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Research Goals and Objectives

Goals:

1.

Understand how tides move material and influence
water quality important to aquaculture

Provide considerations for future aquaculture by
predicting how present day conditions will alter
from a environmental change

Research Objectives:

1.
2.
3.

Characterize tidal behavior throughout estuary

Investigate how tides affect water quality

Determine how a storm event will change those
water quality patterns
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« HOBO U20L Water Level
Logger deployed at 13 sites
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Methodology

e HOBO U20L Water Level
Logger deployed at 13 sites
from July 22 to November 12

 Two LOBO Buoys and Outer
Buoy maintained by SEANET

e Bathymetry data (Chandler
2016) and National
Geophysical Data Center
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How do the tides change up the river?

Monthly DiurnalSemi-Diurnal M4 M6 M10
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How do overtides interact with geometry?
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How do overtides mﬂuence water quallty?

Turbldlty

—Hog Islan d
—Clark Cov

e Turbidity

* Influenced equally by
M2 and M4 tides

Power spectrum (NTU2 cpd'1)

e Chlorophyll
: 0 1' 2 3 4 5 6
e Diurnally dependent Frequency (cpd)
o« g . . Chlorophyll
* Turbidity oscillation | | ' T Chogiand
- M —Clark Cove/.
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What about other water quality parameters?
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Main Message

* The narrowness of the constrictions combined with
the shallowness of the upper estuary enhance
overtides

* The overtides increase turbidity, chlorophyll, salinity,
oxygen, and pH
What to expect in the future?

* Rising sea levels will reduce friction and decrease
exchange rates and transport distances

* Higher turbidity, oxygen

* Lower salinity, acidity
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