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Abstract: To understand changes in habitat selection in response to timber harvesting, we used 

radio-telemetry data from 82 adult wood frogs (Lithobates sylvaticus, formerly Rana sylvatica) 

and logistic regression modelling to assess habitat selection in response to an unharvested control 

and 3 forest management techniques: clearcutting (with removal of all merchantable timber > 10 

cm diameter), clearcutting with coarse woody debris (CWD) retention, and partial harvesting 

with retention of ~50% canopy cover. At the home range scale, frogs selected the partially 

harvested treatment in spring 2005 and avoided the CWD-retained treatment in fall 2006. Frogs 

spent 5 ± 2 d (mean ± SE) longer in forested treatments than in both clearcut treatments, but 

certain individuals were able to specialize on the clearcut treatments. At the weekly activity 

centre scale, the best-supported models indicated that frogs were more likely to occupy locations 

with more complex ground structure, especially coarse woody debris, warmer temperatures, 

moister substrates, and greater canopy cover than random. Resource use among frogs overlapped 

substantially at both the weekly activity centre and daily microhabitat scales. Frogs selected daily 

microhabitats with more complex ground structure, greater canopy cover, and moister substrates 

than random. Selection at coarser scales may be mechanistically linked to finer scale resource 

selection by the physiological processes of thermos and hydro-regulation. Our results support 

recommendations for minimizing the impact of logging by retaining coarse woody debris in 

clearcuts and partial harvesting with retention of ~50% canopy cover. 

 

Keywords: changing resource availability, conditional logistic regression, forest, logging, 

resource selection. 
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Introduction 

A major premise of ecological theory is that animals select habitats that maximize their 

individual lifetime fitness by influencing reproduction and survival (Fretwell & Lucas, 1970). 

Further, the quality, or fitness potential, of a habitat is the effect of this habitat on an 

individual’s survival and reproduction (Coulson et al., 2006). Factors that influence fitness 

potential include behavioral interactions with conspecifics, predators, and prey and avoidance of 

physiological stress. 

The mechanisms underlying fitness potential of a habitat are tied to the ways in which 

habitat affects the physiology and morphology of an animal at key points in its life (Lauck, 

2005). Animals that exploit transient habitats (e.g., ephemeral ponds) typically have a high 

degree of phenotypic plasticity in correlates of fitness (e.g., body size, timing to key 

developmental points; Rudolf & Rödel, 2007). Although this plasticity may allow an individual 

to survive in multiple habitats, plasticity can have costs. For example, among wood frog tadpoles 

(Lithobates sylvaticus, formerly Rana sylvatica) living in the absence of Anax sp. dragonfly 

predators, individuals with greater plasticity for muscle depth and muscle width had lower 

survival, whereas individuals with greater plasticity for tail length, body depth, and activity had 

greater survival (Relyea, 2002). Measuring plasticity in individuals in multiple habitats can 

contribute toward an understanding of the mechanisms underlying habitat selection and the costs 

associated with plasticity.  

Individual variation in behaviour is relevant to many evolutionary and ecological processes 

(Bolnick et al., 2003), and different individuals can value resources differently. Valuation of a 

resource (measured through use) depends on availability to that individual and on perceived risks 

of negative interactions with conspecifics, competitors, and predators. Individual variation can 
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allow some animals to exploit sub-optimal environments, although theoretical models and 

empirical results indicate that this behaviour should incur fitness costs (Fretwell & Lucas, 1970; 

Bolnick et al., 2003).  

Habitat selection can be thought of as a hierarchical process that can be measured along a 

continuum of spatial scale (Boyce, 2006), and behavioural selection of different resources might 

be a mechanism for maximizing fitness. For example, small bluegills (Lepomis macrochirus) 

living in the presence of largemouth bass (Micropterus salmoides) reduced predation risk by 

selecting highly vegetated areas (Werner et al., 1983). A habitat component that is highly 

selected at a fine scale might be unused if it is located in an environment without all other 

requirements for that organism (e.g., Ciarniello et al., 2007). For measurement purposes, this 

continuum of spatial scale has been broken into 4 orders of selection corresponding to the spatial 

habitat use of the study animal. First-order selection occurs at the spatial scale of the geographic 

range, 2
nd

-order selection occurs at the home range, 3
rd

-order selection occurs within the home 

range, and 4
th

-order selection is selection for micro-habitats (Johnson, 1980).  

Pond-breeding amphibians are ideal for studying the link between changes in habitat and 

mechanisms underlying habitat selection. Amphibians are sensitive to local environmental 

changes because they have the following traits: ectothermy; moist, permeable skin, eggs, and 

gills; a requirement for both aquatic and terrestrial environments; a high degree of philopatry and 

site fidelity; and relatively small home ranges and limited dispersal ability (reviewed by Lauck, 

2005). Habitat changes can modify amphibian community composition and can lead to decreased 

fitness in some amphibian species (deMaynadier & Hunter, 1995; Patrick, Hunter & Calhoun, 

2006; Werner et al., 2007). For example, wood frogs had lower survival in areas harvested for 

timber compared to unharvested areas (Rittenhouse, Semlitsch & Thompson, 2009). However, 
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the mechanisms causing these community-level changes are poorly understood (Semlitsch et al., 

2009), and changes in individual behaviour may be one, albeit poorly explored, mechanism.  

Determining mechanistic relationships between behavioural responses of amphibians and 

habitat changes may be complicated because habitat quality for amphibians may be weather-

dependent (Timm, McGarigal & Compton, 2007). For example, movements of red-legged frogs 

(Rana aurora) through clearcuts were influenced by temperature and precipitation (Chan-

McLeod, 2003). Also, an inter-annual increase in abundance of western red-backed salamanders 

(Plethodon vehiculum) in a thinned forest was attributed to increased annual precipitation 

(Grialou, West & Wilkins, 2000). This relationship between habitat quality and weather may 

invalidate indirect measures of habitat quality (e.g., relative abundance, density; MacKenzie & 

Kendall, 2002). However, measuring the response of individuals creates a direct link between an 

individual’s behaviour and the habitat characteristics and weather conditions experienced by that 

individual at a specific time and thus will incorporate individual variation in resource use and 

availability (Aebischer, Robertson & Kenward, 1993).  

We conducted a study to link changes in habitat to changes in individual behaviour in wood 

frogs within replicated forested environments managed for timber production. We used radio-

telemetry data to assess habitat selection by adults at 3 scales in response to an unharvested 

control and 3 forest management strategies: clearcutting, clearcutting with coarse woody debris 

retention, and partial harvesting with 50% canopy retention. We tested for selection and 

individual variation in use of the treatments at the seasonal home range scale. We used an 

information-theoretic approach to evaluate 26 hypotheses about how frogs would respond to 

timber harvest and environmental variables at the weekly activity centre scale and 7 hypotheses 

about how frogs would respond to these variables at the daily micro-habitat scale. Generally, we 
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hypothesized that the selection of the forested treatments would be highest and wood frogs 

would select for cool, moist locations with canopy cover.  

 

Methods 

 

Study area and experimental timber-harvesting arrays  

 

We used experimental timber-harvesting arrays that incorporated an unharvested control 

(unharvested forest stand; hereafter “unharvested”) and 3 common forest management strategies 

(clearcut with coarse woody debris [CWD] removed [“CWD removed”], clearcut with CWD 

retained [actual retention 45.6 ± 21.6 m
3
·ha

–1
, mean ± Se; “CWD retained”], and partial harvest 

with 50% canopy closure [actual 53.0 ± 33.5%; “partial”]). For comparison, canopy cover in our 

control was 73.8 ± 22.7%, and the partial, CWD removed, and unharvested treatments had 

residual CWD densities of 33.9 ± 7.3, 12.7 ± 7.5, and 22.9 ± 11.8 m
3
·ha

–1
, respectively (Patrick, 

Hunter & Calhoun, 2006). The experimental arrays were located on the university of Maine 

Dwight B. Demeritt and Penobscot experimental Forests (Penobscot County, Maine, USA, 44° 

50' n, 68° 35' W) and replicated 4 times. Each array was a 164-m radius circle centred on a ~ 80–

530-m
2
 vernal pool, with the treatments constituting four 2.1-ha sectors around the pool (Figure 

1). The 4 treatments were randomly placed with the exception that the partial treatment was 

always across the pool from the unharvested treatment (see Patrick, Hunter & Calhoun, 2006 for 

a complete description of the arrays and harvests). Harvesting occurred from November 2003 to 

April 2004. 
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Wood frog habitat relationships  

 

The habitat needs of wood frogs vary with season (Baldwin, Calhoun & deMaynadier, 2006; 

Rittenhouse & Semlitsch, 2007). Breeding habitat typically is vernal pools, but also includes 

other still, fish-free waters such as backwater stream pools, bog pools, and anthropogenic road-

side ditches (Karns, 1992; Redmer & Trauth, 2005). in late spring and early summer, adults 

disperse from breeding sites into moist habitats such as marshes, bogs, stream drainages, and 

forested wetlands (Heatwole, 1961; Mazerolle, 2001), and the distance and timing of post-

breeding dispersal depends on availability of such habitats (Baldwin, Calhoun & deMaynadier, 

2006, Rittenhouse & Semlitsch, 2007). However, adults exhibit breeding site fidelity and tend to 

remain in a restricted area (Redmer & Trauth, 2005). For example, the mean distance moved was 

11.2 m(n = 298) between captures with home range sizes from 2.9 to 368.3 m
2
 (mean = 64.5 m

2
) 

during the post-breeding season in Minnesota (Bellis, 1965). During the post-breeding season, 

presence of wood frogs was positively correlated with deciduous leaf litter, extensive ground 

cover (e.g., tall herbs/shrubs/grasses), and moist soil in the boreal forest of Alberta, Canada 

(Constible et al., 2001) and forested, ephemeral drainages in Missouri (Rittenhouse & Semlitsch, 

2007). in southern Maine, wood frogs selected moist Sphagnum-dominated hummocks and leaf 

litter retreats on the margins of pools, and summer refugia were shaded, moist, Sphagnum-

dominated microhabitats (Baldwin, Calhoun & deMaynadier, 2006). Wood frogs can tolerate 

freezing, and hibernacula generally are in upland forests with moist or dry soils under 

decomposing logs, stumps, leaf litter, rocks, and thick accumulations of moss (Redmer & Trauth, 

2005).  

All life stages of wood frogs are sensitive to the edges and reduced canopy cover created by 
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timber harvesting in the eastern united States (deMaynadier & Hunter, 1998; Werner & 

Glennemeier, 1999; Patrick, Hunter & Calhoun, 2006). in our experiment, we expected wood 

frogs to avoid both clearcut treatments because of their low thermal tolerance and preference for 

forested environments (Heatwole, 1961; Bellis, 1965; Feder & Burggren, 1992). Additionally, 

we expected frogs to select areas with greater percent canopy cover within the forested 

treatments (Baldwin, Calhoun & deMaynadier, 2006).  

 

Habitat selection study  

 

We collected data and analyzed habitat selection at 3 spatiotemporal scales: 2
nd

-order 

selection (seasonal home range), 3
rd

-order selection (weekly activity centre), and 4
th

-order 

selection (daily microhabitat) (Johnson, 1980; Boyce, 2006). We tracked 40 adult wood frogs 

during 3 May – 7 June 2005 and 32 adults during 30 September – 7 November 2006. 

Additionally, we tracked 10 adults during 24 September – 13 October 2004 in a pilot study to 

determine which habitat variables had substantial variability for analysis and to determine 

general movement patterns. We tracked 3 females and 7 males in fall 2004 (47 ± 5 mm Snout-

Vent Lenght, SVL [mean ± SD]; 11.8 ± 3.1 g), 18 females and 22 males in spring 2005 (48 ± 4 

mm SVL; 8.6 ± 1.8 g), and 16 females and 16 males in fall 2006 (46 ± 3 mm SVL; 13.8 ± 3.6 g). 

We tracked individuals only early and late in the activity season because this allowed us to assess 

migrations to summer habitat and hibernacula (Baldwin, Calhoun & deMaynadier, 2006). in the 

spring, we captured these individuals as they emerged from breeding pools by hand, dip net, and 

pitfall trap (see Patrick, Hunter & Calhoun, 2006 for a description of drift fences and pitfall 

traps). in the fall, frogs were captured by hand, dip net, and pitfall trap in or near experimental 
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arrays (<~300 m from the central breeding pool), and we used only animals that were of known 

breeding size (> 40 mm SVL). We assumed we would not bias movement patterns of animals by 

moving them to arrays in the fall because adult frogs will remain within 340 m of the breeding 

pool during the remainder of the activity season in Maine (Baldwin, Calhoun & deMaynadier, 

2006; R. Baldwin, pers. comm.).  

We fit each individual with a radio-transmitter (BD-2 model, 0.9-g, 14-cm external whip 

antennae, 40-d battery life; Holohil Systems, Carp, Ontario, Canada) with elastic thread beaded 

with glass beads snug enough to prevent slippage over the rear legs when extended but not so 

snug as to constrict the skin (Blomquist & Hunter, 2007). We released individuals within each 

treatment ~10 m from the edge of the pool and equidistant from adjacent treatments, and we 

located each frog daily by homing during daylight hours with an R-1000 receiver 

(Communications Specialists, orange, California, USA) and yagi antenna. We placed a pin flag 

next to the frog location to ease subsequent relocations and marked all movements > 15 cm with 

a flag. if a frog could not be located visually for 5 consecutive days, we triangulated its position 

and confirmed the location and condition of the frog. if a frog was found dead or the transmitter 

harness failed, we removed the relocations since the last visual observation of the frog. Dead 

frogs were collected and frozen for later analysis (S. Blomquist, unpubl. data). We mapped each 

movement with a compass and tape measure from known locations in each experimental array.  

 

2
nd

-order habitat selection (seasonal home range)  

 

We used ArcGIS (version 9.3, environmental Systems Research institute, Redlands, 

California, USA) and Hawth’s Analysis Tools (available at 
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http://www.spatialecology.com/htools) to calculate 100% minimum convex polygon (MCP) 

seasonal home ranges, use, and availability of habitat to evaluate selection over the duration of 

the spring 2005 and fall 2006 tracking periods. We calculated a 100% MCP rather than a 95% 

MCP to estimate seasonal home range size for each frog that moved to at least 3 unique locations 

because removing 5% of the sampled points was not necessary for wood frogs during distinct 

portions of their active season (Baldwin, Calhoun & deMaynadier, 2006). We calculated 

availability of habitat for each frog by simulating 10 seasonal home ranges within the 

experimental array. Each simulated seasonal home range was identical in area and number of 

relocations to the seasonal home ranges for each frog. To yield the availability of habitat, the 

number of simulated relocations in each harvest treatment was averaged across the 10 simulated 

seasonal home ranges.  

We used analysis of variance (ANOVA) to test if home range size varied with season (spring 

2005, fall 2006), experimental array (Gilman, north Chemo, South Chemo, Smith), or sex (male, 

female). The seasonal home range sizes did not meet the assumption of normality (Kolmogorov-

Smirnov test D = 0.33, P = 0.010), so we transformed them with natural logs to attain normality 

(Kolmogorov-Smirnov test D = 0.08, P > 0.150) before conducting the ANOVA. We calculated 

a zero-centred selection index for each frog in each treatment,  

 

𝑠𝑖𝑡𝑓 = ln (
𝑥𝑡𝑓

𝑥𝑡𝑟̅̅ ̅̅
) 

 

where x
tf
 is the number of relocations for frog f in treatment t and x 

tr
 is the mean number of 

random points from the 10 simulated seasonal home ranges that fell in treatment t (i.e., use 

divided by availability; Aebischer, Robertson & Kenward, 1993). To test if this selection index 



12 
 

varied among the seasons, experimental arrays, or sexes, we used a Kruskal-Wallis H test or 

Mann-Whitney U test because these selection indices typically do not meet parametric assump-

tions (Manly et al., 2002). We used a sign test to verify if the mean selection index for each 

treatment deviated from zero.  

We tested for individual specialization in use of each treatment following the likelihood 

approach of Petraitis (1979). Briefly, this approach assumes that we can determine the 

probability that individual i’s resource use (the vector of n
ij
’s or p

ij
’s) was drawn randomly from 

the resource use distribution of the population (the vector of q
j 
’s). This multinomial probability 

can be compared to the maximum likelihood that the individual and population have the same 

resource use distribution. We used Petraitis’s (1979) correction for small sample sizes,  

 

𝑊𝑖 = ([
𝑞𝑖
𝑝𝑖𝑗

]

𝑛𝑖𝑗

)

1
𝑛𝑖𝑗

 

 

where n
i
 is the number of resources used by individual i. These metric ranges from 0 for 

specialists to 1 for generalists. We used the program IndSpec for this analysis (Bolnick et al., 

2002). We conducted all other statistical analyses in SAS (version 9.1, SAS institute, Cary, 

North Carolina, USA) with α = 0.05 and present means ± standard error unless otherwise 

specified.  

 

3
rd

-order habitat selection (weekly activity centre)  

 

We examined spatial and temporal independence of wood frog locations in a pilot study 

conducted in 2004. We estimated distances moved and timing of movements during this pilot 
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study and integrated existing information on behaviour of wood frogs to design our habitat 

sampling. A 26-m-radius circle included 75% of daily movements, and a 310-m-radius circle 

included the longest movement made by a wood frog in a week. We assumed random points 

within these distances were available to the frogs on a daily and weekly basis, respectively. 

Additionally, we estimated that frogs moved to new locations every 6–90 h (mean = 34 h) in the 

pilot study. However, wood frogs were primarily nocturnal, and most movements occurred at 

night (see also Heatwole, 1961; Bellis, 1965; Baldwin, Calhoun & deMaynadier, 2006; 

Rittenhouse & Semlitsch, 2007; T. Rittenhouse, pers. comm.). We assumed daily locations were 

independent and that remaining in the same location on successive days represented choice. if 

this assumption is invalid, our sampling procedure would overestimate the importance of 

variables that were characteristic of locations where frogs remained for multiple relocations 

(Erickson et al., 2001).  

We evaluated habitat use and availability using 12 variables (Table I) collected at the centre 

of a 1-m
2
 hexagonal plot centred on the frog or random location. We chose these variables based 

on previous work on habitat relationships, the ecology and physiology of wood frogs and other 

anurans, and the pilot study. We measured percent cover variables because other species of 

amphibians selected habitat based on surrounding vegetation and ground structure (e.g., Griffin 

& Case, 2001), and temperature and moisture variables may be important because of the 

permeable skin and poikilothermic nature of amphibians (Feder & Burggren, 1992). To assess 

habitat availability at the weekly activity centre scale, every 6
th

 day we collected data from 5 

random locations within a 26-m-radius circle positioned 50–310 m from the frog location. We 

chose the centres of each random weekly activity centre in ArcGIS, and if they overlapped, we 

reselected them to maintain independent samples of available habitat.  
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To assess habitat selection in weekly activity centres, we used conditional logistic regression 

to compare the mean habitat conditions at the frog locations over a 5-d period to the mean of the 

5 plots collected at the randomly positioned weekly activity centre. We used 2 strata (week [n = 

12] and experimental array [n = 4]) in this analysis to incorporate variability associated with the 

structure of our habitat sampling.  

We used an information-theoretic approach to evaluate competing hypotheses about habitat 

selection of weekly activity centres. To build our candidate model set, we considered plausible 

combinations of 12 variables and six 2
nd

order interactions to form 26 candidate conditional 

logistic regression models. We considered models that describe hypotheses about variation in 

the relationship among temperature (TE), moisture (SW, SP, LM, SM), and forest structure (CC, 

LI, SP, VC, SL, LD, CP, CD) variables based on the biology of wood frogs and other anurans. 

We also considered models that describe the ways our treatments (CC, LI, SL, LD, CP) may 

influence habitat relationships (Table I).  

The six 2
nd

-order interactions we considered when building our candidate model set (CP×TE, 

CP×SM, VC×TE, VC×SM, CC×TE, CC×SM) have been postulated by others. The presence of 

coarse woody debris is thought to provide thermal and hydric refugia for amphibians 

(deMaynadier & Hunter, 1995). Forest amphibian abundance and presence has been correlated 

with vegetation and other forms of ground cover (i.e., forest floor and understory structure), and 

this structure has been postulated to provide the appropriate thermal and hydric environments 

(Constible et al., 2001). Finally, canopy cover is also thought to provide the appropriate thermal 

and hydric environments (e.g., Baldwin, Calhoun & deMaynadier, 2006; Rittenhouse & 

Semlitsch, 2007).  

We used Akaike’s Information Criterion corrected for small sample size (AICc) and Akaike’s 
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model weights (ω) rank the 26 candidate models and select which model(s) best described 

selection of weekly activity centres. We considered models with the change in AICc (ΔAICc) < 2 

to be equally supported (Burnham & Anderson, 2002). If no model comprised ≥ 90% of the 

weight of the candidate model set, we used model averaging to derive parameter estimates from 

the top models that comprised a 90% confidence set (i.e., ≥ 90% of the model weight; Burnham 

& Anderson, 2002). We based our interpretation of the importance of each model on model 

weights and evidence ratios (ω
top model

/ω
i
). We based our interpretation of the importance of each 

variable on the descriptive ability of each variable (i.e., the 95% confidence intervals for the odds 

ratio did not overlap one).  

Prior to fitting conditional logistic regression models, we checked each of the possible 

variables for linearity and correlation with other variables to meet the assumptions of logistic 

regression (Hosmer & Lemeshow, 2000). Because canopy cover was basically a categorical 

variable based on a univariate plot of the lowess-smoothed logit, we defined a threshold for 

canopy cover at 60% for the weekly activity centre analysis (Hosmer & Lemeshow, 2000). 

Canopy cover was incorporated into the models as a categorical variable with 2 levels (< 60% 

and ≥ 60%). All other variables were linear, and no variables were highly correlated (all r < 0.6). 

We tested the goodness-of-fit of the global model (Burnham & Anderson, 2002). As described 

for the seasonal home range scale, we tested for individual specialization in habitat use following 

the likelihood approach of Petraitis (1979; Bolnick et al., 2002).  

 

4
th

-order resource selection (daily microhabitat)  

 

For each daily frog location, we gathered the same habitat data for frog locations and 
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paired locations. These paired locations were chosen based on a random compass bearing and 

distance between 1 and 26 m from the frog location; a 26-m-radius circle included 75% of daily 

movements in our pilot data set. Data at each paired location were collected < 15 min after 

collecting data at the frog location.  

To assess daily microhabitat selection, we modelled each frog individually. We only included 

frogs with ≥ 20 relocations for this analysis to ensure adequate sample size for model selection 

and parameter estimation. We used case-control logistic regression, a form of conditional logistic 

regression, to compare the relative selection made by individuals based on differences between 

the frog location (case) and the paired random location (control; e.g., Compton, Rhymer & 

McCollough, 2002).  

We used an information-theoretic approach to evaluate competing hypotheses about habitat 

selection of daily microhabitats. We developed 7 candidate models and constrained the 

maximum model size to 7 variables because of the small number of observations for each frog. 

The candidate models were based on plausible combinations of 14 variables (Table I). We 

considered models that describe hypotheses that the relationship among temperature (TE), 

moisture (SW, SP, LM, SM, RH), and forest structure (CC, LI, SP, VC, SL, LD, CP, CD, DC) 

variables could vary based on the biology of wood frogs and other anurans. We also considered 

hypotheses about how variables directly manipulated by our treatments (CC, CP) may influence 

habitat relationships (Table I). As described for the weekly activity centre scale, we ranked these 

7 models using AICc and ω, calculated variation in selection of these models, calculated model-

averaged parameter estimates, and based our interpretation of the importance of each model to 

the sample population of frogs based on average model weights and evidence ratios. Unlike at 

the weekly activity centre scale, we used the standardized parameter estimates (βs) for each 
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variable and frog to draw inferences about how habitat selection varied among individuals in the 

population. We calculated model selection uncertainty to investigate the variation in how 

individuals selected each model. We based our interpretation of the importance of each variable 

on cumulative model weights, evidence ratios, and the descriptive ability of each variable for 

frogs in our sample population (Burnham and Anderson, 2002; p. 167).  

To meet the assumptions of logistic regression, we defined thresholds for vegetation cover at 

30%, standing water cover at 40%, slash cover at 30%, and litter depth at 80 mm for the daily 

microhabitat analysis based on univariate plots of the lowess-smoothed logit (Hosmer & 

Lemeshow, 2000). These variables were incorporated into the candidate models as categorical 

variables with 2 levels each (< and ≥ threshold). All other variables were linear. As described for 

the seasonal home range scale, we tested for individual specialization in habitat use following the 

likelihood approach of Petraitis (1979; Bolnick et al., 2002).  

 

Results 

 

2
nd

-order habitat selection (seasonal home range) and use of harvest treatments  

 

Mean (± Se) seasonal home range size in spring 2005 (285 ± 94 m
2
) was smaller than in fall 

2006 (1317 ± 501 m
2
; Figure 2a; F1, 53 = 19.8, P < 0.001, n = 59), and frogs at the north Chemo 

experimental array had smaller seasonal home ranges (70 ± 25 m
2
; Figure 1e) than frogs at the 

Smith (1094 ± 497 m
2
; Figure 1c) and South Chemo (1020 ± 364 m

2
; Figure 1f) experimental 

arrays (Figure 2b; F3, 53 =6.1, P < 0.001, n = 59). Males (663 ± 254 m
2
) and females (856 ± 401 

m
2
) had similar size seasonal home ranges (F1, 53 = 0.1, P = 0.825, n = 59). Mean seasonal home 

range size was 751 ± 228 m
2
 (range 3–10 745 m

2
). These analyses were on log-transformed 
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home range sizes, but we present untransformed means.  

On average, frogs spent 14 ± 2, 16 ± 2, 10 ± 1, and 10 ± 1 d in the unharvested, partial, CWD 

retained, and CWD removed treatments, respectively. Frogs selected the partial treatment 

(sign test = 6.0, P < 0.001) in spring 2005 and avoided the CWD retained (sign test = 4.5, P = 

0.023) in fall 2006 (Figure 3; spring 2005: unharvested, sign test = 3.5, P = 0.144; CWD 

retained, sign test = 3.0, P = 0.180; CWD removed, sign test = 3.0, P = 0.238; fall 2006: 

unharvested, sign test = 1.0, P = 0.804; partial, sign test = 3.5, P = 0.092; CWD removed, sign 

test = 1.5, P = 0.549; n = 59). Selection varied by season (Mann-Whitney U1 = 2673.0, P < 

0.001, n = 59) but not by sex (Mann-Whitney U1 = 3100.5, P = 0.334, n = 59) or experimental 

array (Kruskal-Wallis H3 = 2.4, P = 0.486, n = 59).  

At the seasonal home range scale, individuals varied greatly in their use of the treatments, 

and individuals ranged from specialists (Wi = 0.18) to generalists (Wi = 0.84). Most frogs 

specialized their habitat use (Wi < 0.5 and proportional use > 0.8): 34 of the 59 frogs were 

specialists on 1 of the 4 treatments (Wi = 0.41; Figure 4a). Proportional use of the forested 

treatments (unharvested = 0.34; partial = 0.27) was higher than the clearcuts (CWD retained = 

0.18; CWD removed = 0.21).  

Seasonal home range size was not correlated with the number of times the frogs were 

relocated in both seasons (Spearman r = 0.1, P = 0.468, n = 59) or the distance from the pond at 

which they were captured in fall 2006 (Spearman r = 0.2, P = 0.179, n = 34). We estimated 

seasonal home range size for 59 of the 72 wood frogs (Figure 1), excluding 10 frogs that slipped 

out of their transmitter belts and 3 frogs that died within the first 14 d of tracking.  

 

3
rd

-Order habitat selection (Weekly activity centre)  
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Wood frogs were 4 times more likely to occupy weekly activity centres with coarse woody 

debris present and wetter leaf litter than random (Table II; Table III). Frogs occupied weekly 

activity centres that had coarse woody debris 6% more of the time compared to random. 

Additionally, individuals were 1.01–1.74 times more likely to occupy weekly activity centres 

with on average 16 mm deeper leaf litter, 3% greater cover of Sphagnum mosses, 5% greater 

cover of slash, and 2.4 °C warmer temperature than random. Additionally, 26% of the weekly 

activity centres occupied by frogs were forested (≥ 60% canopy cover). Frogs were less likely to 

occupy weekly activity centres with on average 2% drier soil, 9% greater cover of leaf litter, and 

less decayed coarse woody debris than random. Percent standing water and vegetation cover 

were not useful for describing wood frog weekly activity centres; the odds ratios for these 

variables overlapped 1.  

We collected data at 334 wood frog weekly activity centres (spring 2005: 207; fall 2006: 

127) plus 309 random weekly activity centres (spring 2005: 196; fall 2006: 113); 25 random 

weekly activity centres were removed from analysis because they overlapped frog weekly 

activity centres. Frogs responded to all 12 habitat variables we measured, with the global model 

having the most support (Table II). Three models comprised ~91% of the weight for the can-

didate model set. The second-ranked model focused on cover items close to the ground, 

moisture, and temperature. The third-ranked model focused on variables that would be directly 

affected by the treatments, moisture, and temperature. The global model fit our data (Hosmer and 

Lemeshow χ
2 

= 10.0, P = 0.268). Notably, none of the six 2
nd

-order 8 interactions were supported 

by model selection; models containing 2
nd

-order interactions comprised < 9% of the weight of 

the candidate model set and received 16 times less support than the global model.  

At the weekly activity centre scale, all individuals were generalists (> 0.88, range 0.65–0.99) as 
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measured by the habitat variables included in the top models (Figure 4b). Three variables had 

consistently high proportional use (> 0.1) across all frogs: percent cover of vegetation, percent 

cover of leaf litter, and leaf litter depth.  

 

4
tH

-order resource selection (daily microhabitat)  

 

Generally, wood frogs selected daily microhabitats with more ground structure, more canopy 

cover, and more coarse woody debris than random locations (Table IV). Frogs were 13 times 

more likely to occupy microhabitats with coarse woody debris present (Table V), and 26% of the 

locations occupied by frogs contained coarse woody debris (Table VI). Other important ground 

structure features included Sphagnum mosses, leaf litter, slash, and vegetation. Frogs were 1.02–

1.10 times more likely to occupy locations with greater percentage of these cover types. 

Microhabitats occupied by frogs contained on average 4, 6, 4, and 1% greater of these cover 

types relative to random microhabitats, respectively. Of all the variables we considered to 

describe ground structure, coarse woody debris and Sphagnum mosses were the most important, 

with almost twice the amount of support as indicated by cumulative model weight.  

Wood frogs were 2.8 times more likely to occupy microhabitats with more canopy cover 

relative to random microhabitats (Table V). Frogs occupied microhabitats with on average 35% 

canopy cover. Canopy cover was relatively less important than the ground structure variables 

(1.3 times less support; Table IV), and coarse woody debris and Sphagnum mosses received over 

twice as much support as canopy cover as indicated by cumulative model weight.  

Moisture was also important for predicting the micro-habitats of wood frogs, although less so 

than ground structure (2.4 times less support) or canopy cover (1.8 times less support). Moisture 

variables that were useful in describing the microhabitats of wood frogs included leaf litter 
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moisture, relative humidity, and soil moisture. Frogs were 1.01–1.07 times more likely to occupy 

locations with greater humidity or moisture relative to random microhabitat, although the 

difference between microhabitats occupied by frogs and random microhabitats was quite small 

(< 2% difference).  

We collected data at 1452 paired wood frog and random daily microhabitats (spring 2005: 

831; fall 2006: 621; 2904 total 1-m
2 

plots) for 46 frogs (spring 2005: 28; fall 2006: 18). The top 

model(s) for frogs varied greatly; no single model was the top model for > 18 frogs, and all 7 of 

the a priori models were in the supported model set for ≥ 5 frogs (Table IV). Overall, frogs 

responded to all 18 habitat variables (13 + 5 dummy variables for dominant cover) included in 

the 7 a priori models (Table V). However, only 9 variables (CP, SP, LI, SL, VC, CC, LM, RH, 

SM) were useful for prediction; the odds ratios for those variables did not overlap 1 (Table VI). 

Notably, temperature and dominant cover type received little support from model selection (i.e., 

average model weight < 10%) and were not useful in describing wood frog daily microhabitats.  

At the daily microhabitat scale, all individuals were generalists (> 0.88, range 0.69–0.96) as 

measured by the habitat variables included in each individual’s top models (Figure 4b). Five 

variables had consistently high proportional use (> 0.1) among all frogs: percent cover of vegeta-

tion, leaf litter, and slash as well as soil moisture and leaf litter depth.  

 

Discussion 

 

Three lines of evidence indicate that differences in habitat selection at coarser scales in wood 

frogs may be mechanistically linked to physiological processes at finer scales: 1) frogs 

responded to 3 different sets of resources at the 3 scales investigated, 2) resource use changed 

over time only at the coarse scales, and 3) individuals exhibited variation in resource use. We 
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will consider each of these in turn.  

First, at the coarsest scale, wood frogs selected a seasonal home range that provided all the 

required resources that enable them to successfully balance physiological constraints, and the 

forested treatments provided the resources for doing so more than the clearcuts. More 

specifically, at the seasonal home range scale, frogs selected the partially harvested treatment in 

spring and avoided the CWD retained treatment in fall (Figure 3), and proportional use of the 

forested treatments was higher than the clearcut treatments. However, the fact that 16 individuals 

were able to survive in the clearcut treatments indicates there may be resource associations at 

finer scales that motivate habitat selection (Orians & Wittenberger, 1991), such as cover, 

moisture, and temperature. At the scale of the weekly activity centre, essential resources for 

frogs were complex ground structure (cover by Sphagnum mosses, vegetation, slash, deep leaf 

litter, and especially presence of coarse woody debris; Constible et al., 2001), substrate moisture, 

canopy cover, and temperature (Table III). At the daily microhabitat scale, essential resources 

were complex ground structure, canopy cover, and substrate moisture (Tables V and VI). 

Notably, canopy cover played a lesser role than ground structure at the weekly activity centre 

and daily microhabitat scales.  

Second, both the size of seasonal home ranges and selection of variables in weekly activity 

centres varied temporally, which indicates that frogs were responding to temporal changes in 

essential resources at these scales. Seasonal home ranges were smaller in spring 2005 than in fall 

2006, perhaps because of 2 factors that vary with season: soil moisture is higher in spring than 

fall because of snowmelt, and lack of cover prior to leaf-out may make spring movements more 

risky because of predation. Amphibian movements may be constrained by the appropriate 

temperature and moisture (e.g., Chan-McLeod, 2003; Timm, McGarigal & Compton, 2007), and 
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cover is an important variable in the risk perception of frogs (e.g., Martin, Luque-Larena & 

Lopez, 2005). Furthermore, wood frogs move close to breeding ponds prior to overwintering and 

then away from them after breeding to reach distant resources used in the summer (e.g., Regosin, 

Windmiller & Reed, 2003; Baldwin, Calhoun & deMaynadier, 2006; Rittenhouse & Semlitsch, 

2007), and the increased size of home ranges in the fall may be a consequence of such 

movements. Notably, daily microhabitat relationships did not vary across seasons, indicating 

resource relationships at this scale may remain relatively constant over time. We must offer a 

word of caution in interpreting these seasonal results. We were unable to track the same 

individual in multiple seasons or years. Additionally, we only studied wood frogs in 1 season in 

2 different years. Because of this limitation, we attempted to study a large number of animals in 

each season, but the patterns we observed may be related to annual as well as seasonal variation.  

Third, we also observed great individual variation in resource selection (Figures 2b and 4), 

but less so in selection of coarse woody debris and moisture. This has at least 2 important 

implications. The importance of coarse woody debris did not vary across the 2 finer scales; frogs 

were more likely to occupy microhabitats and activity centres with coarse woody debris. Frogs 

may use different behavioural strategies to meet hydric requirements depending on the 

availability of moisture and ground cover variables. Frogs generally selected moist weekly 

activity centres and daily microhabitats, as indicated by greater cover of Sphagnum mosses, 

greater soil moisture, and wetter leaf litter (Tables III, V and VI). Previous research with wood 

frogs also indicates frogs may use different strategies to maintain their water balance in the 

terrestrial environment depending on the availability of moisture and ground cover variables 

(e.g., leaf litter depth; Baldwin, Calhoun & deMaynadier, 2006; Rittenhouse & Semlitsch, 2007).  

Together, these 3 lines of evidence indicate that physiological constraints may be important 
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at the finer scales. However, we must offer a word of caution in interpreting these results because 

our study was limited in the number of relocations we were able to obtain on any given indi-

vidual (max. 32). We limited the model sizes we considered to less than the number of 

observations (Hosmer & Lemeshow, 2000), but this small sample size of relocations may have 

limited our ability to detect some patterns in resource selection.  

Scale-dependency in habitat selection indicates that essential resources are available at 

different spatial and temporal scales, and these differences are linked to different ecological 

processes (Orians & Wittenberger, 1991; Ciarniello et al., 2007). Amphibians must balance the 

physiological constraints of thermo- and hydro-regulation with pressures such as predation risk 

and foraging to meet energetic demands, and these pressures manifest themselves at different 

scales. At both the weekly activity centre and the daily microhabitat scales, most individuals 

used locations with complex ground structure, probably because the cover it provides both 

reduces predation risk and facilitates thermo- and hydro-regulation. Temperature was only useful 

in describing the location of weekly activity centres, indicating that frogs select an optimal 

thermal regime at this scale and respond to other constraints including hydro-regulation, cover, 

and foraging at finer scales. Selection for temperature at the weekly activity centre scale may be 

one reason why some terrestrial amphibian species use activity centres (Semlitsch, 1981). This 

result, coupled with consistent daily microhabitat and weekly activity centre selection for 

substrate moisture, indicates frogs are selecting areas with appropriate temperature on longer 

temporal scales, while hydro-regulation occurs on daily to weekly temporal scales and may be a 

more variable process in terrestrial amphibians. This balance between thermoregulation in 

weekly activity centres and hydro-regulation in both weekly activity centres and daily 

microhabitats indicates these physiological processes may play an important role in structuring 
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terrestrial habitat selection by wood frogs.  

The habitat experienced during one period in an animal’s life can have positive or negative 

effects on its fitness at subsequent times (i.e., latent effects, sensu Pechenik, 2006). our results 

indicate that the fitness potential of forest types may be linked to resource selection at the micro-

habitat (i.e., 4
th

-order) scale because these relationships were 1) more closely dictated by 

physiological tolerances, 2) relatively consistent among individuals, and 3) did not vary over 

time. In meso-scale experiments where habitat quality was manipulated, wood frogs experienced 

density-dependent mortality in high-quality habitat (shade, coarse woody debris, and leaf litter; 

Patrick et al., 2008), thus indicating that microhabitat selection can regulate population 

dynamics. Further, animals that do not exhibit density-dependent habitat selection may have 

compounded costs (e.g., decreased survival in high-quality habitat as well as decreased breeding 

success in lower-quality habitats) at the population level. This pattern of habitat occupancy and 

fitness potential may be similar to the ideal-despotic distribution of Fretwell and Lucas (1970).  

Habitat relationships at finer scales were apparently dictated by the processes of 

thermoregulation and hydro-regulation. Thus, some individuals may have been able to survive in 

the clearcut treatments by finding small patches of habitat that had an adequate thermal and 

hydric regime and were characterized by complex ground cover, especially coarse woody debris. 

However, a patchy distribution of weekly activity centres or daily microhabitats may decrease 

the likelihood of detecting food resources and increase the energetic cost and predation risk 

associated with moving (Orians & Wittenberger, 1991; Rittenhouse, Semlitsch & Thompson, 

2009). Thus, the patchy distribution of essential resources may explain avoidance of the clearcut 

treatments and may have fitness implications for those individuals that survived in the clearcuts 

(Berven, 1981; Metcalfe & Monaghan, 2001).  
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Our results support 2 recommendations for minimizing the impact of timber harvesting. First, 

partial harvesting with retention of > 50% canopy cover may be a viable forest management 

strategy in ecologically sensitive areas, such as those surrounding vernal pools and places with 

endangered species. Canopy cover in our experimental arrays was reduced from 73.8 ± 22.7% to 

53.0 ± 33.5% (Patrick, Hunter & Calhoun, 2006), and wood frogs selected these partially 

harvested treatments in the spring 2005 study. Second, retention of coarse woody debris is 

probably important following timber harvesting to provide thermal and hydric refuges for 

amphibians and other ground-dwelling organisms. We retained 2–4 times the volume of coarse 

woody debris (45.6 ± 21.6 m
3
·ha

–1
) in the CWD retained treatment compared to residual 

volumes left in other treatments. Retention of coarse woody debris was most important at the 

weekly activity centre and daily microhabitat scales, and was the single most important variable 

structuring wood frog habitat selection at these scales.  

In summary, wood frogs respond to habitat at multiple scales and exhibited considerable 

variation in habitat selection across scales and among individuals at the coarser scales. More 

specifically, selection of the forested treatments at coarser scales may be mechanistically linked 

to 3
rd

- and 4
th

-order resource selection by the physiological processes of thermo- and hydro-

regulation. Resources that led to selection of a forested seasonal home range were structural 

elements that provide ground cover, such as coarse woody debris, but the relative importance of 

most resources varied with scale. Finally, seasonal home range size and weekly activity centre 

selection varied over time, but daily microhabitats selected and the resource use of most 

individuals was consistent at this scale; thus, these microhabitat relationships may be most 

important for linking habitat relationships to fitness.  
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Figures 

 

 

 
Figure 1. Home ranges (100% minimum convex polygon) of 59 wood frogs at the Gilman (a, spring 2005; b, fall 

2006), Smith (c, spring 2005; d, fall 2006), North Chemo (e), and South Chemo (f) experimental arrays. Home range 

sizes were smaller in spring than in fall 2006 and smaller at the North Chemo experimental array than other sites. 

Only 2 frogs (Frog 35 in Figure 1b and Frog 52 in Figure 1f) extended their home ranges beyond the edge of the 

experimental array, and this indicates that our definition of available habitat as the experimental array was 

acceptable. The 8 locations (of 1452) of these 2 frogs that were outside the array were grouped with the unharvested 

treatment. 
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Table I. Habitat variables collected in 1-m
2 
plots to quantify habitat use and availability in wood frogs. We collected 

each variable at the frog location and at a random location each day (4th-order - daily microhabitat) and at a set of 

random points every 5 d (3rd-order – weekly activity centre). Variables were collected at the centre of each plot 

unless otherwise specified. An initial set of 16 variables was chosen based on literature and field observations. This 

set of 16 was reduced to 14 based on a pilot study conducted in 2004. The 2 variables removed were percent cover 

of bare soil and percent cover of rock estimated to the nearest 5%. 

 

Variable  Code  Description  

% canopy  

 

CC  Percent canopy cover above plot measured with a GSR vertical densiometer. This variable was affected by the 

timber  

  harvesting treatments.  

% litter  LI  Percent cover of leaf litter. This variable described ground structure and may have been affected by the timber  

  harvesting treatments.  

% standing 

water  

SW  Percent cover of standing water. This variable described moisture.  

% Sphagnum 
spp.  

SP  Percent cover of Sphagnum mosses. This variable described ground structure and moisture and may have been 
affected  

  by the timber harvesting treatments.  

% vegetation  VC  Percent cover of vegetation < 0.5 m. This variable described ground structure and may have been affected by the  

  timber harvesting treatments.  

% slash  SL  Percent cover of woody debris 2–10 cm diameter. This variable described ground structure and may have been 
affected  

  by the timber harvesting treatments.  

Litter 

moisture  

LM  Moisture of leaf litter (1 - dry, 2 - moist, 3 - wet). This variable described moisture.  

Soil moisture  SM  Volumetric water content of soil (UNITS) (Field Scout TDR 200 with 12-cm probes). This variable described 

moisture.  

Litter depth  LD  Depth (mm) of the litter layer. This variable described ground structure and may have been affected by the 
timber harvesting treatments. 

CWD present  CP  Presence of downed wood > 10 cm diameter. This variable described ground structure and may have been 

affected by the timber harvesting treatments. 
CWD decayed  CD  Coarse woody debris decayed > class 1 (Maser et al., 1979). This variable described ground structure.  

Temperature  TE  Temperature (°C) at ground surface collected with a Oakton 35612 thermohygrometer (daily microhabitat) or  

  mean daytime (0630–1830) temperature from HOBO dataloggers in each treatment (weekly activity centre). This  

  variable described the thermal environment.  

Relative 
humidity  

RH  Relative humidity (UNITS) measured with an Oakton 35612 thermohygrometer (daily microhabitat only). This  

  variable described moisture.  

Dominant 

cover  
DC  Ground cover type in 15-cm circle at centre of plot (daily microhabitat only) (0 - bare soil/rock, 1 - wood, 2 - 

grasses/  
  forbs, 3 - leaf litter, 4 - Sphagnum spp., 5 - water). This variable described ground structure.  
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Figure 2. Histograms of variation in home range size in spring 2005 (black) and fall 2006 (white) (a) and across the 

Gilman (black), North Chemo (white), Smith (dark grey), and South Chemo (light grey) experimental arrays (b) for 

wood frogs. 
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Figure 3. Mean selection index (± 95% confidence intervals) for all wood frogs that used each harvest treatment. 

Home range selection (2nd order) varied by season, and frogs selected the forested treatments in spring 2005 

(black) and avoided the CWD retained treatment in the fall 2006 (white). 
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Figure 4. Percent of specialists (Petraitis Wi < 0.5; n = 59) at the home range scale (a) and mean (± SE) Petraitis Wi, 

a measure of individual specialization in resource use, at the weekly activity centre (3rd order), home range (2nd 

order), and daily microhabitat (4th order) scales (b) by wood frogs. 
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Table II. Ranking of a priori conditional logistic regression models of 3rd-order habitat selection (weekly activity 

centre) in wood frogs. Variable codes are defined in Table I, K is the number of variables included in the model, and 

log(L) is the log-likelihood of the model. Models were ranked using change in Akaike’s Information Criterion 

corrected for small sample size (ΔAICc) and Akaike’s model weights (ω). 
 

 

  

Rank Model K log(L) AICc ΔAICc ω 

1  SW+SP+VC+CC+LI+SL+LD+CP+CD+LM+SM+TE 12  –271.62  567.73  0.00  0.65  

2  SW+SP+VC+LI+SL+LD+CP+CD+LM+SM+TE  11  –274.04  570.49  2.75  0.16  

3  SW+SP+CC+LI+SL+LD+CP+LM+SM+TE  10  –275.54  571.42  3.69  0.10  
4  SW+SP+VC+CC+LI+SL+LD+CP+CD+LM+SM+TE+CP×TE+CP×SM+VC×TE  

+VC×SM+CC×TE+CC×SM  

18  –268.22  573.53  5.80  0.04  

      

6  SW+SP+VC+LI+SL+LD+CP+CD+LM+SM+CP×TE+CP×SM+VC×TE+VC×SM  15  –271.46  573.69  5.96  0.03  

7  SW+SP+CC+LI+SL+LD+CP+LM+SM+TE+CP×TE+CP×SM+CC×TE+CC×SM  14  –273.51  575.68  7.95  0.01  
8  SW+SP+VC+LI+SL+LD+CP+CD+LM+SM+CP×SM+VC×SM  12  –287.02  598.54  30.81  0.00  

9  SW+SP+VC+LI+SL+LD+CP+CD+LM+SM  10  –289.21  598.77  31.03  0.00  

10  CC+LI+SL+LD+CP+TE  6  –294.38  600.90  33.16  0.00  
11  CC+LI+SL+LD+CP+TE+CP×TE+CC×TE 8  –293.07  602.37  34.64  0.00  

12  SW+SP+CC+LI+SL+LD+CP+LM+SM  9  –292.15  602.58  34.85  0.00  

13  SP+VC+LI+SL+LD+CP+CD+TE  8  –293.40  603.03  35.30  0.00  
14  SW+SP+CC+LI+SL+LD+CP+LM+SM+CP×SM+CC×SM  11  –290.95  604.32  36.59  0.00  

15  SP+VC+LI+SL+LD+CP+CD+TE+CP×TE+VC×TE  10  –292.77  605.88  38.15  0.00  
16  SP+VC+LI+SL+LD+CP+CD  7  –309.88  633.93  66.20  0.00  

17  CC+LI+SL+LD+CP  5  –312.41  634.91  67.17  0.00  

18  SW+SP+LM+SM+TE  5  –330.69  671.47  103.73  0.00  
19  SW+SP+CC+LM+SM+TE  6  –330.69  673.50  105.77  0.00  

20  SW+SP+CC+LM+SM+TE+CC×TE+CC×SM  8  –329.28  674.79  107.06  0.00  

21  TE 1  –352.79  707.59  139.85  0.00  
22  CC+TE+CC×TE  3  –351.18  708.40  140.66  0.00  

23  CC+TE  2  –352.73  709.48  141.75  0.00  

24  SW+SP+LM+SM  4  –360.27  728.61  160.87  0.00  
25  SW+SP+CC+LM+SM  5  –359.87  729.84  162.11  0.00  

26  SW+SP+CC+LM+SM+CC×SM  6  –359.60  731.32  163.59  0.00  

 CC  1  –384.03  770.07  202.34  0.00  
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Table III. Model-averaged parameter estimates ( ), odds ratios, and descriptive statistics for each variable for wood 

frog (n = 334) and random (n = 309) weekly activity centres (3rd-order habitat selection) from conditional logistic 

regression models comprising > 90% of the weight of the candidate model set (Table II). Parameter estimates for 

variables that occurred in models comprising a 90% confidence set were averaged using the model weights to 

compute a weighted average. Variable codes and units for each variable are defined in Table I, SE = unconditional 

standard error, Min. = minimum, Max. = maximum, CI = 95% confidence interval 

*No inferences were made from these variables because the odds ratio confidence intervals overlapped 1. 

  

Random activity centre    Frog activity centre 

Variable β Odds ratio Lower Ci Upper Ci Mean Se Min. Max.  Mean Se Min. Max. 

CC  0.552  1.737  1.055  2.859  0.24  0.02  0  1   0.26  0.03  0  1  

CD  –0.825  0.438  0.237  0.812  0.30  0.03  0  1   0.28  0.02  0  1  

CP  1.358  4.021  1.603  10.125  0.20  0.01  0  1   0.26  0.02  0  1  
LD  0.039  1.039  1.028  1.051  30.00  1.00  0  210   46.00  2.00  0  199  

LI –0.017  0.983  0.970  0.997  59.00  1.00  0  95   50.00  1.00  0  99  

LM  1.420  4.136  2.478  6.904  1.81  0.04  1  3   2.08  0.03  1  3  

SL  0.028  1.029  1.012  1.046  16.00  1.00  0  67   21.00  1.00  0  80  
SM  –1.018  0.361  0.192  0.679  19.00  1.00  1  50   21.00  1.00  1  50  

SP  0.023  1.023  1.005  1.041  6.00  1.00  0  57   9.00  1.00  0  95  

SW*  0.016  1.017  0.998  1.036  7.00  1.00  0  100   10.00  1.00  0  80  
TE 0.136  1.145  1.088  1.206  13.10  0.40  –2.8  39   15.50  0.30  5.9  30  

VC*  0.004  1.004  0.991  1.017  23.00  1.00  0  100   25.00  1.00  0  90  
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Table IV. Model selection uncertainty in change in Akaike’s Information Criterion corrected for small sample size 

( AICc) and Akaike’s model weights ( ) for 7 a priori conditional logistic regression models of 4th-order resource 

selection (daily microhabitat) in wood frogs. Because the smallest sample size we considered for this scale was 20 

(range 20–32), we constrained the largest models considered to 7 variables. Nsupport indicates the number of frogs 

(out of 46 included in the analysis) with support for that model ( AICc < 2). Variable codes are defined in Table I, 

SE = standard error. 

 

 

 

 

 

 

 

 

  

Rank Model Mean ΔAICc SEΔAICc Mean ω SEω Nsupport 

1  SP+VC+LI+SL+LD+CP+CD  6.46  1.01  0.29  0.06  18  

2  CC  7.58  1.23  0.22  0.04  14  

3  CP  7.82  1.04  0.18  0.04  15  
4  SW+SP+RH+SM+LM  8.50  1.04  0.12  0.03  7  

5  SW+SP+RH+SM+LM+Te  10.52  1.03  0.06  0.02  3  

6  TE  11.11  1.17  0.05  0.01  6  
7  DC1+DC2+DC3+DC4+DC5  12.88  1.19  0.09  0.04  5  
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Table V. Mean and variation in cumulative Akaike’s model weight (∑ω) and the number of frogs (Nsupport; out of 

46 included in the analysis) with support (ΔAICc < 2) for each variable used to describe wood frog and random 

daily microhabitats (4th-order selection). Parameter estimates for variables that occurred in models comprising a 

90% confidence set for each frog were averaged using the model weights to compute a weighted average. The 

median values of model-averaged, standardized parameter estimates (βs) and odds ratios were calculated from frogs 

with support for that variable (Nsupport). Variable codes are defined in Table I, SE = standard error, CI = 95% 

confidence interval. 

 

 

 

 

 

  

Variable Mean ∑ω Se ∑ω Nsupport Median βs Median odds ratio Median lower CI Median upper CI 

CP  0.47  0.06  27  0.693  12.998  0.003  > 1000  

SP  0.46  0.06  26  0.033  1.101  0.329  4.048  
CD  0.29  0.06  18  1.725  10.444  < 0.001  > 1000  

LD  0.29  0.06  18  –0.009  0.934  0.028  24.519  

LI  0.29  0.06  18  0.027  1.028  0.879  1.226  
SL  0.29  0.06  18  0.031  1.057  0.125  10.466  

VC  0.29  0.06  18  0.039  1.023  0.527  1.600  

CC  0.22  0.04  14  1.028  2.796  0.458  28.584  

LM  0.18  0.05  8  0.068  1.070  0.090  12.758  

RH  0.18  0.05  8  0.018  1.026  0.869  1.167  

SM  0.18  0.05  8  0.097  1.006  0.037  1.259  
SW  0.18  0.05  8  –0.152  0.859  0.033  21.897  

TE 0.11  0.02  9  –0.002  0.998  0.562  2.095  
DC1  0.09  0.04  5  0.670  2.004  < 0.001  > 1000  

DC2  0.09  0.04  5  10.338  > 1000  < 0.001  > 1000  

DC3  0.09  0.04  5  11.151  > 1000  < 0.001  > 1000  
DC4  0.09  0.04  5  10.220  > 1000  < 0.001  > 1000  

DC5  0.09  0.04  5  12.186  > 1000  < 0.001  > 1000  
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Table VI. Mean, unconditional standard error (SE), minimum (Min.), and maximum (Max.) value of each variable 

measured for wood frog and random daily microhabitats (4th-order selection). We calculated these descriptive 

statistics for all 46 frogs included in this scale of analysis (Overall). We also calculated these statistics only based on 

frogs for which a variable was useful for describing their habitat (Description), and Ndescribe indicates the number 

of frogs where the odds ratio confidence intervals did not overlap 1. Variable codes and units for each variable are 

defined in Table I. 

 

  Overall   Description 

 Random microhabitat  Frog microhabitat  Random Microhabitat  Frog microhabitat 

Variable Mean Se Min Max  Mean SE Min. Max Ndescribe Mean SE Min. Max.  Mean SE Min. Max. 

CP  0.21 0.01 0 1  .27 0.01 0 1 6 .2 .01 0 1  .26 .01 0 1 

SP  7 0.00 0 95  10 1.00 0 95 11 6 1 0 90  10 1 0 95 

CD  0.61  0.04 0 5  .79 0.04 0 5 0          

LD  28 1.00 0 110  44 1.00 0 110 0          

LI  43  1.00 0 100  48 1.00 0 100 5 44 1 0 100  51 1 0 100 
16 16 1.00 0 100  19 1.00 0 95 2 15 1 0 100  19 1 0 90 

VC  26 1.00 0 100  28 1.00 0 95 5 26 1 0 100  27 1 0 95 

CC  27 1.00 0 100  34 1.00 0 100 11 28 1 0 100  35 1 0 100 
LM  2.17 0.02 1 3  2.16 0.02 1 3 2 2.16 .03 1 3  2.17 .03 1 3 

RH  44 1.00 2 98  44 1.00 2 95 6 44 1 2 98  44 1 3 95 

SM  29 0.00 2 61  31 0.00 3 60 7 28 0 2 58  30 0 3 60 
SW  18 1.00 0 100  12 1.00 0 100 0          

TE 15.1  0.20 1 35  15.2 0.20 0.4 36.9 0          
DC1  0.05  0.01 0 1  0.03 0.01 0 1 0          

DC2  0.23  0.01 0 1  0.03 0.01 0 1 0          

DC3  0.38  0.01  0  1  0.47  0.01  0 1 0          
DC4  0.13  0.01  0  1  0.12   0.01  0  1 0          

DC5  0.12  0.01  0 1        0.15  0.01  0  1 0       
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