Date of Award

5-2004

Document Type

Open-Access Thesis

Degree Name

Master of Science (MS)

Department

Spatial Information Science and Engineering

First Advisor

Max J. Egenhofer

Second Advisor

M. Kate Beard-Tisdale

Third Advisor

Robert D Franzosa

Abstract

Wayfinders typically travel in dynamic environments where barriers and requirements change over time. In many cases, uncertainty exists about the future state of this changing environment. Current geographic information systems lack tools to assist wayfinders in understanding the travel possibilities and path selection options in these dynamic and uncertain settings. The goal of this research is a better understanding of the impact of dynamic and uncertain environments on wayfinding travel possibilities. An integrated spatio-temporal framework, populated with barriers and requirements, models wayfinding scenarios by generating four travel possibility partitions based on the wayfinder's maximum travel speed. Using these partitions, wayfinders select paths to meet scenario requirements. When uncertainty exists, wayfinders often cannot discern the future state of barriers and requirements. The model to address indiscemibility employs a threevalued logic to indicate accessible space, inaccessible space, and possibly inaccessible space. Uncertain scenarios generate up to fifteen distinct travel possibility categories. These fifteen categories generalize into three-valued travel possible partitions based on where travel can occur and where travel is successful. Path selection in these often-complex environments is explored through a specific uncertain scenario that includes a well-defined initial requirement and the possibility of an additional requirement somewhere beforehand. Observations from initial path selection tests with this scenario provide the motivation for the hypothesis that paths arriving as soon as possible to well-defined requirements also maximize the probability of success in meeting possible additional requirements. The hypothesis evaluation occurs within a prototype Travel Possibility Calculator application that employs a set of metrics to test path accessibility in various linear and planar scenarios. The results did not support the hypothesis, but showed instead that path accessibility to possible additional requirements is greatly influenced by the spatio-temporal characteristics of the scenario's barriers.

Share

COinS