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Logical Deduction ... is the one and only true powerhouse of mathematical thinking.
Jean Dieudonne
Conjecturing and demonstrating the logical validity of conjectures are the essence of

the creative act of doing mathematics.
NCTM Sandards
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Deductive versus Descriptive M athematics

Mathematics has two fundamental aspects: (1) discovery/logical deduction and (2) description/
computation. Discovery/deductive mathematics asks the questions:

1. What is true about this thing being studied?
2. How do we know it istrue?

On the other hand, descriptive/computational mathematics asks questions of the type:

3. What is the particular number, function, and so on, that satisfies ... ?
4. How can we find the number, function, and so on?

In descriptive/computational mathematics, some pictorial, physical, or business situation is
described mathematically, and then computational techniques are applied to the mathematical
description, in order to find values of interest. The foregoing is frequently called “problem
solving”. Examples of the third question such as “How many feet of fence will be needed by a
farmer to enclose ...” are familiar. The fourth type of question is answered by techniques such as
solving equations, multiplying whole numbers, finding antiderivatives, substituting in formulas,
and so on. The first two questions, however, are unfamiliar to most. The teaching of computational
techniques continues to be the overwhelming focus of mathematics education. For most people, the
techniques, and their application to real world or business problems, are mathematics.
Mathematics is understood only in its descriptive role in providing a language for scientific,
technical, and business areas.

Mathematics, however, is really a deductive science. Mathematical knowledge comes from
people looking at examples, and getting an idea of what may be true in general. Their ideais put
down formally as a statement—a conjecture. The statement is then shown to be a logical
consegquence of what we aready know. The way this is done is by logical deduction. The
mathematician Jean Dieudonne has called logical deduction “the one and only true powerhouse of
mathematical thinking”!. Finding proofs for conjectures is aso called “problem solving”. The
“Problems’ sections of severa mathematics journals for students and teachers involve primarily
problems of thistype.

The deductive and descriptive aspects of mathematics are complementary—not
antagonistic—they motivate and enrich each other. The relation between the two aspects has been
asource of wonder to thoughtful people?.

1. Dieudonne, Linear Algebra and Geometry, Hermann, Paris, 1969, page 14.

2 John Polkinghorne in his The Way the World Is (Wm B. Eerdmans, Grand Rapids, M1, 1984, page 9) states, “Again
and again in physical science we find that it is the abstract structures of pure mathematics which provide the clue to
understanding the world. It is a recognized technique in fundamental physics to seek theories which have an elegant
and economical (you can say beautiful) mathematical form, in the expectation that they will prove the ones realized
in nature. General relativity, the modern theory of gravitation, was invented by Einstein in just such a way. Now
mathematics is the free creation of the human mind, and it is surely a surprising and significant thing that a discipline
apparently so unearthed should provide the key with which to turn the lock of the world.”
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M athematics Education

In 1941, Richard Courant and Herbert Robbins published their book, What is Mathematics?—An
Elementary Approach to Ideas and Methods3. In the preface (to the first edition) we read,

Today the traditional place of mathematics in education is in grave danger.
Unfortunately, professional representatives of mathematics share in the responsibility.
The teaching of mathematics has sometimes degenerated into empty drill in problem
solving, which may develop formal ability but does not lead to real understanding or to
greater intellectual independence.

It is possible to proceed on a straight road from the very elements to vantage points
from which the substance and driving forces of modern mathematics can be surveyed.
The present book is an attempt in this direction.4

From the preface to the second, third and fourth editions (1943, '45 '47), we read:

Now more than ever there exists the danger of frustration and disillusionment unless
students and teachers try to look beyond mathematical formalism and manipulation and
to grasp the real essence of mathematics. This book was written for such students and
teachers, ...°

Some 20 years later, a trend in mathematics education called the “new math” would
incorporate many of the “very elements’ in Courant and Robbins book: for example, the
representation of integers in terms of powers of a base—the standard base 10 and other bases,
computations in systems other than the decimal, the foundational role played by the commutative,
associative, and distributive axioms for the integers, and the introduction of the language and ideas
of sets: “The concept of aclass or set of objects is one of the most fundamental in mathematics.”®

One pervading theme in Courant and Robbins that never was incorporated into the new
math is the centrality of proof to mathematics. The new math used the language of deductive
mathematics to shed light on and do descriptive mathematics (sometimes awkwardly). Merely
shedding light on “mathematical formalism and manipulation” and failing to shed much light on
“problem solving”, the curriculum changes introduced by the new math have largely faded from
the school curriculum. Although fading from the school curriculum, elements of the new math
curriculum have been maintained in college courses for prospective elementary school teachers—
in particular, the “axioms of arithmetic” as a basis for operations and computations in the systems
of natural numbers, integers, and rational numbers. In this text, attention is paid to these number
systems, and they are included within the framework of deductive mathematics—whereas in
Introduction to Proof in Abstract Mathematics, the computations of algebra are accepted, where
needed, even in aformal proof. In this text, the logical foundation for these computations is made
explicit.

Standardsfor Curriculum Change

The Mathematical Association of America (MAA) publication A Call For Change addresses the
needs of prospective teachers. Their recommendations summarize publications of the National
Research Council (NRC) and the Standards of the National Council of Teachers of Mathematics
(NCTM):

There is an overwhelming consensus that students of the 1990's and beyond will
develop “mathematical power” only if they are actively involved in doing’ mathematics
at every grade level . “Mathematical power” denotes a person's abilities to explore,

3 Oxford University Press, London, New Y ork, Toronto

4 pagev
5 page vii
6 page 108

7 Emphasisin original.
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conjecture, and reason logically, as well as use a variety of mathematical methods
effectively to solve problems.

Such substantive changes in school mathematics will require corresponding changes in
the preparation of teachers.8

The summary breaks things into 2 fundamental aspects: (1) explore, conjecture, and reason
logically, and (2) use a variety of mathematical methods effectively to solve problems.® For
mathematics to be properly understood, the essence of what it is, as a deductive science itself and
as a language for other areas, should be seen at al levels. An understanding of the scientific
method is not thought to be appropriate only for a few research scientists. The rudiments and
purposes of the scientific method can and should be taught in the most elementary science courses.
The same should be true for mathematics. Just as science needs to be taught as more than
technology, mathematics needs to be taught as more than techniques. This need has been addressed
inthe calls for reform.

Standard 1 in A Call for Change, “Learning Mathematical Ideas’, applicable to teachers of
mathematics at all grade levels, includes:

“Exercise mathematical reasoning through recognizing patterns, making and refining
conjectures and definitions, and constructing logical arguments, both forma and
heurigtic, to justify results.”

The NCTM Curriculum and Evaluation Sandards for School Mathematics (section for grades 5
through 8) states:

Conjecturing and demonstrating the logical validity of conjectures are the essence of
the creative act of doing mathematics.10

The Sandards say a lot of things, but there is only one thing that they have called the “essence” of
doing mathematics. The context for this sort of activity—what the NCTM evidently had in mind
when making the statement—is the geometry taught in the schools. According to current thinking,
students pass through stages in their geometric thinking. The ability to appreciate proof—
especialy rigorous proof—occurs at a late stage, intuitive perceptions occur at earlier stages, and it
is not possible to get to the later stages without a lengthy maturing process that takes one through
the earlier stages. What this means for discovery/deductive mathematics, is that students will be
making conjectures based on pattern recognition, and not for some years be able to demonstrate
the logical validity of their conjectures.

This text presents a system designed to enable students to find and construct their own
logical arguments. The system isfirst applied to elementary ideas about sets and subsets and the set
operations of union, intersection, and difference—which are now generally introduced prior to
high school. These set operations and relations so closely follow the logic used in elementary
mathematical arguments, that students using the system are naturally prepared to prove any (true)
conjectures they might discover about them. It is an easy entry into the world of discovery/
deductive mathematics. It enables students to verify the validity of their own conjectures—as the
conjectures are being made.

A Bottom-Up Approach

The system is based on a bottom-up approach. Certain things are best learned from the bottom up:
programming in a specific programming language, for example, or learning how to play chess. In
the bottom-up learning, there ought to be no doubt of what constitutes a valid chess move on a
valid chess board. Other things, such as speaking in one's own native language, are learned from
the top down. As we learn to speak, grammar (which would be analogous to the rules of the game

8 The Mathematical Association of America, A Call for Change, report of the Committee On The Mathematical
Education Of Teachers, J. R. C. Leitzel, Ed., 1991, preface.

9 What is likely meant by “solve problems” at this level isto apply mathematics to physical, pictorial, or business
situations. At more advanced levels, problem solving predominantly means supplying proof for conjectures.
10NCTM, 1989, page 81.
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for chess) is not even part of our consciousness. Grammatical rules are followed only because they
are used implicitly by those that we imitate. If the people around us use poor grammar, we
nevertheless learn to feel it is“right”—and we speak the same way.

The system in this text is based on a number of formal inference rules that model what a
mathematician would do naturally to prove certain sorts of statements. The rules make explicit the
logic used implicitly by mathematicians.1l After experience is gained, the explicit use of the
formal rules is replaced by implicit reference. Thus, in our bottom-up approach, the explicit
precedes the implicit. The initial, formal step-by-step format (which alows for the explicit
reference to the rules) is replaced by a narrative format—where only critical things need to be
mentioned Thus the student is lead up to the sort of narrative proofs traditionally found in text
books. At every stage in the process, the student is always aware of what is and what is not a
proof—and has specific guidance in the form of a“step discovery procedure” that leads to a proof
outline.

The system has been used extensively in courses for prospective elementary-school
teachers. Diligent students learn the material.12 Sections 1 through 15 of the text are devoted to
producing basic skill with logical reasoning. Section 16 presents the first of the student
investigations. In this first investigation, students have discovered in the past a number of
important rel ationships between the set operations of intersection, union, and difference—and have
been able to supply their own completely rigorous, well-written proofs of their conjectures.

A Course Based on the Text

A Call For Change recommends 3 college courses in mathematics for prospective K—4 teachers,
and 15 hours for prospective 5-8 teachers. A course based on this text would probably be best
placed after 2 courses based on more traditional material. Because such a course differs from the
traditional approach, however, some bright students have benefited from having it as their first
college course in mathematics.13 Appendices 1 through 3 present material that can be used for a
review of computationally oriented mathematics probably aready in the students experience.
Appendix 5 contains a basic syllabus, and Appendix 6, a syllabus for a more advanced class.

11 Although the rules resemble those of formal logic, they were developed solely to help students struggling with
proof—without any input from formal logic.

12 A correlation of 0.7 has been found between the scores of students on final exams over the text material and their
ranking in their high-school class. Lower correlations, 0.5 and 0.2 respectively, have been found with students math
and verbal SAT scores.

13 For example, one student wrote, “ This course has made interesting a subject | used to hate.” Another wrote,
“Doing deductive mathematics is more interesting than doing computational mathematics.”
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Propositions

A set is a collection of things viewed as a whole—as a single thing itself. Our primary examples
will be sets of natural numbers—the numbers 1,2,3,4,5,... . The things in a set are called
elements or members of the set. The expression “xz € A” meansthat x isamember of set A, and is
read “z is an element of A” or “x is a member of A”. We frequently define a set by listing its
elements between braces. Thus {1,2, 3,4} and {2,4,6,8, ...} are sets. {1,2,3,4,5,6,...} would
be the entire set of natural numbers. This set is also denoted by N. ThusN = {1,2,3,4, 5,6, ...}.
We will frequently take N to be our universal set; that is, all sets that we form will have elements
taken from N.

Example 1:
2e€{1,2,3},1€{1,2,3}, and 3 €{1,2,3}.

Most people think of mathematics in terms of computation and problem solving. In
mathematics, however, logical deduction plays a more fundamental role than either computation or
problem solving. Mathematics is deductive in nature. Deductive mathematics is concerned with
mathematical statements, which are formal assertions that are either true or false. The set {1, 2, 3}
is defined to have the elements 1,2, and 3, and no other elements, so the statement 2 € {1, 2, 3}
in Example 1 istrue by the definition of the set {1, 2, 3}.

The statement 4 € {1, 2, 3} is false. This fact can either be expressed informally, as in the
preceding English sentence, or it can be expressed formally by the expression —(4 € {1,2,3}).
Since statements are the basis for deductive mathematics, we need some notation so that we can
talk about statements in general. We will use script capital letters to denote statements. For
example P might represent the statement 2 € {1, 2, 3}.If Q represents the statement 4 € {1, 2, 3},
then —=Q represents the statement —(4 € {1,2,3}). The expression “—~Q” isread “not Q”. The
formal statement —Q is true, since Q is false. The notation “—(z € A)” is amost aways
abbreviated “x ¢ A”, which we read “x is not in A.” If the variable  occurs in the statement P
(for example, if P is the statement = € {1, 2, 3,4, 5}), we may write P(x), instead of just P— to
emphasize the fact.

Example 2:

Let P represent the statement 1 € {1,2, 3}, O represent 2 ¢ {1,2,3}, and R represent
4 €{1,2,3}. Then:

P istrue.

—Pisfase.

Q isfalse.

-Q istrue.

R isfase

—R istrue.

If P isany mathematical statement, the negation of P isthe statement —P. —P is defined to
betrueif P isfase, and faseif P istrue.

In order not to complicate things too quickly, the only aspect of the natural numbers we will
be concerned with for a while is the order relation < (which isread “is less than”). Thus, for
example, 1 < 2 (read “one is less than two”), 36 < 42, and so on. Later, we will consider the
relation < on the natural numbers from first principles, and define what it means, for example, for
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36 < 42 to be true. For the moment, however, we use the relation < only to provide
computational examples for working with sets—the real objects of our current interest.

Mathematical knowledge comes from making conjectures (from examples) and showing
that the conjectures are logical consequences of what we already know. Thus in mathematics we
always need to assume something as a starting point. We assume as “given” facts such as 2 < 3,
36 < 42, and so on. Thus the statement 2 < 3 istrue, and (2 < 3) isfalse.

Letters and words that are part of formal statements are italicized. Thus far we have seen
formal statements of the form element € set and number < number; for example, 2 € A and
36 < 42.

People do mathematics by first looking at examples—usually in small, easily understood
special cases. By considering these examples, they get an idea of what may be true in general. The
idea is then put down in precise mathematical language and called a conjecture or proposition. (It
is “proposed”.) The proposition is usually a general statement about what may be true about the
thing being investigated. There is then an attempt to prove the proposition (to show that it is true)
or to find a special case where the general statement does not hold (to show that it isfalse). Such a
special caseis called a counterexample.

The first step in finding either a proof or a counterexample is to break up the proposition
into two pieces. One piece, the conclusion, isthe formal statement that the proposition asserts to be
true. The other piece consists of an identification of all the variables in the proposition, and all the
conditions, called hypotheses, under which the conclusion is true. In our approach, we take the
identification of symbols as part of the hypotheses.

Propositions are written in informal language, but contain forma statements. The
conclusion is aways a formal statement. The hypotheses contain formal statements and an
identification of all symbols that appear in these statements and the conclusion.

Example 3:
Proposition: For sets A and B and anatural number z, if z € A, thenz € B.
The hypotheses and conclusion are:
Hypotheses. A, B sets
x anatural number
reA

Conclusion: =z € B

It is probably easiest first to decide what formal statement the proposition asserts to be true
(the conclusion), and second to decide on the formal conditions under which the conclusion is true
(the hypotheses). The phrase “z a natural number” in the hypotheses above can be written
“reN".

Example 4:
Proposition: For natural numbersz, y, and z, if t < y andy < z,thenx < z.

Hypotheses: z,y,z € N
lx<y
2y<z

Conclusion: z < z

We call the determination of hypotheses and conclusion of a proposition an hypotheses-
conclusion interpretation of the proposition. By identifying the proposition with its hypotheses-
conclusion interpretation, we define the proposition to be true if for all possible values or examples
of the variable symbols that make the hypotheses true, it is also the case that the conclusion is true.
A proof establishes the truth of the proposition since it shows that the conclusion follows logically
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from the hypotheses using valid rules of inference: thus the conclusion must be true if the
hypotheses are true.

We define the proposition to be false if there is at least one assignment of the hypotheses
variables that makes the hypotheses true but the conclusion false (a counterexample). Thus the
proposition istrue if there are no counterexampl es.

Example 5:

Consider the proposition of Example 3:

For sets A and B and anatural number x, if x € A, thenx € B.
Hypotheses: A, B sets

r €N
reA

Conclusion: z € B

If wedefiner =2, A={1,2,3},and B = {3,4,5}, weseethat x € Aistruebut x € Bisfalse
Thus we have a counterexample, and the proposition of Example 3 is false. If we define z = 3,
A={1,2,3},and B = {3,4,5}, weseethat © € A istrueand z € B isaso true. But this proves
nothing.

An assignment of values to the variables in the hypotheses is called an “instance” of the
proposition. A counterexample is therefore a single instance in which the hypotheses are true but
the conclusion is false. Finding such an instance proves that the statement is false. In order to show
that the statement is true by finding instances, we would need to find all instances in which the
hypotheses were true, and then show that the conclusion was also true in these instances. This is
almost never possible. Instead, statements are proved to be true by logical arguments.

Example 6:

Consider the proposition of Example 4:

For natural numbersz, y, and z, if z < yand y < z,thenz < z.
Hypotheses and conclusion are:

Hypotheses: x,y,z € N
lz<y
2y<z

Conclusion: z < z
An instance of the statement that makes the hypotheses and conclusion both true is:
Hypotheses: 4,5,6 € N
4 <5
5<6

Conclusion: 4 < 6

There are no instances in which the hypotheses are true but the conclusion is false, since the
proposition istrue.
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EXERCISES

1. For each proposition below, write the hypotheses and conclusion in the way they were written in
Examples 3 through 6.

(a) For al natural numbersz, y, z, if r < yandy < z, thenz < .
(b) If a < b < ¢ for natural numbers a, b, and ¢, then b < 10.

(c) Let A and B be sets. Supposex € A. Provezx € B.
(d)LetC ={1,2,3,4,5}.Ifa=1,thena € C.

(e Forsets X andY:ifx € X, thenz € Y.

2. What propositions might be interpreted by the following hypotheses and conclusions?

@
Hypotheses: =,y € N
2<x
2<y

Conclusion: 2 < zy

(b)
Hypotheses: =,y € N
<y
Conclusion: 2z < 2y
(©
Hypotheses: A, B sets
xé¢ A

Conclusion: =z € B
3. Give a counterexampl e to each of the propositionsin Exercise 1 that isfalse.

4. Give a counterexample to each of your statementsin answer to Exercise 2 that isfalse.
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Axiom

Sat Definitions

A proof is a sequence of formal statements (steps) such that each statement can be justified by an
accepted form of reasoning. In our approach, justification for each step is given in parentheses
after the step. Such justification includes (1) a list of the previous steps on which the new step
depends, (2) a semicolon, and (3) arule of inference or other accepted reason why the new step is
alogical consequence of the earlier steps listed.

Example 1.
Consider the following steps, which might have come from a fragment of some proof:

4.0 <3
5.3<9
6.2<9 4,5 )

In the proof fragment of Example 1, Step 6 is supposed to follow from Steps 4 and 5 by
some justification that still needs to be filled in — in the underlined place. The property of the
relation < that allows usto do thisis called transitivity. We will accept the transitive property of
the relation < as an axiom. Axioms have the same form as propositions, but we don't attempt to
prove them. We merely accept them as true as a starting point.

Transitivity of < : For natural numbersa, b, andc, if a <b and b < ¢, then a < c.

Thus the underlined place in Example 1 isfilledin as follows:

Solution:

4.0 <3
5.3<9
6.r<9 (4,5; Trans. <)

Example 2:

lLx<5b
2.y<7
35<7
4.  (___;Trans. <)

Solution:

l.z<5b
2.y<7
35<7
4 <7 (1,3; Trans. <)
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Example 2 illustrates a form we use for problems. You areto fill in the underlined places. In
this example, we need to supply a step that will follow from previous steps by the transitivity
axiom. We see that it is possible to conclude = < 7 from Steps 1 and 3 using this axiom.

A statement, such asx < 6, containing a variable can be used to define a set, namely, the set
of all elements in the universal set that make the statement true when they are substituted for the
variable. For example, the set of all natural numbers lessthan 6 iswritten {x € N | < 6}. The set
S={yeN|8 <y} isread “the set of al y in N such that 8 is less than y”. S can aso be
expressed by listing its elements. Thus S = {9,10,11,12,13, ... }.

In generdl, if P(x) is some statement about z, then we can define {z € N | P(z)} to be the
set of dl « in N such that P(x) istrue. For example, if P(x) is the statement 100 < z, then the set
{z e N| P(z)} isthe set {101, 102,103, ...}. If the property P(x) istruefor dl = inN, P(z) can
still be used to define the set {x € N | P(x)}, which would in this case be the entire set N of
natural numbers. For example,

{reN|z+3=3+z}=N.

If P(z)isfaseforal z inN, P(z) definesthe set {x € N | P(z)}, which will not have any
elementsinit at all. This set is called the empty set, and is denoted by §). Thus, for example,

{reN|z#z}=0.
There are two general ways of defining a particular set: (1) by listing the elements of the set
between braces, and (2) by giving a defining condition.
Example 3:

Define the set A = {3,4,5,6, ...} in terms of a defining condition that is a formal mathematical
statement.

Solution:
A={zeN|2<z}

Example 4:

Definetheset A = {x € N | 7 < z} by listing its elements.

Solution:
A=1{8,9,10,11,...}

Suppose that A= {xz € N|z < 5}. We consider the property « < 5 as the defining
condition for the set A. If a is any natural number that satisfies the defining condition (that is,
makes the property = < 5 true when substituted for z), then « is in the set A—by definition.
Conversely, if ¢ is any element in the set A, then ¢ must satisfy the defining condition; that is,
¢ < 5 must be true.

The following rule gives the two ways we can use the definition of a particular set in proof

steps.

Using a set definition: If an element is in a set, then we may infer that it satisfies the condition
defining the set. If an element satisfies the defining condition, then we may infer that it isin the set.

Example 5:

Let B= {z € N |z < 9}. Theinference rule above allows us to infer Step 2 from Step 1 and Step
4 from Step 3 below.
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1beB
2.b<9 (L def. B)

3.a<9
4, 0¢c B (3; def. B)

In applying the rule for using set definitions, we assume that al elements are in our
universal set, without asserting this explicitly in proof steps. Thus we assume that ¢ € N in
Example 5, so that a € B follows solely from the fact (given in Step 3) that o satisfies the defining
condition for B.

Example 6:
Define A = {z € N | x < 12}. Thedefinition of A tells uswhy Step 2 follows from Step 1.

lL.acA
2. a<12 (1; def. A)

Example 7:

Define A = {z € N | 2 < 12}. If it is known, say from the hypotheses or from our universal set
under consideration, that a is anatural number, then the definition of A tells us why Step 2 follows
from Step 1.

1 a<12

2.acA (L def. A)

Note in Example 7 that it is understood, but not stated in the proof steps, that a € N.
Step 2 depends both on Step 1 and the fact that « € N, but it is not necessary to mention the latter.

Learning to do deductive mathematics can be compared with learning to play a game. The
inference rules are like the rules of the game. We will aso provide a very useful game strategy (a
way of handling the inference rules) that will enable you to discover your own proofs. Your
primary task for quite a while will be to learn the rules and the strategy. It is the explicit use of
formal statements that allows us to explain the strategy.

Example 8:
Proposition
IfX={zeN|z<12}anda € X, thena < 20.

We use the proposition of Example 8 to illustrate the strategy for discovering proof steps.
The first step isto identify the hypotheses and conclusion. These are written down as “assume” and
“show”, when part of a proof. The hypotheses are numbered so that we can refer to them later.

Pr oof:
Assume: 1. X = {z e N|z < 12}
2.a€ X

Show: a <20

Proofs are developed in a shaded area that represents a working area—such as a
blackboard. The next step in writing the proof is to write the conclusion as the last step in the
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proof. We identify this as Step k at this stage, since we have no idea how many steps will be
needed to get there.

Pr oof:
Assume: 1. X = {z e N |z < 12}
2aeX

Show: a < 20

k.a < 20

The next thing to write down is the justification for the last step. This depends on the form
of the last step—and what it means for the step to be true. Since the relation < has not been
defined, and since the only thing we know about < is the axiom giving the transitive property of

< , thismust be the justification for the last step.

Proof:
Assume: 1. X = {z e N |z < 12}
2aeX

Show: a < 20

k.a <20 ( ; Trans, <)

Hypothesis 2 gives us Step 1:

Proof:
Assume: 1. X = {z e N |z < 12}
2aeX

Show: a <20
lLaeX (hyp. 2)

k.a <20 ( ; Trans. <)

Step 1 is of the form element € set. In order to use this information we use the definition
of the set.

Pr oof:
Assume: 1. X = {z e N|z < 12}
2.a€ X

Show: a <20
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lLaeX (hyp. 2)
2.a<12 (1, hyp.1; def.X)

k.a <20 ( ; Trans, <)

In order to complete the proof, we need only to supply the step 12 < 20 and use the
transitive property.

laeX (hyp. 2)
2.a<12 (1, hyp.1; def.X)
3.12 <20 (given)
4.0 <20 (2,3; Trans. <)

Step 2 follows from Step 1 and Hypothesis 1, by the definition of X. Since X is defined in
Hypothesis 1, we leave out the redundant information. This gives the final version of the proof:

Pr oof:
Assume: 1. X = {z e N|z < 12}
2.a€ X

Show: a <20

laceX (hyp. 2)
2.a<12 (1; def.X)

3.12 <20 (given)

4.0 <20 (2,3; Trans. <)

The symbol [ signals the end of a complete proof.

Theorems are proven propositions that are important enough to be referred to later. The
only important thing about the proposition of Example 8 is that you see how the proof works, so
we won't call it atheorem.

In doing proofs, we assume that the hypotheses of the proposition being proved are true (for
the sake of argument). Thus a proof is a sequence of statements (steps) the truth of each of which
follows (by an accepted form of justification) from previous steps, hypotheses, theorems, and
axioms.

EXERCISES

1. For each set below with elements listed explicitly, write the set in terms of arule that states which
elements from the universal set N are in the given set.

@ {1,2,3,4} =
(b) {5,6,7,8,...} =
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2. For each set below given by adefining rule, give the same set by listing the elements explicitly.
@ {yeN[3<y}=
() {reN|z<1} =
() {reN|z<3}=

3.Define A = {z € N| z # 1}. (¢ # 1 isan abbreviation of =(z = 1), of course.)

@ 40beA
5. (4; def. A)

(b) 4.
5.ccA (4 def. A).

4. Suppose we are given the following:
5. x€eB
6. t<7 (5; def. B)
7.7<8 (given)
8. <8 (6,7; Trans. <)
9. zeC (8; def. C')
What must the definitions of sets B and C' be?

5. Suppose we are given the following:

51<a
6.ae X (5; def. X)
7.be X
8. (7; def. X)

What must the definition of X be? What must Step 8 be?

6.Let B={aeN|a<7} and C={aecN|a<2}. Provide judtification for each of the
indicated steps below.
l.qgqeC
2.q<2
3.2<7
4.q<7
5.q€e B

REVIEW EXERCISES

7. For each proposition below, identify the hypotheses and conclusion.
(a) For all natural numbersa and b, if a < 10, thend < 11.
(b) If @ < b for natural numbers a and b, then a # b.
(c) Forsets A and B, if z € A, thenz € B.
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Subsets; Proving For All Statements

Mathematical proof at its most basic level rests on the idea of formal definition. We now get to our
first definition—the idea of subset. Informally, we say that a set A is a subset of a set B if every
element of A isan element of B.

Example 1:
{1,2,3,4} isasubset of {1,2,3,4,5,6,7}.

Example 2:
If A={1,2,3} and B = {1, 2,3}, then A isasubset of B, since every element of A isin B.

The definitions and theorems that we have about sets apply to any sets whatever—not only
to sets of numbers. In order to illustrate the meaning of our definitions and theorems about sets, we
will consider their application both to sets of numbers and to sets of points in a plane—represented
by a sketch on a page. Thus we may take, as our universal set, either the natural numbers N, or the
set of pointsin a plane. Sketches of such point sets that illustrate some definition or theorem are
caled Venn diagrams. A Venn diagram that illustrates the definition of subset is shown in
Figure 1. The set A is represented by all points inside its circle. The set B is represented by all
points inside its circle. Since all pointsinside circle A are also inside circle B, we have that A isa
subset of B.

B

Figure 1. A isasubset of B

It is necessary that formal mathematics be intuitively meaningful. Venn diagrams help us
visualize the content of a definition or theorem, and thereby aid in our intuitive understanding of it.
It is also necessary that things that are intuitively meaningful be subject to formal articulation and
proof. In mathematics, our imagination is not just allowed to run wild. It must be subject to
unguestionable logic.

We now give a formal definition of subset. A formal definition involves three things. (1) A
phrase identifying the symbols involved:

“For sets A and B,”
(2) aformal statement of the newly defined relationship:
“A isasubset of B”

and (3) aformal statement of the defining condition:
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“forallx € A:xz € B"

The newly defined relationship and its defining condition are equivalent, by which we mean
that if the relationship is true, then we may infer that the defining condition holds, and if the
defining condition holds, then we may infer that the relationship is true. In mathematics,
equivalence is frequently denoted by the phrase “if and only if”. Thus in the definition of “subset”
we have:

“Aisasubset of Bif andonlyif forallx € A:xz € B”

The phrase “if and only if” is often abbreviated “iff”. Our formal definition is as follows:

For sets A and B, A isasubset of B (written A C B) iff forallxz € A: x € B.

The definition of subset is given in terms of a formal statement called a for all statement.
By definition, the relationship A C B is equivaent to its defining condition: forall
x € A:x € B. Thefollowing inference rule allows usto replace astep A C B in aproof with the
formal statement forallx € A: x € B.

Using equivalence: Any mathematical statement may be replaced by an equivalent statement.

Example 3:

1.0CD
2. (1; def. C)

Solution:

1.CCD
2. forallz € C:x €D (1; def. C)

In this example we know that Step 2 must come from Step 1 as a result of using the
definition of C . By the rule for using equivalence, Step 2 must give the equivalent defining
property.

The variable z in the statement forallxz € A : x € Biscaled alocal variable (as opposed
to aglobal variable). The local variable x doesn't mean anything outside the for all statement, and
any other letter inside the statement would do as well. Thus, for example, the following two
statements mean exactly the same thing:

forallz € A:P(z)
forallt € A:P(t)

The statement forallx € A : x € B is a statement about A and B. It means that everything in A
isin B. It is not a statement about . We don't get any information about « from the statement, but
we do get information about A and B. It is permissible to use any letter at all (except letters
already in use that have their meaning already defined) to play the role of the = in the forall
Statement.

Example 4:

1
2 forallye S:yeT (1 def. C)
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Solution:

1.SCT
2 forallye S:yeT (1; def. C)

Example 5:

1
2.XCY (1; def. C)

Solution:

1 forallte X:teY
2XCY (1; def. C)

Example 6:
1 forallz€e A:xz€B
22ACB & )

Solution:

1 forallz€e A:xz€B
2ACB (1; def. C)

Replacing a statement of the form set C set in a proof with its for all defining condition
isn't going to do us any good unless we have means to handle the for all statement.

The rule for proving a for all statement is somewhat subtle. In order to prove the statement
forall x € A:xz <7, for example, we select an element of A, give it a name, and show that it
must be less than 7 by virtue only of its being in A. That is, the fact that it is less than 7 follows
from the single fact that it isin A. It follows that every element in A must be less than 7. The
chosen element of A, about which we assume nothing except that it isin A, is called an arbitrary
element of A.

Example 7:
Suppose A = {n € N | n < 12}. Steps 1 through 4 below prove the for all statement of Step 5.
1. Lett € A bearbitrary

2.t <12 (1; def. A)

3.12 < 45 (given)

4.t < 45 (2,3; Trans. <)
5 forallz € A:x <45 (1—4; pr.v)

In Example 7, Steps 1 through 4 are indented. Their only purpose is to prove Step 5. The
reason for indenting steps in proofs is to keep track of assumptions. Steps 1 through 4 are based on
the assumption that A is not empty (we'll consider the other possibility in a moment), and that ¢ is
chosen arbitrarily in A. The variable ¢ is defined only for Steps 1 through 4—its scope being Steps
1 through 4. The variable ¢t can be considered as ceasing to exist after we pass from the block of
Steps 1 through 4. 1t is no longer in use. It is legitimate, therefore, to use ¢t as the local variable in
Step 5—instead of x:
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1. Lett € A bearbitrary

2.t <12 (1; def. A)

3.12 < 45 (given)

4.t < 45 (2,3; Trans. <)
5 forallte A:t <45 (1—4; pr.v)

Inference Rule Proving for all statements: In order to prove a statement for all x € A: P(z), let « be an
arbitrarily chosen element of A, then show P(z) for that «. Abbreviation: “pr.V”.

Format:
pr.V
1. Let z € A bearbitrary

k-1.P(x)
K. forallz € A:P(x) (1—k-1; pr. V)

Steps 1 and k-1 in the format above are dictated by the rule for proving for all statements.
The empty box represents additional steps that will be needed in order to show Step k-1.

Example 8:

Fill in the steps dictated by the rule for proving a for all statement.

k. forallz € C:x <12 ( Jpr.v)

Solution:
1. Letz € C bearbitrary.
k-1.z < 12
K. forallz € C:x <12 (1—k-1; pr.V)
Example 9:
1. Lett € S bearbitrary.
7.13<t
8. (1—7; pr.v)
Solution:

1. Lett € S bearbitrary.

7.13 <t
8. forallte S:13 <t (A—7; pr.V)
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We now get to the question of why it is sufficient to assume that A is not empty, in our rule
for proving for all statements. This can be explained in terms of the negations of for all and
there extists statements.

Forall negation: —(for all x € A:P(x)) is equivalent to therecexists x € A suchthat
—P(x).

There exists negation: —(there exists x € A suchthat P(x)) is equivalent to for all x € A:
—P(x).

We don't get to using formal there exists statements in proof steps until later. Informally,
the statement there exists © € A suchthat P(x) means exactly what it says. In order for this
statement to be true there must be some element in A (that we can call ) for which P(z) istrue.

Example 10:

Let A= {x € N| 8 < z}. Usetheinformal meanings of for all and there exists statementsto
determine whether each of the following statements is true or false. Label each statement
accordingly.

forallz € A:x <10

thereexists x € A suchthat x < 10
forallz e A:xz <6

there exists x € A suchthat z < 6
forallr € A:10 < x

thereexists x € A suchthat 10 < z
forallre A:3 <z

thereexists ¢ € A suchthat3 < x

Solution:

forallz € A:x <10

thereexists x € A suchthat z < 10
forallz e A:z <6

there exists x € A suchthat z < 6
forallr € A:10 < x

thereexists x € A suchthat 10 < z
forallre A:3 <z

4 49 4 m om oM 4o

thereexists ¢ € A suchthat3 < x

The only way for for all € A : P(z) to befalseis for there to exist an element x in A for
which P(x) isfase. If A isempty, there can be no such element—so for all x € A : P(x) must
be true if A is empty. We say in this case that the statement is vacuoudly true. A complete,
informal proof of the statement for all x € A : P(x) would go as follows: if A isempty, then the
statement is vacuoudly true, if A isnot empty, then pick an arbitrary element from A and show that
P istruefor this element.

People don't focus on vacuously true statements and empty sets when doing proofs. They
just assume that there is some element in A, because if there is not, then they are immediately
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done. In this way our inference rule (which assumes that there is an element in A, and indents the
block of steps based on this assumption) models customary informal practice.

EXERCISES

.Let A= {x € N|z < 9}. Use the informal meanings of for all and there exists statements to

determine whether each of the following statements is true (T) or false (F). Label each statement
accordingly.

@ forallze A:z <10

(b) there exists x € A suchthat x < 10
(€ forallr € A:x <6

(d) there exists x € A suchthat x < 6

() forallzr € A:10 < x

(f) there exists © € A suchthat 10 < z
(9) forallz e A:3 < x

(h) there exists © € A suchthat 3 < x

. Fill in the underlined places.

1. Letz € S bearbitrary.

T.x <7
8. ( ,pr.v)

. Fill in the steps dictated by the rule for proving a for all statement

(@

8 forallze A:5<x ( ;pr.v)

(b)

6. forallr € A:xz € B ( ;pr.V)

REVIEW EXERCISES

. For each set below with elements listed explicitly, write the set in terms of arule that states which

elements from the universal set N are in the given set.

@ {1’273} =
b) {6,7.8,..} —

. For each set below given by adefining rule, give the same set by listing the elements explicitly.

@ {yeN[y<9}t=
(by {teN|3<t}=
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6.DefineA={zeN|7< z}.

@ 4. becA
5. (4; def. A)

(b) 4.
5.ccA (4; def. A).

7. Suppose we are given the following:

5 a€B
6. 4<a (5; def.B)
7.2<4 (given)
8. 2<a (6,7; Trans.<)
9.a€C (8; def.C)
What must the definitions of sets B and C' be?

8.LeaB={zeN|z<5}andC ={x e N|z<4}. Fill inthe underlined steps or justifications
below.
lL.gqeC
2. (1, def.O)
3.4<5
4.q<5
5q9ge¢B
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Discovering Proof Steps

Mathematics is a thing of the imagination. It is about an imaginative universe, aworld of ideas. But
the imagination is constrained by logic. This constraint allows mathematics its scope. It is thereby
free to remove itself from the objects of immediate sense experience without becoming nonsense.

In mathematics, athing is exactly what its definition saysit is. A proof that something has a
property is a demonstration that the property follows logically from the definition. In rigorous
mathematics, a proof is not allowed to use attributes of our imaginative ideas that don't follow from
the precise wording of the definition. Thus proof at its most basic level is proof that depends
immediately on definitions. Our method of proof analysis discovers steps that follow from
definitions.

The first step in the proof of some proposition is to determine the hypotheses and
conclusion. The next step depends on the form of the top-level, forma statement of the
conclusion. This top-level statement may contain pieces that are themselves formal statements, but
isitself not contained in any larger statement.

Example 1:
The top-level statement in
(@ forallzre A:z€B

is a forall statement. It contains the formal statements x € A and x € B, but is itself not
contained in alarger statement.
The top-level statement in

() {zreN|z<10} C{reN|z <20}

is an assertion of set containment of the form set C set. It contains the formal statements z < 10,
r < 20,and z € N.

The top-level form of a statement can be confirmed by the process of “diagramming the
sentence”. In mathematics such diagramming can be done by inserting parentheses into the
statement. Such parentheses will always surround lower-level statements and terms, but never the
top-level relation. For example, in the statement forall x € A : x € B, parentheses can be put
around the statements © € A and © € B to get: forall (x € A) : (x € B). This confirms that the
statement is a for all statement, since the phrase for all is not contained in parentheses. It would
be obviously nonsensical to attempt to include the for all phrase and exclude the set membership
symbol “ €” by a diagram such as. (forall x € A:z) € (B). Thus the statement is not a
statement about set membership at the top level.

Example 2:
DefineH ={zr e N|z <10} and G = {z € N | z < 20}. Provethat H C G.

To start the proof, we identify the hypotheses and conclusion.
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Pr oof:

Assume: H = {z e N|z < 10}
G={reN|z <20}

Show: HCG@E

The next step isto write the conclusion as the last step in the proof:

Proof:

Assume: H ={z € N |z < 10}
G={rxeN|z <20}

Show: HCG

k.H CG.

Writing the conclusion as the last step in the proof creates a gap—which needs to be
bridged by the steps leading to the conclusion. The next step in the process is to write down the
justification for Step k. Since Step K is of the top-level form set C set, the justification for Step k
must be the definition of C .

Pr oof:

Assume: H ={z € N |z < 10}
G={reN|z <20}
Show: HCG

KHCG ( ,def.C)

The definition of subset makes the relation H C G equivalent to its defining condition for
all x € H:xz € G. Since H C G isto be shown in the last step, the defining condition for all
x € H : x € G must be the next-to-the-last step:

k-1. forallx € H :z € G
k. HCG (k-1; def. C)

We next write down the justification for Step k-1. This will be determined by the top-level
form of Step k-1. It isa for all statement, so the rule for proving for all statements must be the
justification for Step k-1. The for all rule tells us we need Steps 1 and k-2 below. Step 1 is put at
the top of the gap, and Step k-2 is put at the bottom—making a new, smaller gap now between
Steps 1 and k-2.
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1. Letz € H bearbitrary.

k-2.z € G

k-1. forallx € H:z € G (1—k-2; pr.VY)
k. HCG (k-1; def. C)

The steps above are dictated by our analysis as we work backward from the conclusion. We
now have to bridge the gap from Step 1 to Step k-2. What we mean by saying that x is chosen
arbitrarily in H is that the only thing we know about x is the property it must have by virtue of
being in H. Thus Step 2 must follow from Step 1 by using the definition of H. Similarly, to show
z € G in Step k-2 we must use the definition of G.

1. Letz € H bearbitrary.

2.x<10 (1; def. H)
k-3.z < 20
k-2.2 € G (k-3; def. G)
k-1. forallx € H :z € G (1—k-2; pr.V)
k. HCG (k-1; def. C)

The steps above were dictated by our analytical method of discovering proof steps. You
should also see why, logically, we had to get the steps above. There remains only to make the
connection between Steps 2 and k-3, and this connection is clear: x < 20 follows from z < 10 (by
the transitive property of <), if we supply Step 3, 10 < 20, (which is justified by “given”). This
gives acomplete proof that H C G-

Pr oof:
Assume: H = {z e N |z < 10}
G={reN|z <20}

Show. HCG

1. Letz € H bearbitrary.
2.x<10 (1; def. H)
3.10 < 20 (given)
4.2 <20 (2,3; Trans. <)
5ze@ (4; def. G)

6. forallz e H: 2z € G (1—5; pr.V)

7.HCG (6; def. C)

O

The equivalence of the relation “subset” and its for all defining condition means that the
rule for proving a forall statement is used to prove that one set is a subset of another. The
negation of the forall statement is used to find counterexamples to assertions that one set is a
subset of another.
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By definition, the statement A C B isequivalentto forall x € A : x € B. By theaxiom on
the negation of a forall statement from the previous section, —(A C B) is equivaent to there
exists x € A suchthat x ¢ B. To find a counterexample to A C B, we informally show this
there exists statement; that is, we define some element in A, and show it is not in B. We will
always take an informal approach to finding counterexamples. The reason for our formal approach
to proofsisthat it isthe formal rules of inference that guide usin the step-discovery procedure.

Example 3:

Let S={xreN|z <12} and T = {zr € N |z < 10}. Find a counterexample that shows S C T'
isfalse.

Solution:
11 € S,but11 ¢ T. Therefore =(S C T)).

In the paragraph preceding Example 3, we have used the fact that the statement A C B and
its defining condition are logically equivalent. We have also implicitly used the following axioms:

If Pisequivalent to Q, then =P is equivalent to - Q.

The statements P and —(—P) arelogically equivalent.

These axioms will almost always be used implicitly.

Step-Discovery Outline

There are two different aspects to discovering proof steps: (1) In the synthetic aspect, you
need to imagine how known information (steps already proven, for example) can be put together or
used to obtain a desired result. (2) In the analytic aspect, you look at the desired result, and, from
the intrinsic nature of this result, decide what steps are necessary to achieve it. It's best to write
down all the steps that analysis dictates to be inevitable, before you work on the synthesis.

Analysis

. Determine the hypotheses and conclusion.

. Write the conclusion as the last line of the proof.

The conclusion will be aformal statement. Thus far, the types we have are:
basic logic statement forms
forall
undefined relations

element € set
number < number

number = number
defined relations
set C set

. Write the justification for the conclusion.

Don't copy proof steps from examples. Instead, analyze the conclusion yourself to see what is
needed. Consider all the ways you might prove a statement having the form of the conclusion.
Focus on what it means for the conclusion to be true. If the conclusion is a basic logic form, the
rule for proving such a statement will always be available as the justification, and will dictate prior
steps. If the conclusion is of the form element € set, the only way of proving this (so far) is to
show that the element satisfies the defining property for the set. Thus the justification will be the
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definition of the set, and the defining condition will be the previous step. If the conclusion involves
adefined relation at the top level, you can aways use the definition of that relation as justification,
in which case the preceding step must be the condition defining the relation. Thus the form of the
conclusion indicates the justification, which, in turn, dictates the needed steps preceding the
conclusion. Write these dictated steps down before going to 4 below.

4. Now, working from the bottom up, analyze the step immediately preceding the conclusion. From
the form of this statement you will be able to write down the rule for its justification. This rule will
dictate prior steps. Continue in this manner until you can go no further.

Synthesis

5. When you can no longer continue by analyzing steps from the bottom up, add new steps from the
top down by again analyzing the form of the steps already known. If your bottom-up analysis leads
to a step that can be proved in more than one way, and if you're not sure about the best way, work
from the top down for a while. This might show the best approach to prove the needed step at the
bottom.

6. You need to use information from the steps aready proven, in order to add new steps. It is
generally best to use first the information from the bottom-most of the known steps at the top. Then
use the information from the steps toward the top. Finally, use the hypotheses to bridge the
remaining gaps. Don't use the hypotheses until after you have exhausted the information from all
the steps themselves.

At the end of this section is a copy of the step-discovery outline that you can tear out and
use, as needed, when doing proofs for homework.

EXERCISES

1. Find a proof or a counterexample for each of the following statements:
@LetA={aeN|a<10}andB={beN|5<b}.Then A C B.
(b)LetA={aeN|1l0<atandB={beN|5<b}.Then A C B.
©LetA={aeN|10<a}andB={beN|5<b}. Then B C A.

2.(a) Let S and T be arbitrary sets. Start to develop a proof that S C T by the step-discovery

procedure. Write down as many steps as you can with only the information available. (You don't
know anything about the sets S and 7".) Don't make up new information.

(b) Give a counterexample to show that S C T isnot truefor all sets S and T'.
3. (a) Make alist of all definitions. Write each definition for future reference. This “definition sheet”
can be used when you are following the step-discovery outline on homework.

(b) The appendix lists the formats for the basic logic rules. Give an example of the use of each rule
encountered so far. Use the appendix and your examples as a template when you follow the step
discovery procedure on homework problems.

REVIEW EXERCISES

4. For each set below with elements listed explicitly, write the set in terms of arule that states which
elements from the universal set N are in the given set.
@ {5,6,7,8,9, ...} =
(b) {1,2,3,4,5,6} =
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5. For each set below given by adefining rule, give the same set by listing the elements explicitly.
@ {teN|t<1}=
(b) {teN|t<4} =

6. Define X = {t e N | 9 < ¢}.

@ 4.beX

5. (4; def. X)
b4 __

5 beX (4; def. X')

7. Suppose we are given the following:

51<a
6.ae X (5; def. X')
7.be X
8. (7; def. X))
What must the definition of X be? X = What must Step 8 be?

8. Fill in the underlined places in the following proof fragments.

(9) 1. Let z € C be arbitrary.

7.8<x
8. ( Jpr.v)

9. Fill in the steps dictated by the rule for proving a for all statement.
@)

8. forallz€ X:2<6 ( ;pr.v)
(b)

6. forallze X:z€Y ( ;pr.v)
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Step-Discovery Outline

There are two different aspects to discovering proof steps: (1) In the synthetic aspect, you
need to imagine how known information (steps already proven, for example) can be put together or
used to obtain a desired result. (2) In the analytic aspect, you look at the desired result, and, from
the intrinsic nature of this result, decide what steps are necessary to achieve it. It's best to write
down all the steps that analysis dictates to be inevitable, before you work on the synthesis.

Analysis
1. Determine the hypotheses and conclusion.

2. Write the conclusion as the last line of the proof.
The conclusion will be aformal statement. Thus far, the types we have are:
basic logic statement forms
forall
undefined relations

element € set
number < number

number = number
defined relations
set C set

3. Write the justification for the conclusion.

Don't copy proof steps from examples. Instead, analyze the conclusion yourself to see what is
needed. Consider all the ways you might prove a statement having the form of the conclusion.
Focus on what it means for the conclusion to be true. If the conclusion is a basic logic form, the
rule for proving such a statement will always be available as the justification, and will dictate prior
steps. If the conclusion is of the form element € set, the only way of proving this (so far) is to
show that the element satisfies the defining property for the set. Thus the justification will be the
definition of the set, and the defining condition will be the previous step. If the conclusion involves
a defined relation at the top level, you can aways use the definition of that relation as justification,
in which case the preceding step must be the condition defining the relation. Thus the form of the
conclusion indicates the justification, which, in turn, dictates the needed steps preceding the
conclusion. Write these dictated steps down before going to 4 below.

4. Now, working from the bottom up, analyze the step immediately preceding the conclusion. From
the form of this statement you will be able to write down the rule for its justification. This rule will
dictate prior steps. Continue in this manner until you can go no further.

Synthesis

5. When you can no longer continue by analyzing steps from the bottom up, add new steps from the
top down by again analyzing the form of the steps already known. If your bottom-up analysis leads
to a step that can be proved in more than one way, and if you're not sure about the best way, work
from the top down for a while. This might show the best approach to prove the needed step at the
bottom.

6. You need to use information from the steps aready proven, in order to add new steps. It is
generally best to use first the information from the bottom-most of the known steps at the top. Then
use the information from the steps toward the top. Finally, use the hypotheses to bridge the
remaining gaps. Don't use the hypotheses until after you have exhausted the information from all
the steps themselves.
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Using For All Statements

Examples 1 and 2 illustrate how to use a for all statement that we know istrue.

Example 1:

In the following steps, the known for all statement in Step 2 is applied to the known information
in Step 1 to infer Step 3.

lLyeA
2. forallze Az <7
3y<7

The meaning of Step 2 is that every element in set A islessthan 7. Since y is an element of A by
Step 1, we can conclude that y must be less than 7.

Example 2:

In the following steps, the for all statement in Step 1 is applied to the yin Step 2 (presumably
already defined) to infer Step 3.

1 forallz € B:xz <10
2yeB
3.

Solution:

1 forallz e B:x <10
2yeB
3.y<10

Here isthe genera inference rule for using a for all statement.

Using for all statements: If for all x € A : P(x) and y € A are steps in a proof, then P(y) can
be inferred. Abbreviation: “us.V”.

The format for using thisruleis:

us. vV

L forallz € A:P(x)
2.t A
3. P(t) (1,2, us. V)
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Example 3:

l.geB
2 forallz € B:x <12
3. (1,2, us.V)

Solution:

l.geB
2. forallz € B:x <12
3.¢<12 (1,2; us. V)

Since z isalocal variablein for all x € N : x < 12, any other letter (except letters already
in use for other things—such as ¢) would do as well. Thus the following two statements mean
exactly the same thing.

forallz € B:x <12
forallte B:t <12

Example 4:

l.geB
2. forallte B:t <12
3. (1,2;us. V)

Solution:

l.geB
2 forallte B:t <12
3.g<12 (1,2; us.Y)

Example 5:
1.
2 forallze A:9<x
3. (1,2, us.V)

Solution:

lge A
2. forallze A:9<x
3.9<q (1,2; us. V)

Example 6:

1.3cA
2 forallzre A:z€B
3. (1,2;us.v)
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Solution:
1.3€4
2 forallzre A:z€B
3.3¢8B (1,2; us.Y)

Example 7:
l.4e€ A
2.
3.4¢8B (1,2;us.Y)

Solution:
1.4 A

2. forallz e A:xz € B
3.4¢€B (14,2, us.V)

Example 8:
lzeA
2.
3.zeB (1,2; us. V)

Solution:

lLzeA
2. forallte A:te B
3.xeB (1,2, us.Y)

The statement for all x € A : x € B, using the symbol “«”, cannot be used as a solution in
Example 8. The reason is that 2 must have been defined already, since it is used in Step 1. The
statement for all t € A : t € B means that ¢ ranges over all the valuesin A, and for each of these
it is also the case that ¢ € B. If x has aready been defined, it represents a single thing, and can't
range over the values of A.

The aim of the text material, from here to Section 16, is to develop your ability to find your
own proof to any theorem you might discover in your investigation. Your ability to do this will
depend on your mastery of the step-discovery procedure. It is necessary to abandon any reliance
you might have on doing proofs by copying steps from other proofs that may be similar to the
proof you need. As a significant step in this direction, you are to prove Theorem 5.1 at the end of
this section.

In the previous section we defined the sats H={reN|z<10} and
G = {xz € N| z < 20}, and proved that H C G. The purpose in doing the proof was to illustrate
the use of the method summarized at the end of that section, and to lead into your proof of
Theorem 5.1. In the next example, we again illustrate the same method of discovering proof
steps—one more stepping stone before Theorem 5.1. Review the proof of the next example, with a
copy of the step-discovery outline from the previous section to look at as you do it. Try to
anticipate each step and justification by following the outline. Use the proof in the text as
confirmation.

Example 9:

Provethat if K = {r € N |z < 20}, andif J C K, then forall a € J: a < 20.



30 Deductive Mathematics

Pr oof:

Assume: K = {z e N|z < 20}
JCK
Show:  foralla € J:a < 20

After deciding on hypotheses and conclusion, the next thing to do is to write the conclusion
asthe last step in the proof:

Pr oof:

Assume: K = {z € N |z < 20}
JCK
Show:  foralla € J:a < 20

k. foralla € J:a <20

The next thing to write down is the justification for Step k. This is determined by the top-
level form of the statement of Step k—a for all statement. Do we know that Step k is true, or are
we trying to proveit? Therule for using a for all statement only appliesto for all statements that
have been already established. We're trying to prove Step k.

Pr oof:

Assume: K = {z € N |z < 20}
JCK
Show:  foralla € J:a < 20

k. foralla € J:a <20 ( ;pr.V)

In turn, the rule for proving for all statements dictates Steps 1 and k-1:

Proof:
Assume: K = {z € N |z < 20}
JCK
Show:  foralla € J:a < 20
1. Leta € J bearbitrary.

k-1.a < 20
k. foralla € J:a <20 (1—k-1; pr.V)
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The outline asks us next for justification for Step k-1. This normally would be the definition
of < . Since the relation < has not been defined, we stop adding steps from the bottom up and
work from the top down. Step 1 is of the form element € set. Since the set J has not been
defined, we can't use the definition of J to get Step 2. There are no more steps that are indicated
by the top-down, bottom-up analysis, so it is time to use the hypotheses. Which one: the definition
of K, or thefact J C K? Since a € J from Step 1, we use J C K. What may be inferred from
J C K?The statement is of the form set C set, S0 we use the definition of C to write Step 2:

1. Leta € J bearbitrary.
2 forallze J:x € K (hyp.; def. C)

k-1.a < 20
k. foralla € J:a <20 (1—k-1; pr.V)

It is not legitimate to write for all a € J: a € K as Step 2. We can't use a as a local
variable in Step 2, sinceit is already in use from Step 1. Although a was chosen arbitrarily in Step
1, it has been chosen, and is now fixed. It is constant. It doesn't make any more sense to talk about
al a'sin Step 2, than it does to talk about all 3's. In Step 2, where we have z, you could have any
other letter not already in use.

It isnow possible to use the for all statement of Step 2.

1. Leta € J bearbitrary.
2 forallze J:x € K (hyp.; def. C)

ae K (1,2;us.Y)
k-1. a < 20
k. foralla € J:a <20 (1—k-1; pr.V)

Since we gave up working up from Step k at Step k-1, we're now working down. Step 3 is of
theform element € set. The definition of that set isthe justification for Step 4:

1. Leta € J bearbitrary.
2. forallze J:x e K (hyp.; def. C)

ae K (1,2; us.Y)
4.0 <20 (3; def. K)
k-1.a < 20
k. foralla € J:a <20 (1—k-1; pr.V)

We see that Step 4 is Step k-1, so that we didn't have to work up from Step k-1 after all. It
remains only to fill in the steps upon which Step k depends:
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Proof:
Assume: K = {z e N|z < 20}
JCK
Show: foralla € J:a < 20
1. Leta € J bearbitrary.
2. forallze J:z e K (hyp.; def. C)

ae K (1,2;us.Y)
4.0 <20 (3; def. K)
5. foralla € J:a < 20 (A—4;pr.V)

Theorem 5.1 Forsets A, B,and C,if AC Band BC C,then A C C.

In order to prove this theorem, we first decide what we are given and what we need to show:

Proof:

Assume: A, B, C sets
1. ACB
2BCC

Show: ACC

Before you continue the development of a formal proof as Exercise 1, let us illustrate the
theorem with a Venn diagram. First we draw acircle for set C' (Figure 5.1):

C

Figure 5.1

By the hypothesis B C C, we put the circle representing set B inside set C, as in Figure
5.2:

C

Figure 5.2
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By hypothesis 2, A C B, wedraw set A inside circle B, asin Figure 5.3. It is clear from the
diagram, now, that A isinside C; that is, the conclusion A C C' istrue.

C

B

Q.

Figure 5.3
EXERCISES

1. Fill in the underlined places in the following proof fragments.
@ lLyeC
2 forallz e C: oz <12
3. ( ; )

(b) 1.
2 forallte B:teC
3. (1,2; us.V)

(c 1.qeB

2 forallte B:teC

3. (1,2; us.Y)
(d 1L5€¢8

2 forallze S:xeT

3. (1,2; us.V)
(e 1.4€8

2.

3.4eT (1,2;us. V)

f) LxesS
2.
zeT (1,2;us.Y)

2. Prove Theorem 5.1. Stick exclusively to the step-discovery procedure.
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REVIEW EXERCISES

1. Letz € R bearbitrary.

T.x <8
8. ( ;pr.v)

4. Fill in the steps dictated by the rule for proving a for all statement
@

8. forallz e A:5<x ( ;pr.V)

(b)

6. forallz e C:x €D ( Jpr.v)
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Using Or Statements

For sets A and B, the union of A and B is the set AUB defined by AUB =
{z| v € Aorz € B}.

Theword “or” in mathematics is always taken in the inclusive sense, so that z isin A U B if
itisin A or in B or in both. From this informa meaning of the word “or” we can give examples of
the union of afew sets:

Example 1:

(@ If A={2,3,4} and B = {3,4,5},then AU B = {2,3,4,5}.
(b) If R={1,2,3}and S = {2,3},then RU S = {1,2,3}.

() {2,4,6,8,..}U{1,3,5,7,..} =N.

The shaded areain Figure 6.1 representsthe set A U B:

Figure 6.1

We are not allowed to use the informal idea of the word “or” in formal proofs, however. In
order to use or statements in proofs, we need rules for proving and using statements of this form.

Using or statements (partial version): To use a statement P or Q that we know is true, in order
to prove some statement R, first assume that P is true and prove R in that case, then assume that
Q istrue and prove R in that case. Abbreviation: “us. or”.

Format:
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1.PorQ
Cael 2.P
iR
Case?2 j+1.Q
k-1. R
k. R (1—k-1; us. or)

The reason for indenting is so we can keep track of the assumptions under which proof steps
are true. Steps at the left-most level, such as the last step (conclusion) are true with only the
hypotheses assumed. At the top of any indented block of steps we can see the additional
assumption under which the steps are true.

Using a statement P or Q to prove R involves 2 cases, the first where we assume P, and
the second where we assume Q. It is necessary that R be the last step in both cases. The steps
needed to prove R in Case 1 are valid only in that case, and can't be used in Case 2, or anywhere
elsein the proof. Similarly, the stepsin Case 2 can only be used in that case.

The empty boxes in the proof format above represent two remaining gaps that will each
need to be bridged.

Example 2:
l.xe€AorzeB
Casel 2.

Case2 6.

9.
10. 2 < 8 (1—9; us. or)

Solution:
l.zeAorze B
Casel 2rc A

5z<8
Case 2 6.z € B

9.2<8
10. 2z < 8 (3—9; us. or)
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Example 3:
Suppose that A={teN|t< 10}, B={teN|t<20}, and C = {te N |t < 30}. Prove
that AUBC C.

Instead of merely reading the following proof asked for in Example 3, use the following
procedure—which is suggested for reading all mathematics proofs: (1) cover the proof discussion
below with a piece of paper, (2) follow the step-discovery outline by writing your own steps to
anticipate the stepsin the text, and (3) uncover the stepsin the text to verify your work.

Pr oof:

Assume: A= {teN|t< 10}
B={teN|t< 20}
C={teN|t<30}

Show: AUBCC

k. AUBCC

The conclusion is of the form set C set. This top-level form regards A U B as a single set.
From the form of the conclusion, we get the justification for Step k.

Proof:

Assume: A= {teN |t < 10}
B={teN|t<20}
C={teN|t<30}

Show: AUBCC

k. AUBCC ( ;def. ©)
By the definition of C , we get the following defining condition as Step k-1.

k-1. forallx e AUB:z € C
k. AuBCC (k-1; def. C)

At the top level, statement k-1 is a forall statement. Thus the rule for proving forall
statements is the justification for Step k-1. Thisrule dictates Steps 1 and k-2.

1. Letz € AU B bearbitrary.

k-2.z € C
k-1. forallzx € AUB:x € C (1—k-2; pr.V)
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k. AUBCC (k-1; def. C )

At the top level, Statement k-2 is of the form element € set. The justification for this step
is therefore the definition of the set.

1. Letz € AU B bearbitrary.

k2.zeC ( :def.C)

k-1. forallzx € AUB:x € C (1—k-2; pr.V)
k. AuUBCC (k-1; def. C)

Getting x € C as Step k-2 from the definition of C, means that the condition defining C
(applied to =) must be Step k-3.

1. Letz € AU B bearbitrary.

k-3. z < 30

k-2.z € C (k-3; def. C)
k-1. forallzr € AUB:x € C (1—k-2; pr.V)
k. AuUBCC (k-1; def. €)

Step k-3 is of the form number < number. Sincetherelation < has not been defined, we
are at the end of the bottom-up part of the analysis, and we now work from the top down. There is
only one possibility for Step 2. Step 1 is of the form element € set. The definition of that set
givesus Step 2. Since z isin the set, x must satisfy the defining condition.

1. Letz € AU B bearbitrary.

2xecAorxeB (1; def. U)
k-3.z < 30
k-2.2 € C (k-3; def. C')
k-1. forallz € AUB:xz €C (1—k-2; pr.V)
k. AUBCC (k-1; def. C)

At thetop level, Step 2 is an or statement. We are now in the position of wanting to use an
or statement that we know is true (Step 2) to prove = < 30 (Step k-3). The rule for using or
statements tells us just what to do.
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1. Letz € AU B bearbitrary.
2xecAorxeB (1; def. U)
Casel 3 z€d

j-1. 2 < 30
Cae2 j.z€B

k-4. z < 30

k-3. z < 30 (2—k-4; us. or)
k-2.z € C (k-3; def. C)

k-1. forallzx € AUB:x € C (1—k-2; pr.V)
k. AUBCC (k-1; def. C)

Note that the statement = < 30 that we want to show occurs as the last step in each of the
cases dictated by the rule for using or statements. We continue, from the top. Step 3 is of the form
element € set. Thereason for Step 4 is therefore the definition of that set.

1. Letz € AU B bearbitrary.

2xecAorxeB (1; def. U)
Cael 3. z€cd

4. < 10 (3; def. A)
j-1.z < 30

Case2 j.z€B

k-4. z < 30

k-3.z < 30 (2—k-4; us. or)
k-2.z € C (k-3; def. C')

k-1. forallz € AUB:z € C (1—k-2; pr.V)
k. AUBCC (k-1; def. C )

Connecting Step 4 and Step j-1 remains, but the way to do this is clear. We use the
transitivity of < . Case 2 isdone similarly, and this gives a complete proof.

Proof:

Assume: A= {teN |t < 10}
B={teN|t<20}
C={teN|t<30}

Show: AUBCC(C
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1. Letz € AU B bearbitrary.

22xeAorxe B
Cael 3.zcA

4. <10
5.10 < 30
6.z < 30
Cae2 7.z€B
8.x <20
9.20 < 30
10. z < 30
11. 2 < 30
12.z € C
13. forallz € AUB:z € C
14.AuBCC

(1; def. U)

(3; def. A)
(given)
(4,5; Trans. <)

(7; def. B)
(given)
(8,9; Trans.<)
(2—10; us. or)
(11; def. C')
(1—12; pr.V)
(13; def. C)
O

Note that it isn't necessary to provide justification for steps in which we make an
assumption. They are true by assumption. The following theorem is a generalization of

Example 3.

Theorem 6.1 ForsetsA, Band C,if ACCand B C C,thenAUB C C.

Pr oof:

Assume: A, B, C sets
1LACC
2BCC

Show: AUBCC

Ifwedraw A C C and B C C inFigure 6.2, itisclear that A U B must be a subset of C' —

asinFigure 6.3:

Figure 6.2
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o

Figure 6.3

The proof of Theorem 6.1 isfor you to do (Exercise 2). Follow the step-discovery outline.

The general rule for using or statements involves statements of the form Py or P; or ... or
‘P... Each of the n constituent statements P; through P,, corresponds to a case in the proof, so there
are n Cases.

Inference Rule Using or statements. From the or statement P, or P, or ... or P,, we may infer any step that is
true in all cases that don't lead to a contradiction. In particular, in order to use the statement P; or
Py or ... or P, to prove a statement R, show that R holds in al cases that do not lead to a
contradiction. (If al cases lead to a contradiction, then we may infer the negation of the
assumption leading the block of steps containing the statement P; or P, or ... or P,. See
Example 3 of Section 15, “Proof by Contradiction”.)

By a contradiction, we mean a step in a proof that is the negation of a statement that we
already know is true: some hypothesis, previously shown theorem, or more often, a previously
established step in the proof. We use the symbol # to denote “contradiction”.

Example 4:
6.xre A
T.x<TorxeB
| Casel 8 x<7

10.2 ¢ A, #Step6
| cae2 11.zeB

13.
l4xeC (7—13; us. or)

Solution:
6.xrec A
T.x<TorxeB
| Cae1l 8a2<7

10.2 ¢ A, #Step6
| cae2 11.2eB
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13.ze€C
l4xeC (7—13; us. or)

In Case 1 of Example 4, Step 10 isthe statement = ¢ A. This statement is the negation of
Step 6, which we already know. Thus Step 10 contradicts Step 6. We have noted this fact after
Step 10, with the phrase “# Step 6”.

The justification for Step 14 says that we have obtained this step by the rule for using the or
statement in Step 7. Thus we have concluded = € C by the rule. The rule states that we must have
x € C as astep in each case that does not lead to a contradiction. Since Case 1 does lead to a
contradiction, we need to have x € C asastep in Case 2.

Therule, inits general form, will be needed to prove Theorem 8.2.

EXERCISES
- (@
1
Cael 2.z€eC
3.
4.
Case2 5. z€D
6. ..
7.
8. x<7 (1—7, us. or)

(b)
lLzeCoryel
Cael 2zeC

3 ..
4.ye D
Case2 5.
6. ...
7.
8. (1—7; us. or)
(©
1

22x€AorxeB (1; def. L)



Section 6: Using Or Statements

(d)
l.se AUB
2. (1; def. U)

(€
lLxeCorxeD
2. (1;def. )
®
lLxe€AUB
2. (1; def. U)
Cael 3.

Case 2

© N o g B

9.zeC (2—8; us. or)

(©))

lLz<6ory<b
Casel 2
3 ..
4. ye A
Case2 5.
6. ...
7

8. (1—7; us. or)

(h)
1. Letz € G bearbitrary

kzxe HUK
k+1. (1—k; )

2. Prove Theorem 6.1.
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Section 7

Inference Rule

Implicit Defining Conditions

When we define a relation, we make the relation equivalent to its defining condition. The rule for
using equivalence then lets us substitute the defining condition for the relation, and vice versa, in
proof steps. For example, the relation J C K between J and K is, by definition, equivalent to the
logical statement forall z € J: z € K. Thus, we might have either of the pairs of proof steps
below.

1.JCK
2. forallx e J.x € K (1; def. C)

1l forallze J:z e K
2JCK (1; def. C)

According to the inference rules we have to date, this is the only way that we can use the
definition of C in a proof. We are now at the point of wanting to use defining conditions
implicitly, without actually writing them down in proof steps. In our minds, we identify the relation
J C K with its defining condition forall x € J: x € K. Thusto use arelation J C K that we
know is true, we use the equivalent for all statement. However, we think of this not as using the
forall statement, but as using the relation J C K.

Suppose we have proof steps 1 and 2 below.

1l.aeJ
2JCK

To apply the information in Step 2 to Step 1, we apply the defining condition for all
rzeJ: ze K to Step 1 to conclude a € K. However, we think of this as applying the relation
J C KtoStepltoconcludea € K.

l.aeJ
2JCK
acK (1,2; def. C)

The defining condition for J C K becomes implicit. We use the defining condition, to
write Step 3, but we don't write the defining condition down. Consider again the logic behind Steps
1 through 3 above: We know a € J. We aso know that everything in J is aso in K. We
therefore know that « € K. This informal logic is perfectly clear, but there are things that are
implicit in it. How do we know that everything in J isaso in K? By the definition of C . The
definition of C has been used implicitly. We now state a rule that formally allows us to use
definitionsin this way.

Implicit definition rule: If the defining condition for some relation is a statement P, then to prove
the relation we prove P, without writing P down. To use the relation, we use P, without writing
‘P down.

If we wish to call attention to the fact that we're using defining conditions implicitly,
according to the rule above, we will write “imp.” after citing the appropriate definition. The
notation “exp.” after the citation means that we are using the former rule.
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Example 1.

In the exercise below, first fill int

he underlined place using the implicit definition rule. Then in

the second, explicit version of the same proof fragment, fill in the “missing ” step with the explicit
defining condition, and get the same conclusion asin the first steps.

1.ACB
2.z e A

Solution:
1.ACB
2xeA
3.zeB

1.ACB

2zxeA
2%.f0rallteA:t€B

3.zeB

The effect of using the impli

(1,2; def. €, imp.)

(1; def. C, exp.)
(2,212 )

(1,2; def. €, imp.)

(1; def. C , exp.)
(2,222;us, V)

cit definition rule is to remove from proofs some statements of

abasic logic form, and to leave only more mathematical looking statements.

Example 2:

Recall the proof of Example 1 of Section 5:

Pr oof:

Assume: K = {z e N|z < 20}

JCK
Show:  foralla € J:a < 20

1. Leta € J bearbitrary.

2. forallze J:z e K
ae K
4.0 <20

5. foralla € J:a < 20

(hyp.; def. )
(1,2; us.Y)
(3; def. K)
(1—4;pr.V)

Steps 1, 2, and 3 are needed—if we use the explicit form of the definition of C :
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1. Leta € J bearbitrary.
2 forallze J:x € K (hyp.; def. C)
aeK (1,2;us.Y)

By using the implicit definition rule, however, we can use the hypothesis (J C K) and
Step 1 (a € J) toinfer a € K immediately—which we now renumber as Step 2:

Pr oof:
Assume: K = {z € N |z < 20}
JCK
Show:  foralla € J:a < 20
1. Leta € J bearbitrary.

2ae K (1, hyp.; def. C , imp.)
3.a<20 (2; def. K)
4. foralla € J:a < 20 (A—3;pr.V)

O

Using the implicit definition rule tends to focus our attention on the mathematical objects
we're talking about, and not on the logical form of statements about them. Our logic should
become increasingly implicit (but well understood). Note that our proof style begins with
completely explicit use of definitions, inference rules, and formal statements. We move to implicit
use of the rules after some practice with the explicit use. The correct approach from a pedagogical
viewpoint is to move from the explicit to the implicit—not vice versa. In any area where
understanding is paramount, shortcuts should not be learned before one gets the lay of the land.

Example 3:
Recall the proof of Example 4 of Section 4:

Pr oof:
Assume: H = {z € N |z < 10}
G={rxeN|z <20}

Show: HCG

1. Let z € H bearbitrary.
2.2 <10 (1; def. H)
3.10 < 20 (given)
4.2 <20 (2,3, Trans. <)
5.2€G (4; def. G)

6. forallx e H: 2z € G (1—5; pr.v)

7.HCG (6; def. C)

O

The defining condition for H C G (Step 7) is explicitly written down as Step 6. If we were
to use the implicit definition rule, we would not write the for all statement of Step 6 down in the
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proof. We would go through all the steps necessary to prove this for all statement, but we would
consider these steps as proving the equivalent statement H C G instead of the for all statement.
The for all statement becomesimplicit:

Pr oof:
Assume: H = {z e N |z < 10}
G={reN|z <20}

Show: HCG
1. Letz € H bearbitrary.
2.z <10 (1; def. H)
3.10 < 20 (given)
4.2 <20 (2,3; Trans. <)
5ze@ (4; def. G)
6.HCG (1—5; def. C , imp.)

O

The implicit definition rule is involved when we provide counterexamples to statements
about set containment. For example, consider the following statement, which we call a proposition,
since, at this stage, we presumably don't know whether it is true or false.

If Aand B are sets, then AU B C B.

The hypotheses and conclusion are:

Hypotheses: A, B sets
Conclusion. AUBCB
In order to exhibit a counterexample, we need to know what it meansfor AU B C B to be
false. By definition of containment, AU B C B means forall xt € AU B : x € B. The negation
of thisis there exists x € AU B suchthat x ¢ B. This tells us what it means for the for all
statement to be false. Finding such an x will show that the for all statement is false. Since we
mentally identify the statement A U B C B with the for all statement, we consider that to exhibit

sats A and B and an element z that make the for all statement false is to provide a
counterexampl e to the assertion about set containment. For example:

If Aand B aresets, then AU B C B.

Counterexample 4:
Hypotheses: A, B sets
Conclusion. AUBCB

Let A={1} and B={2}. Then AUB={1,2}. Also 1€ {1,2} but 1¢ {2}, so that
{1,2} C {2} isfase.
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EXERCISES

1. In each exercise below, first fill in the underlined place using the implicit definition rule. Then in
the second, explicit version of the same proof fragment, fill in the “missing ” step with the explicit
defining condition, and get the same conclusion asin the first steps.

(@
1.CCD
2xeC
3. (1,2; def. €, imp.)
1.CCD
2xeC
21, (1; def. C , exp.)
3. 2,23 )
(b)
1L.XCY
2.
3.teyY (1,2; def. C ,imp.)
1L.XCY
2.
21, (1; def. C , exp.)
3teY (2,24; )
(©
1l Letz € Abearb.
2.r€B
3. (1—2; def. €, imp.)
1l Letz € Abearb.
2.r€B
21, (1—2; )
3. (25; def. C , exp.)

2. Rewrite the proof of Theorem 5.1, using the implicit definition rule in as many places as you can.

3. Rewrite the proof of Theorem 6.1, using the implicit definition rule in as many places as you can.
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REVIEW EXERCISES

4. (a)
lLzeAorye A
Cael 2. Assumez € A

3. ..
4.y B
Case2 5.
6. ...
7.
8. (1—7; us. or)
(b)
l.seCuD
2. (1; def. U, exp.)
(©
l.teCorteD
2. (1; def. U, exp.)
(d)
lLzxeGUH
2. (1; def. U, exp.)
Casel 3.
4
5.
Case2 6.
7
8
9.2<9 (2—8; us. or)
(€)

1. Letz € A bearbitrary

k.z€e AUB
k+1. (1—k; )
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Unions,; Proving Or Statements

Inference Rule Proving or statements: In order to prove the statement P or Q, either assume —P and show Q,
or assume - Q and show P. Abbreviation: “pr. or”.

There are two possible proof formats for using thisrule:
pr. or

1. Assume —P

k-1.9
k. PorQ (1—k-1; pr. or)

pr. or

1. Assume = Q

k-1.P
k. PorQ (1—k-1; pr. or)

Example 1.

In the gap indicated by the blank space, write all the steps dictated by the rule for proving or
statements that justifies Step k.

kxeGorxeH ( ; pr. or)
Solution 1:
1. Assumez ¢ G
k-lL.ze H
kxeGorxeH (1—k-1; pr. or)
Solution 2:

1. Assumezx ¢ H
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k-l.z e G
kxeGorzxe H (1—Kk-1; pr. or)

In any developing proof, the steps dictated by the rule for proving an or statement are put at
the top and bottom of the gap above the statement.

Since there are two choices available, the rule doesn't dictate a unique pair of statements
needed to prove the statement, as does the rule for proving for all statements. In general, you will
need to consider both possibilities, in order to choose the one that will most likely lead to success.
Y ou may even need to try both possible approaches, to see which works out the best.

Example 2:
1. Assumet ¢ A
3.teB
4, (1—3; )
Solution:
1. Assumet ¢ A
3.teB
4.te Aorte B (2—3; pr. or)

If 2, for example, occursin the or statement
kxe Aorxe B

asastep in a proof, 2 would have had to have been already defined, either in the hypotheses, or in
a previous proof step. The rule for proving or statements dictates that the Steps i—k-1 be inserted
in the gap before Step k:

i. Assumez ¢ A

k-1.z € B
kxeAorzeB (i—Kk-1; pr.or)

Step i does not define x. It makes an assumption about an element that must already be
defined. We use the word “let” to define new symbols, and the word “assume” to make an
assumption about something that has been defined already.

Example 3:

4, Assumet € G

7.te H
8. (4—r, )

Solution:

4, Assumet € G
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7.te H
8t¢é¢Gorte H (4—7; pr. or)

Example 4:

4. Lett € G bearbitrary

7.te H

8. (4—T; )
Solution:
4. Lett € G bearbitrary
7.te H
8. forallte G:te H (4—7; pr.v)

Suppose we have the following stepsin a proof.

i.zxec A

kxe Aorxz e B

That is, suppose we know Step i, and seek to show Step k. The rule for proving or statements
dictates steps such as

iLxeA
i+1. Assumez ¢ B

k-l.ze A
kxeAorzeB (i+1—k-1; pr.or)

Our job is now to show that Step k-1 istrue. But here, Step k-1 istrue sinceit isthe same as
Step i. Thus we get the following proof of Step k.

iLxeA
i+1. Assumez ¢ B
it2.x € A (Step i)
i+3.x € AorzeB (i+1—i+2; pr.or)
In general, if we have P as a step in a proof, then we can prove P or Q in the manner
above:
1P

2. Assume -Q
3P (Step 1)
4.PorQ (2—3; pr. or)
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Thus if P istrue then P or Q follows by the rule for proving or —without even using the
assumption - Q. Of course, in general it will be necessary to use ~Q in order to show P. But when
P is known to be true, then P or Q@ must follow. We will interpret the rule for proving or
statements so as to allow the following shortened (EZ) version of the steps above

pr.or EZ

1P
2.PorQ (1;pr.or EZ)

pr.or EZ

1.9
2. PorQ (1;pr.or EZ)

We consider the steps above an extension of the format for proving or statements.

If you need to show a statement P or Q in a proof, the first thing to do would be to see if
you already know either of P or Q. If so, then P or Q follows immediately by the EZ form of the
rule for proving or statements. If not, then decide whether it would be better to assume =P and
show @, or to assume —Q and show P.

The shortened format for the rule for proving or statements makes the proof of Theorem 8.1
easy.

Theorem 8.1 For sets A and B:
@ACAUB
() BC AUB

Proof: Exercise 3

The EZ forms of the rules for proving or statements eliminate the need to make an
obviously unnecessary assumption. The rules we have for using or statements sometimes lead to
making an obvioudly false assumption. For example, suppose we have Steps 1 and 2, and wish to
show Q in Step k below.

1.-P
2. PorQ

k. Q
Q isshown by the rule for using the or statement in Step 2:

1.-P
2.PorQ
Cael 3. P#Stepl
Cae2 4.0
59 (2—4; us. or)

Thus Q in Step 5 is formally established, since we have shown it in all cases that do not
lead to a contradiction. The words “lead to” here are not quite appropriate, since the assumption in
Case 1 is itself a contradiction. Also, in Case 2 we assume, in effect, the result we seek. We can
avoid the unnecessary formalism, by the following EZ forms of the rule for using or statements.
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us. or EZ
1.PorQ
2.-P
3.9 (1,2; us. or EZ)

us. or EZ
1.PorQ
2.-9
3P (1,2; us. or EZ)
Although the standard forms for the rules for proving and using or statements are called for

in amost al situations, the EZ forms of the rules are useful in avoiding needless assumptions or
assumptions that contradict known facts.

Theorem 8.2 Forsets A, BandC,if AC Bor ACCthenAC BUC.

Pr oof:

Assume: A,B,C sets
ACBorACC

Show: ACBUC

The hypothesis for this theorem is the single or statement A C B or A C C'. The statement
A C Bisonly part of the or statement, and is not known to be true; that is, A C B is not one of
the hypotheses. In order to use the hypotheses of this theorem we need to employ the rule for
using or statements. The step-discovery procedure first gives us the following steps:

1. Letz € A bearbitrary

k-3.x2 € Borz e C ( ; pr. or)

k-2.z e BUC (k-3; def. U, exp.)
k-1. forallx € A:x € BUC (1—k-2; pr.V)
k ACBUC (k-1; def. C , exp.)

Thefirst option in the rule for proving or statements dictates the following steps:

1. Let z € A bearbitrary
2. Assumezx ¢ B

k-4. 2 € C
k-3.z € BorzeC (2—k-4; pr. or)
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k-2.z e BUC (k-3; def. U, exp.)
k-1. forallx € A:x € BUC (1—k-2; pr.V)
k ACBUC (k-1; def. C , exp.)

We are now at the end of the bottom-up/top-down part of the step-discovery procedure, and
need to use the hypotheses. As a matter of exposition, we write the hypothesis in the proof itself as
Step 3—to precede the cases in the rule for using or-.

1. Let z € A bearbitrary

2. Assumezx ¢ B
BACBorACC (hyp.)
k-d.z e C
k-3.z€ BorzeC (2—k-4; pr. or)
k-2.z e BUC (k-3; def. U, exp.)
k-1. forallx € A:x € BUC (1—k-2; pr.V)
k ACBUC (k-1; def. C , exp.)

We now need to use the or statement of Step 3, which means that we have cases.

1. Let z € A bearbitrary
2. Assumezx ¢ B
BACBorACC (hyp.)
Casel 4 ACB
5 xz¢€B, #Step?2 (1, 4; def. €, imp.)
Cae2 6. ACC

1.xeC (1, 6; def. C , imp.)
8.zel (3—7; us. or)
9.x€ Borze(l (2—8; pr. or)
10.z e BUC (9; def. U, exp.)
11. forallz € A:x € BUC (1—10; pr.V)
12.AC BUC (11; def. C , exp.)

O

After Step 5, we have noted the fact that this step contradicts Step 2. The justification for
Step 5 is the reason that it follows from previous steps, regardless of the fact that it is a
contradiction. Step 5 follows from Steps 1 and 4, by the rule for using defining conditions
implicitly. The fact that it contradicts Step 2 says that Case 1 in the proof realy doesn't occur,
under the assumptions preceding the or statement.
The use of an or statement that we know is true leads to cases. These cases can be used in
an informal interpretation of Theorem 8.2 in terms of Venn diagrams. Figure 8.1 shows that the
conclusion of the theorem holds in both cases indicated by the hypothesis:
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CaelACBH Cae2ACC

o
@)

Figure 8.1

Example 5:

1.
2rxe AUB (1; def. U, exp.)

Solution:

l.xe€AorzeB
2rxe AUB (1; def. U, exp.)

Example 6:

1.
2rxe AUB (1; def. U, imp.)

Solution:

lLzeA
2rxe AUB (1; def. U, imp.)

Example 6 illustrates the use of the implicit definition rule: By the definition of C
r€AUB means x € A or x € B. The only way to prove this or statement with a single
preceding step is to use the short (EZ) format; that is, either z € A or x € B must be the preceding
step. Either of these statements would be satisfactory as Step 1. The intermediate step x € A or
x € Bingoingfromz € Atox € AU B isnot written down.

In Example 7, we find a block of steps that proves the implicit or statement.

Example 7:
1

|
j+lL.z € AUB (1—j; def. U, imp.)

Solution:
1. Assumez ¢ A

j.x€B
j+lL.z € AUB (1—j; def. U, imp.)
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Givena,b € N,wesay aislessthan orequalto b (writtena < b) iff a < b or a = b.

Transitivity of <:Fora, b, ce N,ifa<bandb < ¢, thena < c.
Proof: Exercise 4.

The proof of Theorem 8.3 uses the following rule of inference:

Substitution: Any name or expression for a mathematical object can be replaced by another name
or expression for the same object. It is necessary to avoid using the same name for different
objects.

Example 8:

la<bd
2.b=c
da<ec (1, 2; substitution)

In Example 8, b in Step 1 is replaced by ¢ to get Step 3 — b and ¢ being equal by Step 2.
The equal sign in Step 2 means that b and ¢ are two names for exactly the same number. Thus the
statement in Step 3 is exactly the same statement as Step 1, except that another name for the
number to the right of the * < ” sign is used. Thus the name “¢” is substituted for the name “5” in
this statement. The numbers remain the same. Only the names are changed.

EXERCISES

1. Write all the steps dictated by the rule for proving or statements that show Step k.

kxeAorzeB ( ; pr. or)

. Fill in the underlined places in the following proof fragments.

@ 1. Assumey ¢ J
dye K
4, (1—3; )
(b) 4. Assumey € J
7.ye K
8. (4T )
() 4. Let x € A bearbitrary
7.x € B
8. (4T )
(d) 1.

2xeCUD (1; def. U, exp.)
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(e) 1.
2xeCUD (1; def. U, imp.)
Q) 1.
5.
6.te XUY (1—5; def. U, imp.)

3. (a) Write two proofs of Theorem 8.1a—one using the original, explicit definition rule, and one
using the implicit definition rule.
(b) Same problem asin part (a)—applied to Theorem 8.1b.

4. Prove Theorem 8.3. First, fill in the steps dictated by the conclusion. Next, use one of the
hypotheses. This will introduce cases into the proof. Label these Case 1 and Case 2. Use the
second hypothesis in both Case 1 and Case 2. In Case 1, indent further for the new cases
introduced by the second hypothesis. Call the new cases Case 1aand Case 1b. Similarly, in Case 2,
call the new cases Case 2a and 2b.

In the following problems provide proofs for all true assertions. Provide counterexamples for those
problems where you are asked to prove a false assertion.

5.Let A, B,and C besets. Prove AUB C AUC.
6. LeeACCandBC DforsetsA, B,C,and D.Prove AUB C CUD.
7.Let AUBC AUC forsets A, B,and C. Prove B C C.

8.1f P and Q are statements, the informal statement “if P, then Q" formed from them is called an
implication. (Formal implications will be considered in Section 15.) The converse of the
implication “if P, then Q" is formed by interchanging P and Q to obtain “if Q, then P”. In
Theorem 8.2 (For sets A, Band C, if AC B or ACC then A C BUC(C), if we replace the
implication “if A C Bor A C Cthen A C BUC” withitsconverse“if AC BUC,thenAC B
or A C C” we get the statement “For sets A, Band C,if AC BUC,then AC Bor ACC".
Prove this, or find a counterexample.

REVIEW EXERCISES

9.(@ L
Cael 2.tec A
3.
4.
Cae2 5.teB
6...
7.
8.t<9 (1—7, us. or)
(b) 1.

2xeCorzxzeD (1; def. U, exp.)
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(© Lt<T7ord<s

Cael 2
3. ..
4.s€T
Case2 6.
6. ...
7.
8. (1—7; us. or)

10. In each exercise below, first fill in the underlined place using the implicit definition rule. Then in
the second, explicit version of the same proof fragment, fill in the “missing ” step with the explicit
defining condition, and get the same conclusion asin the first steps.

@® 1.GCH
2teG
3. (1,2; def. €, imp.)
1.GCH
2ted
21. (1; def. C , exp.)
3. (2,24 )
(b) .GCH
2.
zeH (1,2; def. C ,imp.)
1GCH
2.
23. (1; def. C , exp.)
dreH (2,23; )
(© 1. Lett € G bearb.
2te H
3. (1—2; def. €, imp.)
1. Lett € G bearb.
2te H
23. (1—2; )
3. (24; def. C, exp.)
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|ntersections; And Statements

For any sets A and B, the intersection of A and B is the set AN B defined by
ANB={z|z € Aandz € B}.

The connective and in our formal language has an informal meaning which is identical to
the word “and”. Thus for sets A and B, an element is in the intersection AN B if it isin both A
and B. From this informal meaning of “and” we can give examples of the intersection of a few
Sets.

Example 1:

(@) If A={2,3,4} and B = {3,4,5}, then AN B = {3,4}.

(b)If R={1,2,3}and S = {2,3},then RN S = {2,3}.

(©IfC ={2,4,6,8,..}and D = {1,3,5,7, ..}, thenC N D = .

The set AN B isrepresented by the shaded areain the Venn diagram of Figure 9.1:

Figure 9.1

To dea with and statements in a proof, we have two rules—which determine the formal
meaning. Notice that therules are “logical” if the formal and agrees with our informal idea.

Using and statements: If P and Q is a step in a proof, then P can be written as a step and Q
can be written as a step. Abbreviation: “us. & .

Formats:

1. Pand Q
2.9 (Lius. &)
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Inference Rule

pr. &

Theorem 9.1
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1. Pand Q
2.P (L;us. &)

Example 2:
lz<landz € A
2. (L us &)

Solution:
lz<landz e A
2r<l(or2.ze€ A (Lus&)

Proving and statements. In order to show P and Q in a proof, show P and aso show Q.
Abbreviation; “pr.& ".

The proof format for using thisrule for proving and statementsis:

k-1.9
kPand Q@ (j,k-1;pr.&)

Example 3:
1.
2.
dzeMandx eN (1,2;pr.&)

Solution:
lLzeM
2.zeN
dzeMandx eN (1,2; pr.&)

For sets A and B:
@ANnBCA
() ANBCB

Proof: Exercise 3.
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Forsets A, B,and C,if AC Band AC C,then A C BN C.
Proof: Exercise4.
For sets A and B, we write A = B to mean that A and B are two names for exactly the
same set. We don't formally know what “same set” is, however, since “set” is undefined. If theidea
of set were defined, then to prove A = B we would show that A and B were exactly the same

thing under the definition. Since “set” is undefined, in order to prove that two sets are equal, we
must define what we mean by equal sets.

A set A isequal toaset B (written A = B) provided that A C B and B C A.

Example 4:

1.A=B

2. (1; def. =, exp.)

3. (2;us. &)

4. (2;us. &)
Solution:

1.A=B

2ACBand BC A (1; def. =, exp.)

3ACB (2;us. &)

4. BCA (2;us. &)
Example 5:

1.A=B

2. (1; def. =, imp.)

3. (1; def. =, imp.)
Solution:

1. A=B

2. ACB (1; def. =, imp.)

3. BCA (1; def. =, imp.)
Example 6:

1.

2.

3.A=18 (1,2; def. =, imp.)
Solution:

1. ACB

22 BCA

3. A=18B (1,2; def. =, imp.)
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EXERCISES

1@ lLzeCandx <7
2, (Lus&)

=

(b)

dtecAandzr e A (1,2; pr.&)

(c)1.G=H
2 (1; def. =, exp.)
3. (2;us. &)
4 (2;us. &)
(d 1.G=H
2. (1; def. =, imp.)
3. (1; def. =, imp.)
(e 1
2.
3.G=H (1,2; def. =, imp.)

2. Use the step-discovery procedure to fill in all the proof steps you can leading up to a proof of a
proposition with the following hypothesis and conclusion:

Assume: G, H sets
Show: G=H
Give a counterexample to show that G = H isnot true for all setsG and H.
3. Prove Theorem 9.1.

4. Prove Theorem 9.2, and draw a VVenn diagram that illustrates the theorem.

5.Let A, B, C, and D be sets. Prove or disprove the following propositions:
@ AC ANB.
(b)If ACBandC C D,thenANC C BN D.
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REVIEW EXERCISES

6. Write all the steps dictated by the rule for proving or statements that show Step k.

kx<9orzeC

7.(9) 1. Assumet ¢ C
3.teD
4.
(b) 4. Lett € C bearbitrary
7.teD
8.
(o 1L
2.te XUY

( ; pr.or)

(1—3; )

(4—T7,; )

(1; def. U, imp.)
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Symmetry

For sets A and B,
@ANB=BNA
() AUB=BUA

We will use the proof of Theorem 10.1a as motivation for a new inference rule that will
enable us to abbreviate proofs considerably. The final version of the proof will employ this rule.
You are to employ the same rule to prove part (b). Note that the inference rule you will use to
prove part (b) is stated after Theorem 10.1. In general, you are allowed to use any rule stated in a
section to prove any theorem in the section—regardless of the order in which the rule and theorem
are stated. This won't violate the principle of orderly, logical development, since the rules don't
depend on theorems for their validity.

Pr oof:
Assume: A,B sets
Show: ANB=BNA

k-l. ANBCBNAand BNACANB ( ;pr.-&)
k. AnB=BnA (k-1; def. =, exp.)

We have written the conclusion as Step k. This step is of the form set = set, SO we use the
definition of equal sets to get Step k-1. Step k-1 is an and statement. The rule for proving and
statements dictates two previous steps—which we write separately, since the two steps will have to
be shown separately.

Pr oof:
Assume: A,B sets
Show: ANB=BNA

j., ANBCBNA
k2. BNACANB

kl ANBCBNAand BNACANB  (j,k2;pr.&)
k. ANB=BnA (k-1; def. = , exp.)
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Note that the definition of intersection has not entered into the analysis yet. There are two
steps (j and k-2) to establish. Further analysis leads to the following steps toward establishing

Step j:

1. Letz € AN B bearbitrary

j-2. x € BN A
j-1. forallr€e ANB:x€ BNA
j-AnBCBNA

(1—j-2; pr.v)
(-1, def. ©)

The definition of intersection and the rules for proving and using and statements provide

the missing steps:

Let x € AN B bearbitrary
r€Aandx € B
xeA
xeB
xr€Bandz e A
6. e BNA
7. forallr€ ANB:x € BNA
8 ANBCBNA

ok wbd PR

(1; def. N, exp.)
(2;us. &)

(2;us. &)

(3,4, pr.&)

(5; def. N, exp.)
(1—6; pr.V)

(7; def. C , exp.)

We have established Step j (now Step 8), the first of the steps needed to prove the and
statement in Step k-1. We now need to establish the second step, k-2: BN A C AN B. But notice
that Step k-2 isjust Step 8 with the roles of A and B reversed. Steps 9 through 16 are obtained by
rewriting Steps 1 through 8 with the roles of A and B reversed:

Let x € AN B bearbitrary
x€Aandx € B
reA
r€B
r€Bandzx € A
6. e BNA
7. forallre ANB:x € BNA
8. AnNBCBNA
9. Letz € BN A bearbitrary
10. z€ Bandx € A
11. z € B
12. z€ A
13. x € Aandx € B
14. € ANB

ok~ w DN PE

(1; def. N, exp.)
(2;us. &)
(2;us. &)

(3,4, pr.&)

(5; def. N, exp.)
(1—6; pr.V)

(7; def. C , exp.)

(9; def. N, exp.)
(10; us. &)

(10; us. &)
(11,12; pr. &)
(13; def. N, exp.)
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15. forallze BNA:xz € ANB
16. BNACANB

The complete proof is therefore:

Proof of (a):
Assume: A,B sets

Show: ANB=BNA

Let x € AN B bearbitrary
xr€Aandx € B
reA
reDB
r€Bandzx €A
6. e BNA
7. forallre ANB:x€ BNA
8. AnNBCBNA
9. Letz € BN A bearbitrary
10. z€e Bandx € A
11. z € B
12. z€ A
13. x € Aandx € B
14 x€ ANB
15. forallze BNA:x € ANB
16. BNACANB
17. ANBCBNAand BNACANB
18. AnB=BnNA

ok w DR

(9—14; pr.VY)
(15; def. C , exp.)

(1; def. N, exp.)
(2;us. &)
(2;us. &)

(3,4, pr.&)

(5; def. N, exp.)
(1—6; pr.V)

(7; def. C , exp.)

(9; def. N, exp.)
(10; us. &)
(10; us. &)
(11,12; pr. &)
(13; def. N, exp.)
(9—14; pr.VY)
(15; def. C , exp.)
(8,16 ; pr.&)
(17; def. =, exp.)
O

Since Steps 9 through 16 are identical to Steps 1 through 8, except that the roles of A and B
have been reversed, it is just a matter of uninformative busy work to write all the repetitive steps
down. We will shortcut the process by replacing Steps 9 through 16 above with Step 9 below:

Proof of (a):
Assume: A,B sets

Show: ANB=BnNA

Let x € AN B bearbitrary
xr€Aandx € B
r€eA
reDB
r€Bandzx € A
6. e BNA
7. forallre ANB:x€ BNA

o k w DD PE

(1; def. N, exp.)
(2;us. &)
(2;us. &)

(3,4, pr.&)

(5; def. N, exp.)
(1—6; pr.V)
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8. ANBCBNA (7; def. C , exp.)

9. BNACANB (1—8; symmetry in A and B)
10 ANBC BNAand BNACANB (8,9;pr.&)

11. AnB=BnA (20; def. =, exp.)

O

The use of symmetry is formalized with the following rule, which we call an inference rule,
although it would more properly be called a shortcut rule.

Using Symmetry: If a sequence of steps establishes the statement Q(A,B) in a proof, and if the
sequence of the steps is valid with the roles of A and B reversed, then the statement Q(B,A)
(Q with A and B reversed) may be written as a proof step. Abbreviation: “sym. A & B”.

Note that in using symmetry in A and B in going from Step 8 to 9 in the proof above, we
are doing this:

ANBCBNA

L

BNACANB
not this:

ANBCBNA

>

BNACANB

A statement P(A,B) that we accept as true for the sake of argument is called a premise.
Thus the hypotheses that we get by interpreting theorem statements are premises. We also call
assumptions made within a proof premises. Statements valid under the latter kind of premise are
written at the same indentation level as the premise, or as further indentations within that level. The
principle behind the use of symmetry is that if Q(A,B) follows from the premise P(A,B), then
Q(B,A) follows from the premise P(B,A). The reason is that “ A” and “ B” are just names which
could just as easily be interchanged.

In the proof above, the statement Q(A,B) (AN B C BN A) follows from an empty set of
premises: the symbols “A” and “B” are named in the hypotheses, but there are no assumptions
made about A and B. The empty set of premisesis symmetricin A and B. The first set mentioned
could be called “B” just as well as “A”. The statement Q(B,A) (BN A C AN B) adso follows
from the hypotheses, and is at the same, highest indentation level—not dependent on any
additional premises that are not symmetricin A and B.

When a step justified by symmetry depends on no premises (and is therefore at the highest
indentation level) we list in the justification the symmetric step and the block of steps used to
establish it. For example, the justification (1—8; sym. A & B) for Step 9 in the proof above means
that Step 9 is symmetric with Step 8 and that Steps 1 through 7 establish Step 8. More exampl es of
this situation are given in Section 14.

When a step justified by symmetry depends on symmetric premises, these premises are
referred to in the justification. An example of this situation is given in the proof of Theorem 14.5.
Note that in the proof above of Theorem 10.1a it would not be valid to use symmetry to
interchange A and B in any of the indented steps 2 through 6, since these steps depend on the
premise z € AN B, which is not symmetric in A and B (unless the assertion of the theorem is
known in advance).

Symmetry can safely be used as an effort saving rule, where you can see the validity of the
steps that you are not writing down. Y ou will never need to use symmetry to do proofs. In fact, if
the use of symmetry istoo handy, it should be suspect. Being symmetric with a true statement does
not, in itself, make a statement true.
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Using the implicit definition rule can further shorten the proof. Step 2 gives the defining
condition that is equivalent to the statement of Step 1. Rather than writing this and statement down
as a step, we use it, implicitly, to get Steps 3 and 4. Similarly, Step 6 follows immediately from
Steps 3 and 4, by the implicit use of the condition defining intersection.

Also, if we use the definition of C implicitly as justification for Step 8, the for all
statement of Step 7 need not be written as a step. If we use the definition of set equality implicitly
as justification for Step 11, the and statement of Step 10 need not be written as a step. Thus we
have the following, shortened proof:

Proof of (a):
Assume: A,B sets
Show: ANB=BNA
1. Letz € AN B bearbitrary

2. zeA (1; def. N, imp.)

3. zeB (1; def. N, imp.)

4 re BnA (2,3; def. N, imp.)
5, AnNBC BNA (1—4; def. C , imp.)
6. BNACANB (1—5; sym. A & B)
7. AnNB=BnNnA (5, 6; def. =, imp.)

O

Step 1, r€ ANB, means x € A and z € B to us, since we know the definition of
intersection. Therefore, to use x € A N B we use the implicit and statement, to infer Steps 2 and
3, but we think of this as using Step 1. Similarly, from Steps 2 and 3, we can infer the statement
x € Band z € A, but wethink of thisasinferring Step 4, z € BN A.

The rule for implicit use of definitions allows us not only to contract what we write down,
but to contract our thought processes. Thus we ignore the obvious, and are better able to focus on
more fruitful things. In the next section, we take up informal, narrative-style proofs where logic is
implicit. The rules for proving and using and statements disappear when we write in paragraph
style. The statement “x € A and € B” in a paragraph proof could correspond to either the one
step “k. x € A and z € B” or to thetwo steps “k. z € A” and “k+1. z € B". Our formal rules for
proving and using and make these two possibilities logically equivalent. While the and rules fade
away, the effects of other rules, although no longer explicit, can till be detected as they provide a
basis for the form of the logical arguments.

EXERCISE

1. Prove Theorem 10.1b. Use symmetry.
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REVIEW EXERCISES

2.(@

(b)

(©)

(d)

(€

()

(9)

1. Assumet € C
4.te D
5.
1.
2.
3.C=D
1.
2.te XUY
1.C=D
2.
3.
1.
5.
6.t XUY
1.C=D
2
3.
4
1.
2.

3.t<8andteC

(h) L.teCandt <8

2.

Deductive Mathematics

(1—4, )

(1,2; def. =, imp.)

(1; def. U, exp.)
(1; def. =, imp.)
(1; def. =, imp.)

(1—5; def. U, imp.)

(1; def. =, exp.)
(2;us. &)
(2;us. &)

(1,2, pr.&)

(L us. &)
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Narrative Proofs

Proofs in the mathematical literature don't follow the step-by-step form that our proofs have taken
so far. Instead, they are written in narrative form using ordinary sentences and paragraphs. The
primary function of such narrative proofs is to serve as a communication between writer and
reader, whereas the step-by-step proofs we have considered so far are primarily logical
verifications.

In a narrative proof, the writer takes for granted a certain level of sophistication in the
reader. Thus certain details can be left out, since it is presumed that the reader can easily supply
them if they are needed. Generally, the higher the level of the mathematics, the more detail Ieft out.
Our rule for the implicit use of defining conditions produces proofs that are intermediate between
narrative proofs and the step-by-step proofs with explicit logic. Logic is always implicit in
narrative proofs.

We will illustrate the formulation of narrative proofs as abbreviations of step-by-step proofs
with implicit logic.

Example 1:

Consider the shortened version of the proof of Theorem 10.1athat used the implicit definition
rule.

For sets A and B,
@ANB=BnNA
() AuB=BUA

Proof of (a):
Assume: A,B sets
Show: ANB=BNA
1. Letz € AN B bearbitrary

2zxeA (1; def. N, imp.)

3.zeB (1; def. N, imp.)

4 xe BNA (2,3; def. N, imp.)
5, ANBCBNA (1—4; def. C , imp.)
6. BNACANB (1—5; sym. A & B)
7.ANB=BnNA (5, 6; def. =, imp.)

O

A narrative proof begins with a sentence or two that cover the hypotheses and conclusion.
Thisis merely good writing style: first you tell your reader what you are assuming, and then what
you will show:
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Proof of (a):
We assumethat A and B are any sets, and will show that AN B = BN A.

Next, we relate the steps that take us to the conclusion;

Proof of (a):

We assume that A and B are any sets, and will showthat ANB=BNA.Letze ANB
be arbitrary. Then z € A and x € B by the definition of N . From this we get x € BN A.
Therefore AN B C BN A by the definition of €. BN A C AN B follows by symmetry,
and from the last two assertionswe get AN B = BN A, by the definition of set equality.

O

In a narrative proof, it isn't necessary to cite the justification for every step taken. Omit the
justification when you think it will be clear to the reader. Don't be too repetitive. You should
always, however, cite the hypotheses where these are used in the proof. The hypotheses are there
because the theorem isn't true without them. It is a good idea therefore, to show where the
hypotheses are needed in the proof.

Example 2:

Rewrite the proof of Theorem 8.2 as a narrative proof.

Theorem 8.2 Forsets A, Band C,if AC Bor ACCthenAC BUC.

Pr oof:
Assume: A,B,C sets
ACBorACC
Show: ACBUC
1. Let z € A bearbitrary
2. Assumezx ¢ B

BACBorACC (hyp.)
Casel 4.AssumeAC B
5 z€B, #Step2 (1, 4; def. €, imp.)
Case2 6.AssumedA C(C
17.xeC (1, 6; def. C , imp.)
8.zel (3—7; us. or)
9.z€ BorxzeC (2—8; pr. or)
10.z €e BUC (9; def. U, exp.)
11. forallx € A:x € BUC (1—10; pr.V)
12 ACBuC (11; def. C , exp.)
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Narrative proof:

Assume that A, B, and C are sets and that A C B or A C C. We will show that
ACBUC.

We have used the informal, English word “or” in the hypotheses of the narrative proof
instead of the formal “or”. The basic logic statement forms—such as and, or, forall, there
exists—are not used in narrative proofs. They are used exclusively in connection with the formal
rules of inference, and these rules are used to guide the step-discovery procedure. In writing a
narrative proof, you are, so to speak, to put both the formal mathematics and the logic in your own
words. With some words such as or and there exists, the informal equivalents “or” and “there
exists’ are used in exactly the same way as the formal words. An informal “for al”, on the other
hand, is not used at al. Instead, people talk about the arbitrarily chosen element used to prove the
implicit for all statement. As we said at the end of the preceding section, the formal and and the
rules for proving and using and statements fade from sight in a narrative proof.

Narrative proof:

Assume that A, B, and C' are sets and that A C B or A C C. We will show that
AC BUC. Let x € A be arbitrary and assume x ¢ B. By hypothesis, AC Bor AC C. In
the first case, we get x € B by the definition of subset,since x € A. This contradicts our
assumption. In the second case, we get = € C. Therefore x € BU C. This shows that14
ACBUC.

O

The exercises at the end of this section ask you to provide narrative proofs for proofs you
have previously done for homework. In future sections, when you are asked to prove a theorem, it
is suggested that you first write a step-by-step proof, and then put this into your own words as a
narrative proof. The criterion for a narrative proof to be valid is that there is a step-by-step proof
for which it is an abbreviation. That is, it must be possible to establish any claim in a narrative
proof by a step-by-step verification.

EXERCISES
Using your proofs done for previous homework as a guide, write paragraph proofs for the
following theorems. In places where one of your proofs used a definition explicitly, you will need
to first abbreviate the proof to use the definition implicitly.

1. Theorem 9. 1 (a) and (b).

2. Theorem 9.2.

3. Theorem 8.1a

14 1t would be helpful if there were many synonyms for the word “therefore”, which tends to want to be over used in
narrative proofs. Sports headlines repeatedly inform us that team A beat team B, and the essence of sport headline
writing would seem to be to come up with colorful synonyms for “beat”. While no one wants to go to that extremein
writing mathematical proofs, alittle variety would be good.
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Using Theorems

Recall Theorem 9.1.

For sets A and B:
@ANBCA
() ANBCB

Assuming that you had aready proved part (a), a proof of part (b) could proceed
(synthetically—not using the step-discovery procedure) along the following lines:

Proof of (b):
Assume: A, B sets
Show. ANBCB

1. ANnBCA (part (a) already shown)
2BNACB (1;sym. A & B)

Step 2 was obtained from Step 1 by reversing the roles of A and B—by symmetry. Step 2 is
almost the conclusion we want, except that in Step 2 we have B N A wherewewant A N B inthe
conclusion. Theorem 10.1a, however, states that these two are exactly the same:

For sets A and B,
@ANB=BNA
() AUB=BUA

The meaning of the equation in Theorem 10.1aisthat AN B and BN A are two different
expressions for exactly the same set, or two different ways the same set can be arrived at. An
equation in mathematics always asserts that the left hand side and the right hand side are
expressions for the same mathematical thing (such as the same number, or the same set). Recall the
inference rule for using substitution:

Substitution: Any name or expression for a mathematical object can be replaced by another name
or expression for the same object. It is necessary to avoid using the same name for different
objects.

The proof of Theorem 9.1b can be completed by quoting Theorem 10.1a and using
substitution:



78

Inference Rule

Inference Rule

Deductive Mathematics
Proof of (b):
Assume: A, B sets
Show: ANBCB
1L.ANBCA (part (a) already shown)
22.BNACB (1; sym. A & B)

3.AnNnB=BNA (Theorem10.1a Forsets A, B: AN B = BN A)
4. ANBCB (2,3; sub.)

Theinference rule that allows us to use theoremsin proofsis the following:

Using Theorems (partial version): If the hypotheses of a theorem are true for variables in a proof,
then the conclusion is true and can be written as a proof step.

There are no hypotheses for Theorem 10.1. The theorem is true for any sets A and B
whatever. Thus the hypotheses are vacuoudly satisfied, so by our inference rule the conclusion is
true. The conclusion has been written as Step 3 in the proof. The same inference rule allows us to
write the conclusion of part (a) (presumably aready proved) as Step 1 in the proof.

Rather than writing out the conclusion of Theorem 10.1a as a proof step (Step 3), it is better
to apply the statement of the conclusion to existing steps—thus using substitution implicitly. Since
AN B=BnNA,wecansubstitute AN B for BN A directly in Step 2, to give us Step 3 below:

1L.ANBCA (Theorem 9.1a)
2BNACB (1;sym. A & B)
3.ANBCB (2; Theorem 10.1a: For sets A, B: AN B = BN A)

We have used Theorem 10.1a to make a change in Step 2 (obtaining Step 3 from Step 2 by
substitution), and thus have abbreviated the longer process of writing out the conclusion as a proof
step and then substituting in the next step. In the three-step proof above substitution has been used
implicitly. Hereisthe final version of our inferencerule:

Using Theorems: If the hypotheses of a theorem (or axiom) are true for variables in a proof, then
the conclusion is true and can be written as a proof step, or applied, by substitution, to make
changesin a proof step.

We can apply Theorem 10.1a to the sets we are working with in our new proof of Theorem
9.1b, since Theorem 10.1ais true for all sets A and B—including the sets A and B we're working
with. Technically, we shouldn't use A and B to describe Theorem 10.1a, since A and B are aready
in use. They have been identified in the hypothesis of Theorem 9.1b, and are now fixed for the
duration of the proof. They are constants, as far as the proof is concerned, so we should use
different lettersto describe Theorem 10.1a—as in the following:
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1.AnBCA (Theorem 9.14)
2.BNACB (1; sym. A & B)
33ANnBCB (2; Theorem10.1a For sets X, Y: X NY =Y N X)

The situation is the same for Theorems (which are expressed informally) as it is for the
formal forall statements, where we can't use a variable already in use. Usually, even if the
variables in the theorem being used are the same as the variables in the theorem being proved, the
variables play different roles—so that changing to completely different variables can prevent
confusion.

Axioms are informal mathematical statements that have exactly the same form as theorems.
The only difference between a theorem and an axiom is that axioms are assumed true, and
theorems need to be proven. Axioms and theorems are used in the same way in proofs. Recall the
axiom that states the transitivity of therelation < :

Axiom Transitivity of < :Fora,b,c € N,ifa<bandb < ¢,thena < c.

This axiom has the following hypotheses and conclusion:
Hypotheses. a, b, ¢ natural numbers

la<bd
2.b<e

Conclusion: a < ¢

The axiom was used in the proof in Example 2 of Section 4:

Example 3:
DefineH ={zr e N|z < 10} and G = {z € N | z < 20}. Provethat H C G.

Pr oof:
Assume: H = {z e N |z < 10}
G={reN|z <20}

Show: HCG

1. Letz € H bearbitrary.
2.x<10 (1; def. H)
3.10 < 20 (given)
4.2 <20 (2,3; Trans. <)
5reqd (4; def. G)

6. forallr e H: 2z € G (1—5; pr.V)

7.HCG (6; def. C)

O

The variable x in the proof is defined in Step 1. We don't know what value = has, but it has
some value that is fixed for the steps 1 through 4. If we assign the value of x to the variable a in
the axiom, and if we assign 10 to b, then the hypothesis a < b becomes z < 10. This statement is
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true by Step 2 of the proof. If we assign 20 to ¢, the hypothesis b < ¢ becomes 10 < 20. This
statement is true, as Step 3 of the proof asserts. Thus both hypotheses of the axiom are true, so that
we may infer that the conclusion is true and can be written as a proof step—by the inference rule
for using theorems (or axioms). The conclusion, a < ¢, in the variables of the proof is z < 20,
which iswritten as Step 4.

Theoretically, it isn't necessary to use theorems to do proofs—in any place where some
theorem might be useful, one could “merely” put in al the steps needed to prove the theorem. Thus
the use of theorems in proofs can be viewed as proof abbreviation. The point is that proofs that
follow from definitions are more basic than proofs that use theorems.

EXERCISES

1.(d
1L.ACBUC
2. (1; Theorem: Forsets X, Y: X UY =Y U X)

(b)
1L.ACBUC
2 BUCCD
3. (1,2; Theorem5.1: Forsats X, Y, Z:if X CY and Y C Z, then
X C2)

(Note that the variables in which Theorem 5.1 is expressed on page 0 are A, B, and C, but these
don't play the same role asthe A, B, and C of the theorem.

2.Let A, B, and C be sets. Prove in two ways that if A C BN C, then A C B : (1) directly from
definitions, without using theorems to justify proof steps, and (2) using Theorems 5.1 and 9.1.
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Axioms for Addition and Multiplication

In mathematics, everything is just what its definition says it is. A proof that something has some
property is a demonstration that the property follows logically from the definition. Not everything
can be defined in terms of previously defined things, of course. There must be some undefined
things that can be used as a starting point. Since the properties of these undefined things can't be
shown by definition, we must assume these properties—which are called axioms.

The set N={1,2,3,4,...} of natural numbers has been considered as a source for
examples of sets. We assumed, as an axiom, that there was a relation < on N that satisfied the
transitive property. We are now going to dig alittle deeper, and will assume, instead, that there are
the two operations of addition and multiplication on N. The relation < will be defined later, and
the transitive property will be proved as a theorem. Addition and multiplication are not defined,
but are assumed to have axiomatic properties. The first axioms are the following:

Closure under addition: If a,b € N,thena +b € N.

Commuitativity of addition: If a,b € N, thena+b =06+ a.
Associativity of addition: If a,b,c € N, thena + (b +¢) = (a + b) + c.
Closure under multiplication: If a,b € N, thena - b € N.

Commutativity of multiplication: If a,b € N, thena -b =15 - a.
Associativity of multiplication: If a,b,c € N, thena - (b-c) = (a-b) - c.
Distributivity: If a,b,c € N, thena-(b+c)=a-b+a-c.

Example 1.

Suppose = € N and we have Step 1 below. Then Steps 2 and 3 follow.

1x+10=232
2x4+10=10+=x (Axiom: If a,b € N, thena+ b =0+ a)
3.10+ 2z =32 (1,2; substitution)

The reasoning behind Example 1 is as follows: The equation in Step 1 means that = + 10
and 32 are two different expressions or names for exactly the same natural number. The axiom on
commutativity states that if « and b are natural numbers, thena +b=5b+a. Sincea+b=0b+a
is true for all natural numbers a and b, it istrue for z and 10. Thus z + 10 = 10 + x. The equal
sign here means that = + 10 and 10 + x are two different names for the same natural number. Step
3 comes from Step 1 by substituting 10 + z for = + 10—these being equal by Step 2.

Step 2 follows from our rule for using theorems—which aso applies to using axioms. The
rule states that if the hypotheses of the theorem (or axiom) hold for some variables in a proof, then
the conclusion is true and can be written as a proof step, or applied by substitution to change
existing proof steps. The hypotheses and conclusion of the axiom are:
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Hypotheses: a, b natural numbers
Conclusion: a+b=b+a
Rather than writing out the commutative property itself as a proof step (asin Step 2), it is
better to apply the property to existing steps (thus using substitution implicitly). Example 2 below
does just this, in contracting the steps of Example 1.
Example 2:
Suppose = € N and we have Step 1 below. Then Step 2 follows.

1lLx+10=232
2.10+ 2z =32 (3; Axiom: Fora,b € N, a+b =0+ a)

Thus we will almost always use the axioms above as reasons for making changes to steps in a
proof—as in Example 2.

Example 3:

lz+5=a-7+a-3
2. (1; Ax:Fora,b,ceN,a-(b+c)=a-b+a-c)

Solution:
lLz+5=a-7T4+a-3
2zx+5=a-(7+3) (1, Ax.: Fora,b,ceN,a-(b+c)=a-b+a-c)

Instead of writing out an axiom used as justification for a proof step, we may use the name
of the property as an abbreviation. Using this abbreviation in Example 3 gives:

Example 3:

lLx+5=a-74a-3
2x+5=a-(7+3) (1; Ax.: distributivity)

Example 4 below illustrates a form for exercises in this section.

Example 4:

In the exercise below, fill in Step 2 by making a change to Step 1 using the axiom indicated.
Then get the same result the long way: (1) write the formal statement in the axiom, (2) assign the
variables a, b, and ¢ to variables in the steps, (3) write the formal statement in the axiom (with
the variables in the proof) as Step 11, and (4) use substitution to get Step 2.

lLa+y=124(x+2)
2. (1; Ax.: Associativity of +)

formal statement:
assign variables in the axiom to variablesin the steps:
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a =
b =
C = —_—
lLz+y=12+4(z+2)
1. (AX.: Associativity of +)
2 (1,11; sub)
Solution:

lLz+y=12+4(z+2)
2z +y=(12+2)+2 (1; Ax.: Associativity of +)

formal statement: a + (b+¢) = (a +b) + ¢
assign variables in the axiom to variablesin the steps:

a=12
b==x
c=z

lLa+y=124(x+2)
11,124 (z+2) = (12+2)+2z  (Ax.: Associativity of +)
2.2+y=(12+2) + =2 (1,11; sub.)
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Example 4 illustrates two ways to think about using an axiom in proof steps. (1) implicitly,
to make a change in a proof step, and (2) by writing the axiom itself explicitly as a proof step, and
then using substitution—again, explicitly. It is almost aways much clearer in mathematics to use
substitution implicitly—taking a kind of mathematical shortcut. In future sections, we always use

substitution implicitly when using one of the axioms above.

The axioms above for the natural numbers are al given informally, in terms of statements
that have hypotheses and conclusions. They are applied to proof steps with our rule for using
theorems or axioms. It is possible to give these axioms formally in terms of forall statements

involving two or three variables:

Closure under addition: Forall a,b € N: a+ b € N.

Commutativity of addition: Forall a,b e N: a+b=b+ a.
Associativity of addition: Forall a,b,c e N: a+ (b+¢) = (a+b) +c.
Closure under multiplication: Forall a,b € N: a-b € N.

Commuitativity of multiplication: Forall a,b € N: a-b=10"a.
Associativity of multiplication: Forall a,b,c e N: a-(b-¢) = (a-b)-c.
Distributivity: Forall a,b,c e N: a-(b+c¢)=a-b+a-c.

The rules for using and proving for all statements are extended to apply to more than one
variable. For example, the following are the formats for proving and using for all statements with

two variables:
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pr.V
l.Letz € Aandy € B bearbitrary
k-LP(x,y)
K. forallz € A,y € B: P(x,y) (1—k-1; pr. V)
us. v

1 forallz € A,y € B:P(z,y)

2.te A

3.seB

4.P(t, ) (1,2,3;us. V)

We won't proceed in this direction of formalizing things we can handle informally. In fact,
we will always maintain our trend from the formal to the informal. Formality is used only to make
things explicit. After things have been made explicit and understood, we proceed to informal,
abbreviated expressions of the same ideas.

There is one thing that can be learned from the formal expression of the axioms, however.
Recall, for example, that the variable x in the statement forallz € A: x € B is caled alocal
variable. The statement forallxz € A : x € B isnot about x. It is about the sets A and B. In fact
it is the defining condition for the relation A C B. From the statement forallx € A : x € B, we
don't learn anything about «. We learn something about the sets A and B.

In the same way, the statement foralla,b € N:a+b= b+ a is not about the letters a
and b. They arelocal variables. Foralla,b € N:a+ b = b+ a isastatement about the operation
+ on the set N. That is why the axiom is named the “commutativity of addition”. Thus al the
axioms are statements about the operations of addition and multiplication on the set of natural
numbers—not about natural numbers themselves. This is true whether the axioms are given
formally or informally.

EXERCISES

In the exercises below, fill in Step 2 by making a change to Step 1 using the axiom indicated. Then
get the same result the long way: (1) write the forma statement in the axiom, (2) assign the
variables a, b, (and perhaps c) to variables or constants (numbers) in the steps, (3) write the formal
statement part of the axiom (with the variables in the proof) as Step 11, and (4) use substitution to
get Step 2.

lLx4+9=12
2. (1; Ax.: Commutativity of +)

formal statement:
assign variables in the axiom to variables or constants in the steps:

a =

b:
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lL.z+9=12

13. (Ax.: Commutativity of +)
2. (1,11 sub.)
lz-y=12-(x-2)
2. (1; Ax.: Associativity of -)

formal statement:
assign variables in the axiom to variables or constants in the steps:

a =
b =
lz-y=12-(z-2)
13. (Ax.: Associativity of -)
2 (1,11 sub.)
1.3-2=2-(z+10)
2. (1; Ax.: Distributivity)

formal statement:
assign variables in the axiom to variables or constants in the steps:

a =
b =
1.3-2=2-(z+10)
13. (Ax.: Distributivity)
2. (1,1%; sub.)
Lo y=y+10
2. (1; Ax.: Commuitativity of -)

formal statement:
assign variables in the axiom to variables or constants in the steps:
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a =
b —
lLz. y=y+10
13. (Ax.: Commutativity of -)
2. (1,1%; sub))
Laz-y=y+10
2. (1; Ax.: Commutativity of +)

formal statement:
assign variables in the axiom to variables or constants in the steps:

a =
b =
lLz.y=y+10
13. (Ax.: Commutativity of +)
2. (1,1%; sub))
1.(3-z+12)+25=1
2. (1; Ax.: Associativity of +)

formal statement:
assign variables in the axiom to variables or constants in the steps:

b =
(3-x+12)+25=1
(Ax.: Associativity of +)
(1,1%; sub.)

1

L
1

5-
2.

7. Inthefollowing problem provide the indicated justification:

lzx+y=42
2.y+x =42 (1 )
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Implications; Equivalence

For statements P and Q, the formal statement i f P, then Q is called an implication or i f-then
statement . It is the next basic type we want to consider. For example, if x € A, then z < 7 and
if A= BNC,then A C D are such if-then statements. Informally, the statement i f P, then
Q meansthat Q istrue whenever P istrue; that is, if P istrue, then Q isalso true.

The statement P in the implication if P, then Q is called the hypothesis of the formal
implication, and Q is called the conclusion. Our informal statements of theorems that have had
hypotheses-conclusion interpretations have been proved by assuming the hypotheses to be true and
showing the conclusion is therefore true. The same thing is done formally, in order to prove formal
implications:

Inference Rule Proving if-then statements: In order to prove the statement i f P, then Q, assume P and show
Q. Abbreviation: “pr. = .
Format:
pr. =

1. Assume P

k-1.9
K.if P, then Q (1—k-1; pr. =)

Example 1:
1

4
5.if x <10,thenxz € A (1—4;pr. =)
Solution:

1. Assumez < 10

4.x € A
5.if x <10,thenz € A (1—4;pr. =)
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Example 2:
1

4,
5.ifxeC,thenx € D Q—4; pr. =)

Solution:

1. Assumez € C

4. xe D
5.ifzxeC,thenx e D A—4; pr. =)

Example 3:
1

4.
5 forallz e C:x €D (1—4; pr.V)

Solution:
1. Letz € C bearbitrary

4.xe D
5 forallz e C:2e€D (1—4; pr.V)
In Step 1 of Example 2, we make an assumption about =, which would have had to have

been already defined (say, in the hypotheses). In Step 1 of Example 3, we define the z, in order to
prove the for all statement of Step 5.

Example 4:

1. Assumet € P

4.t€Q
5. (1—4; )

Solution:
1. Assumet € P

4.t€Q
5.ifteP, thenteQ (A—4; pr. =)
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Example 5:
1. Lett € Pbearbitrary

4.t€Q
5. a—4_ )
Solution:
1. Lett € Pbearbitrary
4.t €Q
5. forallt e P:t€Q (1—4; pr.V)

Our rule for using theorems in proofs states that if the hypotheses of a proven theorem have
been shown to be true in the proof steps, then the conclusion is true and can be written as a proof
step. Therule for using formal i f-then statementsis analogous:

Inference Rule Using if-then statements: If both P and if P, then Q are established, then we may infer Q.
Abbreviation: “us. = ”
Format:
us. =
i.if P, then Q
i-P
k.Q (i,j;us. =)
Example 6:

3.a<10

5.if a <10,thena € C
6. (3,5 us. =)

Solution:
3.a<10

5.if a <10,thena € C
6.acC (3,5 us. =)
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Example 7:

2.2 <5

6.y <5 (3,5;us. =)

Solution:
2.2 <5

S54if <5, theny <5
6.y <5 B,5us =)

The following theorem involves the equivalence of aformal i f-then statement and a formal
or statement:

The statement P or Q islogically equivalenttoif =P, then Q.

The rule for using equivalence, that a statement can be substituted for an equivalent one, has
allowed us to make use of axioms involving eguivalence, and has allowed usto infer arelationship
from its defining condition, and vice versa. We now get to the rule for proving statements
equivalent—which is needed to prove the theorem.

Proving eguivalence: In order to prove that statements P and Q are equivalent, first assume P
and show Q, then assume Q and show P (or, the other way around). Abbreviation: “pr. eqg.”

If a proof that two statements are equivalent depends only on definitions, inference rules,
and logical axioms, but no axioms of a particular mathematical system such as the natural numbers,
we say that the two statements are “logically” equivalent.

An assertion, such as Theorem 14.1, that two statements are equivalent does not lend itself
to interpretation by our informal hypotheses-conclusion model. In order to prove the assertion that
the two statements P and Q are equivaent, there are two things to do: we need first to assume P
and show Q, and then to assume Q and show P. Thus each of the two parts of the proof is
interpreted by the hypotheses-conclusion model. We now add, to the hypotheses-conclusion format
we have been using, a format for proving such two-part assertions. We introduce each part by a
sentence that indicates hypotheses and conclusion, and conclude with a statement that the assertion
follows since the two required parts have been shown.

The proof of Theorem 14.1 is written according to this new format. Notice that the first
sentence identifies i f =P, then Q as the hypothesis, and P or Q as the conclusion, for the first
part of the proof. The assumption in Step 1 is dictated by the rule for proving or statements, used
to justify Step 3.

Pr oof:
Wefirst assume i f =P, then Q and show P or Q.
1. Assume =P
2.9 (hyp., 1; us. = )
3. PorQ (A—2; pr. or)
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We now assume P or Q and show i f =P, then Q.
1. Assume =P
2.PorQ (hyp.)
59 (1, 2; us. or, EZ)
6.if =P,then @ (1—5;pr. =)
By the two parts above, P or Q andif =P, then Q are equivalent.

Note that steps are renumbered in each part of the proof.

Example 1:

1. Assume —P
3.9
4.if =P, then Q A—3;pr. =)

Example 2:

1. Assume =P

3.9
4.PorQ (A—3; pr. or)

In Examples 1 and 2, exactly the same steps (1 through 3) can establish either if —P,
then Q or P or Q. Thisisreasonable, since the two statements are logically equivalent.

A proposition that follows readily from a theorem is called a corollary to the theorem. The
next proposition is a corollary to Theorem 14.1.

Corollary 14.2 The statement i f P, then Q islogicaly equivaent to =P or Q.

Proof: Exercise 2.

Theorem 14.3 The statements P or Q and Q or P arelogically eguivalent.

Pr oof:

Wefirst assume P or Q and show Q or P.
1. Assume —P

2.if =P, then Q (hyp.; Thm. 14.1: P or O < if =P, then Q).
3.9 (1,2;us. =)
4.9 or P (3—3; pr. or)

If we assume Q or P, we show P or Q by an argument symmetric (in 7 and Q) to the first
part of the proof. Thus P or Q isequivaent to Q or P.
O
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The statements P and Q and Q and P arelogically equivalent.
Proof: Exercise 3.

Therule for using equivalence is used in the following examples.

Example 3:

lLzxzeCorzeD

2z € Corx e Disequivaenttoif « ¢ C,thenx € D (Thm. 141: Por Q < if
=P,then Q)

3. (1,2: us. eq.)

Solution:

lLzeCorzeD

2.z e€Corx e Disequivdenttoif « ¢ C,thenx € D (Thm. 14.1: Por Q < if
—P,then Q)

3.ifx ¢ C,thenx € D (1,2: us. eq.)

In example 3, first the assertion of Theorem 14.1 is given in Step 2, with « € C being P,
and z € D being Q. (The symbol “ < " stands for equivalence in justifications.) Then Step 3 is
obtained by replacing the statement of Step 1 with the equivalent statement, according to the rule
for using equivalence.

We will not use the rule for using equivalence explicitly as in Example 3. Instead, the rule
will be used implicitly to make a change, exactly as the substitution rule of inference has been
used. Examples 3athrough 5 show how thiswill be done.

Example 3a:
l.xeCorxeD
2. (3; Thm. 14.1: Por Q < if —P,then Q)

Solution:
lLzeCorzeD
2.ifx ¢ C,thenx € D (13; Thm. 14.1: Por Q <& if =P,then Q)

Example 4:
1 ifzeC,thenx € D
2. (3; Thm. 14.1: Por Q < if —P,then Q)

Solution:
1 ifzeC,thenx e D
2 x¢CorxeD (4; Thm. 14.1: Por Q & if —P,then Q)

Example 5:
1 forallze A:(x € Borx <9)
2. (3; Thm. 14.1: Por Q < if —P,then Q)
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Solution:
1 forallz e A:(x € Borx <9)
2 forallze A:if x ¢ B, thenz <9 (L; Thm. 14.1: Por Q & if =P, then Q)

Theorem 14.4 can be used to write another proof of Theorem 10.1a:
For sets A and B,

(@ANB=BnA
() AUB=BUA

Proof of (b): Exercise 4.

Proof of (a):
We assume A and B are sets, and show AN B = BN A.

k ANB=BnNA ( ;def.=,imp)

The step-discovery procedure dictates Stepsj and k-1:

Proof of (a):

We assume A and B are sets, and show A N B = BN A.
jANBCBNA

k1. BNACANB
k ANB=BNA  (j,k-1 def. =, imp)

Analyzing Step j gives Steps 1 and j-1:

1. Letz € AN B bearbitrary

-lL.zeBNA
jtAnNBCBNA (1—j-1; def. C , imp.)

k1. BNACANB
k ANB=BNA (k1 def. =, imp.)

Using the definition of N (explicitly) gives us Steps 2 and j-2:

1. Letz € AN B bearbitrary
2xeAandzx € B (1; def. N, imp.)
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j-2.x € Bandx € A
-lL.zeBNA (j-2; def. N, imp.)
j;ANBCBNA (1—j-1; def. C , imp.)

k1. BNACANB
k. ANB=BnNA (, k-1; def. = , imp.)

Step j-2 follows immediately from Step 2, by Theorem 14.4. We have a complete proof:

Proof of (a):
We assume A and B are sets, and show A N B = BN A.

1. Letz € AN B bearbitrary
2xeAandx € B (1; def. N, imp.)
ze€Bandre A (2,Thm. 14.4: Pand Q & Q and P)
4.rxe BNA (3;def.n,imp.)
5, ANBC BNA (1—4; def. C,imp.)
6.BNACANB (1—5:sym. A& B)

7.ANB=BnNnA (5,6;def. =,imp.)
O

The use of explicit definitions and theorems on logical equivalence makes proofs look more
like logic exercises than mathematics. The proof above is no shorter than the proof in Section 10,
and it does suffer from looking a little more like a logic exercise. However, it is certainly valid,
and in some cases using theorems on logical equivalence can shorten a proof.

The next theorem is atechnical necessity—uwhich we now get out of the way.

Theorem 145 The statements (P or Q) or R and P or (Q or R) arelogically equivalent.

Pr oof:
First assume (P or Q) or R and show P or (Q or R).
1. Assume —P

j-1. Q or R
j-Por(QorR) (1—j-1; pr. or)

Working back from Step j, the conclusion, we have the steps above. Now, working back
from Step j-1 gives:
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Pr oof:
First assume (P or Q) or R and show P or (Q or R).
1. Assume =P
2. Assume -9

2. R

j-1. Q or R (2—j-2; pr. or)
j-Por(QorR) (1—j-1; pr. or)

Since we get no more steps from analyzing the conclusion, it is time to use the hypothesis.

1. Assume =P
2. Assume - Q
3. (PorQ)orR (hyp.)
Casel 4.Assume (P or Q)

j-4.R

Case2 |-3. AssumeR
j-2. R (3—j-3; us. or)
j-1. Q or R (2—j-2; pr. or)
j-Por(QorR) (A—j-1; pr. or)

The steps above are dictated, since we want to use Step 3 to get Step j-2. In order to use
Step 4, we need more cases.

1. Assume =P
2. Assume - Q
3. (PorQ)orR (hyp.)
Casel 4.Assume (P or Q)
Casela 5.AssumeP #Stepl
Caselb 6. Assume Q # Step 2
Case2 7.AssumeR

8 R (3—7; us. or)
9.Qo0rR (2—8; pr. or)
10. P or (Q or R) (A—09; pr. or)

Since Case laand 1b are both contradictions, Case 1 itself leads to a contradiction. Thus we
get R from Case 2, as needed. This establishes the first part of the proof. In order to establish the
second part, we seek to use symmetry.
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Proof:
First assume (P or Q) or R and show P or (Q or R).
1. Assume =P
2. Assume - Q
3. (PorQ)orR (hyp.)
Casel 4.Assume (P or Q)
Casela 5.AssumeP # Step 1
Caselb 6. Assume Q # Step 2
Case2 7.AssumeR

8 R (3—7; us. or)
9.QorR (2—8; pr. or)
10. P or (Q or R) (A—09; pr. or)
Next, we assume P or (Q or R) and show (P or Q) or R
1.Por(QorR) (hyp.)
2.(QorR)orP (2; Thm. 14.3: Sor T < 7 or S)
3. (RorQ)orP (2, Thm. 14.3: Sor7 < T orS)
4.R or (Q or P) (3, first part; sym. P & R)
5.(QorP)orR (4, Thm. 14.3: Sor7 < T orS)
6. (PorQ)orR (5 Thm. 14.3: Sor 7T < 7 or S)

O

In the first part of the proof, Steps 1 through 10 conclude P or (Q or R) from the premise
(P or Q) or R. Also, Step 3 of the second part is symmetric (in P and R) to the premise of the
first part, so Step 3 acts as a premise under which we can conclude Step 4. To put it another way,
we could insert the entire block of steps from part one, with P and R interchanged, between Steps
3 and 4 of the second part. This would prove Step 4 without using symmetry. The use of symmetry
eliminates the need to repeat the block of steps.

If the proof of Theorem 14.5 seems excessively involved—to prove something that may be
intuitively obvious, we can only respond that it is a price we need to pay, at the moment, for our
formal approach. Everything has its price. The benefit of the formal approach is that the explicit
rules of inference are able to guide in the step-discovery procedure. This benefit, for students
beginning in deductive mathematics, outweighs all the disadvantages. To provide proofs only for
statements that do not appear intuitively obvious is legitimate—once the intuition has become
reliable.

The genera rule for using or statements involved a statement of the form Py or P; or ... or
P.. In order to be consistent, we need arule for proving statements of the same form. We do this
by defining P; or Py or P5 to be the same as (P, or Py) or Ps and repeating this as needed to
define Py or P or ... or P,. We want the meaning of P; or P, or P53 to be independent of the
way the congtituent statements are grouped. This follows from Theorem 14.5.

It follows that to prove P; or Py or Ps, we can assume —(Py or Ps) and show P, or
assume —P; and show P, or P, or assume —(P; or P,) and show Ps, or assume —P5 and show
’Pl or 732.

Forsets A, B,andC, (AUB)UC = AU (BUC(C).

Proof: Exercise 4.



Theorem 14.7

Corollary 14.8

Theorem 14.9

Section 14: Implications; Equivalence 97

The statements (P and Q) and R and P and (Q and R) arelogically equivalent.

Proof: Exercise 5.

Forsets A, B,andC, (ANB)NC =AN(BNC).

Proof: Exercise 6.

The statements if P, then Q and if =Q, then —P arelogically equivalent.

Pr oof:
Wefirst assume if P, then Q and show if—Q, then —P.
1. if P, then Q (hyp.)
2. = PorQ (1; Cor. 14.2)
3. Qor—P (2; Thm. 14.3)
4. ~(=Q) or—P (3; Axiom: R & —(=R))
5.if=Q, then =P (4; Cor. 14.2)
We now assume if—Q, then =P and show if P, then Q.
1.if=Q, then =P (hyp.)
2. =(=Q)or—P (1; Cor. 14.2)
3. Qor=P (2; Axiom: R < =(=R))
4. —PorQ (3; Thm. 14.3)
5.if P, then Q (1; Cor. 14.2)

O

The second set of steps in the proof above is merely the first set reversed. In both sets, each
step was obtained from the previous step by substituting an equivalent statement—implicitly using
the rule for using equivalence. Such a chain of equivalences is better written in the following
format:

P1
&Py (reason that Py < P,)
< P3 (reason that P, < P3)
S Py (reason that P3 < Py)
< Ps (reason that P4 < Ps)
Thus P; is equivalent to Ps, since successive substitution in Py < P, produces P1 < Ps.
Substitution shows that equivalence is a transitive relation. Using this enables us to write a shorter

proof of Theorem 14.9. Proofs that involve only substitution of equivalent statements should use
this shorter style.
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Pr oof:
if P, then Q
& —PorQ (Cor. 14.2)
& Qor—P (Thm. 14.3)
< (=Q)or—P (Axiom: R < —(—R))

& if-Q, then =P (Cor. 14.2)
O

The statement i f = Q, then =P is called the contrapositive of the statement i f P, then Q.
Theorem 14.9 asserts that an implication and its contrapositive are logically equivalent.

The statement if Q, then P is caled the converse of the statement if P, then Q. The
converse of a true statement may be, but is not necessarily, true—so that a statement and its
converse are not logically equivalent. Examples are given in the next section, where we consider in
more detail what it means for an implication to be true or false.

EXERCISES

. Fill in the underlined places

€) 1
4.
5ift<6,thenteP A—4;pr. =)
(b) 1.
4.
5ifte G ,thente H A—4; pr. =)
(© 1
4.
5 forallte G:ite H (1—4; pr.V)

(d) 1. Assumet € A

4.te B
5. a—4 )

(e 1. Lett € A bearbitrary

4.te B
5. (1—4; )

f) 3.a<6

5.ifa<6,thena € B
6. (3,5 us. =)
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(@ 2a<6

5.

6.0<6 (2,5 us. =)
(hy 1.

2.ifte G,thente H

3.te H 14,2;us =)
(i) LGCH

3HCJ 14,2;us =)
() 1

2.

3.if ACB,ithen ACC (L, 2;pr. =)

(k) 1.Pand Q

2.if P,then R

3 (|

4. R (R
n 1

2 (1; pr. )

3.ifr€ B,then ACB (2, Thm. 14.1: Por Q < if —P,then Q)
(mi__

2x<50rACB (3; Thm. 14.1: Por Q & if —=P,then Q).

2. Prove Corollary 14.2
3. Prove Theorem 14.4.

4. Give a proof of Theorem 10.1b (For sets A and B, AU B = B U A) using Theorem 14.3, the rule
for using equivalence (implicitly), and symmetry.

5. Prove Corollary 14.6.

6. Prove Theorem 14.7.

7. Prove Corollary 14.8.

8. Supposethat P, Q, R, and S are formal language statements.
Assume:  1.PorQ

2.1f P,then R
3.if Q,then S

Show: RorS
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Proof by Contradiction

When mathematicians want to prove some statement P, they frequently assume the negation of P,
and show that this leads to a contradiction. Such a proof by contradiction depends on the following
axiom of logic, which formalizes the fact that a statement is either true or false—by definition.

Axiom For any statement P, P or —P istrue.

Suppose that we knew a sequence of steps that lead to a contradiction from the premise —P.
For example, suppose that we know that = € C, and can show that = ¢ C follows from —P. The
statement P is then proved as follows:

lxeC
2.Por—P (AX.: P or =P)
Cael 3. P
Case2 4.-P
6.0 ¢ C#Stepl
7.P (2—®6; us. or)

The statement P follows, since it is true in all cases that don't lead to a contradiction. In
practice, the or statement P or —P isused implicitly. The steps above are abbreviated as:

lLzeC
2. Assume =P to get #

4.0¢CH#Stepl
5P (2—4; #)

A proof done according to this second format is called a “proof by contradiction”. Such
proofs are useful when dealing with top-level negations (not statements).

Example 1:

Prove that for sets C' and D and an element = (of the universal set), if « ¢ C N D, thenz ¢ C or
x ¢ D.

Proof:

Assume: C, D sets
x element
x¢CnND

Show: x¢Corxzé¢ D
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The step-discovery procedure dictates:

Pr oof:

Assume: C, D sets
x element
x¢CnND
Show: «x¢Corxzé¢ D

1. Assumezx € C

k-1.z ¢ D
kz¢Corxé¢ D (1—k-1; pr.or)

The way to show Step k-1 = ¢ D is to assume the contrary, and get a contradiction. This
will have the following form:

1. Assumez € C
2. Assumex € D to get #

k-2. need # here
k-1.z ¢ D (2—k-2; #)
k.x¢ Corxé¢ D (1—k-1; pr.or)

From Steps 1 and 2 we get x € C' N D, which contradicts the hypothesis:

Pr oof:

Assume: C, D sets
x element
x¢CnND
Show: x¢Corxzé¢ D
1. Assumezx € C
2. Assumex € Dtoget #

3.ze CnD,#hyp. (1,2; def. N, imp.)
4.2 ¢ D (2—3; %)
52¢Corx¢ D (1—4; pr.or)

O

Notice that the justification for Step 3 shows why Step 3 is true (based, of course, on the
assumptions). It does not say what Step 3 contradicts, or why it contradicts anything. The fact that
Step 3 contradicts the hypothesis is given after the comma after Step 3.
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Example 2:
Prove that for sets C' and D and an element «, if ¢ C U D, thenx ¢ C.

Proof:

Assume: C, D sets
x element
x¢CUD

Show: z¢C

The step-discovery procedure dictates:

Pr oof:

Assume: C,D sets
x element
x ¢ CUD

Show: z¢C

k.zé¢C

The step-discovery procedure asks us to consider ways of proving the top-level not
statement of Step k. (Recall that = ¢ C' isjust shorthand for —(z € C)). If the set C' were defined,
then to show z ¢ C, we could show = satisfies the negation of the defining property. Since C' is
just any set, and has not been defined, there is only one way to show this not statement—by
contradiction.

1. Assumez € C'toget #

k-1. need # here
k.z¢C (1—Kk-1; #)

From Step 1, we can conclude z € C'U D, which contradicts the hypothesis.

Pr oof:

Assume: C, D sets
x element
x¢ CUD

Show: z¢C

1. Assumez € C'toget #
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2.z € CUD, #hyp. (1; def. U, imp.)
x¢C (1—2; #)

Example 3:

Prove that for sets C' and D and an element «, if © ¢ C orxz ¢ D,thenz ¢ C N D.

Proof:
Assume: C, D sets
x element
x¢ Corx ¢ D

Show: z¢CnND

1. Assumez € CNDtoget#

k-1. need # here
k.z¢CnD (1—k-1; #)

We introduce the hypothesis as Step 2. This introduces cases:

1. Assumez € C'N D to get #

2x¢Corx ¢ D (hyp.)
Cael 3.2¢C
4. xecC,#Step3 (1; def. N)
Cae2 5.2¢D
6.z€ D, #Step5 (1; def. N)
7.2¢CND (1—6; #, us. or)

In using the or statement in Step 2, all cases lead to a contradiction. The inference rule on
page 41 alows us to infer the negation of Step 1 (which leads the block of steps that includes the
or statement in Step 2). To justify Step 7, we note both that this is a proof by contradiction, and
that we are using the inference rule.

Theorem 15.1  The statements —(P and Q) and =P or —Q are equivalent.

Proof: Exercise 5.

Theorem 15.2  The statements —(P or Q) and =P and —Q are equivalent.

Proof: Exercise 6.

Theorem 15.3  The statement —(i f P, then Q) is equivalent to the statement P and - Q.



Section 15: Proof by Contradiction 105

Pr oof:
=(if P, then Q)
< —(=PorQ) (Cor.14.2: if P, then Q < —Por Q)
< (-(=P)and—-Q  (Thm.15.2: =(R or Q) < —R and ~Q)
& Pand—Q (Axiom: P < —=(=P))

O

There is a situation where the inference rule for proving if-then statements may look
strange. For example, supposethat = ¢ A has been established in a proof, and, further, that thereis
aneed to establishif x € A, thenx < 7. The rule for proving if-then statements dictates Steps 2
through k-1 below.

lx¢ A
2.Assumez € A

k-l.z <7
kK.ifex e A, thenx <7 (2—k-1; pr. =)
In this case, the rule dictates that we assume something (x € A) contrary to a known fact.
While the logic of this can be defendedd, it is probably bad public relations to assume something
that is obvioudly false: “These mathematicians assume things that are contrary to known facts—

and they think they are being logical.” To avoid the appearance of being illogical, we can show
that i f P, then Q followslogically from —P asfollows:

1.-P
2.-PorQ (1; pr. or EZ)
3.if P, then Q (2;Cor. 14.2:if P, then Q < —PorQ)

Similarly, i f P, then Q followsfrom Q asfollows:

1.9
2.-PorQ (1; pr. or EZ)
3.if P, then Q (2;Cor. 14.2:if P, then Q < —PorQ)

By Theorem 15.3 (= (if P, then Q) < P and ~Q) we see that the only way that if P,
then Q can befaseisif Pistrueand Q isfalse. If =P istrue, then this doesn't happen—soif P,
then Q istrue. If Q istrue, then this doesn't happen—so i f P, then Q istrue. Thus the two short
proofs above make sense. We will capture these as EZ forms of the rule for proving if-then:

Formats:
pr. = EZ

1.-P
k.if P, then Q (1; pr. = EZ)

15 One can prove anything at all, including = < 7, under the assumption = € A, sincein a system [indented steps]
with contradictions, anything can be shown to be true.
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pr. = EZ

1.9
k.if P, then Q (3; pr. = EZ)

If when applying the step-discovery procedure, you need to prove a statement of the form i f
P, then Q, the thing to do is to assume P and show Q—unless =P or Q happens to be a
previously known step. In that case, merely conclude i f P, then Q by the EZ form of the rule.
Thiswill avoid the need to assume something contrary to a known step.

In mathematics, you may assume anything you like, without violating logic, since
mathematics knows how to contain the results of such an assumption, without it infecting an entire
argument. But this may make some people uncomfortable. In following the step-discovery
procedure, you should only make those assumptions that are dictated by the analysis.

Example 4:

Let P be the statement 8 < 7, and Q the statement 6 < 7. Then —P is true, so by the EZ form of
the rule for proving i f-then statements, i f P, then Q istrue. The converse, if Q, then P, isthe
statement if 6 < 7, then 8 < 7 — and this statement is evidently false. It illustrates the only way
for an implication to be false: namely, for the hypothesis to be true, and the conclusion false (see
Theorem 15.3). Such is not the case for the statement i f 8 < 7, then 6 < 7 — which istherefore a
true statement. Such implications, with a false hypothesis, are called vacuously true. Theorem 15.3
and the arguments leading to the EZ forms of the rule for proving implications show why
mathematicians accept such statements. Some people are quite uncomfortable with vacuously true
statements—probably because the precise, mathematical meaning of an if-then statement does
not exactly agree with their informal usage of “i f-then”.

Example 5:

Consider the statement if z € {1,2}, thenx € {1,2,3}. It is evidently true—with anyone's
interpretation of i f-then. The converse is the statement if = € {1, 2,3}, thenz € {1,2}. Most
users of informal mathematical language would consider this converse as false. What they mean by
the statement is that “if = is an arbitrarily chosen element from the set {1, 2, 3}, then z isin the set
{1,2}". In such a construction, « is caled a free variable. We have not yet touched on free
variables, and we would need to capture the same meaning with the formal statement forall
reN:ifze{l,2,3}, thenz € {1,2} — and this formal statement is certainly false. For us, at
this point, the statement if z € {1,2,3}, thenz € {1,2} could not be made unless = were
previously defined. And the truth of if = € {1,2,3}, thenz € {1,2} would depend on the value
of the previoudly defined z: if = were 3, the implication would be false; if 2 were any other number
(say, 1, 2, or 17), the implication would be true.

Dealing with negations (rot statements) when using the step-discovery procedure

There is no inference rule for either using or proving top-level negations. In order to deal
with such statements we use either a proof by contradiction or axioms and theorems that involve
equivalent statements.

Example 6:

Let A and B be any sets. Use the step-discovery procedure to find steps leading to a proof of
-(A C B).

Solution 1:

1. Assume A C Btoget#
2. forallx€e A:z € B (1; def. C)
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k-1. get # here
k.-(ACB) (1—k-1; #)

In Solution 1, it now remains necessary to use the forall statement of Step 2 in order to
obtain some contradiction.

Solution 2:
k-2. there existsx € A suchthatz ¢ B ( ;pr.3)
k-1. =(forallz € A: x € B) (k-2; Axiom: neg. V)
k.—~(A C B) (k-1; def. C)

By definitionof C, A C Bisequivalentto forallz € A : x € B. By the axiom on page 22: if P
is equivalent to Q, then =P is equivaent to -Q6. We therefore find Step k-1 by substituting
—(forallz € A: x € B) for =(A C B). Inthejustification for Step k, we make explicit reference
to the equivalence of the relation and its defining condition. The axiom stating the equival ence of
the negations is used implicitly. We find Step k-2 by substituting a there exists statement for the
negation of a for all statement—these being equivalent by the axiom on page 15. It now remains
necessary to prove the forma there exists statement of Step k-2. The rule for doing this is
introduced in Section 18.

A proof by contradiction can be employed to use the negation of an element's being in a set.
For example, suppose B = {z € N |z < 10}. If we knew ¢ € N and ¢ ¢ B, we would like to be
ableto infer that ¢ < 10 wasfalse.

One proof that from¢ € Nand ¢t ¢ B wecaninfer —(¢ < 10) isasfollows:

1.t¢B

2. Assumet < 10 to get #

3.te B, #Sepl (2; def. B)
4. =(t < 10) (2—3; #)

Equivaently, t ¢ B is equivalent to —(¢ < 10), since ¢t € B is equivalent to ¢ < 10 — by
substitution, or by the axiom on page 22.

Using set definitions: Suppose A = {z | P(z)} and t is any element of the universal set. From
t € A we may infer P(¢), and, conversely, from P(t) we may infer t € A. Also from¢ ¢ A we
may infer =(P(¢)) and from —(P(¢)) we may infer ¢ ¢ A.

Example 7:
Define D = {z € N | z < 4}. The definition of D tells uswhy Step 2 below follows from Step 1,
and why Step 4 follows from Step 3.

lLa¢D

2.-(a<4) (1,def.D)

3. (b <4

4.b¢ D (3; def.D)

16 At our present stage, we could establish this axiom as an easy theorem obtained by substitution and our rule for
proving equivalence.
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From our experience with the system of natural numbers, we know that —(a < 4) is
equivalent to 4 < a. This fact depends on an axiom (trichotomy) for the natural numbers that we
will consider later.

Solution 2 to Example 5 illustrates the following summarizing convention:

Summary Using the definition of a relation: Suppose some relation has been defined. Then, if the relation
holds, the defining condition may be inferred. Conversely, if the defining condition holds, then the
relation may be inferred. Also, if the negation of the relation holds, then the negation of the
defining condition may be inferred, and conversely.

Example 8:
1L.-(SCT)
2. forallze S:xeT (1; def. C)

Example 9:
lLx¢ ANB
2.-(r € Aandz € B) (1; def. M)

EXERCISES

1.(a

=Y

C={zeN|z<T7}
y¢C
3. (1,2; def. C')

(b)

N

[

D ={z|P(x)}
y¢ D
3 12__ )
4.2€D
5 @4, )
(©

N

2. (1; )
(d)

1.-(ACB)

2. (1; )

(€)
lLx¢ AUB
2. (1; )

2. Prove that for any sets A and B, and any element z, if « ¢ A, then © ¢ AN B.

3. Provethat for any sets A and B, and any element z, if t € Aandx ¢ AN B, thenz ¢ B.
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4. Prove that for any sets A and B, and any element =, if x ¢ A or = ¢ B, thenx ¢ AN B.
5. Prove Theorem 15.1.

6. Prove Theorem 15.2.

REVIEW EXERCISES

8. (@
1
4.
5.if z€ A,then z € B Q—4; pr. =)
(b)
1. Assumez € G
4.2€¢ H
5. (1—4; )
(©
1. Let z € G bearbitrary
4.2€ H
5. aQ—4__ )
(d)
2.a>6
5.
6.b>6 (2,5;us. =)
(€)
1.BCC
2.

3.CCD (1,2;us =)
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Theorem 9.1

Corollary 15.6

Corollary 15.8

Definition
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Investigation: Discovering Set |dentities

The axioms given in Section 13 presented the commutative and associative properties of addition
and multiplication of the natural numbers. These properties also hold for the set operations of
union and intersection—as was stated in Theorem 9.1 and Corollaries 14.6 and 14.8:

For sets A and B,
@ANB=BNA
() AUB=BUA

Forsets A, B,and C, (AUB)UC = AU (BUC(C).
Forsets A, B,andC, (ANB)NC =AN(BNC).

The distributive property “if a,b,c € N, then a-(b+c¢)=a-b+a- " relates the two
operations of addition and multiplication. It says in which way we can either multiply first and then
add, or add first and then multiply. In this section we want to discover in what ways the set
operations of intersection and union are related. In fact, we will also consider athird set operation,
that of set difference.

For sets A and B, the complement of B in A (also called the difference) is the set A— B
(read “ A minus B") definedby: A — B = {z |z € A and x ¢ B}.

Example 1:
@ If A= {2,3,4,5} and B= {4,5,6,7},then A— B = {2,3}.
(b) {reN|z <10} —{zreN|z <6} = {6,7,8,9}

Theset A — B ispictured as the shaded areain the Venn diagram of Figure 16.1.

Figure 16.1

Before we seek relationships between set difference and the other set operations, union and
intersection, we first ask if the commutative and associative properties hold for difference. In order
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to answer this question, we first consider whether A — (B—C) = (A — B)— C holds, for
example, for the setsin the following Venn diagram:

- -

e

5\"

|

i - = _.'

KA
g

I o Ty
Fy %

Figure 16.2

The validity of A — (B — C) = (A — B) — C for the sets A, B, C above is checked as in
the following example:

Example 2:

[~

[

Since the shaded area representing A — (B — (') is exactly the same as the shaded area
representing (A — B) — C, we conclude that A — (B —C) = (A — B) — C for the sets above.
Notice, however, that there is a relationship that holds between the sets A, B, and C' in the Venn
diagram, namely, that C C B — A.

Sets A and B such that AN B = () are caled digoint. If dso ANC =0 and BNC = 0,
then the three sets A, B, and C are called mutually disjoint. Three mutually digoint sets A, B, and
C arepictured in the following Venn diagram:

I.I..-.. *
] |
L i |
kS /
S
e r— —— s
I ", .-"'..-. ""\-\.\l
f . i f 1
I. 'rj | II { )
, ._.' % .-_.'
\‘xh e -“M___ o

Figure 16.3
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The validity of A— (B — C) = (A — B) — C for the sets A, B, C' above is checked in the
following example.

Example 3:

[~

A - (B-C)

[~

Here again we seethat A — (B — C') = (A — B) — C' — thistime under the condition that
the sets A, B,and C are mutualy digoint. If we wish to see whether A— (B—-C) =
(A— B) — C istrue for all sets, then we need to consider a Venn diagram in which there are no
relations between that sets A, B,and C. In such a diagram, the sets are said to be in general
position. The following diagram exhibits A, B, and C' in general position.

A

Figure 16.4

The vdidity of A — (B—C) = (A — B) — C for the sets A, B, C above is checked in the
following example.

Example 4:

[~

A - (B-C)

[~
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From the diagrams above, we seethat A — (B — C) = (A — B) — C isnot true for al sets
A, B,and C. In particular, it is not true for those sets pictured in Example 4 .Thus the sets in
Example 4 serve as a counterexample to the assertion: “For al sets A,B,and C,
A—(B—-C)=(A—-B)—C. As an exercise, you can find sets of natural numbers that also
serve as a counterexample. Example 2 leads us to believe that A— (B—-C)=(A—-B)—-C
might be true for al sets that satisfy the hypothesis A C B — C. Thus we have the following
conjecture: “For sets A, B,and C, if AC B—C,thenA— (B—C)=(A—-B)—-C.” Weaso
suspect the following conjecture: “For mutually digoint sets A,B,and C, A— (B—-C) =
(A-B)-C"

Investigation 1: Draw sets A and B in what you would consider to be general position. Using this diagram, show

Investigation 2:

that A — B = B — Aisnot true for all sets A and B. Thus, both the commutative and associative
properties fail for the operation of set difference. Can you find some hypothesis under which
A—B=B-— A is true? How many different conditions can you find that will insure that
A — B = B— Aistrue? (Seetheinvestigationsin Section 20.)

The set equations AUB =BUAand (ANB)NC = AN (BNC), for example, are true
for al sets A, B,and C'. Such equations, true for all values of the variables, are called identities.
The purpose of this section is to discover (and prove) set identities that relate the set operations of
union, intersection, and difference—just as the distributive property for multiplication over
addition relates these two operations on the natural numbers. Identities that you find to be true as a
result of your investigationsin this section can be labeled Theorem 16.1, 16.2, and so on.

By shading a diagram for sets A, B,and C' in general position (Figure 16.4), obtain the Venn
diagrams that represent the following sets—sets that are unions, intersections, and differences.

UNIONS INTERSECTIONS DIFFERENCES
A A A
B B B
C C C
AUB ANB A-B
AUC ANnC A-C
BUC BNnC B-C
B-A
C—-A
C-B

Now find the sketches of the intersections of all the unions you have that involve all three sets
A,B,and C. (For example, sketch AN (B UC), because it is an intersection of unions, and
because it involves A, B,and C). Don't repeat symmetric situations. (For example, having
sketched AN (B U C), don't bother to sketch B N (A U C')—which is merely symmetricin A and
B). Label the diagrams with the sets that they represent. Use parentheses to remove ambiguitiesin
your expressions. Then do the same thing to sketch the intersections of the differences. Then find
the sketches of al the unions of the intersections and differences. Finally, sketch the differences of
the intersections and unions.

Example 5:

You should have obtained the sketch shown in Figure 16.5 as an intersection of differences:
(A — B)N (A — C)—or something symmetric to this expression.
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Figure 16.5

Investigation 3: Look through your sketches to find where the same shaded region is described by two or more set
expressions. For each such region, make alist of the different ways the region can be described. In
mathematics, to say a = b aways meansthat « and b are two names, or two representations, or two
descriptions for exactly the same thing. If the same region of the Venn diagram can be described in
two different ways, these two representations must be equal for the sets in the diagram. Set your
two expressions for the shaded area equal to each other, to get a set equation. Since each of the two
ways represents the same set in the Venn diagram, the equation must be true for the sets in the
diagram. Conjecture that the equation is true for al sets A, B, and C'. Prove this conjecture, or
find a counterexample. Repeat the process for other regions. Proven conjectures can be called
theorems. Some theorems that you can discover in this way are more important than the theorems
in the text.

The point of these investigations is to discover relationships between the operations of set
union, intersection, and difference. For example, to find a relationship between union and
intersection, look for a region that can be described as a union at the top-level, and also as an
intersection at the top level. To find other relationships between the same two operations, ook for
other regions that can be so described.

Example 6:

The Venn diagramsfor thesets (AU B) — C and (A — B)U (C — B) are symmetric:

", -

(AUB)-C (A-B)U(C — B)

If we interchange the roles of B and C in the right-hand expression and Venn diagram we get a
Venn diagram that is exactly the same as the left hand diagram:

(AUB)-C (A-C)u(B-0C)

We therefore conjecture that for al sets A, B,and C,(AUB) - C = (A-C)U(B-C).
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Section 17

Axiom

Inference Rule

pr.!

Theorem 17.1

117

Axiom for Existence; Uniqueness

The axioms of Section 13 don't give us any elements of N, they merely assert what must be true
about any elements that there may be in N. The following axiom gives us an element in N, in terms
of which all the elements of N can be defined. It is called an identity for multiplication.

Existence of identity for multiplication: T'here exists z € N such that (foralla e N: z-a = a)

The identity for multiplication is, of course, the number “one”. Before we give it its usual
name, however, we prove, from the axioms, that there can't be more than one such identity. It is
very important in mathematics not to use a single symbol to represent two different things. We
want to use the symbol “1” to stand for the identity for multiplication, so we must show there is
only one such identity. In this case, we say that the identity is unique. We have the following
formal rule for proving uniqueness:

Proving uniqueness: To prove that an element with property P is unique, assume two different
names, say x; and o, for an element or elements with property P, and then show z; = xs.
Abbreviation: “pr.!”

Format:

Assume: P(x;) (read “x; hasproperty P” or “P holdsfor x;")
P(x2)
Show: 1 = 29
In mathematics we always use the word “unique” in relation to some property: we say that

an element is unique such that the property holds. By this we mean that there is only one element
for which the property holds. For an identity = for multiplication, the property P(z) is:

foralla eN:z-a=a

Thereexistsaunique z € N suchthat (foralla € N: z-a = a)

The phrase “there exists a unique” in Theorem 17.1 comprises two separate parts: existence
and uniqueness. The statement of Theorem 17.1 is equivalent to the two assertions:

(1) thereexists z € N such that (foralla € N: z-a = a)
and (2) the element whose existenceisgiven in (1) is unique.

In order to prove statements like the one in Theorem 17.1, we therefore need to do two
things: (1) prove the existence statement, and (2) prove uniqueness. For Theorem 17.1, the
existence part is an axiom, and doesn't need proof. The uniqueness part is proved using the rule for
proving uniqueness.
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Pr oof:

The existence part, there exists z € N such that (forall a € N: z-a = a), is a restatement
of the axiom we assume. To prove the uniqueness part we have:

Assume: zi, zo integers
1 forallaeN:z-a =a
2. forallaeN:zy-a =a

Show: 21 = 29

121 20 =29 (hyp. 1; us.V)
2.29-21 = 21 (hyp. 2; us.VY)
3.z1-29=2 (2; comm. -)
4. 21 = 29 (1,3; sub.)

O

Step 3 comes from Step 2 by reversing z; and 2, in the product zs - z;, by the axiom that
gives the commutativity of multiplication.

The steps in the proof of Theorem 17.1 can be written in terms of a more natural (less
formal) proof style that involves a chain of equalities. a; = as = ag = ... = a,, usually written
vertically in proofs:

a1
=ay (reasonthata; = ay)
=ag (reasonthat ay = as3)

=a, (reasonthata,_,=a,)

If we used such a chain, the steps in the preceding proof would be:

21
=29-2 (22 is - identity)
=212 (comm. -)

- (21 is - identity)
O

We now know that there is only one multiplicative identity, and we give it its usual name
“1". The property asserting existence of an identity can then be rewritten using the symbol “1” and
the commutative property:

Axiom Property of -identity: forallaeN: 1-a=a=a-1

It is very important, at this point, to distinguish between our imaginative idea of addition
and the properties of addition given by the axioms. Through experiences with counting — one,
two, three, four, five, ... — we learn to use numbers as adjectives, and to come to conclusions
involving this use. For example, we see that 2 apples plus 3 apples gives 5 apples, 2 pears plus 3
pears gives 5 pears, and so on. From this experience with using numbers as adj ectives, we come to
an abstract understanding of numbers as nouns. Weredize that 2 + 3 = 5 isatrue statement about
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numbers, that is, about the nouns. All civilizations with written languages have had symbols (called
numerals) for the numbers one, two, three, four, and so on. This understanding of the natural
numbers as nouns is the most basic idea in mathematics. It is even more basic than the idea of
proof. Nevertheless, it is important to remain faithful also to the idea of proof—where everything
must follow either from definitions or from axioms relating undefined terms.

We need to use statements such as 2+ 3 =5 in proof steps. Justification of such an
equation must follow from the definitions of the terms involved and the axioms relating undefined
terms. It is not legitimate, in a proof step, to bring in an appea to some physical situation—to
claim, for example, that two apples “plus’ three apples gives five apples. To do this would be to
import an imaginative idea of addition that is not completely captured in the axioms.

The natura numbers 2,3,4,5 and so on, are defined in terms of the identity of
multiplication, 1, given by our axiom. Define the number 2 as 1 + 1. The number 3 is defined as
2+ 1. Similarly, define 4=3+1,5=4+1,6=5+1, and so on. By the closure axiom,
2,3,4,and so on, are all natural numbers. The formal definitions agree exactly with our intuition.

From the definitions of the natural numbers, come all the facts about them. For example, the
following facts, used to create multiplication and addition tables, derive from the definitions:

242

=24+(1+1) (def.2)

=(2+1)+1 (assoc. +)

=3+1 (def. 3)

=4 (def. 4)

342

=3+(1+1) (def. 2)

=(B+1)+1 (assoc. +)

=4+1 (def. 4)

=5 (def. 5)

343

=3+(2+1) (def. 3)

=03B+2)+1) (assoc. +)

=5+1 (previously shown add. fact: 3 + 2 = 5)
= (def. 6)

2.2

=2-(141) (def. 2)

=2-1+2-1 (distr.)

=2+2 (mult. id.)

=4 (previously shown add. fact: 2 + 2 = 4)
2-3

=(1+1)-3 (def. 2)

=1-34+1-3 (dist.)

=3+3 (mult. id.)

=6 (previously shown add. fact: 3 + 3 = 6)

We will allow such facts about the natural numbers, given in the addition and multiplication
tables, (or more extensive computations for large numbers) to be used as proof steps. For example,
the statement 7 4+ 3 = 10 can be inserted in a proof with the justification “addition fact”.
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Example 1:
lLx+5=a-74a-3
2zx+5=a-(7+3) (1, Ax.: Fora,b,c€Z, a-(b+c)=a-b+a-c)
37+3=10 (addition fact)
4.x+5=a-10 (2,3; sub.)

Addition facts will frequently be used implicitly—as in the following example:

Example 2:
lLz+5=a-7T+a-3
2x+5=a-(7T+3) (L; Ax:Fora,b,c€Z, a-(b+c)=a-b+a-c)
dz+5=a-10 (2; sub.)

EXERCISE

1. Define the numbers 6, 7, and 8.
(8) Showthat 3 +4 = 7.
(b) Showthat 2 - 4 = 8.
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There Exists Statements;, Order

We now get to the formal inference rules for using and proving there exists statements. These
were introduced informally on page 15 to explain the logic behind vacuously true statements, and
on page 22 to introduce counterexamples. Recall the axioms on page 15 giving the negations of
forall and there exists statements:

Forall negation: —(for all © € A:P(x)) is equivalent to thereexists © € A suchthat
=P(x).

There exists negation: —(there exists x € A suchthat P(x)) is equivalent to for all x € A:
=P(x).

Example 1:

For sets A and B, the relation A C B is equivalent to the statement forallz € A:x € B, by
definition. Thus —=(A C B)isequivalent to —(forallz € A : x € B) by the axiom on page 22. In
turn, =(forallx € A : x € B) isequivalent to there existsx € A suchthatx ¢ B by the axiom
above. Therefore, to find a counterexample to the assertion A C B, we informally showed this
there exists statement; that is, we defined an element =z, showed that it wasin A, and that it was
notin B.

We now formalize this as the basis for proving there exists statements in proofs.

Proving there exists statements: In order to prove the statement there exists x € A suchthat
P(x), define z in the proof steps. Then prove both x € A and P(x) for your . Abbreviation:
“pr.37.

Format:

i. <define z here>

k-1.P(z)
K. there existsx € AsuchthatP(z)  (i,], k-1, pr.3)

Using there exists statements: From the statement there exists x € A such that P(x) we may
infer both € A and P(x). Abbreviation: “ us. 3.

Format:
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us. 3
i. thereexistsx € A suchthatP(x)

jreA (i;us. 3)

k. P(x) (i;us. 3)
A there exists statement (such asin Step i) is considered to define the symbol z, so that we
may refer to it later in the proof (for example, in Stepsj and k).

In the first sections, we considered an order relation < on the set N as given, so that we
could use it in numerical examples of sets. The transitive property of < was taken as an axiom,
which applied the examples, but not to any of the theoretical development. It wasn't used to prove
any of the theorems about sets. We now give a formal definition of the relation < , and prove the
transitive property from its definition and the axioms for addition and multiplication.

Definition For a,b € N, define a islessthanb (written a < b) iff there exists x € N suchthat b = a + x.

The proof of the following theorem depends on the rules for proving and using there exists
statements:

Theorem 18.1  Transitivity of < : For natural numbersa,b,and ¢, if a < b and b < ¢, then a < c.

Pr oof:

Assume: a,b,c € Z
lLa<bd
2.b<c

Show: a<e

k-1. there exists x € Nsuchthatc = a+ x
k.a<c (k-1; def. <)

We now need to prove the there exists statement of Step k-1. Steps i, j, and k-2 are
dictated by the rule for proving such statements.

i. <define z here>
jox eN
k-2.c=a+=z

k-1. there exists x € Nsuchthatc = a+ x
k.a<ec (k-1; def. <)
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The bottom-up analysis of the step-discovery procedure has identified just what we need to
do: define x, and show that x € N and ¢ = a + z are true about the x we define. We can continue
no further from the bottom up, so we use one of the hypotheses:

1. thereexists x € Nsuchthatb =a+ x (hyp.1:a < b)
i:<definex here>
jx eN

k-2: c=a+wx

k-1. there exists x € Nsuchthatc =a -+ x
kia <c (k-1; def. <)

The z that we are given in Step 1 might not be the same as the « we need to definein Step i,
so we need to use another letter as the variable in Step 1. The steps we have above are all correct
and logical, but if we continue from the development above, we can't define = in Step i, because it
has already been defined by the there exists statement of Step 1. So we use aletter other than = in
Step 1.

1. thereexistsy € Nsuchthatb =a+Y (hyp.1l:a < b)
i:<definex here>
jx eN

k—2: c=a+zx

k-1. there exists x € Nsuchthatc = a+ x
k.a<c (k-1; def. <)

Therulefor using there exists statements gives us Steps 2 and 3:

1. thereexistsy € Nsuchthatb =a+y (hyp.1l:a <b)
2yeN (Lus3)
db=a+y (; us.3d)

i. <define z here>
jox €N
k-2.c=a+uw

k-1. there exists x € Nsuchthatc =a -+ x
kia <c (k-1; def. <)
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From the second hypothesis we get Steps 4, 5, and 6:

1. thereexistsy € Nsuchthatb =a+y (hyp.1:a < b)
2yeN (1; us3)
db=a+y (3; us.3d)
4. there exists z € Nsuchthatc =b+ z (hyp.2:b < ¢)
52z¢eN (4; us.3d)
6.c=b+z (4; us.3)

i. <define z here>
jox €N

k-2.c=a+=z
k-1. there exists x € Nsuchthatc = a+ x
k.a<ec (k-1; def. <)

The step-discovery procedure has left us with (1) a clear definition of our task: define « and
show z € N and ¢ = a + z for our z, and (2) the things we have to work with to define z: a, b, and
¢ from the hypotheses, and y and z, which have been defined in the proof steps.

Sincec = b+ zand b = a + y, we can substitute a + y for b in the first equation to get:

=b+z
= (a+y)+2
=a+(y+2)

We can define x to be y + z. This is done with the statement “Let z = y + 2”. We will use the
word “let” in formal proofsin only this way; that is, to define a new symbol in terms of previously
defined symbols (anal ogous to an assignment statement in computer science).

1. thereexistsy € Nsuchthatb =a+y (hyp.1:a <b)
2yeN (1; us3)
db=a+y (1; usd)

4. there exists z € Nsuchthatc =b+ z (hyp.2:b < ¢)
52z¢eN (4; usd)
6.c=b+z (4;us3)
T.Letz=y+z2

8reN (2,5 7;ax.: If p,g e N, thenp+ g € N)
9c=(aty)+=z (3, 6; sub.)
10.c=a+ (y+ 2) (9; assoc. +)
1ll.c=a+zx (7, 10; sub.)
12. there existsx € Nsuchthatc = a+ x (7,8,11; pr.3)
13.a<c (12; def. <)
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The proof can be shortened with the following rule:

Inference Rule Using there exists implicitly: We may refer to either of the statements x € A or P(x) within a
proof statement there exists x € A suchthat P(z) that is known to be true. That is, we need not
rewrite these as proof steps.

Using thisrule allows us to use the formal statementsy € N and b = a + y within the there
exists statement of Step 1 — without rewriting these down as proof steps. Similarly, z € N and
¢ = b+ z can be used right from within Step 4. This allows us to contract the proof:

1. thereexistsy € Nsuchthatb =a+y (hyp.l:a <b)

2. thereexists z € Nsuchthatc = b+ z (hyp.2:b < ¢)

. Letx=y+z

4.z eN (1,2, 3;ax.:If p,ge N, thenp+ qg € N)
5c=(a+vy)+z (1, 2; sub.)

6.c=a+ (y+ 2) (5; assoc. +)

T.c=a+x (3, 6; sub.)

8. there existsx € Nsuchthatc =a+z (3,4,7;pr.3)

9.a<c (8; def. <)

O

Note that the rule for implicit use of there exists statements allows us to work from inside
athere exists statement, and not only at the top level. It is therefore an exception to the way we
work with statements. In effect, we are able to interpret the there exists statement informally.

The there exists statement of Step 8 need not be written as a proof step, if we use the
definition of < implicitly:

1. thereexistsy € Nsuchthatb =a+y (hyp.1:a < b)

2. thereexists z € Nsuchthatc = b+ z (hyp.2:b < ¢)

. Letz=y+=z2

4.z eN (1, 2, 3; ax.: N closed under + )
5¢c=(at+y)+=z (1, 2; sub.)

6.c=a+ (y+2) (5; assoc. +)

7T.c=a+x (3, 6; sub.)

8a<e (3,4, 7; def. <)

O

To justify Step 8, we need to refer to al the steps needed to prove the implicit there exists
statement: Step 3, where z is defined, and Steps 4 and 7 which state the needed properties of .
We can't use the definition of < implicitly in using the hypotheses, since the there exists
statements of Steps 1 and 2 are needed to define the elements y and = for subsequent use in the
proof. We can, however, abbreviate the proof further by writing it as a narrative proof:
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Narrative proof:

Assumea < band b < cfora,b,c € N. Wewill show a < ¢. Sincea < b, there exists
y € N such that b = a + y, and since b < ¢, there exists z € N such that ¢ = b+ z. Then
c=b+z=(a+y)+z=a+(y+z2). Let z=y+2 Then z €N, since N is closed
under + . Also ¢ = a + z, so that a < ¢ by definition of < .
O

For integersa and b, define a < b (whichisread “a islessthan or equal to b”) iff a < b or a = b.
Trangitivity of < :Fora,b,c € Z,ifa <bandb < ¢,thena < c.
Proof: Exercise 3.

Facts such as 3 < 6 were considered as “given” for use in the first sections. Here these
facts about the natural numbers and the relation < can be shown from the definition of < and
previously shown addition facts, which follow from the definition of the elementsin N.

Example 1.

In order to show 3 < 6, we need to prove there exists ¢ € N suchthat 6 = 3 + z. Define
x=3.Then 6 =3+ x = 3 + 3, by one of the previously shown addition facts.

From now on, we will follow statements such as 3 < 6 in proofs with the abbreviated
justification “(def. < )”. We will no longer assume that these are “given”. They follow (easily)
from the definition of < — asin Example 1.

For natural numbers a and b, we define the relation a > b, read “a is greater than b”, to
mean the same as b < a. We use “a is greater than b” rather than “b is less than a” if we wish a
rather than b to be the subject of our sentence. Mathematically, a > b and b < a mean exactly the
same thing. In order that we need not refer to informal ideas in a forma proof, we need the
following formal definition:

For integersa and b, definea > b iff b < a.

Transitivity of > : Forz,y,z € N,ifz > yandy > z, thenz > z.

Proof: Exercises4 and 5.

EXERCISES

. Write all the steps dictated by the rule for proving there exists statements.

(@

k. thereexistst € S suchthat t < 18
(b)

k. thereexistsx € ANB
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2. The following proof fragments use the explicit version of the rule for using there ewists
statements. Rewrite abbreviated versions of these proof fragments that use the inference rule for
using there exists statementsimplicitly.

@
1. thereexistsx € Asuchthatx <7
2zeA (1; us. 3)
3ACC (hyp.)
4.xeC (2,3; def. C ,imp.)

(b)
1. thereexistsx € Asuchthatx € B

2zeA (1; us. 3)
3.zeB (1;us. 3)
4.rxc ANB (2,3; def.n, imp.)

3. Prove Theorem 18.2.
4. Follow the step-discovery procedure to prove Theorem 18.3.

5. Use Theorem 18.1 to prove Theorem 18.3. Note that using previously shown theorems in a proof
abbreviates the proof, since it makes those steps unnecessary that were used to show the previous
theorem. Note also that using previously shown theorems can do no more than this. Anything that
can be proved using a theorem can be proved by a direct appeal to definitions and axioms—
although the latter process may be so lengthy as to be impractical. By using theorems, it is also not
necessary to repeat any creative processes use in the discovery of their proofs; that is, by using
theorems, we need not reinvent the (perhaps centuries of) mathematics that led to their proofs.
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Trichotomy

It might seem that the axioms we have so far would be enough to tell us everything we need to
know about N. Thisis not the case. In fact, we can't even prove that 1 is not equal to 2 from these
axioms. The way that mathematicians show that such a proof is impossible is to find or invent a
system in which all the axioms are true, but where 1 = 2. The system need not be intuitive; it only
needs to be logically consistent. (In fact, if 1 =2 in the system, it will probably be counter-
intuitive to most people.)

Before we give an examplein which 1 = 2, we give afamiliar example of a set on which we
can define the operation of addition.

Example 1.

Suppose C'isthe set {1,2,3,4,5,6,7,8,9,10, 11, 12}. Define addition on this set by the way you
would add hours on the face of aclock. That is, 9 hours past 8 o'clock is5 o'clock: we add 9 and
8 to get 17, and then subtract 12 to get 5. Thus 9 4+ 8 = 5. In Exercise 6, you are asked to pick
examples of numbersin C to illustrate the commutative and associative properties of addition.

Example 2:

Suppose N isthe set {1}. Define addition and multiplication on this set by the rules
1+1=1
1-1=1
The set {1} together with the operations defined above satisfies al the axioms for N that we have

so far; that is, if we replace N with NV in al the axioms, the axioms can be shown to be true
statements. The properties all reduce to the equation 1 = 1 (Exercise 7).

If the number 2 were defined as 1 + 1 = 2 for the system N of Example 2 (just as it is
for N), thensince1+1 =1 in N, wewould have 1 = 2. It similarly follows that 2 = 3 = 4, and
so on. Also, the equation 1+ 1 =1 shows that thereexistsx € N suchthatl =1+ x. This
meansthat 1 < 1. Of course 1 < 2 also, because2 = 1.

The following axiom for the natural numbers prevents 1 < 2 and 1 = 2 from both being
truein N — asthey arein N of Example 2.

Trichotomy: For any a, b € N, exactly one of the following holds:
@a<bd
(b)a="5b
©b<a

Theinformal phrase “exactly one of the following holds’ in the trichotomy axiom means:

(1) the formal statement (a < b) or (a = b) or (b < a) holds, and

(2) if any of (@), (b), or (c) is taken as a hypothesis, then the negation of either of the others can
be taken as a conclusion.
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The equation 1 + 1 = 2 in the natural numbers N shows that there exists x € N such that
2 =1+ x. This means that 1 < 2. By the trichotomy axiom above, then, we can't have 1 = 2.
Also, since 2+ 1 =3 in N, there exists x € N suchthat 3 =2+ x. This means that 2 < 3. By
trichotomy, then, 2 # 3. From 1 <2 and 2 < 3, we get 1 < 3, by transitivity—and therefore
1 # 3, by trichotomy.

Continuing in this manner, we see that each newly defined natural number is greater than
and digtinct from all the previously defined natural numbers. This gives us the well-known
ordering of the natural numbers:

1<2<3<4<5<..

Further, no number in thislist is equal to any other number in the list. Y ou knew this by counting.
We wanted to show that it follows from the axioms.

Not much can be done with equations in the natural numbers. Being able to work with and
solve equations is the major reason for the creation of the larger number systems. There are a few
operations with equations that can beillustrated in the natural numbers. One of these is the fact that
we can add the same number to each side of an equation—as in the following example:

Example 3:

Suppose that = € N and that we know that 3z + 2 = 17 is a true statement (eguation) about z.
Then the fact that we can add 4 to each side of this equation is justified as in the following steps:

1.3z+2=17 (hyp.)
2.17+4=17+4 (identity)
3Bz +2)+4=17+4 (1, 2; sub.)

Step 2 is an identity and needs no real justification. It will be acceptable to merely note the
fact. The net effect of these stepsis to add the number 4 to each side of the equation in Step 1. We
don't wish to go through this complex procedure and its logic—which involves writing down an
identity—every time we want to add the same number to each side of an equation. Consequently,
we'll make up atheorem that allows us to merely add the same number to each side of an equation.
The proof of the theorem will be the same as the derivation of Step 3 from Steps 1 and 2 above.
That is, the theorem will merely be a generalization of the steps above.

If a =b isan equation between natural numbersa and b, and ¢ is any natural number, then
@ a+c=b+c
(b) a-c=b-c

Proof of part (a):
Assume: a,b,c € N
a=>b
Show: a+c=b+c¢
lat+c=a+c (identity)
2a+c=b+c (1, hyp.; sub.)

Proof of part (b): Exercise 1.

In applying this theorem, we don't quote the theorem or the theorem number. We merely
state what number was added to each side of the equation:
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Example 4:

6.4+zx=2z
7.(44+2)+3=(2-2)+3

Example 5:

6.4+x=2-x
7.44+z)-5=(2-x)-5

If 2 <yforz,yeN,andif 2 € N, then

@ z+z<y+z
(b) z-z2<y-z

Proof: Exercise 2.

Theorem 19.1 has a converse that can be proved using the trichotomy axiom:

Suppose a,b,c € N.
@ Ifa+c=0b+c,thena =0b.
(b) fa-c=b-c,thena =b.

Proof of part (a):
Assume: a,b,c € N

a+c=b+c
Show: a=1b
L(a<b)or(a=b)or(b<a)
Cael 2.a<b.
atc<b+c
4. =(a+c=b+c)#hyp.
Case2 5.a=0
Cae3 6.b<a

7.-(b+c=a+c)#hyp.

8a=0b

Proof of part (b): Exercise 3.

Suppose a,b,c € N.
@ Ifa+c<b+cthena <b.
(b) fa-c<b-c,thena < b.

Proof: Exercise 4.

(6; add 3)

(6; mult. by 5)

(axiom: trichotomy)
(2; Thm. 19.2a)

(3; trichotomy)

(2—4; sym.)
(3—7; us. or)
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Suppose a,b,c € N.
@ at+c<b+ciff a<d
(b) a-c<b-ciff a<d

Proof: Exercise 5.

Fora,b € N, if b < a, then there existsauniquex € N suchthat a = b + .

Pr oof:

The existence of x € N such that « = b + x follows from the definition of < . In order to
show uniqueness, assume a = b+ x; and a = b + x5 for 21,29 € N. Then 2, = x5 follows
fromb + 21y = b + x5 by Theorem 19.3a.

O

Subtraction: For a,b € N such that b < a, define a minus b (written a — b) to be the unique
integer x suchthata = b+ z. Thusa = b+ x iff x =a —b.

Example 6:

By the definition of subtraction, each addition fact about the natural numbers correspondsto a
subtraction fact:

addition facts corresponding subtraction facts
243=34+2=5 5—2=3and 5-3=2
24+4=44+2=6 6—2=4and 6—-4=2
1+2=2+1=3 3—1=2ad3-2=1

Such subtraction facts may be used as justification for proof steps—as addition facts are used.

EXERCISES

. Prove Theorem 191b.

. Prove Theorem 19.2 parts (a) and (b). Don't try to copy the proof of theorem 19.1. Use the step-

discovery procedure.

. Prove Theorem 19.3b.
. Prove Theorem 19.4.
. Prove Corollary 19.5.

. Pick examples of the numbers 1 through 12 to illustrate that the operation of clock addition of

Example 1 satisfies the commutative and associative properties.

. Show that all axioms we have so far for the operations + and - on N are satisfied by the

operationsof + and - defined onthe set N of Example 2.
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Divisibility; Formal iff statements

If @ and b are natura numbers, then b is said to divide a if there is a natural number ¢ such that
a = be.

Example 1.
3 divides12 since12 = 3 - 4.

We now give aformal definition of divides.
Definition For a, b € N, wesay b divides a iff there exists ¢ € N such that a = be.
The customary notation for saying b divides a isb | a. The statement b | a is aso expressed
by saying “b isafactor of a” or “a isamultiple of b”. The formal statement
there exists ¢ € N suchthat a = be
of the definition above can also be phrased

a = bc for some c € N

Statements of either form may be called either there exists statementsor for some statements.

Example 2:

1.3]a
2.a=3c for somec €N (1; definition of “divides”)
By the definition of divides, 3 | a is equivalent to a = 3¢ for some ¢ € N. Thus the statement of

the relationship 3 | a in Step 1 can be replaced by its defining condition a = 3¢ for some ¢ € N,
giving Step 2.

Example 3:

l.a=9c for someceN
29 a (1; definition of “divides”)
By the definition of divides, 9 | a is equivalent to a = 9¢ for some ¢ € N. Thus the statement of

the defining condition a = 9¢ for some ¢ € N in Step 1 can be replaced by the defined relation
9| a, to get Step 2.

“Definition of divides” in justificationsis abbreviated “def. | ”.

Example 4:

1
2. there exists z € N suchthat © = yz (1; def. | )
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Solution:

Lyl
2. there exists z € N suchthat © = yz (1; def. | )

Leta,b,ceN.Ifb|aandb | cthend | (a+ c).

Proof: Exercise 1.

Leta,b,c e N. Ifb | a,thend | ac.

Proof: Exercise 2

Leta,b,ce N.Ifa|bandb | c, thena | c.

Proof: Exercise 3.

A there exists statement can be used to give aformal definition of the empty set. Let U be
the universal set; that is, all sets that we consider will have elements from U. Then we have the
following definition:

A set S isempty (written S = 0) iff —(there existsx € U suchthatx € S).

We have used the forma phrase there existsx € Usuchthatxz € S in this definition,
since it isin the general form there exists x € A such that P(x). From a statement there exists
x € Usuchthat z € S in some proof, we could infer both z € U and = € S, by the rule above.
All elements must come from our universal set, however, so there is no need to clutter proof steps
with assertions like x € U—or to worry about it at al. For this reason, we will use the abbreviated
statement there existsx € 5,17 instead of the statement there existsx € Usuchthatz € S.
The rules for proving and using the abbreviated statement are exactly the same as the rules for
proving and using the longer version, except that we omit explicitly mentioning that elements are
in the universal set. With this convention we have the following restatement if the definition:

A set S isempty (written S = () iff =(there existsx € S).

A proof of the following theorem illustrates the rules or proving and using there exists
statements, as they apply to the shortened statements.

Forsats A, B,and C,if AC B,and BNC =@, then ANC =

17 The negation of the statement there exists x € S isthe statement forallx € U: = ¢ S. That is, when we form
the negation of there exists x € S, wemust realize that it is an abbreviation of there exists x € U such that

res.
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Pr oof:

Assume: A, B, C sets
ACB
BnC =10

Show: ANC =0

k-1. —~(thereexistsx € ANC)

k. AnC =10 ( ;def. )

In order to establish Step k-1, we assume the contrary:

Pr oof:

Assume: A, B, C sets
ACB
BNnC =10

Show: ANnC =10

1. Assumethere existsx € AN C to get #
2xe ANnC
zeA
4.x€ B
5z’
6.xe BNC
7.thereexistsx € BNC
8. —(thereexistsx € BNC) #7.
9. ~(thereexistsx € ANC)
10.ANC =10

(3; us. 3)

(2; def. N)

(3, hyp.; def. C)
(2; def.n)

(4,5; def.N)
(1,6; pr. 3)
(hyp.; def. 0)
(1—8; #)

(9; def. 0)

135
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The there exists statement of Step 1 defines the symbol z, and the rule for using there
exists statements allows usto infer z € A N C about this z. We can omit Step 2 by using the rule

implicitly.

In general, the rule for proving the statement there exists © € A such that P(x) states that
we must define = and show both that z isin A and that P(x) istrue about x. Thus to prove Step 7,
thereexistsz € BN C, we need to define z and show =z € BNC. Step 7 is justified by
(1,6; pr. 3), since z isdefined in Step 1 (by the there exists statement) and showntobein BN C

in Step 6.

If we use the definition of the empty set implicitly, we need not write down Step 9. That is,
assuming (Step 1) that there is something in A N C, and then obtaining a contradiction proves that

AN C isempty—by the definition of the empty set:
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1. Assumethere existsx € AN C to get #

2zxeA (2; def. N)

3.zeB (2, hyp.; def. C)

4.xe€C (1; def.n)

52 BNC (3,4; def.N)

6. thereexistsx € BNC (4,5; pr. 3)

7. =(thereexistsx € BN C), #6. (hyp.; def. 0)
8.ANC =190 (1—7; def. 0)

We can remove the step (6) with justification “pr. 3 ” by considering the statement there
existsz € BN C to be the defining condition for B N C # —which is the negation of one
hypothesis. That is, we know that a statement and its defining condition are equivalent, so by the
axiom “If P < Q, then =P < —Q” we have that the negation of the statement is equivalent to
the negation of the defining condition. By the extension of our implicit definition rule to apply to
the negations of defining conditions, we can use the definition of the empty set implicitly to get a
contradiction in the block of steps 1 through 7. That is, we think of there existsz € BN C asthe
condition defining BN C # (). To prove BN C # ), therefore, we prove its defining condition
there existsx € BN C, but we don't write the defining condition down:

1. Assumethere existsx € AN C to get #

2zxeA (1; def. N)

3.zeB (2, hyp.; def. C)

4.2xeC (3; def.N)

52 BNC (3,4; def.n)

6. BNC # 0, #hyp. (1, 5; def. )
7.ANC =10 (1—6; def. )

O

It's not possible to remove the formal there exists statement of Step 1 from the proof, since
this statement servesto define z.

The proof of Theorem 20.4 illustrates how to handle expressions involving the empty set. In
general, the way to prove X = () for some set X, is to show that X satisfies the property defining
the empty set. Then X = () by definition of the empty set. Similarly, in order to use the information
from a known equation Y = {), use the fact that Y has the property defining the empty set; that is,
Y isempty.

The equation X = () has the form set = set, so, by definition of set equality, it is
equivalent to X C fand® C X. Each of these expressions of set containment is equivalent to a
forall statement. The for all statements will be vacuoudly true, and to prove such a statement we
avoid using the rule for proving for all statements, which involves the assumption of a set being
nonempty. (See the discussion on page 15.) Our proofs will not be effective communications if
they contain vacuoudly true statements and assumptions that are contrary to known facts.
Consequently, we use the definition of the empty set, to prove or use equations of the type X = §).

The abbreviated proof, which usesimplicit logic, can be rewritten as a narrative proof:
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Narrative Proof:

Assume for sets A, B,and C that A C B and that BN C = (. We show that ANC = 0.
Thus assume there exists z € AN C in order to get a contradiction. Then z € A by the
definition of intersection, so that by hypothesis x € B. Also, z € C' by the definition of
intersection, from which we get z € B N C—which contradicts the hypothesis. Consequently,
ANC =0.

O

Consider The Venn diagram of Figure 20.1, which represents the hypotheses of Theorem
20.4.

B C

Figure 20.1

In the diagram, we have drawn A C B and BN C = (). (Recall that such sets B and C are
caled digoint.) It is easy to see from he diagram that A and C' must also be disoint. While it is
safe to infer set relationships from appropriately drawn Venn diagrams, it is not always safe to
draw inferences from diagrams. The rule is that a diagram can be considered as part of a proof,
provided that inferences drawn from the diagram can be confirmed, if necessary, by a step-by-step
verification. With this understanding about the validity of using diagrams, proofs that depend on
diagrams can be considered as a further step in the process of writing increasingly informal proofs.
We have seen the following four types of proof, in order of increasing sophistication: (1) step-by-
step proofs with explicit logic (formal inference rules explicitly expressed), (2) step-by-step proofs
with implicit logic, (3) narrative-style proofs, and (4) proofs using inferences drawn from
diagrams.

In Section 16, we conjectured that A — (B —C)= (A — B) — C is true under either the
hypothesis A C B — C or the hypothesis that A, B,and C' are mutually digoint. Verify both of
these conjectures. In Section 16, you found conjectures about set identities by considering Venn
diagrams for sets drawn in general position. Repeat Investigations 2 and 3 of Section 16—now,
however, with some Venn diagrams for sets A, B, and C' that exhibit some relationship; that is, are
not in general position. Thiswill lead to conjectures about set relationships that hold under certain
hypotheses.

The six types of basic, formal mathematical statements—there exists, forall, if-then,
and, or,and not—make up the language in which mathematics is expressed. Formal “iff”
statements are defined in terms of i f-then and and statements. Iff statements provide a formal
analog to informal statements of equivalence. Recall that the informal idea of equivalence is used
in definitions.

Example 5:

The relation of “subset” was defined as follows:

For sets A and B, A C B iff forallz € A:z € B.
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The relationship A C B between A and B is equivalent, by definition, to the defining condition
forallx € A:x € B.

The statement P if and only if Q is defined to be the same as (if P, then Q) and (if Q,
then P).“If and only if” isaso written “iff”.

In order to prove a statement P iff @ we would prove (i f P, then Q) and (if Q, then P).
This top-level and statement is proved in two parts, first we prove if P, then Q, and then we
proveif Q, then P. These two parts are exactly what we do to show that P is equivalent to Q.

It is possible to speak informally about formal statements; that is, informal statements may
contain formal statements. The reverse is not possible, however; that is, formal statements cannot
contain informal ones. The formal iff is needed to get the idea of equivalence inside formal
Statements.

Forsets A and B, A = Bifandonly if forallz € U:x € Aiffx € B.

Proof: Exercise 6.

For sets A and B:
@ACBIffANB=A
(b)ACBiffAUB=B

Proof: Exercise 7.

Investigation 5: The statement “if P, then Q" can be expressed by saying that P is a sufficient condition for @ —

or that Q is anecessary condition for P. The statement “P iff Q" can be expressed by saying that
P is anecessary and sufficient for Q. In Investigation 1, you were asked if you could find some
hypothesis under which A — B = B — A was true—that is, could you find a sufficient condition
on A and B for A— B = B — A to be true? |s your sufficient condition also necessary? That is,
have you found a necessary and sufficient condition for A — B = B — A? Which of your
hypotheses (sufficient conditions) from Investigation 4 are also necessary?

EXERCISES

1. Prove Theorem 20.1.
2. Prove Theorem 20.2.
3. Prove Theorem 20.3.

4, Prove that the statements there exists x € A suchthat x € B and thereexistsx € AN B are

equivalent.

5. Supposethat A, B,and C are sets, that A C B, andthat AN C # (. Provethat BN C # 0.
6. Prove Theorem 20.5.

7. Prove Theorem 20.6.
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The Integers

In order to provide instructive examples of the functions in the following sections, we need to
extend the system N of natural numbers to include zero and negative numbers. The extended
number system is called the set of integers and is denoted by Z. The fact that Z contains all the
natural numbers already defined is recorded as our first axiom for the integers:

Axiom N CZ.

The following axioms are the same as axioms that hold for N. Since these axioms hold for
al elements in Z, they must hold for elements in the subset N of Z. It is therefore no longer
necessary to retain these separately as axioms for N. We say that these properties of elementsin N
are now inherited from propertiesin Z.

Axiom Commuitativity of addition: If a,b € Z,thena +b = b + a.

Axiom Associativity of addition: If a,b,c € Z,thena+ (b +¢) = (a + b) + c.
Axiom Commuitativity of multiplication: If a,b € Z,thena-b =10 - a.

Axiom Associativity of multiplication: If a,b,c € Z, thena - (b-¢) = (a-b) - c.
Axiom Distributivity: If a,b,c € Z,thena - (b+¢)=a-b+a-c.

The following axioms for Z are analogous to those for N:

Axiom Closure under addition: If a,b € Z,thena + b € Z.

Axiom Closure under multiplication: If a,b € Z, thena - b € Z.

If we add two natural numbers, the result is another natural number. This fact doesn't follow
from the axiom above, which tells us only that the sum will be some integer. That is, the fact that
the natural numbers are closed under addition is not inherited from the axioms above for Z. We
must therefore list it in addition to the axioms above. Thus we need to carry forward the following

axioms for N:
Axiom Closure of the subset N under addition: If a,b € N, thena + b € N.
Axiom Closure of the subset N under multiplication: If a,b € N, thena - b € N.

Since the element 1 that acts as an identity of multiplication for N is a member of the set N,
and since N C Z, we have that 1 is an integer. The next axiom asserts that 1 acts as an identity of
multiplication for al of Z—not only for the subset N.

Axiom Identity for multiplication: Forall a €Z:1-a=a-1=a.
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The next axiom for Z asserts the existence of an identity for addition—something which N
lacks, but which isincluded in the larger system Z.

Identity for addition: There exists z € Z suchthat (z+a=a+z=a foralla € Z).

The identity for addition can be shown to be unique—exactly as the identity for
multiplication was shown to be unique in Section 17. We can therefore give it its usual name 0,
and reword the axiom above:

Identity for addition: 0 +a =a+ 0 =a forall a € Z.

0¢N.

Pr oof:

0+0=0, so if 0N, then 0 <0 by definition of < — which would contradict
trichotomy in N. Therefore 0 ¢ N.
O

The point of enlarging N is to include additive inverses. For example, the additive inverse
of 7 is denoted by -7. The integer -7 has the property that when we add it to 7 we get 0 (the
additive identity). The next axiom asserts that every integer has an additive inverse:

Existence of an additive inverses For each a € Z: therecexists b€ Z suchthat
a+b=b+a=0718

For each a € Z, there existsaunique b € Z suchthat a + b = 0.
Proof: Exercise 1.
The unique element b such that a + b = 0 (given by Theorem 21.2) is called “negative a”

and is denoted by “-a”. Thus a + -a = 0, and, by commutativity, -a + a = 0. The operation of
subtraction can be defined for elements of Z in terms of additive inverses.

For integers a and b, define the integer a minus b (written a — b) to be a plus the negative of b.
Thatis,a — b = a + -b.

The definition above defines subtraction for al integers, including the natural numbers.
However, we already have a definition of subtraction for natural numbers, given on page 132. We
must therefore show that the two definitions are equivalent. This follows from the next theorem.

For any integersa and b, a +-b = x iff a =0+ x.

Proof: Exercise 2.

18 The axiom is given informally—with hypotheses a € Z, and conclusion there exists b € Z such that
a+ b= b+ a=0. Thereisnothing to be gained by giving this axiom formally as atop-level forall statement. The
reason for our formality isto guide in the step-discovery procedure, but an axiom doesn't need to be proved.
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Find theorems for the integers that are analogous to Theorems 19.1 and 19.3. If some statements
that you get by replacing “natural number” with “integer” are not true, provide counterexamples. In
the sequel, we will freely use these (true) theorems extended to the integers.

Part (a) of the next theorem asserts that for any integer a, the inverse of theinverse of a isa
itself; that is, -(-a) = a. The proof uses Theorem 21.2, which asserts the uniqueness of an inverse,
and the following inference rule for using uniqueness:

Using uniqueness: If we know that there is a unique element with property P, then from the facts
P(x1) and P(x2) we caninfer z; = xo. Abbreviation: “ us.!”.

Example 1:
la4+zxz=0
2a+y=0
3. thereexistsauniqueb € Z suchthata + b =0 (Thm. 21.2)
4 r=y (1,2,3;us!)

By using the rule above implicitly, we need not cite it as justification for a step. Instead, we
cite the theorem that asserts uniqueness, asin Example 2:

Example 2:
la4+zxz=0
2a+y=0
dz=y (1, 2; Thm. 21.2: For each a € Z, there existsaunique b € Z such that

a+b=0)

For eacha,b € Z:

@ -(-a) = a.

(b) 0-a=0

© (1)-a=-a

(d) -a+-b=-(a+0)

The proof of part (a) depends on the fact that -(-a) is (by definition) the inverse of -a, and a
isalso aninverse of -a:

Proof of (a):
Assume: a an integer
Show: -(-a) =a

lLa+-a=0 (def. inverse)
2.-a+a=0 (1; comm. +)
3.-a+-(-a)=0 (def. inverse)
4.a = -(-a) (2, 3; Thm. 21.2: For each ¢ € Z, there existsa unique b € Z

suchthat ¢ + b = 0)
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Proof of (b):
Assume: a an integer
Show: 0-a=0

1.0-a=0-a (identity)
2(0+0)-a=0-a (1; sub. 0 isidentity)
30-a+0:-a=0-a (2; dist.)
4.0-a+0-a]+-(0-a)=0-a+-(0-a) (3;add-(0-a))
50-a+[0-a+-(0-a)]=0-a+-(0-a) (4; assoc. + )
6.0-a+0=0 (5; +inv.)
7.0-a=0 (6; + identity)

Proof of (c) and (d): Exercises2 and 3.

It isasimple matter to extend the definition of order from N to all of Z:

Fora,b € Z, aissaid to belessthan b (writtena < b) iff b = a + = for somez € N.

Thus the integer a is less than the integer b iff we can add some natural number to b to
obtain a. This definition clearly extends and does not conflict with the definition of order on N
already given on page 122.

The condition there exists © € N suchthat b =a + x is logicaly eguivalent to the
condition b — a € N, asthe following steps show:

1. thereexists x € N suchthatb =a+ x

2.xeN (1; us.3)

db=a+zx (1: us3)

4. -a+b=-a+ (a+x) (3;add-a)
5b+-a=(a+a)t+z (4; comm. & assoc. +)
6.b—a=0+z (5; def. sub. & inv.)
7.b—a==x (6; 0is+id.)
8b—aeN (2,7; sub.)

By reversing Steps 1 through 8 above and adjusting the justifications somewhat, we can
prove that if we assume b — a € N, then we can show there exists © € N suchthat b = a + x.
The two conditions are therefore equivalent. This result is not important enough for usto call it a
theorem, so we merely offer it as an alternate form for the definition of “ < ”:

Fora,b € Z, definea < b iff b —a € N.

Either form of the definition can be used to prove the parts of the following theorem.
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Foral a,b € Z:

@ 0<aiffaeN
(b) -a < 0iffa e N
(© a<0iff-aeN
(d) a<biff-b<-a
Proof: Exercise 5.

Elements z € Z such that z > 0 are called positive integers. By Theorem 21.5, a positive
integer isjust anatural number. Elements z € Z such that z < 0 are called negative integers

Trichotomy for Z: For any a, b € Z, exactly one of the following holds:
@a<bd
(b)a=10
©b<a

The trichotomy axiom for N, given on page 129, is clearly a consequence of this axiom. If
we take b in the axiom to be zero, we see that every nonzero integer is either positive or negative
and that no integer can be both positive and negative.

Theorem 21.5 is therefore the basis for the ordering of the integers:

L4321 <0<I2<3<4 .

Example 3:
3 <6 (def. <),s0-6 < -3 (Thm. 21.5d)

For any a € Z, exactly one of the following holds:
@aeN

(b)a=0

(©)-a eN

Proof: Exercise 6.

Rules for adding, subtracting, and multiplying negative integers are based on theorems that
we now consider.

For al a,b € Z:
@ (-a)-b=a-(-b)=-(a-b)
(b) (-a)-(-b) =a-b

Consider the statement (-a) - b = -(a - b) which is part of (a). -(a - b) is, by definition, the
inverse of a - b. In order to show (-a) - b = -(a - b), we show that (-a) - b isalso aninverse of « - b,
and then use the uniqueness of an additive inverse to conclude (-a) - b = -(a - b). In order to
simplify our notation, we will write the product a - b as ab, that is, either the dot “ - (with

numerals) or juxtaposition (with letters) will be used to denote a product.
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Proof of part of (a):
We assume a,b € Z and show (-a)b = -ab.
1. ab+ (-a)b = (a +-a)b (dist.)

2.ab+(-a)b=0-b (1; + inv.)

3.ab+ (-a)b=0 (2; Thm. 21.4b: Foreachc € Z : 0 - ¢ = 0)
4. (-a)bisaninverse of ab (3; def. inv.)

5. -ab isan inverse of ab (notation for inv.)

6. (-a)b = -ab (4,5; Thm. 21.0: uniqueness of + inverse)

The remaining part of (8), a(-b) = -ab, and part (b) are exercises.

Theorem 21.7 is true for any integers a and b, not necessarily positive integers. If we take a
and b to be positive integers, however, then -a and -b are negative integers, and part (b) of the
theorem states the fact, familiar from school computation, that a negative times a negative is
positive: (neg.) - (neg.) = (pos.). It is difficult to justify the rule (neg.)- (neg.) = (pos.) to
students acquainted only with descriptive mathematics and rules for computation. From our
viewpoint, however, we see that the rule is alogical consequence of the axioms. If every integer
has an additive inverse, and if the commutative, associative, and other axiomatic properties of the
integers are to hold, then (neg.) - (neg.) = (pos.) must hold also. From part (a) of this theorem, we
get the rules (pos)-(neg.) = (neg.) and (neg.)- (pos.) = (neg.). Of course, the rule
(pos.) - (pos.) = (pos.) comes from the closure of N under multiplication.

Example 1.

1L(-5)-(4)=___ (mult. fact)
Solution:

1.(-5)-(4) =20 (mult. fact)

Theorem 21.7b and the previously accepted multiplication fact 5-4 =20 give us the
solution to Example 1. We will use Theorem 21.7b implicitly when justifying facts such as the one
in Example 1—thus enlarging our multiplication facts to include multiplication by positive and
negative integers.

Foradl a,b € Z:
@ a+-b=-(b—a)
)y b+-a=b—a

Pr oof:

Part (b) is merely a restatement of the definition of subtraction. In order to prove part (a),
assumethat a and b are arbitrary integers. Then

-(b—a)
=-(b+-a) (dlef. subtr.)
=(-1)-(b+ —a) (Thm. 21.4c)
=(-1)-b+(1)-(—a) (dist))

— b4 (-1)-(-a) (Thm. 21.4c)
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=-b+1-a (Thm. 21.7b)
=-b+a (mult. id.)
=a+-b (comm. +)

O

Theorem 21.8 applies to any integers a and b whatever—not only to natural humbers. If we
apply the theorem to natural numbers a and b, however, with a < b, we get the following rule for
adding integers of opposite sign. (Positive integers are said to have “positive sign”, and negative
integers to have “negative sign”.)

In order to add two integers of opposite sign, subtract the smaller from the
larger, ignoring the signs of the integers. Then take the sign of the larger.

Example 2:

To add 7 and -10, ignore the signs of the numbers and observe 7 < 10. Subtract the smaller from
the larger: 10 — 7 = 3, using the subtraction facts for the natural numbers. Then assign the
remainder 3 anegative sign: 7 + -10 = -3. Equivalently, by Theorem21.8a: 7+ -10 = -(10 — 7).

Example 3:

To add 7 and -5, ignore the signs of the numbers and observe 5 < 7. Subtract the smaller from the
larger: 7 — 5 = 2, using the subtraction facts for the natural numbers. Then assign the remainder 2
apositivesign: 7+ -5 = 2. Equivalently, by Theorem 21.8b: 7+ -5 = (7 — 5).

Since a positive integer is just a natural number, to add two integers of positive sign, we use
the addition facts (see page 119) for the natural numbers—which follow from the definitions of the
numbers. To add two integers of negative sign, we use Theorem 21.4d: for a,b € Z: -a + -b =
-(a+0b).

Example 4:
-T4+-5=-(7+5) =-12.

Subtraction of integers reduces to some kind of addition, by the rule that subtracting an
integer is equivalent to adding the inverse of the integer.

Example 5:

The expression -7 — -5 involves subtracting a negative 5 from a negative 7. This is equivalent to
adding the inverse of -5 to the negative 7. Since, by Theorem 21.4a (-(-a) = a), theinverse of -5 is
5, we see that -7 — -5 is equivalent to -7 + 5, which by Theorem 21.8ais -7+ 5 = -(7 —5) = -2.
Symbolicaly: -7 — -5 = -7+ -(-5) =-T+ 5 =-(7—5) = -2.

The following theorems provide a basis for the operations of adding, subtracting, or
multiplying both sides of an inequality by the same number—in order to solve the inequality.
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Foral a,b,c € Z:

@ ifa<bthena+c<b+c

(b) ifa <bandc > 0, thenac < be
(c) ifa<bandc <0, thenac > be

Proof: Exercise 10.

Foral a,b,c € Z:

@ ifa<bthena+c<b+c

(b) ifa<bandc > 0,thenac < be

(¢)ifa < bandc < 0,thenac > be (where ac > be isdefined by ac > be or ac = be)

Proof: Exercise 11.

EXERCISES

. Prove Theorem 21.2.
. Prove Theorem 21.3.

. Prove Theorem 21.4c. Since -a is the inverse of «a, the equation here asserts that (-1) - ais the

inverse of a. This can be shown by adding (-1) - a to a to get 0, and then using the uniqueness of
the additive inverse. By Theorem 21.4b and distributivity, we have

0=0-a=(14+-1)-a=1-a+(-1)-a=a+(-1)-a.

Write this out as aformal step-by-step proof.

. Prove Theorem 21.4d. Show that -a + -b is an inverse of a + b by adding it to a + b to get 0, and

then use the uniqueness of the inverse.

. Prove Theorem 21.5.
. Prove Theorem 21.6.

. Prove the following lemma: if z + a = a or a + = = a istrue for any integers z and a, then z = 0.

If 2+ a=aistruefor adl a € Z, then x must be an identity for addition, and so must be zero by
the uniqueness of such an identity. The content of the assertion you are to prove is that in order to
have z = 0, we need not know xz + a = a for al a € Z — only for one a € Z. This a may be
itself. Thus, by the lemma we may conclude x = 0 from x + z = z. Use this lemma to write a
proof of Theorem 21.4b that is shorter than the proof in the text.

. Provefor dl integersa and b, a(-b) = -ab (the remaining part of Theorem 21.7a).

. Prove Theorem 21.7b.

Prove Theorem 21.9.

Prove Corollary 21.10.
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Functions, Composition

We have considered the mathematical idea of a set. Although this term was not formally defined, a
particular set could be defined by our giving a rule (itself an undefined term) for deciding which
elements are in the particular set and which are not. Another fundamental idea in mathematics is
the idea of a function. Informally, a function is a rule of correspondence between two sets: a
function f from a nonempty set A to a set B is a rule that associates to each element = of A a
uniquely determined element, denoted f(x), of B. f(x) is called the image of « under f. You can
think of f as “sending” or “mapping” = in A to f(z) in B. Thus to know a particular function f
from A to B, you must know arule for getting f(x) in B given any = in A. The set A is called the
domain of f, and B is called the codomain of f. The fact that f is a function from A to B is
written f: A — B.

Our format for defining a specific function will be to give (1) the function name together
with the domain and codomain, (2) the rule that specifies what the function does to each element in
the domain, and (3) a “for al elements in the domain” clause. A formal, set-theoretic definition of
function is given in Section 25.

Example 1.

Define f: Z — N by f(z) = 2° + 3 forall z € Z. Then, for example, f(1) = 12 + 3 = 4,
f(2) =17, f(0) =3, f(-1) = 4, and so0 on.

Example 2:
Defineg:N — N by g(z) = 1 forall x € N. Then, for example, g(1) = 1, g(2) = 1, and so on.

Example 3:

Defineh:N — N by h(z) =z + 1 forall z € N. Then, for example, h(1) = (2), h(2) = 3,
h(3) = 4, and so on.

Example 4:
Define k: N — N by k(z) = {; :; i :223;

Then, for example, k(1) = 1, k(2) = 2, k(3) = 1, k(4) = 2, and so on.

Example 5:
Define f:Z — Z by f(x) = x. Then, for example, f(1) =1, f(2) =2, f(-1) = -1, and so on.

Note that the rules in Examples 1, 2, 3, and 5 for specifying the function are given by
formulas but that the rule in Example 4 also specifies a function. Such a function is sometimes
called conditionally defined. In all definitions, the forall quantification is optional since it is
implied when the domain is specified. To use information in the definition of a function, use the
(perhaps implicit) for all statement. The rule that defines a function is sometimes given by listing
the images of the elementsin the domain.
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Example 6:

Let A= {a,b,c,d}and B={1,2,3}.Define f: A — Bby f(a) = 1,f(b) =3, f(c) =3, and
f(d) =1. (Sometimes arrows are used to give the same information: ¢ — 1, b — 3, ¢ — 3,
d—1.)

It is sometimes helpful to diagram a function with its domain and codomain. For example,
f: A — Bispictured asin Figure 1.

!
/_\
Figure 1
Definition Let f: A — B. Define the set f(A) ={be B|b= f(x) forsome x € A}. f(A) iscdled the
range of f.
Example 7:
Let f:N — N begivenby therule f(z) = 3z + 1.
f(1) =4
f@)=1
f(N) = {4,7,10,13,16,...}

Therangeof f: A — B isdiagrammed in Figure 2.

!

Figure 2

Definition Let f: A— B,¢g: B— C.Definegof: A— C by gof(a) =g(f(a)) forall a € A.

gof is a new function, called the composition of ¢ with f, that has the effect of first
applying f to an element in A and then applying ¢ to the result. Note that for this to make sense,
the range of f must be contained in the domain of g. For simplicity, we take the codomain of f to
be the domain of g.
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Example 8:

Let f:Z — Z begivenby f(x) = x — 1 and g: Z — Z be given by g(y) = 3> + 2. Then
gof:Z — 7 is given by gof(z) =g(f(z)) =gz —1)=(x —1)?+2. Al0 fog:Z — Z is
givenby fog(y) = fl9(y) = f(¥+2)= (¥’ +2) - 1= ¥’ + 1.

Composition of functions f: A — B and g: B — C isdiagrammed in Figure 3.

gof

T~

J 7~ & 7

Figure 3

In Example 8 we used the variable x describing f to also describe gof, sincein gof we
first apply f. Similarly, y describes both g and fog. Although this was done to illustrate the way in
which functions are composed, it is important to understand functions as rules. Composition of
functions should therefore be viewed as a rule and not merely as the substitution of variables. The
variables are only local variables needed to describe the rules. In the following example, doing
without the aid of using different variables to describe f and ¢ forces us to think of the functions as
rules.

Example 9:

Let f:Z — Z begivenby f(x) = 22 — 5 forall x € Z and g: Z — 7Z be given by
g(x) =3z +2 forall x € Z.

@gof(z) =

(b) fog(z) =

Solution:
@ gof(x)=3(z>—=5)+2 forallx € Z
(b) fog(x) = B3z +2)2—5 forallz € Z

Example 10:

Let f:{1,2,3,4} — {a,b,c} begivenby1 — a,2 —> 0,3 — b,4 — c.
Letg:{a,b,c} — {z,y,2} bedefinedbya — x,b — y,c — 2.
Thengof:{1,2,3,4} — {x,y, z} isdefinedby 1 — 2,2 - y,3 — y,4 — 2.
Thereis no function fo ¢ defined, since the domain of £ is not the codomain of ¢19.

19 In defining go f we have used the usual definition of composition, where the domain of g is equal to the codomain
of f. Thisdefinition will keep notation simple in future theorems, with no real loss of generality. Alternate
definitions sometimes require only that the range of f be a subset of the domain of g. The codomain of any such f
can easily be redefined to be the domain of g.
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Our next theorem asserts the associativity of composition, but first we need the idea of equal
functions.

Two functions f: A — B and g: A — B are said to be equal (written f = g) provided that for all
xeA: flx)=g(x).

Note that for f and ¢ to be equal they must have the same domain and codomain (the
context for definition). The definition just given states that functions are equal if the rules defining
them yield the same value when applied to each element of their domain. The idea of equality
asserts that the expressions on the left and right of the equal sign are just two names for exactly the
same object. The reason we need definitions for equal sets and equal functions is that the ideas of
set and function are themselves undefined. Therefore “sameness’ needs to be defined in these
Cases.

Let f:A— B,g:B— C,and h:C — D. Then (hog)of = ho(gof).

Note that at the top level, the conclusion is the statement that two functions are equal:
(hog)of = ho(gof). By the definition of equality, we need to show two things in order to prove
the theorem:

(1) (hog)of and ho(go f) have the same domain & codomain
(2) [(hog)of1(z) = [ho(gof)](x) forallz € A

These two things give us the points of the two paragraphs of the proof.

Pr oof:

First observe that hog: B — D so that (hog)of: A — D. Also, gof:A — C, so that
ho(gof): A — D. Therefore (hog)of and ho(gof) both have domain A and codomain D by
definition of composition.

We now show that [(hog)o f](x) = [ho(gof)](z) forall x € A:

1. Letz € A.

K. (hog)of(z) = ho(gef)(x)
k+1. (hog)of(z) = ho(gof)(x) forall z € A (1—k; pr. V)

Therefore (hog)of = ho(gof) by definition of equal functions.

Step k states that (hog)of and ho(gof) do exactly the same thing to x. What these
functions do to z is given by their definition. By definition, [(hog)of](z) is (hog)(f(x)) and
[ho(gof)](x) is h(gof(x)). Applying the definition again, (hog)(f(x)) is h(g(f(x))) and
h(gof(x)) is h(g(f(x))). The left and right sides of Step k are therefore the same. In order to
establish Step k, we therefore start with this same thing as a step in our proof:

2. h(g(f(x))) = h(g(f(x))) (identity)

Such steps (obvious identities) need no justification in parentheses. We now have the
following proof:
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Pr oof:

First observe that hog: B — D so that (hog)of: A — D. Also, gof: A — C, so that
ho(gof): A — D. Therefore (hog)o f and ho(gof) both have domain A and codomain D by
definition of composition.

We next show that [(hog)o f](xz) = [ho(gof)](z) forall x € A:

1l Letx € A.

2. h(g(f(z))) = h(g(f(x))) (identity)

3. hog(f(x)) = h(gof(z)) (2; def. o)

4. (hog)of(x) = ho(gof)(x) (3; def. o)
k+1. (hog)of(x) = ho(gof)(x) forallz € A (A—4; pr. V)

Therefore (hog)o f = ho(gof) by definition of equal functions.
O

The fact that the domain and codomain of ho(gof) and (hog)o f are the same is needed for
equality. It is the context in which the definition is made. We “observed” this fact in the first few
lines of our proof. In general, we will use the word “observe” in asserting, in a proof, the
appropriate context for a theorem or definition. It is customary to omit such observations in proofs
if they are obvious.

Steps like Step 2 above, which appear in proofs seemingly out of a clear blue sky, are
almost always determined by thinking backward from a desired result. They seem mysterious only
to those who imagine steps are discovered in the same order in which they appear in the proof.
People who memorize proofs (a wholly worthless activity) may memorize steps in this order.
People who think about proofs never think in this order. This is why, when reading a mathematics
text, it is not informative to merely see why each step follows logically from the preceding steps.
Instead, try analyzing the proofs yourself and use the text only if you get stuck. Such a do-it-
yourself approach will reveal not only that the theorems are true (false theorems are rarely printed
in texts) but why they are true.

The form of the preceding proof, with Step 2 appearing out of the blue and with different
but simultaneous manipulations of each side of the equations, is awkward. A chain of equalities
(page 118) is more natural :

Letz € A.
(hog)of(z)
= (hog)(f(x)) (def. o)
= h(g(f(2))) (def. o)
= h((gof(z))) (def. o)
= ho(go f)(x) (def. o)

(hog)o f = ho(gof) (def. = fens,, imp.)

For any set A, define the function is: A — A by i4(a) = a for each a € A. i4 is caled the
identity function on A.

Example 11:
in:N — Nisgivenby iny(a) = a for dl a € N, so, for example, in(1) = 1, in(2) = 2, and so on.
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Theorem 22.2 Forany f: A — B:
(@ foia=f
(b) igof = f

Proof of (a):
Observe first that fois and f both have domain A and codomain B.
1. Letz € A bearbitrary.

2. foia(x) = f(ia(x)) (def. o)
ig(x) == (def. i4)
4. foiys(z) = f(x) (2,3; sub.)

5. fois(x) = f(x) forallz € A (1—4; pr. V)

6. foiy = f (5; def. = fens)

Proof of (b): Exercise 5.

In the proof of Theorem 22.2a, we used the substitution rule of inference. The definition of
composition asserts that the element to which foi4 maps = isthe element f(i4(x)). Thus foi(z)
and f(i4(z)) are the same thing by definition. In Step 2 the equal sign denotes that we have two
different names or representations for the same thing, and the same is true in Step 3. Step 4 was
obtained by replacing i 4(x) with 2 in Step 2, these things being equal by Step 3. It is better to use
substitution implicitly. The following steps do this for Theorem 22.2a:

1. Letx € A.
2. foia(x) = f(ia(x)) (def. o)
3. fois(z) = f(x) (2; def. i4)

4. foiy(z) = f(x) forallz € A (1—3; pr. V)

In these steps the definition of i, was used as a reason for changing Step 2 to Step 3. In
doing this, substitution need not be stated explicitly.

In the first proof of Theorem 22.2a, information from the appropriate definitions was put
down first. (Note that in this proof, Steps 2 and 3 do not depend on previous steps.) Then this
information was organized in Step 4. It is generally better to organize your thoughts on scrap paper
(analyzing and changing steps by definition) than to put the contents of definitions down as stepsin
a proof and then organize things in later proof steps. A proof step with the following justification
would be indicative of a poorly organized proof that was difficult to read (see also Exercise 9):

22. ... (Steps 2,4,7,18,21; sub.)

The most natural proof of Theorem 22.2a, and the easiest to read, involves a chain of
equalities.
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Letz € A.

foia(x)

= fia(x))  (def.o)

= f(x) (def. i 1)

foia=f (def. = fens,, imp.)

O

Example 12:
Let f/:N — Nand g: N — N be functions. Define the functionf+¢: N — N by the rule
frg(z) = f(x) + g(x) for al x € N. Prove or find a counterexample to
(8) For all functions h: N — N: (f+g)oh = (foh)+(goh).
(b) For dl functions h: N — N: ho(f+g) = (hof)+(hog).

Proof of (a):

Let x € N be arbitrary.

(f+g)oh(x)

= (f+9)(h(x)) (ef. o)

= f(h(z)) + g(h(z)) (def. + of fens)

= foh(z) + goh(x) (def. o)

= [foh + goh](z) (def. + of fens)

Therefore (f+g)oh = foh + goh. (def. = fcns)

O

Counterexampleto (b):

Let h(z) = 22, f(x) = z,and g(z) = 2.
Then

wa<f+g><a:> = h(f+g(x)) = h(f(z) + g(x)) = h(z + x) = h(2z) = (22)? = 4a”.
ut
hof+hog(x) = ho f(x) + hog(z) = h(f(x)) + h(g(x)) = h(z) + h(z) = 2 + 2* = 227

EXERCISES

1. Define afunction f: A — B where
(a) A hastwo elements and B hasfour.
(b) B hastwo elementsand A has four.

2. Let f:Z — Z bedefined by f(x) = z%. Find
(@ f(0)
(b) £(3)
(© f(-3)
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3.Let h:N — N be defined by h(z) = 2* + z and k: N — N be defined by k(z) = 22 + 2. Define:
(a) hok
(b) koh

4.Let f:{1,2,3,4,5} — {a,b,c,d,e} bedefinedby1 — a, 2 —a, 3 —>b,4—b, 5— c. Let
g:{abcde} — {1,2,3,4,5} bedefinedbya — 5,b — 4,¢c — 4,d — 3, e — 2. Define
(@ fog
(b) gof

5. Prove Theorem 22.2b.

6. Prove or find a counterexample to the following “cancellation laws’ for function composition:
@ Letf:A— B, gA— B,andh:B— C.
If hof = hog, then f = g.
(b)Let f:A— B,g:A— B,and h: C — A.
If foh = goh,then f = g.

7.Let /:N—N and ¢:N — N be functions. Define the function f-¢:N — N by the rule
f-g(z) = f(x) - g(z) for al x € N. Prove or find a counterexample to:
(8 For al functionsh : N — N: (f - g)oh = (foh) - (goh).
(b) For dl functionsh : N — N: ho(f - g) = (hof) - (hog).

8. Prove or find a counterexample to the following:
(@ For al functions f:N —= N, ¢:N = N,and 2 : N — N: (f+g)-h = (f-h)+(g- h).
(b) For al functions f:N — N, ¢:N — N,and h: N — N: (f - g)+h = (f+h) - (g+h).

9. Comment on the following universal proof scheme. Suppose we are given a theorem P. To prove
P, write down all the definitions (as steps) of the terms in P plus the definitions of the terms in
those definitions, and so on until only undefined terms (such as set and function) remain. Call these
definitions Steps 1 through Step k. For Step k+1, write down P and give “substitution” as areason.
(Regardless of what your opinion may be as to the validity of this, you should avoid making your
proofs look like this.)
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One-to-One Functions

The function f: Z — Z defined by f(z) = 2? hasthe property that f(2) = 4, and f(-2) = 4. Such
a function is called many-to-one since there is an element, 4, in the range of f with at least two
different elements mapping to it. Functions with only one element in their domain mapping to each
element in the range are called one-to-one (abbreviated “1-1"). We seek awording for a definition.
This wording should be in terms of our standard phrases: forall; if ..., then ...; and; or; and sO
on. Think for a minute of what you could give for a condition on a function f: A — B that would
ensure that f was one-to-one. Here is how we will do it:

A function f: A — B is caled one-to-one iff forall a1, as € A :if f(a1) = f(az), then

a; = as.

The idea in the definition is that we pick two different names a; and a,, for objects in A.
The condition f(a;) = f(a2) States that f sends the object named by a; to the same place it sends
the object named by a,. Under these conditions, if f isto be a one-to-one function, it must be the
case that a; and a, are two different names for the same object. Hence a; = as.

One-to-one functions have the property that, for each element in their range there is a
unique element in their domain mapping to it. The approach above is generally used to prove
uniqueness. pick two different names for an object or objects with a property, then show both
names are names for the same object. There is therefore only one object with the property.

Suppose we wish to prove that a function f: A — B is one-to-one. Our inference rules
dictate the following:

1.Letay, as € A.
2. Assume f(a1) = f(as9)

k.a; = as
k+l.if f(a1) = f(a2), then a1 = as (2—k; pr. =)
k+2. forall a1, a2 € A: if f(a1) = f(a2), then a; = as (1—k+1; pr.v)
k+3. f isone-to-one. (k+2; def. 1-1)

By our implicit definition rule, we may omit Step k+2 since the property P, which
establishes that f is one-to-one, is just that given in Step k+2. Our implicit definition rule does not
completely remove the strictly logical assertions from the proof, however, since Step k+1 servesto
express a part of the defining condition P. It seems inappropriate that we would need to state a part
of P but not P itself.

Our next step in proof abbreviation will involve combining Steps 1 and 2 above and
eliminating Step k+1. That is, we give a single rule for proving statements of the form for all
x,y € A: if P(z,y), then Q(z,y). Note that in the proof fragment above, we prove Step k+2 by
first choosing arbitrary a; and as, then assuming f(a1) = f(a2) for these, and finally proving
a; = ag.
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Inference Rule Proving for-all-i f-then statements: In order to prove a statement of the form forall x € A: if
P(z), then Q(x), choose an arbitrary x in A and assume P(x) istrue for this z. (Either of z € A
or P(z) may then be used in future steps.) Then prove that Q (z) is true. Analogous rules hold for
more than one variable. (Abbreviation: pr.¥Y =)

Format:
pr.vY =
i.Letx € Aand P(z)
(or “Let x € A and assume P(z)"
or “Suppose z € A and P(z)”
or “Assume P(x) for z € A”).20

j- Q(x)
j*1. forallz € A: if P(z), then Q(z) (i—j; prv =)

The extension of the preceding rule to two variablesis used in the following example:

Example 1:
Let f:N — N bedefined by f(xz) = 2z + 4 for al = € N. Provethat f isone-to-one.

Pr oof:
1l Letz,y e Nand f(z) = f(y)
22x+4=2y+4 (1; def f)
3.2z =2y (2; Thm. 19.3)
4 x=y (3; Thm. 19.3)
5. forallz,y e N: if f(z) = f(y),thenz =1y (Q—4; pr.V=)
6. f isone-to-one (5; def. 1-1, exp.)

Step 5 could be omitted by using the definition of one-to-one implicitly in Step 6.

Example 2:
The proof of Example 1 in paragraph form might be:

Pr oof:

Let z,y € N and f(z) = f(y). Then 2z + 4 = 2y + 4 by definition of f. Hence x = y, so

that f is one-to-one by definition.
O

20 Y ou will see many other wordings that mean the same thing. It is not the words that count. Readers who know the
conclusion you are after will automatically interpret any reasonable words so that their meaning is consistent with
obtaining this conclusion. Thisisthe way it iswith informal language; the ideas carry us through what would
otherwise be ambiguous wordings. Words and phrases are interpreted in context.
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Theorem23.1 Let f: A — B and g: B — C be one-to-one functions. Then go f is one-to-one.

Proof: Exercise 3.

Conjecture23.2 Let f: A — B and g: B — C befunctions.
(a) If gof isone-to-one, then f is one-to-one.
(b) If gof isone-to-one, then g is one-to-one.

Attempted Proof of (a):
Assume: gof is1-1
Show: fis1-1
1. Letay,az € Aand f(a1) = f(az)

k. a; = ay
k+1. f isone-to-one. (1—k; def. 1-1, imp.)

Further analysis at this time yields nothing: if we ask what it means for a; = a,, we learn
nothing. It means only that a; and a, name the same thing. There is no way to break this down
further by definition. So, as usua, it is time to invoke the hypothesis. We are starting to get away
from proofs that follow immediately from definitions. Generally, we need to be alittle bit clever in
the way we apply the hypothesis to the problem at hand. Here, of course, we need not be too
clever. We know f(a;) = f(az2) and that this element is in B—the domain of g, so we apply g¢.
That is, f(ay) and f(a2) are two names for the same element of B. Since g is a function, it must
send this single element to a single element of C—regardless of whether that element of B is
caled f(a1) or f(az2). Thus, g(f(a1)) = g(f(a2)). We justify this step by saying “apply ¢"—
which is more natural than the formalism of substituting f(ai) for f(a2) in the identity

9(f(az)) = g(f(a2))

1. Letar,as € Aand f((ll) = f(CLQ)

2. g(f(ar)) = g(f(a2)) (1; apply 9)

3. (gof)(ar) = (gof)(az) (2; def. o)

4. a1 =as (3, hyp.; def. 1-1, imp.22)
5 fisl-1 (1—4; def. 1-1, imp.)

O

In going from Step 3 to Step 4 we are using the fact that go f is one- to-one. The expanded
step-by-step procedure would be this:

3. gof(a1) = gof(as) (2; def.0)
4. forallzy € A: if gof(x) = gof(y),thenx =1y (hyp.; def. 1-1, exp. )

21 Heretherule for using for-all-i f-then statements, given below, is used implicitly.
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5.if gof(a1) = gof(az), then a; = ay (1,4; usy)
6.a1 = ay (35 us=)

Steps 5 and 6 can be combined if we introduce arule for using for-all-i f- then statements:

Inference Rule Using for-all-if-then statements: If forall x € A: if P(x), then Q(z) istrue,anda € A and
P(a) aretrue, then we may infer Q (a).

1. Letar,as € Aand f((ll) = f(CLQ)

2. 9(f(a1)) = g(f(a2)) (L; apply g)

3. gof(a1) = gof(as) (2; def.0)

4. forall z,y € A: if gof(x) = gof(y),thenx =1y (hyp.; def. 1-1, exp. )
5.a1 =ay (1,34, usV =)

Step 4 can be omitted, if we use the definition of 1-1 implicitly—which gives the proof on
page 157.

The rule for using for-all-if-then statements is the formal analogue of the rule for using
theorems, where the forall and if parts correspond to the hypotheses and the then part
corresponds to the conclusion. The rule for proving for-all-if-then statements is the formal
analog of our informal procedure of assuming the hypotheses and showing the conclusion.

Attempted Proof of (b):
Assume: gof is1-1
Show: gis1-1
1. Letby, by € Band g(b1) = g(ba).

K. by = by

k+1.forall by, by € B: if g(b1) = g(ba), then by = by (A—k; prv =)
k+2. g is one-to-one. (k+1; def. 1-1)

If there were some a;, as € A such that f(a;) = b; and f(a2) = be, then the b; and b,
would be related to the composition go f and we could perhaps proceed. If there are no such a; and
a9, then there does not seem to be any way the hypotheses will help us proceed. We therefore will
try to construct a counterexample. Here we need to construct functions g and f such that g is not
one-to-one but go f is one-to-one. In doing this, we will make some b € B have the property that f
sendsno a € A to thisb.

Counterexample 3:

Define A = {1}, B={2,3}, C = {4}.
Define f: A — Bhy f(1) = 2.
Defineg: B — C by ¢(2) =4, g(3) = 4.
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Check that g is not one-to-one: g(2) = g(3) but 2 # 3.
Check that go f is one-to-one:

1. Letay,as € Aand gof(ai) = gof(as).

2.a1=1 (def. A)
Ba=1 (def. A)
4. a1 = as (2,3; sub.)
5. gof isone-to-one. (1—4; def. 1-1, imp.)

We can now rewrite as a theorem the part of the conjecture we were able to prove.
Theorem 23.3 Let f: A — B and g: B — C befunctions. If go f is one-to-one, then f is one-to-one.

In order that a function f: A — B not be one-to-one, it must satisfy the negation of the
defining condition for one-to-one.

Condition: forall a1, as € A : if f(a1) = f(az2), then a; = as
Negation: forsome ai,as € A: —(if f(a1) = f(a2), then a1 = ag)
By Theorem 15.3 this can be written:

Negation: forsome ay,as € A: f(a1) = f(a2) and a1 # ag

In order to prove that some f: A — B is not one-to-one, then, we need to establish the
existence statement above—that is, define a; and a, and show that they have the required property.
See the check that ¢ is not one- to-one in Counterexample 3.

Example 4:
Show that f: N — N defined by f(z) = 7 is not one-to-one.

Pr oof:

F) =7=f(2)and1 #2.
O

Recall that for a statement if P then Q, the statement if —Q, then —P is caled the
contrapositive of the first. Theorem 14.9 asserts that a statement and its contrapositive are
equivalent. The statement if a; # as, then f(a1) # f(aq) is the contrapositive of the statement
if f(a1) = f(az2), then a; = ay that appears in the definition of one-to-one. We can get an
aternative formulation for a function's being one-to-one by substituting if a; # as, then
f(ay) # f(ay) for its contrapositive i f f(a1) = f(az), then a; = ay in the definition of one-to-
one. This gives the following theorem:

Theorem 23.4 A function f: A — B isoneto-oneiff forall aj,as € A: if a1 # ag, then f(a1) # f(az).

Here is another formulation of a function's being one-to-one:
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Let f: A — B. Then f is one-to-one iff for each b in the range of f there exists a unique a € A
such that f(a) = b.

Proof: Exercise 7.

In proving statements of the form “there exists a unique”, the wording used in a format for
proving uniqueness depends on whether or not existence has been previoudly established.

Format for proving uniqueness:

i. Let x; and xo have property P.

jo w1 = m
j+1. There exists aunique x such that P. (if existence has already been shown)
or j*+1. Thereisat most one x such that P. (if existence has not already been shown)

Recall that in our discussions all sets consist of elements from some universal set U which
may be N, Z, or any other set that stays fixed for the discussion. All sets under consideration, then,
will be subsets of U.

The definition of A C B isgiven by the statement:

(1) forallx e A: z€B
Since A and B are both subsets of U, it seems clear that A C B could be defined by
(2) forallz € U: if x € A, then x € B.

It's not difficult to show (1) is equivalent to (2) (Exercise 6). Using and proving statements
in the form of (2) is more complicated than doing the same for statements in the form of (1) —
which is why we didn't use (2) to begin our development of proofs. Abbreviations of (2) are
commonly used in informal mathematics, however. First, since every element z under
consideration must come from U, saying so is not always necessary. Thus (2) can be abbreviated:

3) forallx: if x € A,thenx € B
Secondly, the quantification “ for all = : " is omitted giving:
@ ifxe A thenzeB

In (4), z is called afree variable, being neither quantified nor previously defined. However,
(4) is not considered to be an open sentence (one that could be either true or false depending on
what is substituted for ). It is considered to be an abbreviation of (2) or (3).

Many mathematicians, if asked the question “How is A C B defined?’, would reply that it
means “If = € A, then x € B.”—using an undefined symbol “z”. Since = has not been defined
previously, what is meant is “If x is an arbitrarily chosen element of A, then x € B.” This use of
the “if- then” construction departs from our formal language. We are not alowed to use undefined
symbols in proof statements. Thus the only allowable statements involving a new variable = would
either defineit, asin “let x € A be arbitrary” or “let x =2+ ... “, or “there exists x such that
...",oruseit asaloca variablein a for all statement .

One frequently sees the definition of a function's being one-to-one given informally by
“f: A — B is oneto-one provided if f(a1) = f(a2), then a; = as.” Since a; and a, have not
appeared before, we would tend to think of this as an abbreviation of forall ai,as: if
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f(ay) = f(a2), then a; = ay. However, f(a;) and f(a2) need be defined not for arbitrary
elements of U, but only for elements of A. Thus this definition makes the additional assumption
that a; and a, are restricted to a domain in which the notation (f(a;) and f(a2)) makes sense, that
is, restricted to A. This construction is common in informal mathematics:

w_n w,on

Convention If P(z,y) is an assertion in a proof involving previously undefined symbols “z” and “y”, then =
and y are taken to be arbitrarily chosen elements subject only to the constraint of having P(z,y)
make sense.

It is natural to make implicit use of the convention above—especially in paragraph proofs.

EXERCISES

1. Suppose f: A — B.

A wDNPRE

5. (A—4;pr.V=)
6. f is one-to-one. (5; def. 1-1, exp.)

2. Let f:N — N bedefined by f(x) = 3z 4 7. Show that f is one-to-one.
3. Prove Theorem 23.1.
4. Let f:N — Nbedefined by f(xz) =z + 1. Provethat fof isone-to-one.

5. Recall Exercise 22.6a. Prove the following cancellation property of composition: Let f: A — B
and g: A — B.Let h: B— C beone-to-one. Thenif hof = hog, then f = g.

6.Let A and B be sets and U the universal set. Prove that forall z € A: x € B and forall
xeU: if x € A, then x € B are equivalent statements.

7. Prove Theorem 23.5.
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Conjecture 23.2b states: if f: A — B, g: B— C, and gof is one-to-one, then ¢ is one-to-one.
Counterexample 3 in the last section shows that this is not true. Recall that this example was
manufactured so that therewas ab € B with no a € A mapping to b by f. In this section, we will
see that we can “fi”x the conjecture to make it true. That is, we can add another hypothesis that
will prevent us from constructing an example like Counterexample 3 of Section 23. To do this, we
need a definition for functions f: A — B that have the property that for each b € B there is some
a € Asuchthat f(a) =b.

In this section we relax the requirement that the defining condition for new definitions be
given in our formal language. This will continue our trend toward informality. Of course, it is
absolutely essential that the meaning of the new definitions be clear. This means that proof formats
for proving and for using the defining condition should both be evident.

Mathematics is written in informal language, and it is up to the reader to interpret the
meaning—which can be unequivocally understood in terms of proof formats for using and proving
the statements. Interpretations in terms of formats can be found by translating the informal
statements into our formal language and then using our rules of inference for these. Our formal
statements formalize the meaning in common mathematical language, and our formal rules of
inference copy what mathematicians generally do to prove or use these statements. The goal in our
approach is to be able to understand statements in a very precise way. Thus the formal language
and rules are there to build precise mathematical writing and reading habits.

A function f: A — Biscaled onto iff for each b € B thereexistssomea € A suchthat f(a) = b.

The informal statement
"for each b € B thereexistssomea € A suchthat f(a) = 0"
in the definition above means exactly the same as

forallbe B: f(a) =b forsomea € A
or
forallb € B : there exists a € A such that f(a) = b.

Recall that
fla) =b forsomea € A
and
there exists a € A such that f(a) =b

aretwo formal statements that mean the same thing.

The reason for using the word “each” in the phrase “for each b € B” is that the weight of
the word “all” would tend to make some people violate the grammar of the condition defining
onto, asif it meant one a worked for all b. Note the difference between

(there exists a € A such that f(a) =b) forallb € B
and there exists a € A such that (f(a) =b forallb € B)
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The defining condition is given by the first of these statements and not the second. Using
the word “each” makes it clearer that first b is chosen and then some « (that depends on the choice
of b) isfound.

Suppose we wish to prove a theorem with the conclusion “ f is onto”. Since “onto” has not
been defined in terms of our formal language, the form of the conclusion does not automatically
lead to a proof format or suggest proof steps. It is up to us to capture the meaning of “onto” in the
proof steps we select. This can be done by following the rules suggested by an equivalent language
statement.

Example 1

Thefunction f:Z — Z givenby f(x) = « 4+ 4 isonto.

By the definition of “onto” we need to show that forall ¢ € Z : there exists a € Z such
that f(a) = c. The following steps therefore prove that f isonto:

Pr oof:
1l Letc e Z. (becauseZ isthecodomain of f)

(define a in here)

k. f(a)=c

k+1. f isonto.

Since f(a) = a+ 4, we want ¢ = a + 4. We are given ¢ and want to define « in terms
of c.Hencec — 4 = a.

1l LetceZ.

2. Lleta=c—4

at+td=(c—4)+4 (2: add 4)
4dat+d=(c+-4)+4 (3; def. subtraction)
5a+4=c+(-4+4) (4; assoc.)
6.a+4=c+0 (5; def. inverse)
T.a+4=c 6; + id.)

8. f(a) =c (7; def. f)

9. f isonto (1—S8; def. onto)

Here is a paragraph form for the proof in Example 1.

Pr oof:

Let ¢ € Z be arbitrary. Define a to be ¢ — 4. Then f(a) = ¢ by the definition of f, so that f
isonto.

O
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In order that a function f: A — B not be onto, it must satisfy the negation of the defining
condition for onto:

Condition: forall b € B : there exists a € A such that f(a) =b
Negation: for some b € B : —(there exists a € A such that f(a) = b)
That is, forsomeb € B: foralla€ A: f(a)#b

Thus, to show that f: A — B is not onto, we must define an element b € B and then show
that thereisno a € A that f sendsto b.

Example 2:

Show that f: N — N defined by f(z) = = + 4 isnot onto.

Pr oof:

f(a) # 2fordla € N.
O

The assertion that a function is onto amounts to saying no more than that its range is equal
to its codomain.
Example 3:

The function f: N — N given by f(x) = = + 4 in Example 3 is not onto. The only reason it is not
is that we have chosen to specify the codomain of f as N. The range of f, f(N), is the set
{r e N|r>5}, which we will call S. The function h:N — S given by h(z) = = + 4 is onto.
Although A is onto and f is not, the only reason A is not equal to f by definition is that the two
functions have different codomains. One reason for requiring equal functions to have the same
codomain is that otherwise we might have two equal functions one of which was onto and the other
not.

Example 4:

The function f: {1,2,3} — {a,b,c} definedby 1 — a, 2 — b, and 3 — a isnot onto since f
maps no element of A to the element ¢ in the codomain of f.

If f: A— Bandg: B— C areonto, then gof isonto.

Pr oof:
Assume: 1. f onto
2. g onto
Show:  gof onto
Observethat gof: A — C by definition of composition.
1l LetceC.

(define a here)
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k.gof(a) =c
k+1. gof isonto. (1—k; def. onto)

Backing up from Step k, we get:

1. Letc e C.

k-1 g(f(a)) = c
K. gof(a) =c (k-1; def. o)
k+1. gof isonto (1—k; def. onto)

Since g is onto, it will map something to ¢; cal it b. Then g(b) = c. Since f isonto, it will
map something to b; cal it a. (We have now found a.)

1l LetceC.

2. There exists b € B such that g(b) = ¢ (1, hyp. 2; def. g onto)
3. There exists a € A such that f(a) =b (2, hyp. 1; def. f onto)
4. 9(f(a)) =c (2,3; sub.)

5.(gof)(a) =c (4; def. o)

8. gof isonto (1—05; def. onto)

O

In Step 3 we “found” a by using the hypothesisthat f isonto. Thisis the usual pattern for

existence proofs.
A paragraph proof of this theorem amounts to no more than writing these steps down with a
few connecting words to smooth the flow.

Pr oof:

Assume f and g are onto. We will show go f isonto. Let ¢ € C. Then, since g is onto, there
exists b € B such that g(b) = c. Since f is onto, there exists a € A such that f(a) = b.

Substituting, g(f(a)) = ¢, sothat (gof)(a) = c. Thus gof isonto.
O

Note the mention of the use of hypotheses in the proof: “since f is onto” and “since g is
onto”. Not al reasons are given in a paragraph proof, but it is a good idea to tell the reader just
where you are using the hypotheses.

Style Rule Paragraph Proofs: It is not necessary to give al justifications in a paragraph (narrative) proof, but
always say where hypotheses are used.

Recall from the last section:
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Conjecture23.2 Let f: A — B and g: B — C befunctions.

Theorem 24.2

Investigation 7

(a) If gof isone-to-one, then f is one-to-one.
(b) If go f isone-to-one, then g is one-to-one.

Part (a) was proved and renumbered as Theorem 23.3; part (b) was found to be false. Our
attempted proof of (b), however, can be made to “go through” if we add another hypothesis,
namely, that f is onto:

Let f: A — Band g: B — C befunctions. If gof isone-to-oneand f is onto, then g is one-to-one.

Proof: Exercise 2.

Make further conjectures about the functions f: A — B, g: B — C, and gof:A — C' in terms of
the conditions (used as either hypotheses or conclusions) of being one-to-one or onto. Look for
statements analogous to theorems in this and the previous section. Give counterexamples for false
conjectures, and then seek to add hypotheses that will make these conjectures true—in a manner
analogous to Theorem 24.2. Prove your conjectures that are true.

EXERCISES

.Let f: A — B. Fill in Step 1 with aformal language statement.

1
2. fisonto (1; def. onto)

. Prove Theorem 24.2.

. Decide and prove whether or not each of the following functionsis onto:

(@ f:N — Ndefined by f(z) =2+ 2
(b) f:Z — Z defined by f(z) = = + 2
(¢) f:N — N defined by f(z) = 22
(d) f:Z — Z defined by f(z) = 2?

.Let E={..,-4,-2,0,2,4,6, ...} be the set of even integers, and let O ={...,-5,-3,-1,1,3,5, ...}

be the set of odd integers. Define the function f:Z — Z by f(x) =3z if = is even and
f(z) = bz if x isodd. Decide and prove whether or not f is onto.
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Products, Pairs, and Definitions

The set {3,5} is the same as the set {5,3}, whereas the ordered pairs (3,5) and (5,3) are
different. The two ordered pairs represent different points in the coordinate plane. We would like
to define the idea of an ordered pair of either numbers or elementsin aset. This definition will be
necessary, of course, in order for us to prove facts about ordered pairs.

The critical property we wish to establish from the definition is that the ordered pair
(a,b) is the same as the ordered pair (¢, d) if and only if a = ¢ and b = d. This property can't be
considered a definition because it doesn't tell us what an ordered pair is. (We don't know formally
what a set is either, but the idea in mathematics is to keep the number of undefined things to a
minimum.)

Let A and B besets. Forany a€ A, b € B, the ordered pair (a,b) istheset {{a}.{a,b}}.

This unlikely looking candidate for the role of ordered pair will do the job required; that is,
with this definition we can prove the following theorem:

For ai,as € A and b1, by € Bwe have (ahbl) = (a27b2) iff both a; = as and by = bo.
Proof: Exercise?.

Theorem 25.1 embodies the property we wish to be characteristic of ordered pairs. After we
use the definition above to prove Theorem 25.1, we will never have to use this definition again. It
serves only to reduce the number of undefined terms. This same sort of trick can be used to define
“function” in terms of sets. For this we will need the following:

Let X and Y be sets. The Cartesian product of X and Y (denoted X x Y) is the set
{(z,y) |z € X,y e Y} (Asowritten{a|a = (z,y) forsomex € X,y € Y}).

Example 1:
If X ={1,2}andY ={2,3,4},wehave X x Y = {(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)}

Example 2:

In algebra, R denotes the set of real numbers. R x R isthe set of all ordered pairs of real numbers,
represented by the entire coordinate plane.

Example 3:

AxB=0Qiff A=0or B=4.
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Pr oof:

We need to prove if Ax B =0, then A=0 or B= () and also the converse of this
statement. In order to show if A x B=0, then A=0 or B=0{, we will show the
contrapositive instead, namely, if =(A =0 or B=0),then A x B# (. Thatis, if (A # 0
and B # (), then A x B # (). So assume A # () and B # (). Then there exists a € A and
b € Bsothat (a,b) € A x B # 0.

Also, to show if A =0 or B= (), then A x B = () we again use the contrapositive: i f
Ax B#(,then A#() and B # (). Assume A x B # (). Then there exists (a,b) € A x B
sothata € Aandb € B.

O

Note that the contrapositives of the two implications in Example 3 were useful since they
gave us nonempty sets to work with. As an attempt at a formal definition of “function” one
frequently sees the following:

Let A and B be nonempty sets. A function f from A to B isasubset of A x B such that (1) for
al z€ A, y1,y0 € B: if (z,y1) € f and (x,y9) € f, then y; = y» and (2) for al z € A:
(x,2) € f forsomez € B.

If f: A — B is afunction according to this definition, the pair (z,y) isin f when f is
viewed as mapping x to y. Thus (z,y) € f and f(x) = y mean the same thing. f must map « to a
unique element y in B. Part (1) of the definition assures uniqueness by the usual scheme: we
assume different names, y; and -, for the element in B to which = maps and then require y; = 5.
Part (2) assures us that the rule for mapping = appliesto all elements of A.

The problem with the definition above is that it doesn't quite tell us what a function is. A
function must be more than just a set of ordered pairs since, from the set of ordered pairs alone, it
is not possible to determine the codomain of the function. The domain of the function may be
determined as the set of all first coordinates, but if we try to determine the codomain the same way,
we get that the function is onto. Using the definition above would mean that al functions were
either onto or had an unspecified codomain — where it could not be determined from the
definition whether or not they were onto. Since our goal is to reduce the number of undefined
terms by defining “function”, the definition above will not do. For “function” to be properly
defined, all properties must follow from the definition.

To this end, we first define the ordered triple (a, b, ¢) as ((a,b), ¢). With this definition we
can prove:

For ai,as € A, bl,bg € B, C1,C € C, we have: (al,bl,cl) = (ag,bQ,CQ) iff a; = as, by = by, and
C1 = Co.

Proof: Exercise 8.
This makes possible the formal definition of “function”:
A function f: A — Bisatriple (A4, B, f), where f isasubset of A x B such that:

Q) foral z € A,y1,y2 € B:if (z,y1) € fand (z,y2) € f theny; = o
and (2)foralxe A: (x,2) € fforsomez € B.

Here A is called the domain of f: A — B, and B is called the codomain. From this
definition, equal functions have the same codomain by Theorem 25.2.
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From the definition it is easy to see the following: For any set B, there is exactly one
function f from () to B, corresponding to the empty subset (which isthe only subset) of § x B. fis
one-to-one, since the defining condition is vacuously satisfied. If B is nonempty, then f is not
onto. The function f: ) — @ is one-to-one and onto. If A is nonempty, there is no function from A
to 0.

Since we now know what afunction is by definition, we can no longer define what we mean
by “equal” functions. “Equal” must mean “same” according to the definition. Thus our former
definition of equal functions ought to be a theorem:

Two functions f: A — Band g: A — B areequa iff forallxz € A: f(x) = g(x).
Proof: Exercise 10.

There will be no occasion where we will need to use the definition of function. Instead, we
will appeal to Theorem 25.3 (or, equivalently, to the definition of equal functions). This parallels
the situation for ordered pair, where the useful characterization is given by atheorem instead of the
definition.

EXERCISES

1. (a,b) = (c,d)
2. (1; Thm. 25.1)
3 (1; Thm. 25.1)

.Let A={1,2,3,4} and B = {z,y,2}. Find A x B.
LetA={1,2,3}and B={1,2}. FindAx Band B x A.1sA x B= B x A?

.Let A and B be nonempty sets. Prove that there exists a one-to-one function from A x B onto

B x A.

.Let A, B, C be sets. Prove or disprove:

@AxBUC)=AxBUAXxC
(b)Ax (BNC)=AxBnNAxC
©Ax(B-C)=AxB-AxC

. Prove Theorem 25.1. The difficulty with this problem is keeping track of all the cases. Use

arguments like the following: If {z,y} C {a,b}, then z =a or x =b by definition of set
containment.

. Prove Theorem 25.2.

.Let A=1{1,2,3} and B ={1,2,3}. For each of the following subsets f of A x B, decide

whether (A, B, f) isafunction and, if so, whether it is one-to-one or onto.

@ f={(1,1),(2,2),(3,3)}

(0) f ={(1,1),(1,2),(2,3)}
© f={(13),(2,1),(3,2)}
(@ f={(1,1),(2,2)}

(@ f={(1,2),(2,2),(3,2)}
() f=1{(21),(2,2),(2,3)}
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10. To prove Theorem 25.3, we need to show f = g iff for all z € A: f(z) = g(z). In order to
avoid stumbling over notation, we can rewrite this for all statement for allx € A, y,z € B: if
(z,y) € f and (x,2) € g, then y = z. Prove Theorem 25.3 by showing this for all statement
holdsiff f = g. Note: by definition f and ¢ are sets.
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The Rational Numbers

In order to work on computational examples in the following section, we need to enlarge our
number system from the set Z of integers—to the set of rational numbers. The word “rational”
comes from “ratio”, and the rational numbers are just ratios of integers, that is, fractions and whole
numbers. We denote the set of rational numbers by Q. Since Q is an extension of the number
systems we have already considered, we have the following axiom:

Axiom NCZCQ

The notation N C Z C Q is shorthand for N C Z and Z C Q. The axioms that relate to
addition and multiplication for Z also hold for Q. Thus we have the following properties of Q:

Axioms ForadlabeQ:a+beQ (closure under addition)
FordlabeQ:a+b=b+a (commuitativity of addition)
ForalabceQa+(b+c)=(a+b)+c (associativity of addition)

Forall abeQ:a-beQ (closure under multiplication)
ForalabeQ:a-b=0b-a (commuitativity of multiplication)
ForalabceQ:a-(b-c)=(a-b)-c (associativity of multiplication)
FordlabceQ:a-(b+c)=a-b+a-c (distributivity)

Foralae Q:0+a=a=a+0 (property of + identity)
FordlaeQ:1l-a=a=a-1 (property of - identity)
ForalaecQ:a+b=0 for someb e Q (existence of + inverse)

The additive inverse of the rational number a, denoted by -a, is unique. The proof is exactly
the same as the proof for the integers. The axioms for Z analogous to those above are subsumed
under those above; that is, since the axioms above hold for all elements of Q, they hold also for the
subset Z of Q—so the analogous axioms for Z can be replaced by those above. The other axioms
for Z and N (such as closure and trichotomy) don't follow from those above, however, so we need
to carry these axioms (about subsets of Q) forward.

In Q we have an additional axiom, which asserts that a nonzero element has a multiplicative
inverse:

Axiom For each a € Q suchthat a # 0, thereexistsb € Q suchthata -6 =1

The element b in the axiom above is called the multiplicative inverse of a. It is uniquely
determined, as the next theorem asserts.
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For each rational number a, not equal to zero, there existsaunique b € Q suchthat a - b = 1.
Proof: Exercise 1.

Subtraction is defined for rational numbers exactly asit isfor the integers:

For a,b € Q, the difference a — b is defined to be a plus the additive inverse of b, symbolicaly:
a—b=a+-b.

The expression a — b isread “a minus b”, and the operation “—" between rational numbers
is called subtraction.

For any a,b € Q, where b # 0, the quotient (or ratio) a/b is defined to be a multiplied by the
multiplicative inverse of b.

The expression a/b isread “a divided by b” or “a over b”, and the operation “ /” between
rational numbersis called division.

Example 4:

For any b # 0, 1/b is 1 times the multiplicative inverse of b, and is therefore the multiplicative
inverse of b itself. This gives us away to denote the multiplicative inverse of b.

Multiplication by the natural number 5 can be interpreted as taking 5 copies of something.
In particular, since 5- (1/5) =1 (by the definition of multiplicative inverse), 5 copies of 1/5
gives 1, so that 1/5 must be lessthan 1 (five timesless, in fact). 1/4 is also less than one, but since
only 4 copiesof 1/4 produce 1, 1/4 is greater than 1/5. In general, for natural numbers a and b, if
a < b,then1/b < 1/a.

We have yet to give aformal definition of < for Q. We want the definition we do give to
satisfy the following conditions: (1) the relation < on @Q should be the same as our previous
relation, when we consider elements in the subsets N and Z of Q, and (2) for natural numbers a
and b, if a < b, thenwewant 1/b < 1/a.

Recall the following definition of < for the integers:

Forabe Z,a <biffb—a € N.

The same definition won't work for extending < from Z to Q, since the difference between
two rational numbers need not be a whole number. In order to make a similar definition, we define
the following subset of Q:

Define Q* = {x € Q|z = a/b for some a,b € N}. Q" is called the subset of positive rational
numbers.

Example 5:

5€ Q% snce5=5/1. 3/7e€Q*, and17/5 € Q. The elements of Q" are the positive fractions
and whole numbers.

For a,b € Q, define a < b iff thereexists x € Q* suchthat b = a + . Equivaently, a < b iff
b—aec Q"
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If a and b are in the subset Z of Q, then this definition agrees exactly with the definition of
a < b that we already have. In order to prove this, we need to show that for a,b € Z: (b —a € Q*
iff b —a € N). You are asked to do this as Exercise 5. It isa corollary to Theorem 26.2.

Q*NZ=N

Proof: Exercise 3.

Fora,b e N,ifa < b,then1/b < 1/a.
Proof: Exercise 4.

The axioms we have so far for Q apply to the larger real and complex number systems, as
well as the rational humbers. If we wish our axiom system for the rational numbers to be specific
for that system, we need to introduce another axiom that will insure that the systemis not too large;
that is, that it contains the positive and negative whole numbers and fractions, but nothing else. The
following axiom does just this.

Trichotomy for Q: For any a € Q, exactly one of the following holds: (1) a« =0, (2) a € Q,
(3)-a € Q*.

The following definition repeats for the rational numbers, definitions that we have already
for the integers:

For a,b € Q, define
@ a>biffb<a
(b) a<biffa<bora=hb
(¢ a>biffa>bora=">

For any a,b € Q, exactly one of the following holds. (1) a < b, (2) a = b, (3) a > b.

Proof: Exercise 6.

Using previous theorems about the integers as a guide, make up analogous theorems for the
rational numbers. Prove the theorems that you have made up.

Recall that the natural number 1 is defined as the identity of multiplication—given by an
axiom. The numbers 2, 3, 4, and soon aredefinedas2 =1+1,3=2+1,4 =3+ 1, and so on.
The axioms that we have so far for N hold for larger number systems; that is, there is no axiom that
limits the set N to these numbers. The following theorem states that N is limited to numbers so
defined.

For every natural number n: (n = 1) or (there exists k € N suchthatn =k + 1).

EXERCISES

1. Prove Theorem 26.1
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2. Show that the two forms of the definition of < for Q are equivaent, that is, show for a,b € Q,
there exists x € QF suchthatb = a + ziff b —a € Q*.

3. Prove Theorem 26.2.

4. Prove Theorem 26.3.

5. Provethat fora,b € Z,b—a € Q" iff b—a € N.

6. Prove Theorem 26.4.

7. Give rules for addition, subtraction, multiplication , and division of rational numbers, in terms of

integers; that is, for integers a, b, ¢, d, fill in the boxes below with integers given in terms of
a, b, c,d. Prove your results.

a c 0O
vtai=o
a__c_ 0
b d O
a. . c_ 0
b 'd O

=Is

EWIN
Il

oo
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Induction

Consider the following way to add all the numbers from 1 to 100: add 1 and 100, to get 101, then
add 2 and 99, again to get 101, then 3 plus 98 again gives 101. There are just 50 such pairs of
numbers, the last being 50 plus 51. All pairs sumto 101. So the correct sumis50 - 101 = 5050.

In general we wish to find the sum of the first n natural numbers:

142434+4+..+(n—-1)+n

If there are an even number of numbers, then there are n/2 pairs, such as 1 plus n, and 2
plus (n — 1). Each of the pairssumston + 1, so

14243444+ ..+(n—-1)+n=(Mn+1)-n/2

If there are an odd number of numbers, then the number in the center of the list is
(n+1)/2, n—1 is even, and there are (n — 1)/2 pairs that remain if we delete the number
(n+ 1)/2 from the center of the list. Each of the remaining pairs, such as 1 and n, and 2 and
(n—1), sumto n + 1. Therefore the sum of the paired elementsis (n + 1) - (n — 1)/2. If we add
the deleted center element we get (n + 1) - (n — 1)/2 + (n + 1) /2. By the distributive property

n+1)-(n—1)/2+n+1)/2=[n-1)+1]-(n+1)/2=n(n+1)/2

which is the same sum that we get in the case with an even number of terms.
Thusfor al natural numbers n, we have

14243+44+..+(n—-1)+n=(n+1)-n/2

There is a very powerful idea in mathematics, called mathematical induction, that lets us
prove statements of the form for all n € N:P(n). Induction has theoretical, as well as
computational uses, and its computational uses enable us to prove things for which there are no
easy methods. In order to introduce the idea in a simple context, however, we illustrate the use of
induction by proving statements like the formula above for the sum of the first n natural numbers.

The left hand side of this formula is an expression for the sum of the first n natural
numbers. For the values 1, 2, and 3 for n, we get the following interpretation of the sum:

n=1 142434+4+..+(n—1)+n=1 =1
n=2 1+2+3+4+..+(n—-1)+n=1+2 =3
n=3 14+2+3+4+..+(n—-1)+n=14+24+3 =6

Let P(n) bethestatement1 +2+3+4+..+n—14+n=(n+1)-n/2. Then

P(1) isthe statement 1 =(1+1)-1/2
P(2) isthe statement 1 4 2 =(2+1)-2/2
P(3) isthestatement 1+2+3 = (3+1)-3/2

Notice that these statements are all true.

Mathematical Induction: In order to prove a statement of the form for all n € N:P(n) by
induction, first show that P(1) is true, then assume that P(n) is true for an arbitrary n, and show
that P(n + 1) istrue.
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Example 1:
The following assertion holds for al n € N:
D) 244+6+..+@n)=n(n+1)

If n € N, then 2n isan even natural number. The expression 2 + 4 + 6 + ... + (2n ) meansthe
sum of all even numbers up to and including 2n. If n = 1, then the expression is taken to mean just
2 (or equivalently, 2n) since 2 is the only even number up to 2.

Proof of (1):
First we verify that (1) istrueforn = 1: 2 =1(1 + 1) istrue.
For the second part of he proof,
Assume: n € N
24+44+6+..4+(2n)=n(n+1)
Show: 2+4+4+6+..+2(n+1)=m+1)((n+1)+1)
By adding 2n + 2 to each side of the expression in the hypothesis, we get:
24+4464+..+2n)+2(n+1)=nn+1)+2(n+1)
o 2+446+..+2n)+2(n+1)=(Mn+1)(n+2)

o 24+446+..+2n)+2(n+1)=mn+1)((n+1)+1)
O

Note that the conclusion is exactly the same as the hypothesis, except that every occurrence
of nisreplaced by n + 1.

A proof done according to the preceding scheme is said to be a proof “by induction on n”.
The same scheme will work for the straightforward exercises at the end of this section. Thus a
proof by induction consists of two parts: (1) showing that the assertion holds for n = 1 and (2)
showing that, if the assertion is true for an arbitrary n, then it is true for n + 1. In proving (2),
many people find it convenient to use dightly different notation: we assume the truth of the
assertion for n, let k = n + 1, and then show that the assertion holds for &. Thus the statement to
be shown in (2) has exactly the same form as the statement assumed except that & has replaced n.
In proving (1), the number 1 is substituted for n. For example, a proof of Example 1 (by induction)
would take the following form:

First, show: 2 = 1(1 + 1)
Proof: Definition of 2 (as1 + 1), and identity for multiplication.
Second:
Assume: 2+4+4+6+ ..+ (2n) =n(n+1)
k=n+1
Show: 2+4+4+64..+(2k)=k(k+1)
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By adding 2n + 2 to each side of the expression in the hypothesis, we get:
24+446+... +2n)+2(n+1)=nn+1)+2(n+1)

o 2+446+...+2n)+2n+1)=(n+1)(n+2)
o 24+44+6+... +2n)+2n+1)=Mm+1)((n+1)+1)
or 2+4+44+6+... + (2k) = (k)(k + 1) by substitution.

Example 2:

Suppose that « and y are positive integerswith x < y. Provethat for alln € N: 2" < y".

Pr oof:

By induction onn: Firstn = 1: Show: z! < yt
Proof: By hypothesis.

Next,
Assume: 2" < y"
k=n+1

It is frequently helpful to do the first few cases (n = 2, 3, or 4) toget an idea of how to proceed in
general:
n=2 z<y
2? < yz, Ty < y?, sothat 2? < o?
n=3 z?<qy’ sotha z® < y’x
x <y, sothat zy? < 33, sothat 23 < ¢*

r <y, sothat zy" < y"*! (multiplying both sides by y";
y™ is positive by Exercise 6)

" < y",sothat "™ <y"z  (multiplying both sides by x)
therefore 2" < ¢+t (transitivity of <)

that is, ¢ < ¢*
O

The validity of the inference rule for doing proofs by induction follows from the following
axiom. We have given it as arule, since arule is a more obvious guide in doing proofs than is the
use of an axiom.
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Induction: Let S be asubset of N that has the following two properties:
M1es

@ fordlneN:ifne S,thenn+1¢€ S.

Then S = N.

From the axiom, we can see that the inference rule is valid. For, given any proposition P(n)
involving the natural number n, let S be the set of all natural numbers for which P(n) istrue. If we
establish P(1) according to the inference rule, then 1 € S, so condition (1) of the axiom is
satisfied. If we assume the truth of P(n) for an arbitrary » € N, and can show P(n + 1) as the
inference rule dictates, then we have proved “for dl ne N:if ne€ S, then n+1€ 5", 0
condition (2) of the axiom is satisfied. From the assertion of the axiom, then, S = N, and this says
that P(n) is true for all n € N, by the definition of S. Thus it follows from the axiom that the
inference rule gives avalid way of proving P(n) for al n € N.

Our next use of induction is to prove a theoretical result: Theorem 27.6, the “division
algorithm”. An agorithm is a fixed procedure for calculating some mathematical quantity, for
example, the procedure of “long division”. The division algorithm comes in two versions: (1)
division of numbers to get a decimal to any desired degree of accuracy, and (2) division of whole
numbers to get a whole number quotient and a whole number remainder. Here we will be
concerned exclusively with the latter.

Example 3:

We wish to divide 14 by 3. Theideaisfirst to find the largest number less than or equal to 14 that
isamultiple of 3. This number is 12 = 4 - 3. We then subtract 12 from 14 to get the remainder 2.
Then we write 14 = 4 -3 + 2. In this expression, 4 is the quotient. Given an integer, such as 14,
that we wish to divide by another integer, such as 3, the division algorithm produces a quotient and
aremainder.

Division Algorithm: Let o and b be integers, with b > 0. Then there exist unique integers ¢ and r
suchthata = bg+rand 0 < r < b.

Theorem 27.6is known itself as the division algorithm, although it is not really an algorithm
but identifies the relationship that holds for the quantities ¢ and r, which are determined by the
algorithm.

Pr oof:

We first show the existence part for positive a by induction on a. If @ = 1, we have: Case
1,6=1:1=1-140.Case2b>1:1=0-b+ 1. Therefore the existence of ¢ and r is
shownwhena = 1.

Now let a = n and assume existence of ¢ and r, that is, n = gb + r for 0 < r < b. Hence
n+l=qgb+r+1. If r+1<b, then n+1=qgb+ 1" where 0<r' <b. Otherwise
r+1=5b sothat n+1=(¢g+1)b+0 and again n+1=¢gb+ ' where 0 <r' <b. It
follows that ¢ and r exist when a = n + 1. By induction, existence is shown for all positive
integers.

We next show the existence part for negative a and a = 0. Case 1, a =0: 0=0-b+0.
Case2,a<0:Bypat(@-a=qgb+rfor0 <r<bsothaa=(-q)b+ (-r). If r =0, weare
done. Otherwise 0 <r<b so that 0>-r>-b and b>b—r>b—0b. Here a=
(-¢q—1)b+ (b —r) and we are also done.
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Finally we show uniqueness:
Assume: qib+ 11 = qeb +rp for 0 < v,y < b.
Show: ¢ =¢ and r; =1y

Casel, r; = ro: Here g1b = ¢2b so that ¢; = ¢ by Theorem 32.5b.

Case 2, (without loss of generality 0 < r; < ry < b: Here ¢1b+r1 =  ¢2b + ro so that
(¢1 — q2)b =12 — 1. Since b is positive and r, — 7, is positive, ¢ — ¢2 is positive. By
Exercise 6b, (g1 — ¢2)b > b, but b >ry —r; so that (¢ — ¢2)b > ro — r; contradicting
(1 — q2)b = o — r1. Hence this case leads to a contradiction. Therefore Case 1, r;= 1,
must hold, and from thisit followsthat ¢,= ¢».

O

EXERCISES

Prove the following by induction on n:
L1+2+3+ .. +n="00
2143454+ ..+ (2n+1) = (n+1)%.
3.1+3+9+..+3" ==L
4.17 + 22 + 3% + .+ n? ={n(n+1)2n+1).
583+428 + L4+ nP=(01+2+ .. + n)?

6. Suppose y € Z and y > 0. Prove:
@fordlneN: y*>0
(b)fordlneN: ny>y

7. Proven < 2" foraln € N.
8Lt A={zeN|(x=1)or (x=y+1 forsome y € N)}. Use the induction axiom to show

that A = N. Concludethat 1 < n foralln € N and that there is no integer between 0 and 1. Show
that there is no integer between 1 and 2. Can you generalize?
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Primes, Divisors, and Multiplesin N

Prime numbers can be considered in the context of either the integers or the natural numbers. The
former approach is the more powerful, and leads to easier deductive access to the theorems of
elementary number theory. The approach is, however, more abstract than we wish the present text
to be. Theorems about the topics we consider here are found in Volume 3 of the series—which is
written at a higher level. The present treatment is descriptive—not deductive. That is, we will
make some definitions and do some computations, but there will be no significant theorems. Our
definitions will be made in the context of the natural numbers, since it is the simplest. Before we
restrict attention to the natural numbers, however, we will say something briefly about how things
work in the integers.

Certain of the axioms relating addition and multiplication in Z are exactly the same as those
relating addition and multiplication in Q. Any set on which there are two operations satisfying
these axioms is called a commutative ring. Since the axioms hold in Z and Q, Z and Q are
examples of commutative rings?2. N is not a commutative ring since, for example, there is no
additive identity, nor do elements have additive inverses. (Elements in aring may have, but need
not have, multiplicative inverses.)

In aring, divisors of the multiplicative identity 1 are called units. Since (-1) - (-1) = 1 and
1-1=1, both 1 and -1 aredivisors of 1, and are therefore unitsin Z. In fact, 1 and -1 are the only
unitsin Z. In Q, since every nonzero element has a multiplicative inverse, every nonzero element
isaunit. Thusin Z there are elements that are neither zero nor units, but thisis not truefor Q. Ina
ring, an element a is caled irreducible iff whenever a = be (for some b and ¢ in the ring), we have
that either b or ¢ isaunit. Thus 7 is an irreducible element of Z, since if we had 7 = be, then either
b=+landc= £7,0rc= £1and b = £+ 7—so that either b or c is a unit. The integer 6,
however, is not irreducible, since 6 = 2 - 3, but neither 2 nor 3 isaunit.

In aring, an element « is called prime iff whenever o divides a product bc, then a must
divide either b or c. In Z, for example, the number 6 is not prime since 6 divides 9 - 4 or 36, but 6
does not divide 9, nor does it divide 4. The number 7 is prime in Z, since any time 7 divides a
product be, it must divide one of the factorsb or c.

Although there are rings (sets that satisfy the axioms) for which prime and irreducible
elements are sometimes different, it can be proved that in Z any number is prime iff it is
irreducible. (This is, however, not an elementary result.) The definition of prime that we give for
natural numbers could be either the definition above of prime for rings, or the definition of
irreducible—since these ideas are equivalent for natural numbers. The easier, and most widely
seen, definition for primality in the natural numbers is actually the ring-theoretic definition of
irreducibility. It is the definition people used for the two thousand years preceding the definition of
the integers.

A natural number is called primeiff itsonly divisors (in N) are 1 and itself.

A natural number that is not prime and not 1 (that is, not aunit) is called composite.

22 The set of polynomialsin « is another example of acommutative ring.
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Example 1.

6 =2 -3 sothat 2 and 3 are divisorsof 6. Thus 6 is composite. 7 isprime, having only 1 and 7 as
divisors

Any composite number can be written as a product of its prime divisors. (Recall that a
divisor is also called afactor).

Example2:
Write 300 as a product of its prime factors.

We begin by writing 300 as a product of two of its factors: 300 = 30 - 10. This is done in the
following beginning of a“factorization tree”.

300

N

30 10
Next, we write both 30 and 10 as products of their factors:

300

/N

30 10

/N

3 102 5

The numbers 3, 2, and 5 are prime, and cannot be factored further. However, 10 can be factored
into 2 times 5:

300

Thus 300 =3-2-5-2-5. The prime factors of a number are usually listed in order of
increasing size: 300 =2-2-3-5-5. Also, it is customary to use exponential notation for
repeated factors. Thus 300 = 22 - 3 - 52

It is possible to generate a list of all the factors of a number, by taking all combinations of
exponents not exceeding the exponents in the prime factorization.

Example 3:
Find all the factors of 300.

Solution:
22.31.52 =300 22.31.51 =60 22.30.50 =12
21.31.52 =150 2t.31.51 =30 21.31.50=¢
20.3l.52 =75 20.31.5 =15 20.3L.50 =
22.3%.52 =100 22.30.51 =20 22.30.50 =4
21.30.52 =50 2t.30.51 =10 21.30.50 =

20.30.5% =25 20.30.51 =5 20.30.50 =1
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It is frequently necessary to know the greatest common factor for two numbers. If the
numbers aren't large, this can be found by determining the sets of al factors of each number, and
then finding the greatest one they have in common.

Example 4:
Find the greatest common factor of 36 and 50.

Solution:

Using factorization trees, first obtain the prime factorizations of both 36 and 30. (The figures are
omitted.) We get: 36 =22-32 and 30 = 2-3-5. Wethen generate lists of all the factors of 36
and 30:

Factors of 36 Factors of 30
22.32 =136 2t.3L.51 =30
21.32=18 20.31.51 =15
20.32=9 21.30.5 =10
22.31 =192 20.30.5l =5
2t.3t =6 21.31.50=¢
20.31=3 20.31.50 =3
22.30 =4 20.30.50 =29
21.30=29 20.30.50 =1
20.30 =1

By inspection, we see that {1,2,3,6} is the set of common factors for 36 and 30. Thus 6 is the
greatest common factor.

Suppose we wish to find the greatest common factor n» of numbers o and b. It's not
necessary to actualy list the sets of factors for each of ¢ and b. Instead, we seek the prime
factorization of n. Since n is found in the list of factors of a, it is expressed as a product of the
prime factors of a to some powers. The powers in the factorization of n can't exceed the powersin
the factorization of a. Similarly, n must be also expressed as a product of powers of the prime
factors of b.

Example 5:
Let n be the greatest common factor of 30 and 36. Find n by determining its prime factorization.

Solution:

Sinceit occursin the list of factors of 36, n is of theform 27 - 3* for some j, k, . It isalso of the
form 27 - 3%.5¢, for somer,s,t, sinceit occursin the list of factors of 30. Since it occursin the
first list, the exponent of 5 must be zero. Since it occursin the second list, the exponents of 2 and 3
must be less than or egual to 1. In order that n be the greatest of the common factors, the
exponents of 2 and 3 should be as large as possible—subject to the constraints above. Thus the
exponents of 2 and 3 areboth 1. Thusn = 2! - 31 = 6.

Example 6:
Let a=22-3-5°-11 and b= 2-3%-52. 7% begiveninterms of their prime factorizations, and
let n be the greatest common factor of a and b. Find n in terms of its prime factorization.

Solution:

We can simplify notation by using zero as an exponent to describe the prime factorizations of a
and b. Thus a=22-3'-53.7%.11' and b= 2'-32.52.72.11° Then n has a prime
factorization involving these primes, where for each prime the exponent is as large as possible
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subject to the constraint that it can't be larger than the exponent in the factorization of a or of b.
Thus n =2'-3'.52.70.11°,

The method of Example 6 can be summarized in general as follows:

In order to find the greatest common divisor n of natural numbers a and b, write ¢ and b in terms
of their prime factorizations. Use zero as an exponent, when necessary, so as to write ¢ and b in
terms of the same prime numbers. Then n has a prime factorization involving the same set of
primes, where the exponent for each prime is found by taking the minimum of the exponents for
that prime in the factorizations of a and b.

There is a method, called the Euclidean algorithm, for calculating the greatest common
factor of two numbers, without finding their prime factorizations: Suppose we wish to find the
greatest common factor n of a and b. Suppose aso (without loss of generality) that a < b. By the
divison algorithm, b = ¢qya + r1 where 0 < r; < a. Now use the division algorithm to divide a
by the remainder r; to obtain a second, smaller remainder ro: a = qor1 + 12, Where 0 < ry < rq.
Then divide the first remainder by the second, to get a third. Then divide the second by the third to
get afourth, and so on, until we get aremainder of zero:

b=qa+r, where0 <r; <a
a = gor1 + 19, Where 0 < ry < 1y
71 ZQ§;T2+T3,Where 0< r3 < T9

r9 = qur3 + rq, Where 0 < ry < r3

Th—2 = qiTk—1 + T, Where 0 < 1y < 1
Tr—1 = qe+17Tk + 0

We claim that 7., the last nonzero remainder, is the greatest common factor n of a and b.
To see this, first observe that sincen | e andn | b, n | r1, by Theorem 7.1 and the first equation.
Thensincen | e andn | r1, n |9, by Theorem 7.1 and the second eguation. We continue in this
manner to find that » divides al the remaindersin the sequence. Thusn | 7.

From the last equation, r;_1 = qr+17 + 0, we seethat r divides r;_;. From the equation
Th_2 = qpTE—1 + Tk, We See that v, must also divide r,_o. From the preceding division r;, must also
divide r;,_3, and so on. Thus 7, divides all the remainders and b and a. Thus r; is a common
divisor of a and b. Since n is by definition the greatest common divisor, we have r;, < n. Since
aso n | r;, wehavethat n = r;. That is, the greatest common divisor of aand b is the last nonzero
remainder that we get in the process of dividing by successive remainders.

Example 7:
Use the Euclidean algorithm to find the greatest common factor of 675 and 1800.

Solution:

Dividing 1800 by 675 gives. 1800 = 2 - 675 + 450.

Dividing 675 by 450 gives. 675 =1-450 4 225.

Dividing 450 by 225 gives. 450 =2 - 225 + 0.

Since 225 isthe last nonzero remainder, it is the greatest common factor of 1800 and 675.

The least common multiple of ¢ and b is, as its name suggests, the smallest of al the
multiplesthat a and b have in common.
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Example 8:
Find the least common multiple of 12 and 18.

Solution:

The set of multiplesof 12 is {12,24, 36,48, 60, 72, 84,96, 108,120, ... }.

The set of multiplesof 18 is {18, 36,54, 72,90, 108, 126, 144, 162, 180, ... }.

The set of common multiples will be the intersection of the two sets above: {36, 72,108,144, ...}.
The least common multiple is the smallest element in this set, namely, 36.

It is easier to find the least common multiple of two numbers in terms of its prime
factorization than by listing all multiples of the numbers. For example, 12 has the prime
factorization 12 =22-3' and 18 has the prime factorization 18 = 2'-32. If m is the least
common multiple of 12 and 18, then m must contain all the factors of 12 (2 as afactor twice, and 3
once), and all the factors of 36 (2 as afactor once, and 3 twice). Any multiple of 12 will contain at
least two factors of 2 and one factor of 3. Any multiple of 18 will contain one factor of two and
two factors of 3. The common multiples of 12 and 18 are therefore the numbers that contain at
least two factors of 2 and two factors of 3. The least common multiple contains exactly (no more
than what is necessary) two factors of 2 and two factors of 3.

In order to find the least common multiple m of natural numbers a and b, write « and b in terms of
their prime factorizations. Use zero as an exponent, when necessary, so asto write ¢ and b in terms
of the same prime numbers. Then m has a prime factorization involving the same set of primes,
where the exponent for each prime is found by taking the maximum of the exponents for that prime
in the factorizations of @ and b.

Example 9:
Let a=22-3-5°-11 and b= 2-3%-52.7% begiveninterms of their prime factorizations, and
let m be the greatest common factor of a and b. Find m in terms of its prime factorization.

Solution:

We simplify notation by using zero as an exponent to describe the prime factorizations of a and b.
Thus a=22-3'.5%.79.11! and b= 2'-3%2.52.72.11% Then n has a prime factorization
involving these primes, where for each prime the exponent is as small as possible subject to the
congtraint that it can't be smaller than the exponents in either factorization of a or of b. Thus
m=2%.32.5%.72. 114,

For numbers ¢ and b, calculate the product ab, the least common multiple of a and b, and the
greatest common factor of a and b. How are these related? Start with small numbers as exampl es of
a and b in your calculations, and then work up to larger examples. Once you have found a
relationship, try to verify it—at least informally. The product of a and b can also be found in terms
of prime factorizations by the rule that to multiply powers, we add exponents.

The least common multiple of two numbers has application as the “least common
denominator”, when we add fractions.

Example 10:
Add ﬁ and %
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Solution:

By Example 2, the least common multiple of 12 and 18 is 36. Thusto add +; and

15» We change
: : . 1 3 1 _ 3 5 2 5 _ 10
both fractions to have denominator 36: 5 = S 15 =35 and 3 =353 = 3. Therefore

Lpi=340-1.(3+10)=2L 13= 2, bythedistributive property.
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A Computational Practice Test

Problem 1 Count the first sixteen natural numbers
(@) in baseten
(b) in base four
(¢) in base twelve

Solution (@1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16
(b) 1,2,3,10,11,12,13, 20, 21, 22, 23, 30, 31, 32, 33, 100,
(©)1,2,3,4,5,6,7,8,9,T, E,10,11,12,13, 14
Problem 2 Express 384 in expanded notation
Solution 3 x (ten)? + 8 x (ten)t +4 x (ten)? [or 3 x (ten)? + 8 x (ten) + 4]
Problem 3 Express 354,;, in expanded notation
Solution 3% (siz)? +5 x (siz)t +4 x (siz)? [or 3 x (siz)?+5 x (siz) + 4]
Problem 4 Express 354,;, in baseten
Solution 3 x (siz)?+5 x (siz)! + 4 x (six)"

=3x36+5x6+4
=108 +30 +4 = 142

Problem 5 Express 354 in base four

Solution 4° = 1024 > 354.
4% = 256 < 354
By the division algorithm: 354 = 1 - 256 + 98 = 1 x 4* + 98.
4% =64 < 98

By the division algorithm: 98 = 1 - 64 + 34

0 354=1x4*4+98=1x4*+1x4%+34

42 =16< 34

By the division algorithm: 34 = 2 - 16 + 2

0354 =1x4"+1 x4 +34=1x4"+1x4>+2x4%>+2
4' > 2

354=1x4"+1 x4 +2x 4240 x 4! +2

354en, = 11202]’011,7‘

Problem 6 Express 11202 ,,, in expanded notation
Solution

11202454 = 1 X (four)Wsow + 1 x (four)®row + 2 x (four)?eor + 0 x (four)lor 4+ 2 x (four)or
or =1x (four)' +1 x (four)® + 2 x (four)? +0 x (four) + 2
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Find 789 + 315 using the lattice method

7 8 9
+ 3 1 3
1 7lo 7|1~
1 0 9 4
1 0 4

Note: The entriesof 10 (=7+43), 9 (=8+1), and 14 (= 9+ 5) from an addition table are
put in the boxes under the single digits being added. For atwo digit entry from the addition table,
the number of units is put below the diagonal, and the number of tens is put above the diagonal.
We then add along the diagonals, from the right—" carrying” if necessary. The diagonals, from the
right, give us the number of units, tens, hundreds, and thousands respectively. 789 + 315 = 1104.

Make an addition table for base four.

+ 11 12 |3

1 2 |3 |10
2 |3 |10]11
3 10 | 11 | 12

Find 123 ¢4, + 1324y, Using the lattice method.

3
+ 1 3 2
01171
200
3 2 1
123]’011,7‘ + 132]’011,7‘ = 321f0u7"-

Find 789 x 32 using the lattice method

1 1 1
5 4 6 8 2

2 4 8
789 x 32 = 25,248

Make a multiplication table for base four.

x |2 |3
2 10 | 12
3 12 | 21
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Find 123 o4 X 32f0ur Using the lattice method

32 2
123 four X 32f0ur = 113220y,

Subtract 706 from 2345, by adding the complement.

Since 706 + 293 = 999, the “complement” of 706 is293. If we add 293 to 2345:

2345
+ 293
2638

we get 2638. This number is 999 larger than 2345 — 706. Therefore 2639is 1000 larger than
2345 — 706. Therefore 2345 — 706 = 2639 — 1000 = 1639. Briefly:

2345

+ 293

2638

+1

2639
Answer: 1639

Subtract 23y, from 3112 ,,,, by adding the complement.

Since 23four + 10 four = 33 four, the “complement” of 23y, iS 10, If we add 10y, tO
3112 oy

3112

+10

3122

we get 3122¢,,,. This number is 33y, larger than 3112¢,,, — 2340,,. Therefore 3123, is
100 40, larger than 31124, — 23 four- Therefore 3112 rour — 23 four = 3123 four — 100 f0ur =
3023 ¢oyr. Briefly:

3112

+10

3122

+1

3123
Answer: 3023 7oy
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Representations of Rational Numbers

Any rational number ¢ has a representation as a fraction 7, where a is an integer and b is a natural
number. By formally dividing b into a, we get a decimal representation of ¢.

Example 1.

Letq = % Find a decimal representation for q.

Solution:

0.2222222 ---
9]2.0000000 ---

Thusg = 0.2222 ---

Example 2:

Letg = i Find a decimal representation for g.

Solution:

0.2500 ---
4110000 ---

Thusq = 0.25.

Show that a rational number has a decimal representation that either has a cyclic repeating pattern
(asin Example 1) or terminates (as in Example 2). What remainders are possible at each stage in
the division? What happens when a remainder is repeated?

Find examples of rational numbers that have repeating decimal representations, and examples that
have terminating representations. Characterize (in terms of the numerators and denominators in
their fractional representations) those rational numbers that will have terminating decimal
representations.

Since rational numbers have either repeating or terminating decimal representations, a
number such as » = 0.101001000100001 - - -, that neither terminates nor has a cyclic repeating
pattern, is not arational number. Such a number is called irrational23. Another irrational number is
ﬁ. To see why, suppose (to get a contradiction) that f = ¢, where a and b are natura
numbers. We can also suppose, without loss of generality, that « and b have no factor in common.
Otherwise we could divide both numerator and denominator by the factor to get a representation

where ¢ and b have no common factor (reduce the fraction to “lowest terms’). Then

23 The word “rational” comes from “ratio”. Rational numbers are those that have fractional representations, that is,
areratios of integers. Irrational numbers are those that have no such representations. Although we call people
“irrational” when they becomeillogical, irrational numbers are not at all illogical. Perhaps people were first called
“irrational” because their ratio of response to stimulus was inappropriate.
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V2-y/2=2%.9 thais, 2= 9. Fromthisweget 2-b’>= a’ If a had no factor of 2, then a?
would also be odd, and also have no factor of 2. This can't happen, since the left hand side of the
equation 2 - b* = a? iseven. Thus a has 2 as a factor, so that a? has 4 as afactor: that is, a? = 4c
for some natural number c. Therefore 2 - b2 = 4c¢, which gives. b> = 2¢. From thiswe seethat b as
well as a must be even—which contradicts the assumption that a andb have no common factor.
Since the assumption that /2 has a representation ¢, has led to a contradiction, /2 must be
irrational.

Rational numbers have representations as fractions or “decimals’ in bases other than ten.

Example 1:
2 x (four)! + 1 x (four)’ 4+ 3 x (four)' +2 x (four)? is expanded notation for the rational
number 21.32 foy-.

Example 2:
Using the base four multiplication table from Appendix 2, we can find the “decimal”
representation of the fraction ;/:
2]11.000 ---
Liow _
m - O~2four
Example 3:

Consider the fraction l; to be written in turn in each of the bases five, six, and ten. Find
“decimal” representations for % in each of these bases.

Solution for base five:
In order to divide in base five, we first create a multiplication table for base five:

x |2 |3 |4
2 |4 |11]13
3 11|14 | 22
4 13122 |31

0131313 ..
311.000 -
3
20
14
10

Lo _
gt = 0.131313 - five

Solution for base six:
In order to divide in base six, we first create a multiplication table for base six:

X |2 |3 |4 |5

4 [10(12] 14
10 | 13|20 | 23
12120 |24 | 32
14 | 23|32 |41

Tt | W N
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0.200
311.000

£ = 0.2 5iz

Solution for base ten:

0.33333 -
3]1.000 ---
9
10
§=10.3333-

From the preceding example, we see that % represents repeating “decimals’ in bases five and ten,
but a terminating “decimal” in base siz. By looking at many examples, find a rule for which
fractions give terminating “decimals’ in an arbitrary base n.

Given a decimal representation of a rational number, it is possible to find a fractional
representation by the following trick:

Example 4:
Suppose g = 0.060606 - --. Then 100g = 6.060606 - - -. Subtracting:

100¢g = 6.060606 - - -

q = 0.060606 - - -
99¢ = 6
Therefore, ¢ = & = 2.

Example 5:
Suppose g = 0.22222 - - - ;.. Then 10¢;,.q = 2.22222 ---. Subtracting:

10q = 2.22222. -
q=0.22222. - -
4q =2
Therefore, ¢ = 2 = 1.
Example 6:

Suppose g = (%) rive. Find a*decimal” (in base five) representation for g.

Solution :
Using themultiplication table for base five from Example 3, we get the following division:

0.22222 ...
211000 -
4
10
Therefore (1) five = 0.22222-- .
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Example 7:
Suppose g = 0.99999 ---. Then 10g = 9.99999 - --. Subtracting:

10g = 9.99999- - -
g =0.99999. ..
99 =9

Therefore, ¢ = § = 1.

Example 7 shows that the same rational number may have different decimal representations.
In particular 1.0 = 0.99999 - -- . In order to avoid having different representations, the pattern of
repeating 9's is not used. (All other cyclic repeating patterns are used.) Instead, any time we might
see a pattern of repeating 9's, the digit preceding the pattern is raised by 1. For example,
13.249999 - - - is changed to 13.25. The numbers 13.249999 - - - and 13.25 are exactly the same, but
the former representation is not generally used.

With the convention in the preceding paragraph, each rational number has a unique decimal
representation. The same is not true, of course, for fractional representations. For example, %, %, 6‘,
and so on, al represent the same number. It is not possible to use only fractions in “lowest terms’
(where numerator and denominator have no common factor), since other forms arise naturaly in
computations (and must be “reduced to lowest terms’ later.) Rational numbers greater than 1 have
expressions as either “mixed numbers’ or “improper fractions’. For example, 1% = % Both of
these forms have their uses—another reason that we can't have a unique fractional representation
for each rational number.
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pr. =

pr. or

pr. or

pr.or EZ

pr.or EZ

| nference Rule Formats

Rules for proving statements+

1. Assume P

197

k-1.9

K.if P, then Q (1—k-1; pr. =)

1. Assume =P

k-1.9
k.. PorQ (1—k-1; pr. or)

1. Assume -Q

k-1.P
k.. PorQ (1—k-1; pr. or)

1P
2.PorQ (1;pr.or EZ)

1.9
2. PorQ (1;pr.or EZ)
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pr.V
1. Letz € A bearbitrary
k-1.P(z)
k. forallz € A:P(x) (1—k-1; pr. V)
pr. &
i-P
k-1.9

K. Pand Q@ (,k-1;pr. &)

contradiction

1. Assume =P

k-1. any contradiction # previous step, hyp., or thm.  (reason for k-1)

k.P (1—k-1; #)
pr. 3
i. <define z here>
jxe A
k-1.P(x)
k. there existsx € A suchthatP(z)  (i,], k-1, pr.3)
pr.vY =

i.Letz € AandP(z)

j. Q(x)
j+1. forallz € A: if P(x), then Q(x) (i—j; pr.v =)
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Rules for using statements

us. =

1.if P, then Q

2.P
3.9

us. or

(4,2, us. =)

1.PorQ
Casel 2. AssumeP
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j-

R

Case2 j+1. AssumeP

k-1. R

us. or EZ

(1—k-1; us. or)

1.PorQ

2.-P
3.9

us. or EZ

(1,2; us. or EZ)

1.PorQ

2.9
3.P

us. &

(1,2; us. or EZ)

1.Pand Q

2.9

us. &

(L;us. &)

1.Pand Q

2.P

(L;us. &)
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us. v
1 forallxz € A:P(x)
2tec A
3.P(t) (1,2;us. V)

us. v =
1 forallx € A:if P(x), then Q(x)
2.t A
3.P(t)
4. 9(t) 1,2,3;us. V=)
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A Basic Syllabus

Class work

1. 81 Instructor and class cover text.
2. 82 Instructor and class cover text.
3. 83 Ingtructor and class cover text.
4. 84 Instructor and class cover text.
5. 85 Instructor and class cover text.
6. Do #2 in small groups
7. 86 Instructor and class cover text.
8.Do #2 in groups
9. 87 Instructor and class cover text.
10. 88 Instructor and class cover text.
11. Do #3,4 in groups.
12. Do #5,6,7 in groups.
13. 89 Instructor and class cover text.
14. Do #3a,4,5a.
15. 810 Instructor and class cover text.
16. 811 Instructor and class cover text.
17. 812 Instructor and class cover text.
18. 813 Instructor and class cover text.
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Assignment (# refers to exercise number.)

Read Introduction and 1. Do #1,3.
Read 82. Do #1—7.

Read §3. Do #1—8.

Read 8§4. Do #1,2,4—9. Do #3 for own use.
Read 85. Do #1.

Write up #2.

Read 86. Do #1.

Write up #2.

Read §7. Do #1—4.

Read 8§8. Do #1,2,8,9.

Write up #3,4.

Write up #5,6,7.

Read §9. Do #1,2,6,7.

Write up #3a,4,5a.

Read §10. Do #1.

Read 811. Do #2,3.

Do #1,2.

Do #1—7.

19. 814 The theorems on equivalence in this section from Page 81 up to the statement of Theorem
14.5, plus Theorem 14.9. are proved by the instructor. Students will use any of the theorems of

this section later, but will not prove theorems about logical equivalence.

20. 815 Instructor and class cover text.

21. Do #3,4 in groups. Start on homework.
22. Start work on 816 as a class project.
23. Continue 816 project.

24. Continue §16 project.
819#6,7.

25. Instructor do 818 #4,5. Continue project.
#1,2.

26. Continue §16 project.
27. Continue 816 project.
28. Continue §16 project.

Read §14. Do #1.
Read 815. Do #1,2,8.

Read §16. Write up #3,4.

Read §17. Do #1.

Read §18 through p. 124. Do #1,2.

Read remainder of §18 and Page 129. Do

Read §19 through proof of Thm. 19.3. Do

Read §19. Do #4.
Read 8§20 through Thm. 20.3. Do #1,2,3.
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A Second Syllabus

Assignment (# refers to exercise number.)

N PR R R R R R R
©C Vo ok~ wbhPEF O

21.
22.
23.
24,
25.
26.

27.

© 0o N O A ®WDNPRE

Read Introduction and 81. Do #1,3.

Read 8§2,3. Do 82, #1—6; 8§83, 1—3.

Read 84. Do #1,2,4—9, #3 for own use.
Read 85. Do #1,2.

Read §6. Do #1,2.

Read §7. Do #1,2,3.

Read 88. Do fill-in #1,2,8,9; hand in #3a,4.
Do 88 #5,6,7.

Read §9. Do #4.

Read §10. Do #1.

. Read 811. Do #1,3.

Read 812 and §13. Do fill-in 8§12 #1, 8§13 #1,2; hand in 8§12 #2.

Read §14. Do #3,4.

Read §15. Do #2—6.

Read §16. Do investigations (severa days).

Read 817, 18. Do 818 #1,2,4,5. Note: #4,5 illustrate an important point.
Read 819,20. Do 8§20 #1,2,3.

Skim §21. Read §22. Do §22 #6. Instead of the detailed attention to properties of Z asabasis
for the computations of algebra, we can take Z with these properties as given. “Algebraic
computation” is then acceptable as justification for proof steps.

Read §23. Do #1,2,3.

Do §23 #4,5.

Read §24. Do #2.

Do Investigation 7 (two or more days).
Read §25. Do #7.

Skim 826. Read 827. Do 8§27 #1,2. “ Algebraic computation” is acceptable as justification for
proof stepsinvolving Q .

Do 827 #5,7.
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| ndex
A

Addition facts 119
Analysis 22
And statement
rule for proving 62
rulefor using 61
Arbitrary element 13
Associative 81, 139
Axiom 5, 22, 79, 81, 139

C

Call for Change v
Cartesian product 169
Cases 36, 41
Chain of equalities 118, 151
Closure 81, 139
Codomain 147
Commutative 81, 139
Complement, set 111
Composition 148
Conclusion 2
inanimplication 87
Conjecture 2
Contradiction 41
proof by 101
Contrapositive 98
Converse 59, 98
Corollary 91
Counterexample 2
Counting 118

D

Deductive mathematics v
Defining aset 6
Definition

formal 11,12

of arelation 13, 108

ofaset 7
Descriptive mathematics v
Domain of afunction 147
Dieudonne, Jean iv, v
Difference, set 111
Digoint, sets 112, 137
Distributive 81, 139
Divides, definition 133
Division algorithm 180
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E

Element of set 1
Empty set 6

definition 134
Equal sets, definition 63
Equalities, chain 118, 151
Equivalence 90

rule for proving 90

rule for using 12; implicitly: 120
Equivalent 12

logically 90
Explicit logic vi

F

Fase 1
Forall statement 12
negation 15
rulefor proving 14
rulefor using 27
For-all-if-then statement
rulefor proving 156
rulefor using 158
Formal definition 11, 12
Free variable 105, 160
Function
conditionally defined 147
definition 170
informal idea 147
many-to-one 155
one-to-one 155

G

Global variable 12

H

Hypothesis 2
inanimplication 87
use in anarrative proof 166

Hypothesis-conclusion interpretation 2
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| dentity
for multiplication 117, 139
for addition 140
function 151
I f-then statement 87
rule for proving 87
rulefor using 89
Iff (formal) 139
Iff (informal) 12
Imagination and proof 19
Implication 59, 87
Implicit definition rule 45
Implicit logic vi
Induction 175
Integers 139
Intersection
definition 61
Inverse, for addition 140

L

Lessthan 1

definition 122, 142

or equal to 57
“Let”, formal use 124
Local variable 12, 28, 84
Logic vi

M

Mathematical Assoc. of America v
Member of set 1

Minus 140

Multiplication facts 119

N

Narrative proof vi, 73—75, 166
Natural number 1
NCTM v, v
Negation 1, 105
Negative 140
times negative 144
Not statement 105
Numbers
adjectives and nouns 118
definition of 119
Numeral 119

O

Onto, definition 163
Order relation 1
Ordered pair 169

Ordering
of the natural numbers 129
of the integers 143

Or statement
rulefor proving 51; EZ: 54
rulefor using 35, 41

P

Paragraph proof 166
Premise 70
Proof
analysis 19
and imagination 19
discovery 19
meaning of 19
narrative 73—75
Proof by contradiction 105
Proposition 2

R

Range 148
Rational numbers 173—176

S

Set 1
Set definition rule 7, 106
Standards, NCTM v
Statement 1
Step-discovery

outline 21

procedure 21
Subset 11

definition 12
Substitution, rule 57, 77
Subtraction

definition 132

facts 132
Symmetry, rule for using 70
Synthesis 22

T

Theorems 9
rulefor using 78
There exists statements 15, 121—127
negation 15
rulefor using 121
implicitly 125
rulefor proving 121
with uniqueness 117
Top-level statement 19
Transitivity 5, 58, 93, 122, 126



Index

Trichotomy
for N 129
for Z 143

True 1,9

U

Union
definition 35
Uniqueness
rule for proving 117
rulefor using 141
with there exists 117
Universal set 1,6

V

Vacuously true 15, 136
Variables 12
Venn diagram 11, 32
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