). The relationship
between the maximum crevasse opening at the surface and
the depth of the crevasse is shown in Fig. 4 for the cases of
constant and increasing density with depth. The width of the
crevasse measured by Swithinbank (1999), soon after he
caused its formation, was on the order of 2 mm. The model
derived in this section using dislocation theory may have
shortcomings but it seems to be validated by Swithinbank’s
field evidence.

Combining brittle and ductile fracture

Denoting the stress perpendicular, or normal, to the
cracking plane with the subscript N allows us to write for
ice, following Barnby & Nicholson (1977):

where KI is the stress intensity factor for a tensile crack and
σN is considered to be transient at a fixed total strain.

Steady-state values of the stress were determined by
Barnby & Nicholson (1977) to be inversely proportional to
z, specifically:
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where n in our application is the exponent in the flow law
for creep of ice (Glen 1955):

When the flow law is written in integrated form, strain rate
produces strain ε in time t and softness constant A

becomes a time-dependent hardening variable A’=Atm,
where m = 1/3 for transient creep and m = 1 for steady-state
creep. Then Eq. (27) can be written as a strain hardening
law, with strain hardening taking place mainly during
transient creep:

The relationship between n for creep and n for strain
hardening is discussed by Hughes (1998, pp. 119–138 &
196–200). Both processes have comparable values of n
during transient creep and unstable steady-state creep just
prior to recrystallization in ice.

Thus far, the analysis has dealt with the creep-induced
stresses in the material. To connect the steady-state ductile
solution with the elastic solution, it is assumed that the
stress at all points ahead of the crack tip relax in a ductile
manner from the elastic solution via the relation (Barnby &
Nicholson 1977):

where σε is the strain energy and Q is some constant, see
Fig. 5. This assumption results in a mathematical
connection between the elastic stress-strain curve and the
steady-state ductile curve: 

where the subscript E denotes the elastic situation. The

E E ss ssσ ε σ ε=

2Qσε =

' nAε σ=

ε!

.nAε σ=!
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Fig. 4. Comparison of the two solutions describing maximum
crevasse opening displacement with crevasse depth.

Fig. 5. Illustration of the relaxation relation. The elastic stress-
strain curve (straight solid line) and the strain hardening stress-
strain curve (curved solid line) satisfy points on the hyperbola
(dashed line) defined by the strain energy relation in Eq. (29).
The hyperbolic σε curve intersects the elastic σE, εE and strain
hardening σss, εss curve, when the elastic and ductile strain
energies (shaded areas) are equal, see Eq. (30).

(25)

(26)

(27)

(28)

(29)

(30)

(24)



elastic stress is given by Eq. (25). Recasting the form of 
Eq. (28) as εss = , the integrated form of the flow law
for ice with the time dependence contained in the variable
A’, and employing Eq. (30) gives:

Since σE = EεE for elastic Young’s modulus E (Hooke’s
Law):

Substituting the elastic normal stress from Eq. (25) gives:

which is the final form given by Barnby & Nicholson
(1977):

This result gives the steady state distribution of the stresses
ahead of a crack tip. It displays the correct dependence on z
shown in Eq. (26) and it includes parameters for both elastic
(E, K) and ductile , material properties (Hutchinson
1968, Rice & Rosengren 1968, Barnby & Nicholson 1977).

A new crack growth law

The original treatment of crack growth was by Barnby &
Nicholson (1977) with a correction and modification by
Evans (1984). Consider the HRR (Hutchinson, Rice, and
Rosengren) stress fields of a strain hardening ductile
material (Hutchinson 1968, Rice & Rosengren 1968). The
results derived in these papers give the normal stress fields,
normal in relation to the plane along which the crack is
propagating, as :
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ssA σ where C* is related to the energies contained in the stress

fields. For a pre-existing crack of depth h in a solid of
thickness H, width W, and infinite length, as shown in 
Fig. 6, the net load F that acts on the uncracked portion of
the solid can be written as:

where the normal stress σN(r) is taken to be Eq. (34).
Substituting and carrying out the integration with r → z, the
force is: 

From Eq. (34) with σss = σn, Eq. (37) becomes:

The net stress on the uncracked portion is force F acting on
uncracked area (H – h) W:

Combining Eqs (38) & (39) gives:

which relates the normal stress field ahead of the crack tip to
geometric properties of the system and the strain hardening
exponent. These are readily available.

For practical applications of this formula, consider the
case of a single “blunted” edge crack in the solid (Evans
1984). A blunted crack is defined as a crack where the two
faces do not meet in a sharp point; rather, they are joined by
a ligament of some length (Fig. 7). This allows an explicit
form for the crack growth rate to be determined. If the
length of the ligament is φ, and the critical ligament length
is given by:
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Fig. 6. Geometry of the system for Eq. (36). Fig. 7. Blunted crack tip and variables to describe the geometry as
defined by Evans (1984).
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(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)



where εf is the failure strain of the ligament, one can
differentiate and determine the critical ligament
displacement rate to be:

where the variable dc is the distance from the blunted end of
the crack tip to the point where the two faces would
normally intersect as a sharp edge. The flow law for creep
given by Eq. (27), with σ = σN given by Eq. (40) when z =
dc, can be substituted into Eq. (42) to get:

The variable dc is a controlling quantity that determines
exactly how far the crack will grow in each time increment.
Assume that the crack will propagate forward a distance dc
when the stretched length of the ligament acquires the
critical value φc. The crack is not only getting longer, but
also wider. With this assumption a rate of crack growth can
then be defined, using similar triangles, as:

Recognizing that:

and substituting Eqs (44) & (45) into Eq. (43), the final
crack growth rate law is determined to be:

An explicit form for crack length as a function of time can
now be obtained. Rewrite Eq. (46) in the form:

where the variable k has been introduced as:

Integrating both sides with explicit limits:

gives the analytical solution:

Equation (50) is valuable if only for its simplicity,
considering the analysis that was employed.
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c fφ ε φ= Applications to ice shelves

The longitudinal thickness profiles determined by Van der
Veen (1999) for ice shelves can be related to distance x from
the ice-shelf grounding line, where top and bottom
crevasses can be nucleated when ice velocity increases as
grounded ie becomes afloat. The simplest expression for ice
velocity U(x) at time t, where t = 0 at x = 0, is:

where mass-balance equilibrium requires that for U0 and H0
at x = 0:

Here a constant mass balance M is positive for
accumulation and negative for ablation. Combining Eqs
(51) & (52):

Equation (50) is modelled for a linear ice shelf of length L.
A basal crack of length l starts with length l0 at the
grounding line, where δU/δx is greatest, at time t = 0. The
crack will grow in the vertical direction as it propagates
horizontally with velocity U(x), the velocity of the ice shelf.
Parameters to be used in the model include grounding-line
values of thickness Ho = 1000 m and velocity Uo = 250 m
yr-1. The ice softness parameter A for n = 3 is taken to be 6.8
x 10-24 Pa-3 s-1 for T = 0°C in water-filled crevasses
(Paterson 1994). A failure strain εf = 0.4, the
recrystallization strain of ice, is chosen (Hughes 1998).
Assume for simplicity that a surface crevasse of depth a
forms directly above the basal crevasse and is filled with
meltwater deep enough to eliminate hydrostatic pressure
from the solution. From fracture mechanics arguments, the
initial length of the basal crack is taken to be 21 m and the
depth of the surface crevasse is 32 m. The difference arises
from using a lower value for the fracture toughness of ice at
the surface versus the base, see Rist et al. (1996, 1999). A
quantity δH is defined to be δH = H – l(t) – a and that time
tmeet is achieved when δH = 0.

The longitudinal tensile stress caused by gravitational
spreading of an ice shelf is (Thomas 1973a, 1973b):

where x and y are respective longitudinal and transverse
strainrates and σc is a compressive back-stress caused by
side shear in an ice shelf confined in an embayment. If the
sides are parallel, y = 0 and σc is given by the force
balance for an ice shelf of length L from the grounding line
to the calving front:

for ice-shelf thickness H and width W at distance L – x from
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the calving front, over which distance is the average ice
thickness and xy is the average side  shear stress. This was
treated by Kenneally & Hughes (2004), and is not revisited
here. Equation (55) shows that maximum σc is at the
grounding line (x = 0) and zero at the calving front (x = L).
Values of σc for the Ross Ice Shelf were determined by
Thomas & MacAyeal (1982).

Ice-shelf profiles derived by Van der Veen (1999) for
three mass balances, M = 0, M = 1 m a-1, and M = -1 m yr-1,
and σxy = 0 were used to obtain H(x) for Uo = 250 m yr-1.
Equation (50) for the ductile fracture model was then solved
for a range of values of dc (the measure of the bluntness of
the crack tip). The time tmeet and distance Lmeet from the
grounding line to the point where the crevasses join are
summarized in Table I. 

It can be seen from these results that, as dc increases, the
accumulation rate, and therefore the ice-shelf profile,
becomes less important in determining the time it takes for
the cracks to meet.However, even though dc increases by a
factor of 50, the time to meet only decreases by a factor of
two. The effect of the parameter dc in determining the rate at
which cracks grow is minimal, which is encouraging since
determining an actual value for this parameter is difficult at
best.

When the analysis dealt solely with elastic fracture
mechanics as the rate-determining factor, it was shown that
elastic cracks propagate through ice at velocities
approximating the speed of sound. Our analysis for ductile
cracks in ice shelves produces cracks that propagate to
complete fracture in 20 to 50 years over a distance of 5 km
to 12 km from the grounding line. This, of course, ignores
reduced crack propagation rates as water freezes onto cold
crack walls.

Conclusions

Calving of giant icebergs from ice shelves and ice streams
that fringe and drain the marine West Antarctic Ice Sheet
has proliferated in this decade. As a consequence, the
northern, eastern, and western margins have sustained
reduced buttressing, and increased lowering of interior ice

σ
H

elevations has been reported (Bindschadler 1997, Shepherd
et al. 2001, Zwally et al. 2002). A selective review of linear
elastic fracture mechanics, following Griffith (1920, 1924),
and dislocation based fracture mechanics, following
Weertman (1996), has led to a steady-state distribution of
stresses at a crack tip that depends on both elastic and
ductile properties of a crystalline material, and that provides
a growth law for the growth of cracks. This law is applied to
a typical Antarctic ice shelf and ice stream, with crack
initiation caused by longitudinal tension when velocity
increases as grounded ice becomes afloat. This allows
simultaneous nucleation of both top and bottom cracks that
then grow toward each other and release a giant iceberg
when they meet. Typical sizes of icebergs are 5 to 12 km in
longitudinal length. This crack spacing seems to be tied to
the time needed to fracture the whole ice thickness, as if
tensile stresses propagate existing cracks to complete
fracture before they open new cracks. They are released
every 20 to 48 years. These results are only approximate,
since freezing rates of water in crevasses, ice-shelf
geometry, and constraints on shelf flow are not considered.
In addition, release of giant icebergs also requires
intersection of longitudinal and transverse crevasses, not
just their vertical propagation through the ice thickness.
Propagation and intersection of these crevasses entails only
removal of the stress intensity factor for the ice overburden
pressure in the analysis presented here, but their faster
propagation rates must travel greater distances than for
slower vertical crack propagation.

Without formal proof, our work encourages us to propose
a General Principle of calving of giant icebergs. The
externally applied gravitational tensile stress in an ice shelf
is increasingly magnified in the shrinking cross-section of
ice between advancing top and bottom crevasses, thereby
preventing new tensile crevasses from opening until
complete fracture occurs when the top and bottom crevasses
meet so that the strain energy becomes redistributed through
the whole ice thickness near or at the location where the
crevasse first opened. This location will be a distance from
the fully fractured ice determined by the ice-shelf velocity
and the time needed for top and bottom crevasses to meet. If
the top crevasse is not filled with water, this advance is
slowed as the ice overburden pressure increases at the top
crack tip. Being not affected by ice overburden pressure,
propagation of transverse and longitudinal tensile cracks
will continue to advance in the plane of the ice shelf until
they intersect other longitudinal and transverse crevasses.
When the top and bottom crevasses meet for these
intersecting crevasses, a giant tabular iceberg will be
released from the ice shelf.
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Table I. Summary of results for three different ice sheet profiles and a
range of values dc.

dc M tmeet Lmeet
(m) (m yr-1) (yrs) (km)

0 47.6 11.9
0.1 1 48.2 12.0

-1 46.5 11.6
0 29.1 7.3

1 1 29.2 7.3
-1 28.6 7.2
0 20.1 5.1

5 1 20.6 5.1
-1 30.7 5.1
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