Date of Award

12-2010

Level of Access Assigned by Author

Open-Access Thesis

Degree Name

Master of Science (MS)

Department

Spatial Information Science and Engineering

Advisor

Michael Worboys

Second Committee Member

Nicholas Giudice

Third Committee Member

Mark Jadkowski

Abstract

When browsing a graphical display of geospatial data on mobile devices, users typically change the displayed maps by panning, zooming in and out, or rotating the device. Limited storage space on mobile devices and slow wireless communications, however, impede the performance of these operations. To overcome the bottleneck that all map data to be displayed on the mobile device need to be downloaded on demand, this thesis investigates how anticipated user interactions affect intelligent pre-fetching so that an on-demand download session is extended incrementally. User interaction is defined as a set of map operations that each have corresponding effects on the spatial dataset required to generate the display. By anticipating user interaction based on past behavior and intuition on when waiting for data is acceptable, it is possible to device a set of strategies to better prepare the device with data for future use. Users that engage with interactive map displays for a variety of tasks, whether it be navigation, information browsing, or data collection, experience a dynamic display to accomplish their goal. With vehicular navigation, the display might update itself as a result of a GPS data stream reflecting movement through space. This movement is not random, especially as is the case of moving vehicles and, therefore, this thesis suggests that mobile map data could be pre-fetched in order to improve usability. Pre-fetching memory-demanding spatial data can benefit usability in several ways, but in particular it can (1) reduce latency when downloading data over wireless connections and (2) better prepare a device for situations where wireless internet connectivity is weak or intermittent. This thesis investigates mobile map caching and devises an algorithm for pre-fetching data on behalf of the application user. Two primary models are compared: isotropic (direction-independent) and anisotropic (direction-dependent) pre-fetching. A prefetching simulation is parameterized with many trajectories that vary in complexity (a metric of direction change within the trajectory) and it is shown that, although anisotropic pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all scenarios. This thesis suggests a combination of models to accommodate the significant variation in moving object trajectories. In addition, other methods for pre-fetching spatial data are proposed for future research.

Files over 10MB may be slow to open. For best results, right-click and select "save as..."

Share